Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements C++ template argument deduction.
     10 //
     11 //===----------------------------------------------------------------------===/
     12 
     13 #include "clang/Sema/TemplateDeduction.h"
     14 #include "TreeTransform.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTLambda.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/StmtVisitor.h"
     22 #include "clang/Sema/DeclSpec.h"
     23 #include "clang/Sema/Sema.h"
     24 #include "clang/Sema/Template.h"
     25 #include "llvm/ADT/SmallBitVector.h"
     26 #include <algorithm>
     27 
     28 namespace clang {
     29   using namespace sema;
     30   /// \brief Various flags that control template argument deduction.
     31   ///
     32   /// These flags can be bitwise-OR'd together.
     33   enum TemplateDeductionFlags {
     34     /// \brief No template argument deduction flags, which indicates the
     35     /// strictest results for template argument deduction (as used for, e.g.,
     36     /// matching class template partial specializations).
     37     TDF_None = 0,
     38     /// \brief Within template argument deduction from a function call, we are
     39     /// matching with a parameter type for which the original parameter was
     40     /// a reference.
     41     TDF_ParamWithReferenceType = 0x1,
     42     /// \brief Within template argument deduction from a function call, we
     43     /// are matching in a case where we ignore cv-qualifiers.
     44     TDF_IgnoreQualifiers = 0x02,
     45     /// \brief Within template argument deduction from a function call,
     46     /// we are matching in a case where we can perform template argument
     47     /// deduction from a template-id of a derived class of the argument type.
     48     TDF_DerivedClass = 0x04,
     49     /// \brief Allow non-dependent types to differ, e.g., when performing
     50     /// template argument deduction from a function call where conversions
     51     /// may apply.
     52     TDF_SkipNonDependent = 0x08,
     53     /// \brief Whether we are performing template argument deduction for
     54     /// parameters and arguments in a top-level template argument
     55     TDF_TopLevelParameterTypeList = 0x10,
     56     /// \brief Within template argument deduction from overload resolution per
     57     /// C++ [over.over] allow matching function types that are compatible in
     58     /// terms of noreturn and default calling convention adjustments.
     59     TDF_InOverloadResolution = 0x20
     60   };
     61 }
     62 
     63 using namespace clang;
     64 
     65 /// \brief Compare two APSInts, extending and switching the sign as
     66 /// necessary to compare their values regardless of underlying type.
     67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
     68   if (Y.getBitWidth() > X.getBitWidth())
     69     X = X.extend(Y.getBitWidth());
     70   else if (Y.getBitWidth() < X.getBitWidth())
     71     Y = Y.extend(X.getBitWidth());
     72 
     73   // If there is a signedness mismatch, correct it.
     74   if (X.isSigned() != Y.isSigned()) {
     75     // If the signed value is negative, then the values cannot be the same.
     76     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
     77       return false;
     78 
     79     Y.setIsSigned(true);
     80     X.setIsSigned(true);
     81   }
     82 
     83   return X == Y;
     84 }
     85 
     86 static Sema::TemplateDeductionResult
     87 DeduceTemplateArguments(Sema &S,
     88                         TemplateParameterList *TemplateParams,
     89                         const TemplateArgument &Param,
     90                         TemplateArgument Arg,
     91                         TemplateDeductionInfo &Info,
     92                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
     93 
     94 static Sema::TemplateDeductionResult
     95 DeduceTemplateArgumentsByTypeMatch(Sema &S,
     96                                    TemplateParameterList *TemplateParams,
     97                                    QualType Param,
     98                                    QualType Arg,
     99                                    TemplateDeductionInfo &Info,
    100                                    SmallVectorImpl<DeducedTemplateArgument> &
    101                                                       Deduced,
    102                                    unsigned TDF,
    103                                    bool PartialOrdering = false);
    104 
    105 static Sema::TemplateDeductionResult
    106 DeduceTemplateArguments(Sema &S,
    107                         TemplateParameterList *TemplateParams,
    108                         const TemplateArgument *Params, unsigned NumParams,
    109                         const TemplateArgument *Args, unsigned NumArgs,
    110                         TemplateDeductionInfo &Info,
    111                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
    112 
    113 /// \brief If the given expression is of a form that permits the deduction
    114 /// of a non-type template parameter, return the declaration of that
    115 /// non-type template parameter.
    116 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
    117   // If we are within an alias template, the expression may have undergone
    118   // any number of parameter substitutions already.
    119   while (1) {
    120     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
    121       E = IC->getSubExpr();
    122     else if (SubstNonTypeTemplateParmExpr *Subst =
    123                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
    124       E = Subst->getReplacement();
    125     else
    126       break;
    127   }
    128 
    129   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    130     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
    131 
    132   return nullptr;
    133 }
    134 
    135 /// \brief Determine whether two declaration pointers refer to the same
    136 /// declaration.
    137 static bool isSameDeclaration(Decl *X, Decl *Y) {
    138   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    139     X = NX->getUnderlyingDecl();
    140   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    141     Y = NY->getUnderlyingDecl();
    142 
    143   return X->getCanonicalDecl() == Y->getCanonicalDecl();
    144 }
    145 
    146 /// \brief Verify that the given, deduced template arguments are compatible.
    147 ///
    148 /// \returns The deduced template argument, or a NULL template argument if
    149 /// the deduced template arguments were incompatible.
    150 static DeducedTemplateArgument
    151 checkDeducedTemplateArguments(ASTContext &Context,
    152                               const DeducedTemplateArgument &X,
    153                               const DeducedTemplateArgument &Y) {
    154   // We have no deduction for one or both of the arguments; they're compatible.
    155   if (X.isNull())
    156     return Y;
    157   if (Y.isNull())
    158     return X;
    159 
    160   switch (X.getKind()) {
    161   case TemplateArgument::Null:
    162     llvm_unreachable("Non-deduced template arguments handled above");
    163 
    164   case TemplateArgument::Type:
    165     // If two template type arguments have the same type, they're compatible.
    166     if (Y.getKind() == TemplateArgument::Type &&
    167         Context.hasSameType(X.getAsType(), Y.getAsType()))
    168       return X;
    169 
    170     return DeducedTemplateArgument();
    171 
    172   case TemplateArgument::Integral:
    173     // If we deduced a constant in one case and either a dependent expression or
    174     // declaration in another case, keep the integral constant.
    175     // If both are integral constants with the same value, keep that value.
    176     if (Y.getKind() == TemplateArgument::Expression ||
    177         Y.getKind() == TemplateArgument::Declaration ||
    178         (Y.getKind() == TemplateArgument::Integral &&
    179          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
    180       return DeducedTemplateArgument(X,
    181                                      X.wasDeducedFromArrayBound() &&
    182                                      Y.wasDeducedFromArrayBound());
    183 
    184     // All other combinations are incompatible.
    185     return DeducedTemplateArgument();
    186 
    187   case TemplateArgument::Template:
    188     if (Y.getKind() == TemplateArgument::Template &&
    189         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
    190       return X;
    191 
    192     // All other combinations are incompatible.
    193     return DeducedTemplateArgument();
    194 
    195   case TemplateArgument::TemplateExpansion:
    196     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
    197         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
    198                                     Y.getAsTemplateOrTemplatePattern()))
    199       return X;
    200 
    201     // All other combinations are incompatible.
    202     return DeducedTemplateArgument();
    203 
    204   case TemplateArgument::Expression:
    205     // If we deduced a dependent expression in one case and either an integral
    206     // constant or a declaration in another case, keep the integral constant
    207     // or declaration.
    208     if (Y.getKind() == TemplateArgument::Integral ||
    209         Y.getKind() == TemplateArgument::Declaration)
    210       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
    211                                      Y.wasDeducedFromArrayBound());
    212 
    213     if (Y.getKind() == TemplateArgument::Expression) {
    214       // Compare the expressions for equality
    215       llvm::FoldingSetNodeID ID1, ID2;
    216       X.getAsExpr()->Profile(ID1, Context, true);
    217       Y.getAsExpr()->Profile(ID2, Context, true);
    218       if (ID1 == ID2)
    219         return X;
    220     }
    221 
    222     // All other combinations are incompatible.
    223     return DeducedTemplateArgument();
    224 
    225   case TemplateArgument::Declaration:
    226     // If we deduced a declaration and a dependent expression, keep the
    227     // declaration.
    228     if (Y.getKind() == TemplateArgument::Expression)
    229       return X;
    230 
    231     // If we deduced a declaration and an integral constant, keep the
    232     // integral constant.
    233     if (Y.getKind() == TemplateArgument::Integral)
    234       return Y;
    235 
    236     // If we deduced two declarations, make sure they they refer to the
    237     // same declaration.
    238     if (Y.getKind() == TemplateArgument::Declaration &&
    239         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
    240       return X;
    241 
    242     // All other combinations are incompatible.
    243     return DeducedTemplateArgument();
    244 
    245   case TemplateArgument::NullPtr:
    246     // If we deduced a null pointer and a dependent expression, keep the
    247     // null pointer.
    248     if (Y.getKind() == TemplateArgument::Expression)
    249       return X;
    250 
    251     // If we deduced a null pointer and an integral constant, keep the
    252     // integral constant.
    253     if (Y.getKind() == TemplateArgument::Integral)
    254       return Y;
    255 
    256     // If we deduced two null pointers, make sure they have the same type.
    257     if (Y.getKind() == TemplateArgument::NullPtr &&
    258         Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
    259       return X;
    260 
    261     // All other combinations are incompatible.
    262     return DeducedTemplateArgument();
    263 
    264   case TemplateArgument::Pack:
    265     if (Y.getKind() != TemplateArgument::Pack ||
    266         X.pack_size() != Y.pack_size())
    267       return DeducedTemplateArgument();
    268 
    269     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
    270                                       XAEnd = X.pack_end(),
    271                                          YA = Y.pack_begin();
    272          XA != XAEnd; ++XA, ++YA) {
    273       // FIXME: Do we need to merge the results together here?
    274       if (checkDeducedTemplateArguments(Context,
    275                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
    276                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
    277             .isNull())
    278         return DeducedTemplateArgument();
    279     }
    280 
    281     return X;
    282   }
    283 
    284   llvm_unreachable("Invalid TemplateArgument Kind!");
    285 }
    286 
    287 /// \brief Deduce the value of the given non-type template parameter
    288 /// from the given constant.
    289 static Sema::TemplateDeductionResult
    290 DeduceNonTypeTemplateArgument(Sema &S,
    291                               NonTypeTemplateParmDecl *NTTP,
    292                               llvm::APSInt Value, QualType ValueType,
    293                               bool DeducedFromArrayBound,
    294                               TemplateDeductionInfo &Info,
    295                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    296   assert(NTTP->getDepth() == 0 &&
    297          "Cannot deduce non-type template argument with depth > 0");
    298 
    299   DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
    300                                      DeducedFromArrayBound);
    301   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    302                                                      Deduced[NTTP->getIndex()],
    303                                                                  NewDeduced);
    304   if (Result.isNull()) {
    305     Info.Param = NTTP;
    306     Info.FirstArg = Deduced[NTTP->getIndex()];
    307     Info.SecondArg = NewDeduced;
    308     return Sema::TDK_Inconsistent;
    309   }
    310 
    311   Deduced[NTTP->getIndex()] = Result;
    312   return Sema::TDK_Success;
    313 }
    314 
    315 /// \brief Deduce the value of the given non-type template parameter
    316 /// from the given type- or value-dependent expression.
    317 ///
    318 /// \returns true if deduction succeeded, false otherwise.
    319 static Sema::TemplateDeductionResult
    320 DeduceNonTypeTemplateArgument(Sema &S,
    321                               NonTypeTemplateParmDecl *NTTP,
    322                               Expr *Value,
    323                               TemplateDeductionInfo &Info,
    324                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    325   assert(NTTP->getDepth() == 0 &&
    326          "Cannot deduce non-type template argument with depth > 0");
    327   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
    328          "Expression template argument must be type- or value-dependent.");
    329 
    330   DeducedTemplateArgument NewDeduced(Value);
    331   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    332                                                      Deduced[NTTP->getIndex()],
    333                                                                  NewDeduced);
    334 
    335   if (Result.isNull()) {
    336     Info.Param = NTTP;
    337     Info.FirstArg = Deduced[NTTP->getIndex()];
    338     Info.SecondArg = NewDeduced;
    339     return Sema::TDK_Inconsistent;
    340   }
    341 
    342   Deduced[NTTP->getIndex()] = Result;
    343   return Sema::TDK_Success;
    344 }
    345 
    346 /// \brief Deduce the value of the given non-type template parameter
    347 /// from the given declaration.
    348 ///
    349 /// \returns true if deduction succeeded, false otherwise.
    350 static Sema::TemplateDeductionResult
    351 DeduceNonTypeTemplateArgument(Sema &S,
    352                             NonTypeTemplateParmDecl *NTTP,
    353                             ValueDecl *D,
    354                             TemplateDeductionInfo &Info,
    355                             SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    356   assert(NTTP->getDepth() == 0 &&
    357          "Cannot deduce non-type template argument with depth > 0");
    358 
    359   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
    360   TemplateArgument New(D, NTTP->getType());
    361   DeducedTemplateArgument NewDeduced(New);
    362   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    363                                                      Deduced[NTTP->getIndex()],
    364                                                                  NewDeduced);
    365   if (Result.isNull()) {
    366     Info.Param = NTTP;
    367     Info.FirstArg = Deduced[NTTP->getIndex()];
    368     Info.SecondArg = NewDeduced;
    369     return Sema::TDK_Inconsistent;
    370   }
    371 
    372   Deduced[NTTP->getIndex()] = Result;
    373   return Sema::TDK_Success;
    374 }
    375 
    376 static Sema::TemplateDeductionResult
    377 DeduceTemplateArguments(Sema &S,
    378                         TemplateParameterList *TemplateParams,
    379                         TemplateName Param,
    380                         TemplateName Arg,
    381                         TemplateDeductionInfo &Info,
    382                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    383   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
    384   if (!ParamDecl) {
    385     // The parameter type is dependent and is not a template template parameter,
    386     // so there is nothing that we can deduce.
    387     return Sema::TDK_Success;
    388   }
    389 
    390   if (TemplateTemplateParmDecl *TempParam
    391         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    392     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    393     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    394                                                  Deduced[TempParam->getIndex()],
    395                                                                    NewDeduced);
    396     if (Result.isNull()) {
    397       Info.Param = TempParam;
    398       Info.FirstArg = Deduced[TempParam->getIndex()];
    399       Info.SecondArg = NewDeduced;
    400       return Sema::TDK_Inconsistent;
    401     }
    402 
    403     Deduced[TempParam->getIndex()] = Result;
    404     return Sema::TDK_Success;
    405   }
    406 
    407   // Verify that the two template names are equivalent.
    408   if (S.Context.hasSameTemplateName(Param, Arg))
    409     return Sema::TDK_Success;
    410 
    411   // Mismatch of non-dependent template parameter to argument.
    412   Info.FirstArg = TemplateArgument(Param);
    413   Info.SecondArg = TemplateArgument(Arg);
    414   return Sema::TDK_NonDeducedMismatch;
    415 }
    416 
    417 /// \brief Deduce the template arguments by comparing the template parameter
    418 /// type (which is a template-id) with the template argument type.
    419 ///
    420 /// \param S the Sema
    421 ///
    422 /// \param TemplateParams the template parameters that we are deducing
    423 ///
    424 /// \param Param the parameter type
    425 ///
    426 /// \param Arg the argument type
    427 ///
    428 /// \param Info information about the template argument deduction itself
    429 ///
    430 /// \param Deduced the deduced template arguments
    431 ///
    432 /// \returns the result of template argument deduction so far. Note that a
    433 /// "success" result means that template argument deduction has not yet failed,
    434 /// but it may still fail, later, for other reasons.
    435 static Sema::TemplateDeductionResult
    436 DeduceTemplateArguments(Sema &S,
    437                         TemplateParameterList *TemplateParams,
    438                         const TemplateSpecializationType *Param,
    439                         QualType Arg,
    440                         TemplateDeductionInfo &Info,
    441                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    442   assert(Arg.isCanonical() && "Argument type must be canonical");
    443 
    444   // Check whether the template argument is a dependent template-id.
    445   if (const TemplateSpecializationType *SpecArg
    446         = dyn_cast<TemplateSpecializationType>(Arg)) {
    447     // Perform template argument deduction for the template name.
    448     if (Sema::TemplateDeductionResult Result
    449           = DeduceTemplateArguments(S, TemplateParams,
    450                                     Param->getTemplateName(),
    451                                     SpecArg->getTemplateName(),
    452                                     Info, Deduced))
    453       return Result;
    454 
    455 
    456     // Perform template argument deduction on each template
    457     // argument. Ignore any missing/extra arguments, since they could be
    458     // filled in by default arguments.
    459     return DeduceTemplateArguments(S, TemplateParams,
    460                                    Param->getArgs(), Param->getNumArgs(),
    461                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
    462                                    Info, Deduced);
    463   }
    464 
    465   // If the argument type is a class template specialization, we
    466   // perform template argument deduction using its template
    467   // arguments.
    468   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
    469   if (!RecordArg) {
    470     Info.FirstArg = TemplateArgument(QualType(Param, 0));
    471     Info.SecondArg = TemplateArgument(Arg);
    472     return Sema::TDK_NonDeducedMismatch;
    473   }
    474 
    475   ClassTemplateSpecializationDecl *SpecArg
    476     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
    477   if (!SpecArg) {
    478     Info.FirstArg = TemplateArgument(QualType(Param, 0));
    479     Info.SecondArg = TemplateArgument(Arg);
    480     return Sema::TDK_NonDeducedMismatch;
    481   }
    482 
    483   // Perform template argument deduction for the template name.
    484   if (Sema::TemplateDeductionResult Result
    485         = DeduceTemplateArguments(S,
    486                                   TemplateParams,
    487                                   Param->getTemplateName(),
    488                                TemplateName(SpecArg->getSpecializedTemplate()),
    489                                   Info, Deduced))
    490     return Result;
    491 
    492   // Perform template argument deduction for the template arguments.
    493   return DeduceTemplateArguments(S, TemplateParams,
    494                                  Param->getArgs(), Param->getNumArgs(),
    495                                  SpecArg->getTemplateArgs().data(),
    496                                  SpecArg->getTemplateArgs().size(),
    497                                  Info, Deduced);
    498 }
    499 
    500 /// \brief Determines whether the given type is an opaque type that
    501 /// might be more qualified when instantiated.
    502 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
    503   switch (T->getTypeClass()) {
    504   case Type::TypeOfExpr:
    505   case Type::TypeOf:
    506   case Type::DependentName:
    507   case Type::Decltype:
    508   case Type::UnresolvedUsing:
    509   case Type::TemplateTypeParm:
    510     return true;
    511 
    512   case Type::ConstantArray:
    513   case Type::IncompleteArray:
    514   case Type::VariableArray:
    515   case Type::DependentSizedArray:
    516     return IsPossiblyOpaquelyQualifiedType(
    517                                       cast<ArrayType>(T)->getElementType());
    518 
    519   default:
    520     return false;
    521   }
    522 }
    523 
    524 /// \brief Retrieve the depth and index of a template parameter.
    525 static std::pair<unsigned, unsigned>
    526 getDepthAndIndex(NamedDecl *ND) {
    527   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
    528     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    529 
    530   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
    531     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
    532 
    533   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
    534   return std::make_pair(TTP->getDepth(), TTP->getIndex());
    535 }
    536 
    537 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
    538 static std::pair<unsigned, unsigned>
    539 getDepthAndIndex(UnexpandedParameterPack UPP) {
    540   if (const TemplateTypeParmType *TTP
    541                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
    542     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    543 
    544   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
    545 }
    546 
    547 /// \brief Helper function to build a TemplateParameter when we don't
    548 /// know its type statically.
    549 static TemplateParameter makeTemplateParameter(Decl *D) {
    550   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    551     return TemplateParameter(TTP);
    552   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    553     return TemplateParameter(NTTP);
    554 
    555   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
    556 }
    557 
    558 /// A pack that we're currently deducing.
    559 struct clang::DeducedPack {
    560   DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {}
    561 
    562   // The index of the pack.
    563   unsigned Index;
    564 
    565   // The old value of the pack before we started deducing it.
    566   DeducedTemplateArgument Saved;
    567 
    568   // A deferred value of this pack from an inner deduction, that couldn't be
    569   // deduced because this deduction hadn't happened yet.
    570   DeducedTemplateArgument DeferredDeduction;
    571 
    572   // The new value of the pack.
    573   SmallVector<DeducedTemplateArgument, 4> New;
    574 
    575   // The outer deduction for this pack, if any.
    576   DeducedPack *Outer;
    577 };
    578 
    579 namespace {
    580 /// A scope in which we're performing pack deduction.
    581 class PackDeductionScope {
    582 public:
    583   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
    584                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    585                      TemplateDeductionInfo &Info, TemplateArgument Pattern)
    586       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
    587     // Compute the set of template parameter indices that correspond to
    588     // parameter packs expanded by the pack expansion.
    589     {
    590       llvm::SmallBitVector SawIndices(TemplateParams->size());
    591       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
    592       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
    593       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
    594         unsigned Depth, Index;
    595         std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
    596         if (Depth == 0 && !SawIndices[Index]) {
    597           SawIndices[Index] = true;
    598 
    599           // Save the deduced template argument for the parameter pack expanded
    600           // by this pack expansion, then clear out the deduction.
    601           DeducedPack Pack(Index);
    602           Pack.Saved = Deduced[Index];
    603           Deduced[Index] = TemplateArgument();
    604 
    605           Packs.push_back(Pack);
    606         }
    607       }
    608     }
    609     assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
    610 
    611     for (auto &Pack : Packs) {
    612       if (Info.PendingDeducedPacks.size() > Pack.Index)
    613         Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
    614       else
    615         Info.PendingDeducedPacks.resize(Pack.Index + 1);
    616       Info.PendingDeducedPacks[Pack.Index] = &Pack;
    617 
    618       if (S.CurrentInstantiationScope) {
    619         // If the template argument pack was explicitly specified, add that to
    620         // the set of deduced arguments.
    621         const TemplateArgument *ExplicitArgs;
    622         unsigned NumExplicitArgs;
    623         NamedDecl *PartiallySubstitutedPack =
    624             S.CurrentInstantiationScope->getPartiallySubstitutedPack(
    625                 &ExplicitArgs, &NumExplicitArgs);
    626         if (PartiallySubstitutedPack &&
    627             getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index)
    628           Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs);
    629       }
    630     }
    631   }
    632 
    633   ~PackDeductionScope() {
    634     for (auto &Pack : Packs)
    635       Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
    636   }
    637 
    638   /// Move to deducing the next element in each pack that is being deduced.
    639   void nextPackElement() {
    640     // Capture the deduced template arguments for each parameter pack expanded
    641     // by this pack expansion, add them to the list of arguments we've deduced
    642     // for that pack, then clear out the deduced argument.
    643     for (auto &Pack : Packs) {
    644       DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
    645       if (!DeducedArg.isNull()) {
    646         Pack.New.push_back(DeducedArg);
    647         DeducedArg = DeducedTemplateArgument();
    648       }
    649     }
    650   }
    651 
    652   /// \brief Finish template argument deduction for a set of argument packs,
    653   /// producing the argument packs and checking for consistency with prior
    654   /// deductions.
    655   Sema::TemplateDeductionResult finish(bool HasAnyArguments) {
    656     // Build argument packs for each of the parameter packs expanded by this
    657     // pack expansion.
    658     for (auto &Pack : Packs) {
    659       // Put back the old value for this pack.
    660       Deduced[Pack.Index] = Pack.Saved;
    661 
    662       // Build or find a new value for this pack.
    663       DeducedTemplateArgument NewPack;
    664       if (HasAnyArguments && Pack.New.empty()) {
    665         if (Pack.DeferredDeduction.isNull()) {
    666           // We were not able to deduce anything for this parameter pack
    667           // (because it only appeared in non-deduced contexts), so just
    668           // restore the saved argument pack.
    669           continue;
    670         }
    671 
    672         NewPack = Pack.DeferredDeduction;
    673         Pack.DeferredDeduction = TemplateArgument();
    674       } else if (Pack.New.empty()) {
    675         // If we deduced an empty argument pack, create it now.
    676         NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
    677       } else {
    678         TemplateArgument *ArgumentPack =
    679             new (S.Context) TemplateArgument[Pack.New.size()];
    680         std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
    681         NewPack = DeducedTemplateArgument(
    682             TemplateArgument(ArgumentPack, Pack.New.size()),
    683             Pack.New[0].wasDeducedFromArrayBound());
    684       }
    685 
    686       // Pick where we're going to put the merged pack.
    687       DeducedTemplateArgument *Loc;
    688       if (Pack.Outer) {
    689         if (Pack.Outer->DeferredDeduction.isNull()) {
    690           // Defer checking this pack until we have a complete pack to compare
    691           // it against.
    692           Pack.Outer->DeferredDeduction = NewPack;
    693           continue;
    694         }
    695         Loc = &Pack.Outer->DeferredDeduction;
    696       } else {
    697         Loc = &Deduced[Pack.Index];
    698       }
    699 
    700       // Check the new pack matches any previous value.
    701       DeducedTemplateArgument OldPack = *Loc;
    702       DeducedTemplateArgument Result =
    703           checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
    704 
    705       // If we deferred a deduction of this pack, check that one now too.
    706       if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
    707         OldPack = Result;
    708         NewPack = Pack.DeferredDeduction;
    709         Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
    710       }
    711 
    712       if (Result.isNull()) {
    713         Info.Param =
    714             makeTemplateParameter(TemplateParams->getParam(Pack.Index));
    715         Info.FirstArg = OldPack;
    716         Info.SecondArg = NewPack;
    717         return Sema::TDK_Inconsistent;
    718       }
    719 
    720       *Loc = Result;
    721     }
    722 
    723     return Sema::TDK_Success;
    724   }
    725 
    726 private:
    727   Sema &S;
    728   TemplateParameterList *TemplateParams;
    729   SmallVectorImpl<DeducedTemplateArgument> &Deduced;
    730   TemplateDeductionInfo &Info;
    731 
    732   SmallVector<DeducedPack, 2> Packs;
    733 };
    734 } // namespace
    735 
    736 /// \brief Deduce the template arguments by comparing the list of parameter
    737 /// types to the list of argument types, as in the parameter-type-lists of
    738 /// function types (C++ [temp.deduct.type]p10).
    739 ///
    740 /// \param S The semantic analysis object within which we are deducing
    741 ///
    742 /// \param TemplateParams The template parameters that we are deducing
    743 ///
    744 /// \param Params The list of parameter types
    745 ///
    746 /// \param NumParams The number of types in \c Params
    747 ///
    748 /// \param Args The list of argument types
    749 ///
    750 /// \param NumArgs The number of types in \c Args
    751 ///
    752 /// \param Info information about the template argument deduction itself
    753 ///
    754 /// \param Deduced the deduced template arguments
    755 ///
    756 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    757 /// how template argument deduction is performed.
    758 ///
    759 /// \param PartialOrdering If true, we are performing template argument
    760 /// deduction for during partial ordering for a call
    761 /// (C++0x [temp.deduct.partial]).
    762 ///
    763 /// \returns the result of template argument deduction so far. Note that a
    764 /// "success" result means that template argument deduction has not yet failed,
    765 /// but it may still fail, later, for other reasons.
    766 static Sema::TemplateDeductionResult
    767 DeduceTemplateArguments(Sema &S,
    768                         TemplateParameterList *TemplateParams,
    769                         const QualType *Params, unsigned NumParams,
    770                         const QualType *Args, unsigned NumArgs,
    771                         TemplateDeductionInfo &Info,
    772                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    773                         unsigned TDF,
    774                         bool PartialOrdering = false) {
    775   // Fast-path check to see if we have too many/too few arguments.
    776   if (NumParams != NumArgs &&
    777       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
    778       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
    779     return Sema::TDK_MiscellaneousDeductionFailure;
    780 
    781   // C++0x [temp.deduct.type]p10:
    782   //   Similarly, if P has a form that contains (T), then each parameter type
    783   //   Pi of the respective parameter-type- list of P is compared with the
    784   //   corresponding parameter type Ai of the corresponding parameter-type-list
    785   //   of A. [...]
    786   unsigned ArgIdx = 0, ParamIdx = 0;
    787   for (; ParamIdx != NumParams; ++ParamIdx) {
    788     // Check argument types.
    789     const PackExpansionType *Expansion
    790                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    791     if (!Expansion) {
    792       // Simple case: compare the parameter and argument types at this point.
    793 
    794       // Make sure we have an argument.
    795       if (ArgIdx >= NumArgs)
    796         return Sema::TDK_MiscellaneousDeductionFailure;
    797 
    798       if (isa<PackExpansionType>(Args[ArgIdx])) {
    799         // C++0x [temp.deduct.type]p22:
    800         //   If the original function parameter associated with A is a function
    801         //   parameter pack and the function parameter associated with P is not
    802         //   a function parameter pack, then template argument deduction fails.
    803         return Sema::TDK_MiscellaneousDeductionFailure;
    804       }
    805 
    806       if (Sema::TemplateDeductionResult Result
    807             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
    808                                                  Params[ParamIdx], Args[ArgIdx],
    809                                                  Info, Deduced, TDF,
    810                                                  PartialOrdering))
    811         return Result;
    812 
    813       ++ArgIdx;
    814       continue;
    815     }
    816 
    817     // C++0x [temp.deduct.type]p5:
    818     //   The non-deduced contexts are:
    819     //     - A function parameter pack that does not occur at the end of the
    820     //       parameter-declaration-clause.
    821     if (ParamIdx + 1 < NumParams)
    822       return Sema::TDK_Success;
    823 
    824     // C++0x [temp.deduct.type]p10:
    825     //   If the parameter-declaration corresponding to Pi is a function
    826     //   parameter pack, then the type of its declarator- id is compared with
    827     //   each remaining parameter type in the parameter-type-list of A. Each
    828     //   comparison deduces template arguments for subsequent positions in the
    829     //   template parameter packs expanded by the function parameter pack.
    830 
    831     QualType Pattern = Expansion->getPattern();
    832     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
    833 
    834     bool HasAnyArguments = false;
    835     for (; ArgIdx < NumArgs; ++ArgIdx) {
    836       HasAnyArguments = true;
    837 
    838       // Deduce template arguments from the pattern.
    839       if (Sema::TemplateDeductionResult Result
    840             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
    841                                                  Args[ArgIdx], Info, Deduced,
    842                                                  TDF, PartialOrdering))
    843         return Result;
    844 
    845       PackScope.nextPackElement();
    846     }
    847 
    848     // Build argument packs for each of the parameter packs expanded by this
    849     // pack expansion.
    850     if (auto Result = PackScope.finish(HasAnyArguments))
    851       return Result;
    852   }
    853 
    854   // Make sure we don't have any extra arguments.
    855   if (ArgIdx < NumArgs)
    856     return Sema::TDK_MiscellaneousDeductionFailure;
    857 
    858   return Sema::TDK_Success;
    859 }
    860 
    861 /// \brief Determine whether the parameter has qualifiers that are either
    862 /// inconsistent with or a superset of the argument's qualifiers.
    863 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
    864                                                   QualType ArgType) {
    865   Qualifiers ParamQs = ParamType.getQualifiers();
    866   Qualifiers ArgQs = ArgType.getQualifiers();
    867 
    868   if (ParamQs == ArgQs)
    869     return false;
    870 
    871   // Mismatched (but not missing) Objective-C GC attributes.
    872   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
    873       ParamQs.hasObjCGCAttr())
    874     return true;
    875 
    876   // Mismatched (but not missing) address spaces.
    877   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
    878       ParamQs.hasAddressSpace())
    879     return true;
    880 
    881   // Mismatched (but not missing) Objective-C lifetime qualifiers.
    882   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
    883       ParamQs.hasObjCLifetime())
    884     return true;
    885 
    886   // CVR qualifier superset.
    887   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
    888       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
    889                                                 == ParamQs.getCVRQualifiers());
    890 }
    891 
    892 /// \brief Compare types for equality with respect to possibly compatible
    893 /// function types (noreturn adjustment, implicit calling conventions). If any
    894 /// of parameter and argument is not a function, just perform type comparison.
    895 ///
    896 /// \param Param the template parameter type.
    897 ///
    898 /// \param Arg the argument type.
    899 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
    900                                           CanQualType Arg) {
    901   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
    902                      *ArgFunction   = Arg->getAs<FunctionType>();
    903 
    904   // Just compare if not functions.
    905   if (!ParamFunction || !ArgFunction)
    906     return Param == Arg;
    907 
    908   // Noreturn adjustment.
    909   QualType AdjustedParam;
    910   if (IsNoReturnConversion(Param, Arg, AdjustedParam))
    911     return Arg == Context.getCanonicalType(AdjustedParam);
    912 
    913   // FIXME: Compatible calling conventions.
    914 
    915   return Param == Arg;
    916 }
    917 
    918 /// \brief Deduce the template arguments by comparing the parameter type and
    919 /// the argument type (C++ [temp.deduct.type]).
    920 ///
    921 /// \param S the semantic analysis object within which we are deducing
    922 ///
    923 /// \param TemplateParams the template parameters that we are deducing
    924 ///
    925 /// \param ParamIn the parameter type
    926 ///
    927 /// \param ArgIn the argument type
    928 ///
    929 /// \param Info information about the template argument deduction itself
    930 ///
    931 /// \param Deduced the deduced template arguments
    932 ///
    933 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    934 /// how template argument deduction is performed.
    935 ///
    936 /// \param PartialOrdering Whether we're performing template argument deduction
    937 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
    938 ///
    939 /// \returns the result of template argument deduction so far. Note that a
    940 /// "success" result means that template argument deduction has not yet failed,
    941 /// but it may still fail, later, for other reasons.
    942 static Sema::TemplateDeductionResult
    943 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    944                                    TemplateParameterList *TemplateParams,
    945                                    QualType ParamIn, QualType ArgIn,
    946                                    TemplateDeductionInfo &Info,
    947                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    948                                    unsigned TDF,
    949                                    bool PartialOrdering) {
    950   // We only want to look at the canonical types, since typedefs and
    951   // sugar are not part of template argument deduction.
    952   QualType Param = S.Context.getCanonicalType(ParamIn);
    953   QualType Arg = S.Context.getCanonicalType(ArgIn);
    954 
    955   // If the argument type is a pack expansion, look at its pattern.
    956   // This isn't explicitly called out
    957   if (const PackExpansionType *ArgExpansion
    958                                             = dyn_cast<PackExpansionType>(Arg))
    959     Arg = ArgExpansion->getPattern();
    960 
    961   if (PartialOrdering) {
    962     // C++11 [temp.deduct.partial]p5:
    963     //   Before the partial ordering is done, certain transformations are
    964     //   performed on the types used for partial ordering:
    965     //     - If P is a reference type, P is replaced by the type referred to.
    966     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
    967     if (ParamRef)
    968       Param = ParamRef->getPointeeType();
    969 
    970     //     - If A is a reference type, A is replaced by the type referred to.
    971     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
    972     if (ArgRef)
    973       Arg = ArgRef->getPointeeType();
    974 
    975     if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
    976       // C++11 [temp.deduct.partial]p9:
    977       //   If, for a given type, deduction succeeds in both directions (i.e.,
    978       //   the types are identical after the transformations above) and both
    979       //   P and A were reference types [...]:
    980       //     - if [one type] was an lvalue reference and [the other type] was
    981       //       not, [the other type] is not considered to be at least as
    982       //       specialized as [the first type]
    983       //     - if [one type] is more cv-qualified than [the other type],
    984       //       [the other type] is not considered to be at least as specialized
    985       //       as [the first type]
    986       // Objective-C ARC adds:
    987       //     - [one type] has non-trivial lifetime, [the other type] has
    988       //       __unsafe_unretained lifetime, and the types are otherwise
    989       //       identical
    990       //
    991       // A is "considered to be at least as specialized" as P iff deduction
    992       // succeeds, so we model this as a deduction failure. Note that
    993       // [the first type] is P and [the other type] is A here; the standard
    994       // gets this backwards.
    995       Qualifiers ParamQuals = Param.getQualifiers();
    996       Qualifiers ArgQuals = Arg.getQualifiers();
    997       if ((ParamRef->isLValueReferenceType() &&
    998            !ArgRef->isLValueReferenceType()) ||
    999           ParamQuals.isStrictSupersetOf(ArgQuals) ||
   1000           (ParamQuals.hasNonTrivialObjCLifetime() &&
   1001            ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
   1002            ParamQuals.withoutObjCLifetime() ==
   1003                ArgQuals.withoutObjCLifetime())) {
   1004         Info.FirstArg = TemplateArgument(ParamIn);
   1005         Info.SecondArg = TemplateArgument(ArgIn);
   1006         return Sema::TDK_NonDeducedMismatch;
   1007       }
   1008     }
   1009 
   1010     // C++11 [temp.deduct.partial]p7:
   1011     //   Remove any top-level cv-qualifiers:
   1012     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
   1013     //       version of P.
   1014     Param = Param.getUnqualifiedType();
   1015     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
   1016     //       version of A.
   1017     Arg = Arg.getUnqualifiedType();
   1018   } else {
   1019     // C++0x [temp.deduct.call]p4 bullet 1:
   1020     //   - If the original P is a reference type, the deduced A (i.e., the type
   1021     //     referred to by the reference) can be more cv-qualified than the
   1022     //     transformed A.
   1023     if (TDF & TDF_ParamWithReferenceType) {
   1024       Qualifiers Quals;
   1025       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
   1026       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
   1027                              Arg.getCVRQualifiers());
   1028       Param = S.Context.getQualifiedType(UnqualParam, Quals);
   1029     }
   1030 
   1031     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
   1032       // C++0x [temp.deduct.type]p10:
   1033       //   If P and A are function types that originated from deduction when
   1034       //   taking the address of a function template (14.8.2.2) or when deducing
   1035       //   template arguments from a function declaration (14.8.2.6) and Pi and
   1036       //   Ai are parameters of the top-level parameter-type-list of P and A,
   1037       //   respectively, Pi is adjusted if it is an rvalue reference to a
   1038       //   cv-unqualified template parameter and Ai is an lvalue reference, in
   1039       //   which case the type of Pi is changed to be the template parameter
   1040       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
   1041       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
   1042       //   deduced as X&. - end note ]
   1043       TDF &= ~TDF_TopLevelParameterTypeList;
   1044 
   1045       if (const RValueReferenceType *ParamRef
   1046                                         = Param->getAs<RValueReferenceType>()) {
   1047         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
   1048             !ParamRef->getPointeeType().getQualifiers())
   1049           if (Arg->isLValueReferenceType())
   1050             Param = ParamRef->getPointeeType();
   1051       }
   1052     }
   1053   }
   1054 
   1055   // C++ [temp.deduct.type]p9:
   1056   //   A template type argument T, a template template argument TT or a
   1057   //   template non-type argument i can be deduced if P and A have one of
   1058   //   the following forms:
   1059   //
   1060   //     T
   1061   //     cv-list T
   1062   if (const TemplateTypeParmType *TemplateTypeParm
   1063         = Param->getAs<TemplateTypeParmType>()) {
   1064     // Just skip any attempts to deduce from a placeholder type.
   1065     if (Arg->isPlaceholderType())
   1066       return Sema::TDK_Success;
   1067 
   1068     unsigned Index = TemplateTypeParm->getIndex();
   1069     bool RecanonicalizeArg = false;
   1070 
   1071     // If the argument type is an array type, move the qualifiers up to the
   1072     // top level, so they can be matched with the qualifiers on the parameter.
   1073     if (isa<ArrayType>(Arg)) {
   1074       Qualifiers Quals;
   1075       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
   1076       if (Quals) {
   1077         Arg = S.Context.getQualifiedType(Arg, Quals);
   1078         RecanonicalizeArg = true;
   1079       }
   1080     }
   1081 
   1082     // The argument type can not be less qualified than the parameter
   1083     // type.
   1084     if (!(TDF & TDF_IgnoreQualifiers) &&
   1085         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
   1086       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1087       Info.FirstArg = TemplateArgument(Param);
   1088       Info.SecondArg = TemplateArgument(Arg);
   1089       return Sema::TDK_Underqualified;
   1090     }
   1091 
   1092     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
   1093     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
   1094     QualType DeducedType = Arg;
   1095 
   1096     // Remove any qualifiers on the parameter from the deduced type.
   1097     // We checked the qualifiers for consistency above.
   1098     Qualifiers DeducedQs = DeducedType.getQualifiers();
   1099     Qualifiers ParamQs = Param.getQualifiers();
   1100     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
   1101     if (ParamQs.hasObjCGCAttr())
   1102       DeducedQs.removeObjCGCAttr();
   1103     if (ParamQs.hasAddressSpace())
   1104       DeducedQs.removeAddressSpace();
   1105     if (ParamQs.hasObjCLifetime())
   1106       DeducedQs.removeObjCLifetime();
   1107 
   1108     // Objective-C ARC:
   1109     //   If template deduction would produce a lifetime qualifier on a type
   1110     //   that is not a lifetime type, template argument deduction fails.
   1111     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
   1112         !DeducedType->isDependentType()) {
   1113       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1114       Info.FirstArg = TemplateArgument(Param);
   1115       Info.SecondArg = TemplateArgument(Arg);
   1116       return Sema::TDK_Underqualified;
   1117     }
   1118 
   1119     // Objective-C ARC:
   1120     //   If template deduction would produce an argument type with lifetime type
   1121     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
   1122     if (S.getLangOpts().ObjCAutoRefCount &&
   1123         DeducedType->isObjCLifetimeType() &&
   1124         !DeducedQs.hasObjCLifetime())
   1125       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
   1126 
   1127     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
   1128                                              DeducedQs);
   1129 
   1130     if (RecanonicalizeArg)
   1131       DeducedType = S.Context.getCanonicalType(DeducedType);
   1132 
   1133     DeducedTemplateArgument NewDeduced(DeducedType);
   1134     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
   1135                                                                  Deduced[Index],
   1136                                                                    NewDeduced);
   1137     if (Result.isNull()) {
   1138       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1139       Info.FirstArg = Deduced[Index];
   1140       Info.SecondArg = NewDeduced;
   1141       return Sema::TDK_Inconsistent;
   1142     }
   1143 
   1144     Deduced[Index] = Result;
   1145     return Sema::TDK_Success;
   1146   }
   1147 
   1148   // Set up the template argument deduction information for a failure.
   1149   Info.FirstArg = TemplateArgument(ParamIn);
   1150   Info.SecondArg = TemplateArgument(ArgIn);
   1151 
   1152   // If the parameter is an already-substituted template parameter
   1153   // pack, do nothing: we don't know which of its arguments to look
   1154   // at, so we have to wait until all of the parameter packs in this
   1155   // expansion have arguments.
   1156   if (isa<SubstTemplateTypeParmPackType>(Param))
   1157     return Sema::TDK_Success;
   1158 
   1159   // Check the cv-qualifiers on the parameter and argument types.
   1160   CanQualType CanParam = S.Context.getCanonicalType(Param);
   1161   CanQualType CanArg = S.Context.getCanonicalType(Arg);
   1162   if (!(TDF & TDF_IgnoreQualifiers)) {
   1163     if (TDF & TDF_ParamWithReferenceType) {
   1164       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
   1165         return Sema::TDK_NonDeducedMismatch;
   1166     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
   1167       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
   1168         return Sema::TDK_NonDeducedMismatch;
   1169     }
   1170 
   1171     // If the parameter type is not dependent, there is nothing to deduce.
   1172     if (!Param->isDependentType()) {
   1173       if (!(TDF & TDF_SkipNonDependent)) {
   1174         bool NonDeduced = (TDF & TDF_InOverloadResolution)?
   1175                           !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
   1176                           Param != Arg;
   1177         if (NonDeduced) {
   1178           return Sema::TDK_NonDeducedMismatch;
   1179         }
   1180       }
   1181       return Sema::TDK_Success;
   1182     }
   1183   } else if (!Param->isDependentType()) {
   1184     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
   1185                 ArgUnqualType = CanArg.getUnqualifiedType();
   1186     bool Success = (TDF & TDF_InOverloadResolution)?
   1187                    S.isSameOrCompatibleFunctionType(ParamUnqualType,
   1188                                                     ArgUnqualType) :
   1189                    ParamUnqualType == ArgUnqualType;
   1190     if (Success)
   1191       return Sema::TDK_Success;
   1192   }
   1193 
   1194   switch (Param->getTypeClass()) {
   1195     // Non-canonical types cannot appear here.
   1196 #define NON_CANONICAL_TYPE(Class, Base) \
   1197   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
   1198 #define TYPE(Class, Base)
   1199 #include "clang/AST/TypeNodes.def"
   1200 
   1201     case Type::TemplateTypeParm:
   1202     case Type::SubstTemplateTypeParmPack:
   1203       llvm_unreachable("Type nodes handled above");
   1204 
   1205     // These types cannot be dependent, so simply check whether the types are
   1206     // the same.
   1207     case Type::Builtin:
   1208     case Type::VariableArray:
   1209     case Type::Vector:
   1210     case Type::FunctionNoProto:
   1211     case Type::Record:
   1212     case Type::Enum:
   1213     case Type::ObjCObject:
   1214     case Type::ObjCInterface:
   1215     case Type::ObjCObjectPointer: {
   1216       if (TDF & TDF_SkipNonDependent)
   1217         return Sema::TDK_Success;
   1218 
   1219       if (TDF & TDF_IgnoreQualifiers) {
   1220         Param = Param.getUnqualifiedType();
   1221         Arg = Arg.getUnqualifiedType();
   1222       }
   1223 
   1224       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
   1225     }
   1226 
   1227     //     _Complex T   [placeholder extension]
   1228     case Type::Complex:
   1229       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
   1230         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1231                                     cast<ComplexType>(Param)->getElementType(),
   1232                                     ComplexArg->getElementType(),
   1233                                     Info, Deduced, TDF);
   1234 
   1235       return Sema::TDK_NonDeducedMismatch;
   1236 
   1237     //     _Atomic T   [extension]
   1238     case Type::Atomic:
   1239       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
   1240         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1241                                        cast<AtomicType>(Param)->getValueType(),
   1242                                        AtomicArg->getValueType(),
   1243                                        Info, Deduced, TDF);
   1244 
   1245       return Sema::TDK_NonDeducedMismatch;
   1246 
   1247     //     T *
   1248     case Type::Pointer: {
   1249       QualType PointeeType;
   1250       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
   1251         PointeeType = PointerArg->getPointeeType();
   1252       } else if (const ObjCObjectPointerType *PointerArg
   1253                    = Arg->getAs<ObjCObjectPointerType>()) {
   1254         PointeeType = PointerArg->getPointeeType();
   1255       } else {
   1256         return Sema::TDK_NonDeducedMismatch;
   1257       }
   1258 
   1259       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
   1260       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1261                                      cast<PointerType>(Param)->getPointeeType(),
   1262                                      PointeeType,
   1263                                      Info, Deduced, SubTDF);
   1264     }
   1265 
   1266     //     T &
   1267     case Type::LValueReference: {
   1268       const LValueReferenceType *ReferenceArg =
   1269           Arg->getAs<LValueReferenceType>();
   1270       if (!ReferenceArg)
   1271         return Sema::TDK_NonDeducedMismatch;
   1272 
   1273       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1274                            cast<LValueReferenceType>(Param)->getPointeeType(),
   1275                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
   1276     }
   1277 
   1278     //     T && [C++0x]
   1279     case Type::RValueReference: {
   1280       const RValueReferenceType *ReferenceArg =
   1281           Arg->getAs<RValueReferenceType>();
   1282       if (!ReferenceArg)
   1283         return Sema::TDK_NonDeducedMismatch;
   1284 
   1285       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1286                              cast<RValueReferenceType>(Param)->getPointeeType(),
   1287                              ReferenceArg->getPointeeType(),
   1288                              Info, Deduced, 0);
   1289     }
   1290 
   1291     //     T [] (implied, but not stated explicitly)
   1292     case Type::IncompleteArray: {
   1293       const IncompleteArrayType *IncompleteArrayArg =
   1294         S.Context.getAsIncompleteArrayType(Arg);
   1295       if (!IncompleteArrayArg)
   1296         return Sema::TDK_NonDeducedMismatch;
   1297 
   1298       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1299       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1300                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
   1301                     IncompleteArrayArg->getElementType(),
   1302                     Info, Deduced, SubTDF);
   1303     }
   1304 
   1305     //     T [integer-constant]
   1306     case Type::ConstantArray: {
   1307       const ConstantArrayType *ConstantArrayArg =
   1308         S.Context.getAsConstantArrayType(Arg);
   1309       if (!ConstantArrayArg)
   1310         return Sema::TDK_NonDeducedMismatch;
   1311 
   1312       const ConstantArrayType *ConstantArrayParm =
   1313         S.Context.getAsConstantArrayType(Param);
   1314       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
   1315         return Sema::TDK_NonDeducedMismatch;
   1316 
   1317       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1318       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1319                                            ConstantArrayParm->getElementType(),
   1320                                            ConstantArrayArg->getElementType(),
   1321                                            Info, Deduced, SubTDF);
   1322     }
   1323 
   1324     //     type [i]
   1325     case Type::DependentSizedArray: {
   1326       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
   1327       if (!ArrayArg)
   1328         return Sema::TDK_NonDeducedMismatch;
   1329 
   1330       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1331 
   1332       // Check the element type of the arrays
   1333       const DependentSizedArrayType *DependentArrayParm
   1334         = S.Context.getAsDependentSizedArrayType(Param);
   1335       if (Sema::TemplateDeductionResult Result
   1336             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1337                                           DependentArrayParm->getElementType(),
   1338                                           ArrayArg->getElementType(),
   1339                                           Info, Deduced, SubTDF))
   1340         return Result;
   1341 
   1342       // Determine the array bound is something we can deduce.
   1343       NonTypeTemplateParmDecl *NTTP
   1344         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
   1345       if (!NTTP)
   1346         return Sema::TDK_Success;
   1347 
   1348       // We can perform template argument deduction for the given non-type
   1349       // template parameter.
   1350       assert(NTTP->getDepth() == 0 &&
   1351              "Cannot deduce non-type template argument at depth > 0");
   1352       if (const ConstantArrayType *ConstantArrayArg
   1353             = dyn_cast<ConstantArrayType>(ArrayArg)) {
   1354         llvm::APSInt Size(ConstantArrayArg->getSize());
   1355         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
   1356                                              S.Context.getSizeType(),
   1357                                              /*ArrayBound=*/true,
   1358                                              Info, Deduced);
   1359       }
   1360       if (const DependentSizedArrayType *DependentArrayArg
   1361             = dyn_cast<DependentSizedArrayType>(ArrayArg))
   1362         if (DependentArrayArg->getSizeExpr())
   1363           return DeduceNonTypeTemplateArgument(S, NTTP,
   1364                                                DependentArrayArg->getSizeExpr(),
   1365                                                Info, Deduced);
   1366 
   1367       // Incomplete type does not match a dependently-sized array type
   1368       return Sema::TDK_NonDeducedMismatch;
   1369     }
   1370 
   1371     //     type(*)(T)
   1372     //     T(*)()
   1373     //     T(*)(T)
   1374     case Type::FunctionProto: {
   1375       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
   1376       const FunctionProtoType *FunctionProtoArg =
   1377         dyn_cast<FunctionProtoType>(Arg);
   1378       if (!FunctionProtoArg)
   1379         return Sema::TDK_NonDeducedMismatch;
   1380 
   1381       const FunctionProtoType *FunctionProtoParam =
   1382         cast<FunctionProtoType>(Param);
   1383 
   1384       if (FunctionProtoParam->getTypeQuals()
   1385             != FunctionProtoArg->getTypeQuals() ||
   1386           FunctionProtoParam->getRefQualifier()
   1387             != FunctionProtoArg->getRefQualifier() ||
   1388           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
   1389         return Sema::TDK_NonDeducedMismatch;
   1390 
   1391       // Check return types.
   1392       if (Sema::TemplateDeductionResult Result =
   1393               DeduceTemplateArgumentsByTypeMatch(
   1394                   S, TemplateParams, FunctionProtoParam->getReturnType(),
   1395                   FunctionProtoArg->getReturnType(), Info, Deduced, 0))
   1396         return Result;
   1397 
   1398       return DeduceTemplateArguments(
   1399           S, TemplateParams, FunctionProtoParam->param_type_begin(),
   1400           FunctionProtoParam->getNumParams(),
   1401           FunctionProtoArg->param_type_begin(),
   1402           FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
   1403     }
   1404 
   1405     case Type::InjectedClassName: {
   1406       // Treat a template's injected-class-name as if the template
   1407       // specialization type had been used.
   1408       Param = cast<InjectedClassNameType>(Param)
   1409         ->getInjectedSpecializationType();
   1410       assert(isa<TemplateSpecializationType>(Param) &&
   1411              "injected class name is not a template specialization type");
   1412       // fall through
   1413     }
   1414 
   1415     //     template-name<T> (where template-name refers to a class template)
   1416     //     template-name<i>
   1417     //     TT<T>
   1418     //     TT<i>
   1419     //     TT<>
   1420     case Type::TemplateSpecialization: {
   1421       const TemplateSpecializationType *SpecParam
   1422         = cast<TemplateSpecializationType>(Param);
   1423 
   1424       // Try to deduce template arguments from the template-id.
   1425       Sema::TemplateDeductionResult Result
   1426         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
   1427                                   Info, Deduced);
   1428 
   1429       if (Result && (TDF & TDF_DerivedClass)) {
   1430         // C++ [temp.deduct.call]p3b3:
   1431         //   If P is a class, and P has the form template-id, then A can be a
   1432         //   derived class of the deduced A. Likewise, if P is a pointer to a
   1433         //   class of the form template-id, A can be a pointer to a derived
   1434         //   class pointed to by the deduced A.
   1435         //
   1436         // More importantly:
   1437         //   These alternatives are considered only if type deduction would
   1438         //   otherwise fail.
   1439         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
   1440           // We cannot inspect base classes as part of deduction when the type
   1441           // is incomplete, so either instantiate any templates necessary to
   1442           // complete the type, or skip over it if it cannot be completed.
   1443           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
   1444             return Result;
   1445 
   1446           // Use data recursion to crawl through the list of base classes.
   1447           // Visited contains the set of nodes we have already visited, while
   1448           // ToVisit is our stack of records that we still need to visit.
   1449           llvm::SmallPtrSet<const RecordType *, 8> Visited;
   1450           SmallVector<const RecordType *, 8> ToVisit;
   1451           ToVisit.push_back(RecordT);
   1452           bool Successful = false;
   1453           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
   1454                                                               Deduced.end());
   1455           while (!ToVisit.empty()) {
   1456             // Retrieve the next class in the inheritance hierarchy.
   1457             const RecordType *NextT = ToVisit.pop_back_val();
   1458 
   1459             // If we have already seen this type, skip it.
   1460             if (!Visited.insert(NextT).second)
   1461               continue;
   1462 
   1463             // If this is a base class, try to perform template argument
   1464             // deduction from it.
   1465             if (NextT != RecordT) {
   1466               TemplateDeductionInfo BaseInfo(Info.getLocation());
   1467               Sema::TemplateDeductionResult BaseResult
   1468                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
   1469                                           QualType(NextT, 0), BaseInfo,
   1470                                           Deduced);
   1471 
   1472               // If template argument deduction for this base was successful,
   1473               // note that we had some success. Otherwise, ignore any deductions
   1474               // from this base class.
   1475               if (BaseResult == Sema::TDK_Success) {
   1476                 Successful = true;
   1477                 DeducedOrig.clear();
   1478                 DeducedOrig.append(Deduced.begin(), Deduced.end());
   1479                 Info.Param = BaseInfo.Param;
   1480                 Info.FirstArg = BaseInfo.FirstArg;
   1481                 Info.SecondArg = BaseInfo.SecondArg;
   1482               }
   1483               else
   1484                 Deduced = DeducedOrig;
   1485             }
   1486 
   1487             // Visit base classes
   1488             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
   1489             for (const auto &Base : Next->bases()) {
   1490               assert(Base.getType()->isRecordType() &&
   1491                      "Base class that isn't a record?");
   1492               ToVisit.push_back(Base.getType()->getAs<RecordType>());
   1493             }
   1494           }
   1495 
   1496           if (Successful)
   1497             return Sema::TDK_Success;
   1498         }
   1499 
   1500       }
   1501 
   1502       return Result;
   1503     }
   1504 
   1505     //     T type::*
   1506     //     T T::*
   1507     //     T (type::*)()
   1508     //     type (T::*)()
   1509     //     type (type::*)(T)
   1510     //     type (T::*)(T)
   1511     //     T (type::*)(T)
   1512     //     T (T::*)()
   1513     //     T (T::*)(T)
   1514     case Type::MemberPointer: {
   1515       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
   1516       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
   1517       if (!MemPtrArg)
   1518         return Sema::TDK_NonDeducedMismatch;
   1519 
   1520       if (Sema::TemplateDeductionResult Result
   1521             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1522                                                  MemPtrParam->getPointeeType(),
   1523                                                  MemPtrArg->getPointeeType(),
   1524                                                  Info, Deduced,
   1525                                                  TDF & TDF_IgnoreQualifiers))
   1526         return Result;
   1527 
   1528       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1529                                            QualType(MemPtrParam->getClass(), 0),
   1530                                            QualType(MemPtrArg->getClass(), 0),
   1531                                            Info, Deduced,
   1532                                            TDF & TDF_IgnoreQualifiers);
   1533     }
   1534 
   1535     //     (clang extension)
   1536     //
   1537     //     type(^)(T)
   1538     //     T(^)()
   1539     //     T(^)(T)
   1540     case Type::BlockPointer: {
   1541       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
   1542       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
   1543 
   1544       if (!BlockPtrArg)
   1545         return Sema::TDK_NonDeducedMismatch;
   1546 
   1547       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1548                                                 BlockPtrParam->getPointeeType(),
   1549                                                 BlockPtrArg->getPointeeType(),
   1550                                                 Info, Deduced, 0);
   1551     }
   1552 
   1553     //     (clang extension)
   1554     //
   1555     //     T __attribute__(((ext_vector_type(<integral constant>))))
   1556     case Type::ExtVector: {
   1557       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
   1558       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1559         // Make sure that the vectors have the same number of elements.
   1560         if (VectorParam->getNumElements() != VectorArg->getNumElements())
   1561           return Sema::TDK_NonDeducedMismatch;
   1562 
   1563         // Perform deduction on the element types.
   1564         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1565                                                   VectorParam->getElementType(),
   1566                                                   VectorArg->getElementType(),
   1567                                                   Info, Deduced, TDF);
   1568       }
   1569 
   1570       if (const DependentSizedExtVectorType *VectorArg
   1571                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1572         // We can't check the number of elements, since the argument has a
   1573         // dependent number of elements. This can only occur during partial
   1574         // ordering.
   1575 
   1576         // Perform deduction on the element types.
   1577         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1578                                                   VectorParam->getElementType(),
   1579                                                   VectorArg->getElementType(),
   1580                                                   Info, Deduced, TDF);
   1581       }
   1582 
   1583       return Sema::TDK_NonDeducedMismatch;
   1584     }
   1585 
   1586     //     (clang extension)
   1587     //
   1588     //     T __attribute__(((ext_vector_type(N))))
   1589     case Type::DependentSizedExtVector: {
   1590       const DependentSizedExtVectorType *VectorParam
   1591         = cast<DependentSizedExtVectorType>(Param);
   1592 
   1593       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1594         // Perform deduction on the element types.
   1595         if (Sema::TemplateDeductionResult Result
   1596               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1597                                                   VectorParam->getElementType(),
   1598                                                    VectorArg->getElementType(),
   1599                                                    Info, Deduced, TDF))
   1600           return Result;
   1601 
   1602         // Perform deduction on the vector size, if we can.
   1603         NonTypeTemplateParmDecl *NTTP
   1604           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1605         if (!NTTP)
   1606           return Sema::TDK_Success;
   1607 
   1608         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
   1609         ArgSize = VectorArg->getNumElements();
   1610         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
   1611                                              false, Info, Deduced);
   1612       }
   1613 
   1614       if (const DependentSizedExtVectorType *VectorArg
   1615                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1616         // Perform deduction on the element types.
   1617         if (Sema::TemplateDeductionResult Result
   1618             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1619                                                  VectorParam->getElementType(),
   1620                                                  VectorArg->getElementType(),
   1621                                                  Info, Deduced, TDF))
   1622           return Result;
   1623 
   1624         // Perform deduction on the vector size, if we can.
   1625         NonTypeTemplateParmDecl *NTTP
   1626           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1627         if (!NTTP)
   1628           return Sema::TDK_Success;
   1629 
   1630         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
   1631                                              Info, Deduced);
   1632       }
   1633 
   1634       return Sema::TDK_NonDeducedMismatch;
   1635     }
   1636 
   1637     case Type::TypeOfExpr:
   1638     case Type::TypeOf:
   1639     case Type::DependentName:
   1640     case Type::UnresolvedUsing:
   1641     case Type::Decltype:
   1642     case Type::UnaryTransform:
   1643     case Type::Auto:
   1644     case Type::DependentTemplateSpecialization:
   1645     case Type::PackExpansion:
   1646       // No template argument deduction for these types
   1647       return Sema::TDK_Success;
   1648   }
   1649 
   1650   llvm_unreachable("Invalid Type Class!");
   1651 }
   1652 
   1653 static Sema::TemplateDeductionResult
   1654 DeduceTemplateArguments(Sema &S,
   1655                         TemplateParameterList *TemplateParams,
   1656                         const TemplateArgument &Param,
   1657                         TemplateArgument Arg,
   1658                         TemplateDeductionInfo &Info,
   1659                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1660   // If the template argument is a pack expansion, perform template argument
   1661   // deduction against the pattern of that expansion. This only occurs during
   1662   // partial ordering.
   1663   if (Arg.isPackExpansion())
   1664     Arg = Arg.getPackExpansionPattern();
   1665 
   1666   switch (Param.getKind()) {
   1667   case TemplateArgument::Null:
   1668     llvm_unreachable("Null template argument in parameter list");
   1669 
   1670   case TemplateArgument::Type:
   1671     if (Arg.getKind() == TemplateArgument::Type)
   1672       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1673                                                 Param.getAsType(),
   1674                                                 Arg.getAsType(),
   1675                                                 Info, Deduced, 0);
   1676     Info.FirstArg = Param;
   1677     Info.SecondArg = Arg;
   1678     return Sema::TDK_NonDeducedMismatch;
   1679 
   1680   case TemplateArgument::Template:
   1681     if (Arg.getKind() == TemplateArgument::Template)
   1682       return DeduceTemplateArguments(S, TemplateParams,
   1683                                      Param.getAsTemplate(),
   1684                                      Arg.getAsTemplate(), Info, Deduced);
   1685     Info.FirstArg = Param;
   1686     Info.SecondArg = Arg;
   1687     return Sema::TDK_NonDeducedMismatch;
   1688 
   1689   case TemplateArgument::TemplateExpansion:
   1690     llvm_unreachable("caller should handle pack expansions");
   1691 
   1692   case TemplateArgument::Declaration:
   1693     if (Arg.getKind() == TemplateArgument::Declaration &&
   1694         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
   1695       return Sema::TDK_Success;
   1696 
   1697     Info.FirstArg = Param;
   1698     Info.SecondArg = Arg;
   1699     return Sema::TDK_NonDeducedMismatch;
   1700 
   1701   case TemplateArgument::NullPtr:
   1702     if (Arg.getKind() == TemplateArgument::NullPtr &&
   1703         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
   1704       return Sema::TDK_Success;
   1705 
   1706     Info.FirstArg = Param;
   1707     Info.SecondArg = Arg;
   1708     return Sema::TDK_NonDeducedMismatch;
   1709 
   1710   case TemplateArgument::Integral:
   1711     if (Arg.getKind() == TemplateArgument::Integral) {
   1712       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
   1713         return Sema::TDK_Success;
   1714 
   1715       Info.FirstArg = Param;
   1716       Info.SecondArg = Arg;
   1717       return Sema::TDK_NonDeducedMismatch;
   1718     }
   1719 
   1720     if (Arg.getKind() == TemplateArgument::Expression) {
   1721       Info.FirstArg = Param;
   1722       Info.SecondArg = Arg;
   1723       return Sema::TDK_NonDeducedMismatch;
   1724     }
   1725 
   1726     Info.FirstArg = Param;
   1727     Info.SecondArg = Arg;
   1728     return Sema::TDK_NonDeducedMismatch;
   1729 
   1730   case TemplateArgument::Expression: {
   1731     if (NonTypeTemplateParmDecl *NTTP
   1732           = getDeducedParameterFromExpr(Param.getAsExpr())) {
   1733       if (Arg.getKind() == TemplateArgument::Integral)
   1734         return DeduceNonTypeTemplateArgument(S, NTTP,
   1735                                              Arg.getAsIntegral(),
   1736                                              Arg.getIntegralType(),
   1737                                              /*ArrayBound=*/false,
   1738                                              Info, Deduced);
   1739       if (Arg.getKind() == TemplateArgument::Expression)
   1740         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
   1741                                              Info, Deduced);
   1742       if (Arg.getKind() == TemplateArgument::Declaration)
   1743         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
   1744                                              Info, Deduced);
   1745 
   1746       Info.FirstArg = Param;
   1747       Info.SecondArg = Arg;
   1748       return Sema::TDK_NonDeducedMismatch;
   1749     }
   1750 
   1751     // Can't deduce anything, but that's okay.
   1752     return Sema::TDK_Success;
   1753   }
   1754   case TemplateArgument::Pack:
   1755     llvm_unreachable("Argument packs should be expanded by the caller!");
   1756   }
   1757 
   1758   llvm_unreachable("Invalid TemplateArgument Kind!");
   1759 }
   1760 
   1761 /// \brief Determine whether there is a template argument to be used for
   1762 /// deduction.
   1763 ///
   1764 /// This routine "expands" argument packs in-place, overriding its input
   1765 /// parameters so that \c Args[ArgIdx] will be the available template argument.
   1766 ///
   1767 /// \returns true if there is another template argument (which will be at
   1768 /// \c Args[ArgIdx]), false otherwise.
   1769 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
   1770                                             unsigned &ArgIdx,
   1771                                             unsigned &NumArgs) {
   1772   if (ArgIdx == NumArgs)
   1773     return false;
   1774 
   1775   const TemplateArgument &Arg = Args[ArgIdx];
   1776   if (Arg.getKind() != TemplateArgument::Pack)
   1777     return true;
   1778 
   1779   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
   1780   Args = Arg.pack_begin();
   1781   NumArgs = Arg.pack_size();
   1782   ArgIdx = 0;
   1783   return ArgIdx < NumArgs;
   1784 }
   1785 
   1786 /// \brief Determine whether the given set of template arguments has a pack
   1787 /// expansion that is not the last template argument.
   1788 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
   1789                                       unsigned NumArgs) {
   1790   unsigned ArgIdx = 0;
   1791   while (ArgIdx < NumArgs) {
   1792     const TemplateArgument &Arg = Args[ArgIdx];
   1793 
   1794     // Unwrap argument packs.
   1795     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
   1796       Args = Arg.pack_begin();
   1797       NumArgs = Arg.pack_size();
   1798       ArgIdx = 0;
   1799       continue;
   1800     }
   1801 
   1802     ++ArgIdx;
   1803     if (ArgIdx == NumArgs)
   1804       return false;
   1805 
   1806     if (Arg.isPackExpansion())
   1807       return true;
   1808   }
   1809 
   1810   return false;
   1811 }
   1812 
   1813 static Sema::TemplateDeductionResult
   1814 DeduceTemplateArguments(Sema &S,
   1815                         TemplateParameterList *TemplateParams,
   1816                         const TemplateArgument *Params, unsigned NumParams,
   1817                         const TemplateArgument *Args, unsigned NumArgs,
   1818                         TemplateDeductionInfo &Info,
   1819                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1820   // C++0x [temp.deduct.type]p9:
   1821   //   If the template argument list of P contains a pack expansion that is not
   1822   //   the last template argument, the entire template argument list is a
   1823   //   non-deduced context.
   1824   if (hasPackExpansionBeforeEnd(Params, NumParams))
   1825     return Sema::TDK_Success;
   1826 
   1827   // C++0x [temp.deduct.type]p9:
   1828   //   If P has a form that contains <T> or <i>, then each argument Pi of the
   1829   //   respective template argument list P is compared with the corresponding
   1830   //   argument Ai of the corresponding template argument list of A.
   1831   unsigned ArgIdx = 0, ParamIdx = 0;
   1832   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
   1833        ++ParamIdx) {
   1834     if (!Params[ParamIdx].isPackExpansion()) {
   1835       // The simple case: deduce template arguments by matching Pi and Ai.
   1836 
   1837       // Check whether we have enough arguments.
   1838       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1839         return Sema::TDK_Success;
   1840 
   1841       if (Args[ArgIdx].isPackExpansion()) {
   1842         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
   1843         // but applied to pack expansions that are template arguments.
   1844         return Sema::TDK_MiscellaneousDeductionFailure;
   1845       }
   1846 
   1847       // Perform deduction for this Pi/Ai pair.
   1848       if (Sema::TemplateDeductionResult Result
   1849             = DeduceTemplateArguments(S, TemplateParams,
   1850                                       Params[ParamIdx], Args[ArgIdx],
   1851                                       Info, Deduced))
   1852         return Result;
   1853 
   1854       // Move to the next argument.
   1855       ++ArgIdx;
   1856       continue;
   1857     }
   1858 
   1859     // The parameter is a pack expansion.
   1860 
   1861     // C++0x [temp.deduct.type]p9:
   1862     //   If Pi is a pack expansion, then the pattern of Pi is compared with
   1863     //   each remaining argument in the template argument list of A. Each
   1864     //   comparison deduces template arguments for subsequent positions in the
   1865     //   template parameter packs expanded by Pi.
   1866     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
   1867 
   1868     // FIXME: If there are no remaining arguments, we can bail out early
   1869     // and set any deduced parameter packs to an empty argument pack.
   1870     // The latter part of this is a (minor) correctness issue.
   1871 
   1872     // Prepare to deduce the packs within the pattern.
   1873     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
   1874 
   1875     // Keep track of the deduced template arguments for each parameter pack
   1876     // expanded by this pack expansion (the outer index) and for each
   1877     // template argument (the inner SmallVectors).
   1878     bool HasAnyArguments = false;
   1879     for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) {
   1880       HasAnyArguments = true;
   1881 
   1882       // Deduce template arguments from the pattern.
   1883       if (Sema::TemplateDeductionResult Result
   1884             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
   1885                                       Info, Deduced))
   1886         return Result;
   1887 
   1888       PackScope.nextPackElement();
   1889     }
   1890 
   1891     // Build argument packs for each of the parameter packs expanded by this
   1892     // pack expansion.
   1893     if (auto Result = PackScope.finish(HasAnyArguments))
   1894       return Result;
   1895   }
   1896 
   1897   return Sema::TDK_Success;
   1898 }
   1899 
   1900 static Sema::TemplateDeductionResult
   1901 DeduceTemplateArguments(Sema &S,
   1902                         TemplateParameterList *TemplateParams,
   1903                         const TemplateArgumentList &ParamList,
   1904                         const TemplateArgumentList &ArgList,
   1905                         TemplateDeductionInfo &Info,
   1906                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1907   return DeduceTemplateArguments(S, TemplateParams,
   1908                                  ParamList.data(), ParamList.size(),
   1909                                  ArgList.data(), ArgList.size(),
   1910                                  Info, Deduced);
   1911 }
   1912 
   1913 /// \brief Determine whether two template arguments are the same.
   1914 static bool isSameTemplateArg(ASTContext &Context,
   1915                               const TemplateArgument &X,
   1916                               const TemplateArgument &Y) {
   1917   if (X.getKind() != Y.getKind())
   1918     return false;
   1919 
   1920   switch (X.getKind()) {
   1921     case TemplateArgument::Null:
   1922       llvm_unreachable("Comparing NULL template argument");
   1923 
   1924     case TemplateArgument::Type:
   1925       return Context.getCanonicalType(X.getAsType()) ==
   1926              Context.getCanonicalType(Y.getAsType());
   1927 
   1928     case TemplateArgument::Declaration:
   1929       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
   1930 
   1931     case TemplateArgument::NullPtr:
   1932       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
   1933 
   1934     case TemplateArgument::Template:
   1935     case TemplateArgument::TemplateExpansion:
   1936       return Context.getCanonicalTemplateName(
   1937                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
   1938              Context.getCanonicalTemplateName(
   1939                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
   1940 
   1941     case TemplateArgument::Integral:
   1942       return X.getAsIntegral() == Y.getAsIntegral();
   1943 
   1944     case TemplateArgument::Expression: {
   1945       llvm::FoldingSetNodeID XID, YID;
   1946       X.getAsExpr()->Profile(XID, Context, true);
   1947       Y.getAsExpr()->Profile(YID, Context, true);
   1948       return XID == YID;
   1949     }
   1950 
   1951     case TemplateArgument::Pack:
   1952       if (X.pack_size() != Y.pack_size())
   1953         return false;
   1954 
   1955       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
   1956                                         XPEnd = X.pack_end(),
   1957                                            YP = Y.pack_begin();
   1958            XP != XPEnd; ++XP, ++YP)
   1959         if (!isSameTemplateArg(Context, *XP, *YP))
   1960           return false;
   1961 
   1962       return true;
   1963   }
   1964 
   1965   llvm_unreachable("Invalid TemplateArgument Kind!");
   1966 }
   1967 
   1968 /// \brief Allocate a TemplateArgumentLoc where all locations have
   1969 /// been initialized to the given location.
   1970 ///
   1971 /// \param S The semantic analysis object.
   1972 ///
   1973 /// \param Arg The template argument we are producing template argument
   1974 /// location information for.
   1975 ///
   1976 /// \param NTTPType For a declaration template argument, the type of
   1977 /// the non-type template parameter that corresponds to this template
   1978 /// argument.
   1979 ///
   1980 /// \param Loc The source location to use for the resulting template
   1981 /// argument.
   1982 static TemplateArgumentLoc
   1983 getTrivialTemplateArgumentLoc(Sema &S,
   1984                               const TemplateArgument &Arg,
   1985                               QualType NTTPType,
   1986                               SourceLocation Loc) {
   1987   switch (Arg.getKind()) {
   1988   case TemplateArgument::Null:
   1989     llvm_unreachable("Can't get a NULL template argument here");
   1990 
   1991   case TemplateArgument::Type:
   1992     return TemplateArgumentLoc(Arg,
   1993                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
   1994 
   1995   case TemplateArgument::Declaration: {
   1996     Expr *E
   1997       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   1998           .getAs<Expr>();
   1999     return TemplateArgumentLoc(TemplateArgument(E), E);
   2000   }
   2001 
   2002   case TemplateArgument::NullPtr: {
   2003     Expr *E
   2004       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   2005           .getAs<Expr>();
   2006     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
   2007                                E);
   2008   }
   2009 
   2010   case TemplateArgument::Integral: {
   2011     Expr *E
   2012       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
   2013     return TemplateArgumentLoc(TemplateArgument(E), E);
   2014   }
   2015 
   2016     case TemplateArgument::Template:
   2017     case TemplateArgument::TemplateExpansion: {
   2018       NestedNameSpecifierLocBuilder Builder;
   2019       TemplateName Template = Arg.getAsTemplate();
   2020       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
   2021         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
   2022       else if (QualifiedTemplateName *QTN =
   2023                    Template.getAsQualifiedTemplateName())
   2024         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
   2025 
   2026       if (Arg.getKind() == TemplateArgument::Template)
   2027         return TemplateArgumentLoc(Arg,
   2028                                    Builder.getWithLocInContext(S.Context),
   2029                                    Loc);
   2030 
   2031 
   2032       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
   2033                                  Loc, Loc);
   2034     }
   2035 
   2036   case TemplateArgument::Expression:
   2037     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
   2038 
   2039   case TemplateArgument::Pack:
   2040     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
   2041   }
   2042 
   2043   llvm_unreachable("Invalid TemplateArgument Kind!");
   2044 }
   2045 
   2046 
   2047 /// \brief Convert the given deduced template argument and add it to the set of
   2048 /// fully-converted template arguments.
   2049 static bool
   2050 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
   2051                                DeducedTemplateArgument Arg,
   2052                                NamedDecl *Template,
   2053                                QualType NTTPType,
   2054                                unsigned ArgumentPackIndex,
   2055                                TemplateDeductionInfo &Info,
   2056                                bool InFunctionTemplate,
   2057                                SmallVectorImpl<TemplateArgument> &Output) {
   2058   if (Arg.getKind() == TemplateArgument::Pack) {
   2059     // This is a template argument pack, so check each of its arguments against
   2060     // the template parameter.
   2061     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
   2062     for (const auto &P : Arg.pack_elements()) {
   2063       // When converting the deduced template argument, append it to the
   2064       // general output list. We need to do this so that the template argument
   2065       // checking logic has all of the prior template arguments available.
   2066       DeducedTemplateArgument InnerArg(P);
   2067       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
   2068       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
   2069                                          NTTPType, PackedArgsBuilder.size(),
   2070                                          Info, InFunctionTemplate, Output))
   2071         return true;
   2072 
   2073       // Move the converted template argument into our argument pack.
   2074       PackedArgsBuilder.push_back(Output.pop_back_val());
   2075     }
   2076 
   2077     // Create the resulting argument pack.
   2078     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
   2079                                                       PackedArgsBuilder.data(),
   2080                                                      PackedArgsBuilder.size()));
   2081     return false;
   2082   }
   2083 
   2084   // Convert the deduced template argument into a template
   2085   // argument that we can check, almost as if the user had written
   2086   // the template argument explicitly.
   2087   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
   2088                                                              Info.getLocation());
   2089 
   2090   // Check the template argument, converting it as necessary.
   2091   return S.CheckTemplateArgument(Param, ArgLoc,
   2092                                  Template,
   2093                                  Template->getLocation(),
   2094                                  Template->getSourceRange().getEnd(),
   2095                                  ArgumentPackIndex,
   2096                                  Output,
   2097                                  InFunctionTemplate
   2098                                   ? (Arg.wasDeducedFromArrayBound()
   2099                                        ? Sema::CTAK_DeducedFromArrayBound
   2100                                        : Sema::CTAK_Deduced)
   2101                                  : Sema::CTAK_Specified);
   2102 }
   2103 
   2104 /// Complete template argument deduction for a class template partial
   2105 /// specialization.
   2106 static Sema::TemplateDeductionResult
   2107 FinishTemplateArgumentDeduction(Sema &S,
   2108                                 ClassTemplatePartialSpecializationDecl *Partial,
   2109                                 const TemplateArgumentList &TemplateArgs,
   2110                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2111                                 TemplateDeductionInfo &Info) {
   2112   // Unevaluated SFINAE context.
   2113   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2114   Sema::SFINAETrap Trap(S);
   2115 
   2116   Sema::ContextRAII SavedContext(S, Partial);
   2117 
   2118   // C++ [temp.deduct.type]p2:
   2119   //   [...] or if any template argument remains neither deduced nor
   2120   //   explicitly specified, template argument deduction fails.
   2121   SmallVector<TemplateArgument, 4> Builder;
   2122   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2123   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2124     NamedDecl *Param = PartialParams->getParam(I);
   2125     if (Deduced[I].isNull()) {
   2126       Info.Param = makeTemplateParameter(Param);
   2127       return Sema::TDK_Incomplete;
   2128     }
   2129 
   2130     // We have deduced this argument, so it still needs to be
   2131     // checked and converted.
   2132 
   2133     // First, for a non-type template parameter type that is
   2134     // initialized by a declaration, we need the type of the
   2135     // corresponding non-type template parameter.
   2136     QualType NTTPType;
   2137     if (NonTypeTemplateParmDecl *NTTP
   2138                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2139       NTTPType = NTTP->getType();
   2140       if (NTTPType->isDependentType()) {
   2141         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2142                                           Builder.data(), Builder.size());
   2143         NTTPType = S.SubstType(NTTPType,
   2144                                MultiLevelTemplateArgumentList(TemplateArgs),
   2145                                NTTP->getLocation(),
   2146                                NTTP->getDeclName());
   2147         if (NTTPType.isNull()) {
   2148           Info.Param = makeTemplateParameter(Param);
   2149           // FIXME: These template arguments are temporary. Free them!
   2150           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
   2151                                                       Builder.data(),
   2152                                                       Builder.size()));
   2153           return Sema::TDK_SubstitutionFailure;
   2154         }
   2155       }
   2156     }
   2157 
   2158     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
   2159                                        Partial, NTTPType, 0, Info, false,
   2160                                        Builder)) {
   2161       Info.Param = makeTemplateParameter(Param);
   2162       // FIXME: These template arguments are temporary. Free them!
   2163       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2164                                                   Builder.size()));
   2165       return Sema::TDK_SubstitutionFailure;
   2166     }
   2167   }
   2168 
   2169   // Form the template argument list from the deduced template arguments.
   2170   TemplateArgumentList *DeducedArgumentList
   2171     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2172                                        Builder.size());
   2173 
   2174   Info.reset(DeducedArgumentList);
   2175 
   2176   // Substitute the deduced template arguments into the template
   2177   // arguments of the class template partial specialization, and
   2178   // verify that the instantiated template arguments are both valid
   2179   // and are equivalent to the template arguments originally provided
   2180   // to the class template.
   2181   LocalInstantiationScope InstScope(S);
   2182   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
   2183   const ASTTemplateArgumentListInfo *PartialTemplArgInfo
   2184     = Partial->getTemplateArgsAsWritten();
   2185   const TemplateArgumentLoc *PartialTemplateArgs
   2186     = PartialTemplArgInfo->getTemplateArgs();
   2187 
   2188   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
   2189                                     PartialTemplArgInfo->RAngleLoc);
   2190 
   2191   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
   2192               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2193     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2194     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2195       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2196 
   2197     Decl *Param
   2198       = const_cast<NamedDecl *>(
   2199                           Partial->getTemplateParameters()->getParam(ParamIdx));
   2200     Info.Param = makeTemplateParameter(Param);
   2201     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2202     return Sema::TDK_SubstitutionFailure;
   2203   }
   2204 
   2205   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2206   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
   2207                                   InstArgs, false, ConvertedInstArgs))
   2208     return Sema::TDK_SubstitutionFailure;
   2209 
   2210   TemplateParameterList *TemplateParams
   2211     = ClassTemplate->getTemplateParameters();
   2212   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2213     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2214     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2215       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2216       Info.FirstArg = TemplateArgs[I];
   2217       Info.SecondArg = InstArg;
   2218       return Sema::TDK_NonDeducedMismatch;
   2219     }
   2220   }
   2221 
   2222   if (Trap.hasErrorOccurred())
   2223     return Sema::TDK_SubstitutionFailure;
   2224 
   2225   return Sema::TDK_Success;
   2226 }
   2227 
   2228 /// \brief Perform template argument deduction to determine whether
   2229 /// the given template arguments match the given class template
   2230 /// partial specialization per C++ [temp.class.spec.match].
   2231 Sema::TemplateDeductionResult
   2232 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
   2233                               const TemplateArgumentList &TemplateArgs,
   2234                               TemplateDeductionInfo &Info) {
   2235   if (Partial->isInvalidDecl())
   2236     return TDK_Invalid;
   2237 
   2238   // C++ [temp.class.spec.match]p2:
   2239   //   A partial specialization matches a given actual template
   2240   //   argument list if the template arguments of the partial
   2241   //   specialization can be deduced from the actual template argument
   2242   //   list (14.8.2).
   2243 
   2244   // Unevaluated SFINAE context.
   2245   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2246   SFINAETrap Trap(*this);
   2247 
   2248   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2249   Deduced.resize(Partial->getTemplateParameters()->size());
   2250   if (TemplateDeductionResult Result
   2251         = ::DeduceTemplateArguments(*this,
   2252                                     Partial->getTemplateParameters(),
   2253                                     Partial->getTemplateArgs(),
   2254                                     TemplateArgs, Info, Deduced))
   2255     return Result;
   2256 
   2257   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2258   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
   2259                              Info);
   2260   if (Inst.isInvalid())
   2261     return TDK_InstantiationDepth;
   2262 
   2263   if (Trap.hasErrorOccurred())
   2264     return Sema::TDK_SubstitutionFailure;
   2265 
   2266   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2267                                            Deduced, Info);
   2268 }
   2269 
   2270 /// Complete template argument deduction for a variable template partial
   2271 /// specialization.
   2272 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   2273 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   2274 ///        VarTemplate(Partial)SpecializationDecl with a new data
   2275 ///        structure Template(Partial)SpecializationDecl, and
   2276 ///        using Template(Partial)SpecializationDecl as input type.
   2277 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
   2278     Sema &S, VarTemplatePartialSpecializationDecl *Partial,
   2279     const TemplateArgumentList &TemplateArgs,
   2280     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2281     TemplateDeductionInfo &Info) {
   2282   // Unevaluated SFINAE context.
   2283   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2284   Sema::SFINAETrap Trap(S);
   2285 
   2286   // C++ [temp.deduct.type]p2:
   2287   //   [...] or if any template argument remains neither deduced nor
   2288   //   explicitly specified, template argument deduction fails.
   2289   SmallVector<TemplateArgument, 4> Builder;
   2290   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2291   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2292     NamedDecl *Param = PartialParams->getParam(I);
   2293     if (Deduced[I].isNull()) {
   2294       Info.Param = makeTemplateParameter(Param);
   2295       return Sema::TDK_Incomplete;
   2296     }
   2297 
   2298     // We have deduced this argument, so it still needs to be
   2299     // checked and converted.
   2300 
   2301     // First, for a non-type template parameter type that is
   2302     // initialized by a declaration, we need the type of the
   2303     // corresponding non-type template parameter.
   2304     QualType NTTPType;
   2305     if (NonTypeTemplateParmDecl *NTTP =
   2306             dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2307       NTTPType = NTTP->getType();
   2308       if (NTTPType->isDependentType()) {
   2309         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2310                                           Builder.data(), Builder.size());
   2311         NTTPType =
   2312             S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
   2313                         NTTP->getLocation(), NTTP->getDeclName());
   2314         if (NTTPType.isNull()) {
   2315           Info.Param = makeTemplateParameter(Param);
   2316           // FIXME: These template arguments are temporary. Free them!
   2317           Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2318                                                       Builder.size()));
   2319           return Sema::TDK_SubstitutionFailure;
   2320         }
   2321       }
   2322     }
   2323 
   2324     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
   2325                                        0, Info, false, Builder)) {
   2326       Info.Param = makeTemplateParameter(Param);
   2327       // FIXME: These template arguments are temporary. Free them!
   2328       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2329                                                   Builder.size()));
   2330       return Sema::TDK_SubstitutionFailure;
   2331     }
   2332   }
   2333 
   2334   // Form the template argument list from the deduced template arguments.
   2335   TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
   2336       S.Context, Builder.data(), Builder.size());
   2337 
   2338   Info.reset(DeducedArgumentList);
   2339 
   2340   // Substitute the deduced template arguments into the template
   2341   // arguments of the class template partial specialization, and
   2342   // verify that the instantiated template arguments are both valid
   2343   // and are equivalent to the template arguments originally provided
   2344   // to the class template.
   2345   LocalInstantiationScope InstScope(S);
   2346   VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
   2347   const ASTTemplateArgumentListInfo *PartialTemplArgInfo
   2348     = Partial->getTemplateArgsAsWritten();
   2349   const TemplateArgumentLoc *PartialTemplateArgs
   2350     = PartialTemplArgInfo->getTemplateArgs();
   2351 
   2352   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
   2353                                     PartialTemplArgInfo->RAngleLoc);
   2354 
   2355   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
   2356               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2357     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2358     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2359       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2360 
   2361     Decl *Param = const_cast<NamedDecl *>(
   2362         Partial->getTemplateParameters()->getParam(ParamIdx));
   2363     Info.Param = makeTemplateParameter(Param);
   2364     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2365     return Sema::TDK_SubstitutionFailure;
   2366   }
   2367   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2368   if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
   2369                                   false, ConvertedInstArgs))
   2370     return Sema::TDK_SubstitutionFailure;
   2371 
   2372   TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
   2373   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2374     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2375     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2376       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2377       Info.FirstArg = TemplateArgs[I];
   2378       Info.SecondArg = InstArg;
   2379       return Sema::TDK_NonDeducedMismatch;
   2380     }
   2381   }
   2382 
   2383   if (Trap.hasErrorOccurred())
   2384     return Sema::TDK_SubstitutionFailure;
   2385 
   2386   return Sema::TDK_Success;
   2387 }
   2388 
   2389 /// \brief Perform template argument deduction to determine whether
   2390 /// the given template arguments match the given variable template
   2391 /// partial specialization per C++ [temp.class.spec.match].
   2392 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   2393 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   2394 ///        VarTemplate(Partial)SpecializationDecl with a new data
   2395 ///        structure Template(Partial)SpecializationDecl, and
   2396 ///        using Template(Partial)SpecializationDecl as input type.
   2397 Sema::TemplateDeductionResult
   2398 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
   2399                               const TemplateArgumentList &TemplateArgs,
   2400                               TemplateDeductionInfo &Info) {
   2401   if (Partial->isInvalidDecl())
   2402     return TDK_Invalid;
   2403 
   2404   // C++ [temp.class.spec.match]p2:
   2405   //   A partial specialization matches a given actual template
   2406   //   argument list if the template arguments of the partial
   2407   //   specialization can be deduced from the actual template argument
   2408   //   list (14.8.2).
   2409 
   2410   // Unevaluated SFINAE context.
   2411   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2412   SFINAETrap Trap(*this);
   2413 
   2414   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2415   Deduced.resize(Partial->getTemplateParameters()->size());
   2416   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
   2417           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
   2418           TemplateArgs, Info, Deduced))
   2419     return Result;
   2420 
   2421   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2422   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
   2423                              Info);
   2424   if (Inst.isInvalid())
   2425     return TDK_InstantiationDepth;
   2426 
   2427   if (Trap.hasErrorOccurred())
   2428     return Sema::TDK_SubstitutionFailure;
   2429 
   2430   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2431                                            Deduced, Info);
   2432 }
   2433 
   2434 /// \brief Determine whether the given type T is a simple-template-id type.
   2435 static bool isSimpleTemplateIdType(QualType T) {
   2436   if (const TemplateSpecializationType *Spec
   2437         = T->getAs<TemplateSpecializationType>())
   2438     return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
   2439 
   2440   return false;
   2441 }
   2442 
   2443 /// \brief Substitute the explicitly-provided template arguments into the
   2444 /// given function template according to C++ [temp.arg.explicit].
   2445 ///
   2446 /// \param FunctionTemplate the function template into which the explicit
   2447 /// template arguments will be substituted.
   2448 ///
   2449 /// \param ExplicitTemplateArgs the explicitly-specified template
   2450 /// arguments.
   2451 ///
   2452 /// \param Deduced the deduced template arguments, which will be populated
   2453 /// with the converted and checked explicit template arguments.
   2454 ///
   2455 /// \param ParamTypes will be populated with the instantiated function
   2456 /// parameters.
   2457 ///
   2458 /// \param FunctionType if non-NULL, the result type of the function template
   2459 /// will also be instantiated and the pointed-to value will be updated with
   2460 /// the instantiated function type.
   2461 ///
   2462 /// \param Info if substitution fails for any reason, this object will be
   2463 /// populated with more information about the failure.
   2464 ///
   2465 /// \returns TDK_Success if substitution was successful, or some failure
   2466 /// condition.
   2467 Sema::TemplateDeductionResult
   2468 Sema::SubstituteExplicitTemplateArguments(
   2469                                       FunctionTemplateDecl *FunctionTemplate,
   2470                                TemplateArgumentListInfo &ExplicitTemplateArgs,
   2471                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2472                                  SmallVectorImpl<QualType> &ParamTypes,
   2473                                           QualType *FunctionType,
   2474                                           TemplateDeductionInfo &Info) {
   2475   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2476   TemplateParameterList *TemplateParams
   2477     = FunctionTemplate->getTemplateParameters();
   2478 
   2479   if (ExplicitTemplateArgs.size() == 0) {
   2480     // No arguments to substitute; just copy over the parameter types and
   2481     // fill in the function type.
   2482     for (auto P : Function->params())
   2483       ParamTypes.push_back(P->getType());
   2484 
   2485     if (FunctionType)
   2486       *FunctionType = Function->getType();
   2487     return TDK_Success;
   2488   }
   2489 
   2490   // Unevaluated SFINAE context.
   2491   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2492   SFINAETrap Trap(*this);
   2493 
   2494   // C++ [temp.arg.explicit]p3:
   2495   //   Template arguments that are present shall be specified in the
   2496   //   declaration order of their corresponding template-parameters. The
   2497   //   template argument list shall not specify more template-arguments than
   2498   //   there are corresponding template-parameters.
   2499   SmallVector<TemplateArgument, 4> Builder;
   2500 
   2501   // Enter a new template instantiation context where we check the
   2502   // explicitly-specified template arguments against this function template,
   2503   // and then substitute them into the function parameter types.
   2504   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2505   InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
   2506                              DeducedArgs,
   2507            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
   2508                              Info);
   2509   if (Inst.isInvalid())
   2510     return TDK_InstantiationDepth;
   2511 
   2512   if (CheckTemplateArgumentList(FunctionTemplate,
   2513                                 SourceLocation(),
   2514                                 ExplicitTemplateArgs,
   2515                                 true,
   2516                                 Builder) || Trap.hasErrorOccurred()) {
   2517     unsigned Index = Builder.size();
   2518     if (Index >= TemplateParams->size())
   2519       Index = TemplateParams->size() - 1;
   2520     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
   2521     return TDK_InvalidExplicitArguments;
   2522   }
   2523 
   2524   // Form the template argument list from the explicitly-specified
   2525   // template arguments.
   2526   TemplateArgumentList *ExplicitArgumentList
   2527     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2528   Info.reset(ExplicitArgumentList);
   2529 
   2530   // Template argument deduction and the final substitution should be
   2531   // done in the context of the templated declaration.  Explicit
   2532   // argument substitution, on the other hand, needs to happen in the
   2533   // calling context.
   2534   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2535 
   2536   // If we deduced template arguments for a template parameter pack,
   2537   // note that the template argument pack is partially substituted and record
   2538   // the explicit template arguments. They'll be used as part of deduction
   2539   // for this template parameter pack.
   2540   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
   2541     const TemplateArgument &Arg = Builder[I];
   2542     if (Arg.getKind() == TemplateArgument::Pack) {
   2543       CurrentInstantiationScope->SetPartiallySubstitutedPack(
   2544                                                  TemplateParams->getParam(I),
   2545                                                              Arg.pack_begin(),
   2546                                                              Arg.pack_size());
   2547       break;
   2548     }
   2549   }
   2550 
   2551   const FunctionProtoType *Proto
   2552     = Function->getType()->getAs<FunctionProtoType>();
   2553   assert(Proto && "Function template does not have a prototype?");
   2554 
   2555   // Isolate our substituted parameters from our caller.
   2556   LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
   2557 
   2558   // Instantiate the types of each of the function parameters given the
   2559   // explicitly-specified template arguments. If the function has a trailing
   2560   // return type, substitute it after the arguments to ensure we substitute
   2561   // in lexical order.
   2562   if (Proto->hasTrailingReturn()) {
   2563     if (SubstParmTypes(Function->getLocation(),
   2564                        Function->param_begin(), Function->getNumParams(),
   2565                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2566                        ParamTypes))
   2567       return TDK_SubstitutionFailure;
   2568   }
   2569 
   2570   // Instantiate the return type.
   2571   QualType ResultType;
   2572   {
   2573     // C++11 [expr.prim.general]p3:
   2574     //   If a declaration declares a member function or member function
   2575     //   template of a class X, the expression this is a prvalue of type
   2576     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   2577     //   and the end of the function-definition, member-declarator, or
   2578     //   declarator.
   2579     unsigned ThisTypeQuals = 0;
   2580     CXXRecordDecl *ThisContext = nullptr;
   2581     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   2582       ThisContext = Method->getParent();
   2583       ThisTypeQuals = Method->getTypeQualifiers();
   2584     }
   2585 
   2586     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
   2587                                getLangOpts().CPlusPlus11);
   2588 
   2589     ResultType =
   2590         SubstType(Proto->getReturnType(),
   2591                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2592                   Function->getTypeSpecStartLoc(), Function->getDeclName());
   2593     if (ResultType.isNull() || Trap.hasErrorOccurred())
   2594       return TDK_SubstitutionFailure;
   2595   }
   2596 
   2597   // Instantiate the types of each of the function parameters given the
   2598   // explicitly-specified template arguments if we didn't do so earlier.
   2599   if (!Proto->hasTrailingReturn() &&
   2600       SubstParmTypes(Function->getLocation(),
   2601                      Function->param_begin(), Function->getNumParams(),
   2602                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2603                      ParamTypes))
   2604     return TDK_SubstitutionFailure;
   2605 
   2606   if (FunctionType) {
   2607     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
   2608                                       Function->getLocation(),
   2609                                       Function->getDeclName(),
   2610                                       Proto->getExtProtoInfo());
   2611     if (FunctionType->isNull() || Trap.hasErrorOccurred())
   2612       return TDK_SubstitutionFailure;
   2613   }
   2614 
   2615   // C++ [temp.arg.explicit]p2:
   2616   //   Trailing template arguments that can be deduced (14.8.2) may be
   2617   //   omitted from the list of explicit template-arguments. If all of the
   2618   //   template arguments can be deduced, they may all be omitted; in this
   2619   //   case, the empty template argument list <> itself may also be omitted.
   2620   //
   2621   // Take all of the explicitly-specified arguments and put them into
   2622   // the set of deduced template arguments. Explicitly-specified
   2623   // parameter packs, however, will be set to NULL since the deduction
   2624   // mechanisms handle explicitly-specified argument packs directly.
   2625   Deduced.reserve(TemplateParams->size());
   2626   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
   2627     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
   2628     if (Arg.getKind() == TemplateArgument::Pack)
   2629       Deduced.push_back(DeducedTemplateArgument());
   2630     else
   2631       Deduced.push_back(Arg);
   2632   }
   2633 
   2634   return TDK_Success;
   2635 }
   2636 
   2637 /// \brief Check whether the deduced argument type for a call to a function
   2638 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
   2639 static bool
   2640 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
   2641                               QualType DeducedA) {
   2642   ASTContext &Context = S.Context;
   2643 
   2644   QualType A = OriginalArg.OriginalArgType;
   2645   QualType OriginalParamType = OriginalArg.OriginalParamType;
   2646 
   2647   // Check for type equality (top-level cv-qualifiers are ignored).
   2648   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2649     return false;
   2650 
   2651   // Strip off references on the argument types; they aren't needed for
   2652   // the following checks.
   2653   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
   2654     DeducedA = DeducedARef->getPointeeType();
   2655   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   2656     A = ARef->getPointeeType();
   2657 
   2658   // C++ [temp.deduct.call]p4:
   2659   //   [...] However, there are three cases that allow a difference:
   2660   //     - If the original P is a reference type, the deduced A (i.e., the
   2661   //       type referred to by the reference) can be more cv-qualified than
   2662   //       the transformed A.
   2663   if (const ReferenceType *OriginalParamRef
   2664       = OriginalParamType->getAs<ReferenceType>()) {
   2665     // We don't want to keep the reference around any more.
   2666     OriginalParamType = OriginalParamRef->getPointeeType();
   2667 
   2668     Qualifiers AQuals = A.getQualifiers();
   2669     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
   2670 
   2671     // Under Objective-C++ ARC, the deduced type may have implicitly
   2672     // been given strong or (when dealing with a const reference)
   2673     // unsafe_unretained lifetime. If so, update the original
   2674     // qualifiers to include this lifetime.
   2675     if (S.getLangOpts().ObjCAutoRefCount &&
   2676         ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
   2677           AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
   2678          (DeducedAQuals.hasConst() &&
   2679           DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
   2680       AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
   2681     }
   2682 
   2683     if (AQuals == DeducedAQuals) {
   2684       // Qualifiers match; there's nothing to do.
   2685     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
   2686       return true;
   2687     } else {
   2688       // Qualifiers are compatible, so have the argument type adopt the
   2689       // deduced argument type's qualifiers as if we had performed the
   2690       // qualification conversion.
   2691       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
   2692     }
   2693   }
   2694 
   2695   //    - The transformed A can be another pointer or pointer to member
   2696   //      type that can be converted to the deduced A via a qualification
   2697   //      conversion.
   2698   //
   2699   // Also allow conversions which merely strip [[noreturn]] from function types
   2700   // (recursively) as an extension.
   2701   // FIXME: Currently, this doesn't play nicely with qualification conversions.
   2702   bool ObjCLifetimeConversion = false;
   2703   QualType ResultTy;
   2704   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
   2705       (S.IsQualificationConversion(A, DeducedA, false,
   2706                                    ObjCLifetimeConversion) ||
   2707        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
   2708     return false;
   2709 
   2710 
   2711   //    - If P is a class and P has the form simple-template-id, then the
   2712   //      transformed A can be a derived class of the deduced A. [...]
   2713   //     [...] Likewise, if P is a pointer to a class of the form
   2714   //      simple-template-id, the transformed A can be a pointer to a
   2715   //      derived class pointed to by the deduced A.
   2716   if (const PointerType *OriginalParamPtr
   2717       = OriginalParamType->getAs<PointerType>()) {
   2718     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
   2719       if (const PointerType *APtr = A->getAs<PointerType>()) {
   2720         if (A->getPointeeType()->isRecordType()) {
   2721           OriginalParamType = OriginalParamPtr->getPointeeType();
   2722           DeducedA = DeducedAPtr->getPointeeType();
   2723           A = APtr->getPointeeType();
   2724         }
   2725       }
   2726     }
   2727   }
   2728 
   2729   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2730     return false;
   2731 
   2732   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
   2733       S.IsDerivedFrom(A, DeducedA))
   2734     return false;
   2735 
   2736   return true;
   2737 }
   2738 
   2739 /// \brief Finish template argument deduction for a function template,
   2740 /// checking the deduced template arguments for completeness and forming
   2741 /// the function template specialization.
   2742 ///
   2743 /// \param OriginalCallArgs If non-NULL, the original call arguments against
   2744 /// which the deduced argument types should be compared.
   2745 Sema::TemplateDeductionResult
   2746 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
   2747                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2748                                       unsigned NumExplicitlySpecified,
   2749                                       FunctionDecl *&Specialization,
   2750                                       TemplateDeductionInfo &Info,
   2751         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
   2752                                       bool PartialOverloading) {
   2753   TemplateParameterList *TemplateParams
   2754     = FunctionTemplate->getTemplateParameters();
   2755 
   2756   // Unevaluated SFINAE context.
   2757   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2758   SFINAETrap Trap(*this);
   2759 
   2760   // Enter a new template instantiation context while we instantiate the
   2761   // actual function declaration.
   2762   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2763   InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
   2764                              DeducedArgs,
   2765               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
   2766                              Info);
   2767   if (Inst.isInvalid())
   2768     return TDK_InstantiationDepth;
   2769 
   2770   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2771 
   2772   // C++ [temp.deduct.type]p2:
   2773   //   [...] or if any template argument remains neither deduced nor
   2774   //   explicitly specified, template argument deduction fails.
   2775   SmallVector<TemplateArgument, 4> Builder;
   2776   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   2777     NamedDecl *Param = TemplateParams->getParam(I);
   2778 
   2779     if (!Deduced[I].isNull()) {
   2780       if (I < NumExplicitlySpecified) {
   2781         // We have already fully type-checked and converted this
   2782         // argument, because it was explicitly-specified. Just record the
   2783         // presence of this argument.
   2784         Builder.push_back(Deduced[I]);
   2785         // We may have had explicitly-specified template arguments for a
   2786         // template parameter pack (that may or may not have been extended
   2787         // via additional deduced arguments).
   2788         if (Param->isParameterPack() && CurrentInstantiationScope) {
   2789           if (CurrentInstantiationScope->getPartiallySubstitutedPack() ==
   2790               Param) {
   2791             // Forget the partially-substituted pack; its substitution is now
   2792             // complete.
   2793             CurrentInstantiationScope->ResetPartiallySubstitutedPack();
   2794           }
   2795         }
   2796         continue;
   2797       }
   2798       // We have deduced this argument, so it still needs to be
   2799       // checked and converted.
   2800 
   2801       // First, for a non-type template parameter type that is
   2802       // initialized by a declaration, we need the type of the
   2803       // corresponding non-type template parameter.
   2804       QualType NTTPType;
   2805       if (NonTypeTemplateParmDecl *NTTP
   2806                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2807         NTTPType = NTTP->getType();
   2808         if (NTTPType->isDependentType()) {
   2809           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2810                                             Builder.data(), Builder.size());
   2811           NTTPType = SubstType(NTTPType,
   2812                                MultiLevelTemplateArgumentList(TemplateArgs),
   2813                                NTTP->getLocation(),
   2814                                NTTP->getDeclName());
   2815           if (NTTPType.isNull()) {
   2816             Info.Param = makeTemplateParameter(Param);
   2817             // FIXME: These template arguments are temporary. Free them!
   2818             Info.reset(TemplateArgumentList::CreateCopy(Context,
   2819                                                         Builder.data(),
   2820                                                         Builder.size()));
   2821             return TDK_SubstitutionFailure;
   2822           }
   2823         }
   2824       }
   2825 
   2826       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
   2827                                          FunctionTemplate, NTTPType, 0, Info,
   2828                                          true, Builder)) {
   2829         Info.Param = makeTemplateParameter(Param);
   2830         // FIXME: These template arguments are temporary. Free them!
   2831         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2832                                                     Builder.size()));
   2833         return TDK_SubstitutionFailure;
   2834       }
   2835 
   2836       continue;
   2837     }
   2838 
   2839     // C++0x [temp.arg.explicit]p3:
   2840     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
   2841     //    be deduced to an empty sequence of template arguments.
   2842     // FIXME: Where did the word "trailing" come from?
   2843     if (Param->isTemplateParameterPack()) {
   2844       // We may have had explicitly-specified template arguments for this
   2845       // template parameter pack. If so, our empty deduction extends the
   2846       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
   2847       const TemplateArgument *ExplicitArgs;
   2848       unsigned NumExplicitArgs;
   2849       if (CurrentInstantiationScope &&
   2850           CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
   2851                                                              &NumExplicitArgs)
   2852             == Param) {
   2853         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
   2854 
   2855         // Forget the partially-substituted pack; it's substitution is now
   2856         // complete.
   2857         CurrentInstantiationScope->ResetPartiallySubstitutedPack();
   2858       } else {
   2859         Builder.push_back(TemplateArgument::getEmptyPack());
   2860       }
   2861       continue;
   2862     }
   2863 
   2864     // Substitute into the default template argument, if available.
   2865     bool HasDefaultArg = false;
   2866     TemplateArgumentLoc DefArg
   2867       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
   2868                                               FunctionTemplate->getLocation(),
   2869                                   FunctionTemplate->getSourceRange().getEnd(),
   2870                                                 Param,
   2871                                                 Builder, HasDefaultArg);
   2872 
   2873     // If there was no default argument, deduction is incomplete.
   2874     if (DefArg.getArgument().isNull()) {
   2875       Info.Param = makeTemplateParameter(
   2876                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2877       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2878                                                   Builder.size()));
   2879       if (PartialOverloading) break;
   2880 
   2881       return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
   2882     }
   2883 
   2884     // Check whether we can actually use the default argument.
   2885     if (CheckTemplateArgument(Param, DefArg,
   2886                               FunctionTemplate,
   2887                               FunctionTemplate->getLocation(),
   2888                               FunctionTemplate->getSourceRange().getEnd(),
   2889                               0, Builder,
   2890                               CTAK_Specified)) {
   2891       Info.Param = makeTemplateParameter(
   2892                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2893       // FIXME: These template arguments are temporary. Free them!
   2894       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2895                                                   Builder.size()));
   2896       return TDK_SubstitutionFailure;
   2897     }
   2898 
   2899     // If we get here, we successfully used the default template argument.
   2900   }
   2901 
   2902   // Form the template argument list from the deduced template arguments.
   2903   TemplateArgumentList *DeducedArgumentList
   2904     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2905   Info.reset(DeducedArgumentList);
   2906 
   2907   // Substitute the deduced template arguments into the function template
   2908   // declaration to produce the function template specialization.
   2909   DeclContext *Owner = FunctionTemplate->getDeclContext();
   2910   if (FunctionTemplate->getFriendObjectKind())
   2911     Owner = FunctionTemplate->getLexicalDeclContext();
   2912   Specialization = cast_or_null<FunctionDecl>(
   2913                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
   2914                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
   2915   if (!Specialization || Specialization->isInvalidDecl())
   2916     return TDK_SubstitutionFailure;
   2917 
   2918   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
   2919          FunctionTemplate->getCanonicalDecl());
   2920 
   2921   // If the template argument list is owned by the function template
   2922   // specialization, release it.
   2923   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
   2924       !Trap.hasErrorOccurred())
   2925     Info.take();
   2926 
   2927   // There may have been an error that did not prevent us from constructing a
   2928   // declaration. Mark the declaration invalid and return with a substitution
   2929   // failure.
   2930   if (Trap.hasErrorOccurred()) {
   2931     Specialization->setInvalidDecl(true);
   2932     return TDK_SubstitutionFailure;
   2933   }
   2934 
   2935   if (OriginalCallArgs) {
   2936     // C++ [temp.deduct.call]p4:
   2937     //   In general, the deduction process attempts to find template argument
   2938     //   values that will make the deduced A identical to A (after the type A
   2939     //   is transformed as described above). [...]
   2940     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
   2941       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
   2942       unsigned ParamIdx = OriginalArg.ArgIdx;
   2943 
   2944       if (ParamIdx >= Specialization->getNumParams())
   2945         continue;
   2946 
   2947       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
   2948       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
   2949         return Sema::TDK_SubstitutionFailure;
   2950     }
   2951   }
   2952 
   2953   // If we suppressed any diagnostics while performing template argument
   2954   // deduction, and if we haven't already instantiated this declaration,
   2955   // keep track of these diagnostics. They'll be emitted if this specialization
   2956   // is actually used.
   2957   if (Info.diag_begin() != Info.diag_end()) {
   2958     SuppressedDiagnosticsMap::iterator
   2959       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
   2960     if (Pos == SuppressedDiagnostics.end())
   2961         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
   2962           .append(Info.diag_begin(), Info.diag_end());
   2963   }
   2964 
   2965   return TDK_Success;
   2966 }
   2967 
   2968 /// Gets the type of a function for template-argument-deducton
   2969 /// purposes when it's considered as part of an overload set.
   2970 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
   2971                                   FunctionDecl *Fn) {
   2972   // We may need to deduce the return type of the function now.
   2973   if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
   2974       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
   2975     return QualType();
   2976 
   2977   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   2978     if (Method->isInstance()) {
   2979       // An instance method that's referenced in a form that doesn't
   2980       // look like a member pointer is just invalid.
   2981       if (!R.HasFormOfMemberPointer) return QualType();
   2982 
   2983       return S.Context.getMemberPointerType(Fn->getType(),
   2984                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
   2985     }
   2986 
   2987   if (!R.IsAddressOfOperand) return Fn->getType();
   2988   return S.Context.getPointerType(Fn->getType());
   2989 }
   2990 
   2991 /// Apply the deduction rules for overload sets.
   2992 ///
   2993 /// \return the null type if this argument should be treated as an
   2994 /// undeduced context
   2995 static QualType
   2996 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
   2997                             Expr *Arg, QualType ParamType,
   2998                             bool ParamWasReference) {
   2999 
   3000   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
   3001 
   3002   OverloadExpr *Ovl = R.Expression;
   3003 
   3004   // C++0x [temp.deduct.call]p4
   3005   unsigned TDF = 0;
   3006   if (ParamWasReference)
   3007     TDF |= TDF_ParamWithReferenceType;
   3008   if (R.IsAddressOfOperand)
   3009     TDF |= TDF_IgnoreQualifiers;
   3010 
   3011   // C++0x [temp.deduct.call]p6:
   3012   //   When P is a function type, pointer to function type, or pointer
   3013   //   to member function type:
   3014 
   3015   if (!ParamType->isFunctionType() &&
   3016       !ParamType->isFunctionPointerType() &&
   3017       !ParamType->isMemberFunctionPointerType()) {
   3018     if (Ovl->hasExplicitTemplateArgs()) {
   3019       // But we can still look for an explicit specialization.
   3020       if (FunctionDecl *ExplicitSpec
   3021             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
   3022         return GetTypeOfFunction(S, R, ExplicitSpec);
   3023     }
   3024 
   3025     return QualType();
   3026   }
   3027 
   3028   // Gather the explicit template arguments, if any.
   3029   TemplateArgumentListInfo ExplicitTemplateArgs;
   3030   if (Ovl->hasExplicitTemplateArgs())
   3031     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   3032   QualType Match;
   3033   for (UnresolvedSetIterator I = Ovl->decls_begin(),
   3034          E = Ovl->decls_end(); I != E; ++I) {
   3035     NamedDecl *D = (*I)->getUnderlyingDecl();
   3036 
   3037     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
   3038       //   - If the argument is an overload set containing one or more
   3039       //     function templates, the parameter is treated as a
   3040       //     non-deduced context.
   3041       if (!Ovl->hasExplicitTemplateArgs())
   3042         return QualType();
   3043 
   3044       // Otherwise, see if we can resolve a function type
   3045       FunctionDecl *Specialization = nullptr;
   3046       TemplateDeductionInfo Info(Ovl->getNameLoc());
   3047       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
   3048                                     Specialization, Info))
   3049         continue;
   3050 
   3051       D = Specialization;
   3052     }
   3053 
   3054     FunctionDecl *Fn = cast<FunctionDecl>(D);
   3055     QualType ArgType = GetTypeOfFunction(S, R, Fn);
   3056     if (ArgType.isNull()) continue;
   3057 
   3058     // Function-to-pointer conversion.
   3059     if (!ParamWasReference && ParamType->isPointerType() &&
   3060         ArgType->isFunctionType())
   3061       ArgType = S.Context.getPointerType(ArgType);
   3062 
   3063     //   - If the argument is an overload set (not containing function
   3064     //     templates), trial argument deduction is attempted using each
   3065     //     of the members of the set. If deduction succeeds for only one
   3066     //     of the overload set members, that member is used as the
   3067     //     argument value for the deduction. If deduction succeeds for
   3068     //     more than one member of the overload set the parameter is
   3069     //     treated as a non-deduced context.
   3070 
   3071     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
   3072     //   Type deduction is done independently for each P/A pair, and
   3073     //   the deduced template argument values are then combined.
   3074     // So we do not reject deductions which were made elsewhere.
   3075     SmallVector<DeducedTemplateArgument, 8>
   3076       Deduced(TemplateParams->size());
   3077     TemplateDeductionInfo Info(Ovl->getNameLoc());
   3078     Sema::TemplateDeductionResult Result
   3079       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   3080                                            ArgType, Info, Deduced, TDF);
   3081     if (Result) continue;
   3082     if (!Match.isNull()) return QualType();
   3083     Match = ArgType;
   3084   }
   3085 
   3086   return Match;
   3087 }
   3088 
   3089 /// \brief Perform the adjustments to the parameter and argument types
   3090 /// described in C++ [temp.deduct.call].
   3091 ///
   3092 /// \returns true if the caller should not attempt to perform any template
   3093 /// argument deduction based on this P/A pair because the argument is an
   3094 /// overloaded function set that could not be resolved.
   3095 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
   3096                                           TemplateParameterList *TemplateParams,
   3097                                                       QualType &ParamType,
   3098                                                       QualType &ArgType,
   3099                                                       Expr *Arg,
   3100                                                       unsigned &TDF) {
   3101   // C++0x [temp.deduct.call]p3:
   3102   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
   3103   //   are ignored for type deduction.
   3104   if (ParamType.hasQualifiers())
   3105     ParamType = ParamType.getUnqualifiedType();
   3106 
   3107   //   [...] If P is a reference type, the type referred to by P is
   3108   //   used for type deduction.
   3109   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
   3110   if (ParamRefType)
   3111     ParamType = ParamRefType->getPointeeType();
   3112 
   3113   // Overload sets usually make this parameter an undeduced context,
   3114   // but there are sometimes special circumstances.  Typically
   3115   // involving a template-id-expr.
   3116   if (ArgType == S.Context.OverloadTy) {
   3117     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
   3118                                           Arg, ParamType,
   3119                                           ParamRefType != nullptr);
   3120     if (ArgType.isNull())
   3121       return true;
   3122   }
   3123 
   3124   if (ParamRefType) {
   3125     // If the argument has incomplete array type, try to complete its type.
   3126     if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
   3127       ArgType = Arg->getType();
   3128 
   3129     // C++0x [temp.deduct.call]p3:
   3130     //   If P is an rvalue reference to a cv-unqualified template
   3131     //   parameter and the argument is an lvalue, the type "lvalue
   3132     //   reference to A" is used in place of A for type deduction.
   3133     if (ParamRefType->isRValueReferenceType() &&
   3134         !ParamType.getQualifiers() &&
   3135         isa<TemplateTypeParmType>(ParamType) &&
   3136         Arg->isLValue())
   3137       ArgType = S.Context.getLValueReferenceType(ArgType);
   3138   } else {
   3139     // C++ [temp.deduct.call]p2:
   3140     //   If P is not a reference type:
   3141     //   - If A is an array type, the pointer type produced by the
   3142     //     array-to-pointer standard conversion (4.2) is used in place of
   3143     //     A for type deduction; otherwise,
   3144     if (ArgType->isArrayType())
   3145       ArgType = S.Context.getArrayDecayedType(ArgType);
   3146     //   - If A is a function type, the pointer type produced by the
   3147     //     function-to-pointer standard conversion (4.3) is used in place
   3148     //     of A for type deduction; otherwise,
   3149     else if (ArgType->isFunctionType())
   3150       ArgType = S.Context.getPointerType(ArgType);
   3151     else {
   3152       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
   3153       //   type are ignored for type deduction.
   3154       ArgType = ArgType.getUnqualifiedType();
   3155     }
   3156   }
   3157 
   3158   // C++0x [temp.deduct.call]p4:
   3159   //   In general, the deduction process attempts to find template argument
   3160   //   values that will make the deduced A identical to A (after the type A
   3161   //   is transformed as described above). [...]
   3162   TDF = TDF_SkipNonDependent;
   3163 
   3164   //     - If the original P is a reference type, the deduced A (i.e., the
   3165   //       type referred to by the reference) can be more cv-qualified than
   3166   //       the transformed A.
   3167   if (ParamRefType)
   3168     TDF |= TDF_ParamWithReferenceType;
   3169   //     - The transformed A can be another pointer or pointer to member
   3170   //       type that can be converted to the deduced A via a qualification
   3171   //       conversion (4.4).
   3172   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
   3173       ArgType->isObjCObjectPointerType())
   3174     TDF |= TDF_IgnoreQualifiers;
   3175   //     - If P is a class and P has the form simple-template-id, then the
   3176   //       transformed A can be a derived class of the deduced A. Likewise,
   3177   //       if P is a pointer to a class of the form simple-template-id, the
   3178   //       transformed A can be a pointer to a derived class pointed to by
   3179   //       the deduced A.
   3180   if (isSimpleTemplateIdType(ParamType) ||
   3181       (isa<PointerType>(ParamType) &&
   3182        isSimpleTemplateIdType(
   3183                               ParamType->getAs<PointerType>()->getPointeeType())))
   3184     TDF |= TDF_DerivedClass;
   3185 
   3186   return false;
   3187 }
   3188 
   3189 static bool
   3190 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
   3191                                QualType T);
   3192 
   3193 /// \brief Perform template argument deduction by matching a parameter type
   3194 ///        against a single expression, where the expression is an element of
   3195 ///        an initializer list that was originally matched against a parameter
   3196 ///        of type \c initializer_list\<ParamType\>.
   3197 static Sema::TemplateDeductionResult
   3198 DeduceTemplateArgumentByListElement(Sema &S,
   3199                                     TemplateParameterList *TemplateParams,
   3200                                     QualType ParamType, Expr *Arg,
   3201                                     TemplateDeductionInfo &Info,
   3202                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   3203                                     unsigned TDF) {
   3204   // Handle the case where an init list contains another init list as the
   3205   // element.
   3206   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3207     QualType X;
   3208     if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
   3209       return Sema::TDK_Success; // Just ignore this expression.
   3210 
   3211     // Recurse down into the init list.
   3212     for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3213       if (Sema::TemplateDeductionResult Result =
   3214             DeduceTemplateArgumentByListElement(S, TemplateParams, X,
   3215                                                  ILE->getInit(i),
   3216                                                  Info, Deduced, TDF))
   3217         return Result;
   3218     }
   3219     return Sema::TDK_Success;
   3220   }
   3221 
   3222   // For all other cases, just match by type.
   3223   QualType ArgType = Arg->getType();
   3224   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
   3225                                                 ArgType, Arg, TDF)) {
   3226     Info.Expression = Arg;
   3227     return Sema::TDK_FailedOverloadResolution;
   3228   }
   3229   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   3230                                             ArgType, Info, Deduced, TDF);
   3231 }
   3232 
   3233 /// \brief Perform template argument deduction from a function call
   3234 /// (C++ [temp.deduct.call]).
   3235 ///
   3236 /// \param FunctionTemplate the function template for which we are performing
   3237 /// template argument deduction.
   3238 ///
   3239 /// \param ExplicitTemplateArgs the explicit template arguments provided
   3240 /// for this call.
   3241 ///
   3242 /// \param Args the function call arguments
   3243 ///
   3244 /// \param Specialization if template argument deduction was successful,
   3245 /// this will be set to the function template specialization produced by
   3246 /// template argument deduction.
   3247 ///
   3248 /// \param Info the argument will be updated to provide additional information
   3249 /// about template argument deduction.
   3250 ///
   3251 /// \returns the result of template argument deduction.
   3252 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
   3253     FunctionTemplateDecl *FunctionTemplate,
   3254     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
   3255     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
   3256     bool PartialOverloading) {
   3257   if (FunctionTemplate->isInvalidDecl())
   3258     return TDK_Invalid;
   3259 
   3260   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3261   unsigned NumParams = Function->getNumParams();
   3262 
   3263   // C++ [temp.deduct.call]p1:
   3264   //   Template argument deduction is done by comparing each function template
   3265   //   parameter type (call it P) with the type of the corresponding argument
   3266   //   of the call (call it A) as described below.
   3267   unsigned CheckArgs = Args.size();
   3268   if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
   3269     return TDK_TooFewArguments;
   3270   else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
   3271     const FunctionProtoType *Proto
   3272       = Function->getType()->getAs<FunctionProtoType>();
   3273     if (Proto->isTemplateVariadic())
   3274       /* Do nothing */;
   3275     else if (Proto->isVariadic())
   3276       CheckArgs = NumParams;
   3277     else
   3278       return TDK_TooManyArguments;
   3279   }
   3280 
   3281   // The types of the parameters from which we will perform template argument
   3282   // deduction.
   3283   LocalInstantiationScope InstScope(*this);
   3284   TemplateParameterList *TemplateParams
   3285     = FunctionTemplate->getTemplateParameters();
   3286   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3287   SmallVector<QualType, 4> ParamTypes;
   3288   unsigned NumExplicitlySpecified = 0;
   3289   if (ExplicitTemplateArgs) {
   3290     TemplateDeductionResult Result =
   3291       SubstituteExplicitTemplateArguments(FunctionTemplate,
   3292                                           *ExplicitTemplateArgs,
   3293                                           Deduced,
   3294                                           ParamTypes,
   3295                                           nullptr,
   3296                                           Info);
   3297     if (Result)
   3298       return Result;
   3299 
   3300     NumExplicitlySpecified = Deduced.size();
   3301   } else {
   3302     // Just fill in the parameter types from the function declaration.
   3303     for (unsigned I = 0; I != NumParams; ++I)
   3304       ParamTypes.push_back(Function->getParamDecl(I)->getType());
   3305   }
   3306 
   3307   // Deduce template arguments from the function parameters.
   3308   Deduced.resize(TemplateParams->size());
   3309   unsigned ArgIdx = 0;
   3310   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
   3311   for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size();
   3312        ParamIdx != NumParamTypes; ++ParamIdx) {
   3313     QualType OrigParamType = ParamTypes[ParamIdx];
   3314     QualType ParamType = OrigParamType;
   3315 
   3316     const PackExpansionType *ParamExpansion
   3317       = dyn_cast<PackExpansionType>(ParamType);
   3318     if (!ParamExpansion) {
   3319       // Simple case: matching a function parameter to a function argument.
   3320       if (ArgIdx >= CheckArgs)
   3321         break;
   3322 
   3323       Expr *Arg = Args[ArgIdx++];
   3324       QualType ArgType = Arg->getType();
   3325 
   3326       unsigned TDF = 0;
   3327       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3328                                                     ParamType, ArgType, Arg,
   3329                                                     TDF))
   3330         continue;
   3331 
   3332       // If we have nothing to deduce, we're done.
   3333       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3334         continue;
   3335 
   3336       // If the argument is an initializer list ...
   3337       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3338         // ... then the parameter is an undeduced context, unless the parameter
   3339         // type is (reference to cv) std::initializer_list<P'>, in which case
   3340         // deduction is done for each element of the initializer list, and the
   3341         // result is the deduced type if it's the same for all elements.
   3342         QualType X;
   3343         // Removing references was already done.
   3344         if (!isStdInitializerList(ParamType, &X))
   3345           continue;
   3346 
   3347         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3348           if (TemplateDeductionResult Result =
   3349                 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
   3350                                                      ILE->getInit(i),
   3351                                                      Info, Deduced, TDF))
   3352             return Result;
   3353         }
   3354         // Don't track the argument type, since an initializer list has none.
   3355         continue;
   3356       }
   3357 
   3358       // Keep track of the argument type and corresponding parameter index,
   3359       // so we can check for compatibility between the deduced A and A.
   3360       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
   3361                                                  ArgType));
   3362 
   3363       if (TemplateDeductionResult Result
   3364             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3365                                                  ParamType, ArgType,
   3366                                                  Info, Deduced, TDF))
   3367         return Result;
   3368 
   3369       continue;
   3370     }
   3371 
   3372     // C++0x [temp.deduct.call]p1:
   3373     //   For a function parameter pack that occurs at the end of the
   3374     //   parameter-declaration-list, the type A of each remaining argument of
   3375     //   the call is compared with the type P of the declarator-id of the
   3376     //   function parameter pack. Each comparison deduces template arguments
   3377     //   for subsequent positions in the template parameter packs expanded by
   3378     //   the function parameter pack. For a function parameter pack that does
   3379     //   not occur at the end of the parameter-declaration-list, the type of
   3380     //   the parameter pack is a non-deduced context.
   3381     if (ParamIdx + 1 < NumParamTypes)
   3382       break;
   3383 
   3384     QualType ParamPattern = ParamExpansion->getPattern();
   3385     PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
   3386                                  ParamPattern);
   3387 
   3388     bool HasAnyArguments = false;
   3389     for (; ArgIdx < Args.size(); ++ArgIdx) {
   3390       HasAnyArguments = true;
   3391 
   3392       QualType OrigParamType = ParamPattern;
   3393       ParamType = OrigParamType;
   3394       Expr *Arg = Args[ArgIdx];
   3395       QualType ArgType = Arg->getType();
   3396 
   3397       unsigned TDF = 0;
   3398       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3399                                                     ParamType, ArgType, Arg,
   3400                                                     TDF)) {
   3401         // We can't actually perform any deduction for this argument, so stop
   3402         // deduction at this point.
   3403         ++ArgIdx;
   3404         break;
   3405       }
   3406 
   3407       // As above, initializer lists need special handling.
   3408       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3409         QualType X;
   3410         if (!isStdInitializerList(ParamType, &X)) {
   3411           ++ArgIdx;
   3412           break;
   3413         }
   3414 
   3415         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3416           if (TemplateDeductionResult Result =
   3417                 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
   3418                                                    ILE->getInit(i)->getType(),
   3419                                                    Info, Deduced, TDF))
   3420             return Result;
   3421         }
   3422       } else {
   3423 
   3424         // Keep track of the argument type and corresponding argument index,
   3425         // so we can check for compatibility between the deduced A and A.
   3426         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3427           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
   3428                                                      ArgType));
   3429 
   3430         if (TemplateDeductionResult Result
   3431             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3432                                                  ParamType, ArgType, Info,
   3433                                                  Deduced, TDF))
   3434           return Result;
   3435       }
   3436 
   3437       PackScope.nextPackElement();
   3438     }
   3439 
   3440     // Build argument packs for each of the parameter packs expanded by this
   3441     // pack expansion.
   3442     if (auto Result = PackScope.finish(HasAnyArguments))
   3443       return Result;
   3444 
   3445     // After we've matching against a parameter pack, we're done.
   3446     break;
   3447   }
   3448 
   3449   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3450                                          NumExplicitlySpecified, Specialization,
   3451                                          Info, &OriginalCallArgs,
   3452                                          PartialOverloading);
   3453 }
   3454 
   3455 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
   3456                                    QualType FunctionType) {
   3457   if (ArgFunctionType.isNull())
   3458     return ArgFunctionType;
   3459 
   3460   const FunctionProtoType *FunctionTypeP =
   3461       FunctionType->castAs<FunctionProtoType>();
   3462   CallingConv CC = FunctionTypeP->getCallConv();
   3463   bool NoReturn = FunctionTypeP->getNoReturnAttr();
   3464   const FunctionProtoType *ArgFunctionTypeP =
   3465       ArgFunctionType->getAs<FunctionProtoType>();
   3466   if (ArgFunctionTypeP->getCallConv() == CC &&
   3467       ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
   3468     return ArgFunctionType;
   3469 
   3470   FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
   3471   EI = EI.withNoReturn(NoReturn);
   3472   ArgFunctionTypeP =
   3473       cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
   3474   return QualType(ArgFunctionTypeP, 0);
   3475 }
   3476 
   3477 /// \brief Deduce template arguments when taking the address of a function
   3478 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
   3479 /// a template.
   3480 ///
   3481 /// \param FunctionTemplate the function template for which we are performing
   3482 /// template argument deduction.
   3483 ///
   3484 /// \param ExplicitTemplateArgs the explicitly-specified template
   3485 /// arguments.
   3486 ///
   3487 /// \param ArgFunctionType the function type that will be used as the
   3488 /// "argument" type (A) when performing template argument deduction from the
   3489 /// function template's function type. This type may be NULL, if there is no
   3490 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
   3491 ///
   3492 /// \param Specialization if template argument deduction was successful,
   3493 /// this will be set to the function template specialization produced by
   3494 /// template argument deduction.
   3495 ///
   3496 /// \param Info the argument will be updated to provide additional information
   3497 /// about template argument deduction.
   3498 ///
   3499 /// \returns the result of template argument deduction.
   3500 Sema::TemplateDeductionResult
   3501 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3502                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3503                               QualType ArgFunctionType,
   3504                               FunctionDecl *&Specialization,
   3505                               TemplateDeductionInfo &Info,
   3506                               bool InOverloadResolution) {
   3507   if (FunctionTemplate->isInvalidDecl())
   3508     return TDK_Invalid;
   3509 
   3510   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3511   TemplateParameterList *TemplateParams
   3512     = FunctionTemplate->getTemplateParameters();
   3513   QualType FunctionType = Function->getType();
   3514   if (!InOverloadResolution)
   3515     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
   3516 
   3517   // Substitute any explicit template arguments.
   3518   LocalInstantiationScope InstScope(*this);
   3519   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3520   unsigned NumExplicitlySpecified = 0;
   3521   SmallVector<QualType, 4> ParamTypes;
   3522   if (ExplicitTemplateArgs) {
   3523     if (TemplateDeductionResult Result
   3524           = SubstituteExplicitTemplateArguments(FunctionTemplate,
   3525                                                 *ExplicitTemplateArgs,
   3526                                                 Deduced, ParamTypes,
   3527                                                 &FunctionType, Info))
   3528       return Result;
   3529 
   3530     NumExplicitlySpecified = Deduced.size();
   3531   }
   3532 
   3533   // Unevaluated SFINAE context.
   3534   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3535   SFINAETrap Trap(*this);
   3536 
   3537   Deduced.resize(TemplateParams->size());
   3538 
   3539   // If the function has a deduced return type, substitute it for a dependent
   3540   // type so that we treat it as a non-deduced context in what follows.
   3541   bool HasDeducedReturnType = false;
   3542   if (getLangOpts().CPlusPlus14 && InOverloadResolution &&
   3543       Function->getReturnType()->getContainedAutoType()) {
   3544     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
   3545     HasDeducedReturnType = true;
   3546   }
   3547 
   3548   if (!ArgFunctionType.isNull()) {
   3549     unsigned TDF = TDF_TopLevelParameterTypeList;
   3550     if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
   3551     // Deduce template arguments from the function type.
   3552     if (TemplateDeductionResult Result
   3553           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3554                                                FunctionType, ArgFunctionType,
   3555                                                Info, Deduced, TDF))
   3556       return Result;
   3557   }
   3558 
   3559   if (TemplateDeductionResult Result
   3560         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3561                                           NumExplicitlySpecified,
   3562                                           Specialization, Info))
   3563     return Result;
   3564 
   3565   // If the function has a deduced return type, deduce it now, so we can check
   3566   // that the deduced function type matches the requested type.
   3567   if (HasDeducedReturnType &&
   3568       Specialization->getReturnType()->isUndeducedType() &&
   3569       DeduceReturnType(Specialization, Info.getLocation(), false))
   3570     return TDK_MiscellaneousDeductionFailure;
   3571 
   3572   // If the requested function type does not match the actual type of the
   3573   // specialization with respect to arguments of compatible pointer to function
   3574   // types, template argument deduction fails.
   3575   if (!ArgFunctionType.isNull()) {
   3576     if (InOverloadResolution && !isSameOrCompatibleFunctionType(
   3577                            Context.getCanonicalType(Specialization->getType()),
   3578                            Context.getCanonicalType(ArgFunctionType)))
   3579       return TDK_MiscellaneousDeductionFailure;
   3580     else if(!InOverloadResolution &&
   3581             !Context.hasSameType(Specialization->getType(), ArgFunctionType))
   3582       return TDK_MiscellaneousDeductionFailure;
   3583   }
   3584 
   3585   return TDK_Success;
   3586 }
   3587 
   3588 /// \brief Given a function declaration (e.g. a generic lambda conversion
   3589 ///  function) that contains an 'auto' in its result type, substitute it
   3590 ///  with TypeToReplaceAutoWith.  Be careful to pass in the type you want
   3591 ///  to replace 'auto' with and not the actual result type you want
   3592 ///  to set the function to.
   3593 static inline void
   3594 SubstAutoWithinFunctionReturnType(FunctionDecl *F,
   3595                                     QualType TypeToReplaceAutoWith, Sema &S) {
   3596   assert(!TypeToReplaceAutoWith->getContainedAutoType());
   3597   QualType AutoResultType = F->getReturnType();
   3598   assert(AutoResultType->getContainedAutoType());
   3599   QualType DeducedResultType = S.SubstAutoType(AutoResultType,
   3600                                                TypeToReplaceAutoWith);
   3601   S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
   3602 }
   3603 
   3604 /// \brief Given a specialized conversion operator of a generic lambda
   3605 /// create the corresponding specializations of the call operator and
   3606 /// the static-invoker. If the return type of the call operator is auto,
   3607 /// deduce its return type and check if that matches the
   3608 /// return type of the destination function ptr.
   3609 
   3610 static inline Sema::TemplateDeductionResult
   3611 SpecializeCorrespondingLambdaCallOperatorAndInvoker(
   3612     CXXConversionDecl *ConversionSpecialized,
   3613     SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
   3614     QualType ReturnTypeOfDestFunctionPtr,
   3615     TemplateDeductionInfo &TDInfo,
   3616     Sema &S) {
   3617 
   3618   CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
   3619   assert(LambdaClass && LambdaClass->isGenericLambda());
   3620 
   3621   CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
   3622   QualType CallOpResultType = CallOpGeneric->getReturnType();
   3623   const bool GenericLambdaCallOperatorHasDeducedReturnType =
   3624       CallOpResultType->getContainedAutoType();
   3625 
   3626   FunctionTemplateDecl *CallOpTemplate =
   3627       CallOpGeneric->getDescribedFunctionTemplate();
   3628 
   3629   FunctionDecl *CallOpSpecialized = nullptr;
   3630   // Use the deduced arguments of the conversion function, to specialize our
   3631   // generic lambda's call operator.
   3632   if (Sema::TemplateDeductionResult Result
   3633       = S.FinishTemplateArgumentDeduction(CallOpTemplate,
   3634                                           DeducedArguments,
   3635                                           0, CallOpSpecialized, TDInfo))
   3636     return Result;
   3637 
   3638   // If we need to deduce the return type, do so (instantiates the callop).
   3639   if (GenericLambdaCallOperatorHasDeducedReturnType &&
   3640       CallOpSpecialized->getReturnType()->isUndeducedType())
   3641     S.DeduceReturnType(CallOpSpecialized,
   3642                        CallOpSpecialized->getPointOfInstantiation(),
   3643                        /*Diagnose*/ true);
   3644 
   3645   // Check to see if the return type of the destination ptr-to-function
   3646   // matches the return type of the call operator.
   3647   if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
   3648                              ReturnTypeOfDestFunctionPtr))
   3649     return Sema::TDK_NonDeducedMismatch;
   3650   // Since we have succeeded in matching the source and destination
   3651   // ptr-to-functions (now including return type), and have successfully
   3652   // specialized our corresponding call operator, we are ready to
   3653   // specialize the static invoker with the deduced arguments of our
   3654   // ptr-to-function.
   3655   FunctionDecl *InvokerSpecialized = nullptr;
   3656   FunctionTemplateDecl *InvokerTemplate = LambdaClass->
   3657                   getLambdaStaticInvoker()->getDescribedFunctionTemplate();
   3658 
   3659   Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result
   3660     = S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
   3661           InvokerSpecialized, TDInfo);
   3662   assert(Result == Sema::TDK_Success &&
   3663     "If the call operator succeeded so should the invoker!");
   3664   // Set the result type to match the corresponding call operator
   3665   // specialization's result type.
   3666   if (GenericLambdaCallOperatorHasDeducedReturnType &&
   3667       InvokerSpecialized->getReturnType()->isUndeducedType()) {
   3668     // Be sure to get the type to replace 'auto' with and not
   3669     // the full result type of the call op specialization
   3670     // to substitute into the 'auto' of the invoker and conversion
   3671     // function.
   3672     // For e.g.
   3673     //  int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
   3674     // We don't want to subst 'int*' into 'auto' to get int**.
   3675 
   3676     QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
   3677                                          ->getContainedAutoType()
   3678                                          ->getDeducedType();
   3679     SubstAutoWithinFunctionReturnType(InvokerSpecialized,
   3680         TypeToReplaceAutoWith, S);
   3681     SubstAutoWithinFunctionReturnType(ConversionSpecialized,
   3682         TypeToReplaceAutoWith, S);
   3683   }
   3684 
   3685   // Ensure that static invoker doesn't have a const qualifier.
   3686   // FIXME: When creating the InvokerTemplate in SemaLambda.cpp
   3687   // do not use the CallOperator's TypeSourceInfo which allows
   3688   // the const qualifier to leak through.
   3689   const FunctionProtoType *InvokerFPT = InvokerSpecialized->
   3690                   getType().getTypePtr()->castAs<FunctionProtoType>();
   3691   FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
   3692   EPI.TypeQuals = 0;
   3693   InvokerSpecialized->setType(S.Context.getFunctionType(
   3694       InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
   3695   return Sema::TDK_Success;
   3696 }
   3697 /// \brief Deduce template arguments for a templated conversion
   3698 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
   3699 /// conversion function template specialization.
   3700 Sema::TemplateDeductionResult
   3701 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
   3702                               QualType ToType,
   3703                               CXXConversionDecl *&Specialization,
   3704                               TemplateDeductionInfo &Info) {
   3705   if (ConversionTemplate->isInvalidDecl())
   3706     return TDK_Invalid;
   3707 
   3708   CXXConversionDecl *ConversionGeneric
   3709     = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
   3710 
   3711   QualType FromType = ConversionGeneric->getConversionType();
   3712 
   3713   // Canonicalize the types for deduction.
   3714   QualType P = Context.getCanonicalType(FromType);
   3715   QualType A = Context.getCanonicalType(ToType);
   3716 
   3717   // C++0x [temp.deduct.conv]p2:
   3718   //   If P is a reference type, the type referred to by P is used for
   3719   //   type deduction.
   3720   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
   3721     P = PRef->getPointeeType();
   3722 
   3723   // C++0x [temp.deduct.conv]p4:
   3724   //   [...] If A is a reference type, the type referred to by A is used
   3725   //   for type deduction.
   3726   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   3727     A = ARef->getPointeeType().getUnqualifiedType();
   3728   // C++ [temp.deduct.conv]p3:
   3729   //
   3730   //   If A is not a reference type:
   3731   else {
   3732     assert(!A->isReferenceType() && "Reference types were handled above");
   3733 
   3734     //   - If P is an array type, the pointer type produced by the
   3735     //     array-to-pointer standard conversion (4.2) is used in place
   3736     //     of P for type deduction; otherwise,
   3737     if (P->isArrayType())
   3738       P = Context.getArrayDecayedType(P);
   3739     //   - If P is a function type, the pointer type produced by the
   3740     //     function-to-pointer standard conversion (4.3) is used in
   3741     //     place of P for type deduction; otherwise,
   3742     else if (P->isFunctionType())
   3743       P = Context.getPointerType(P);
   3744     //   - If P is a cv-qualified type, the top level cv-qualifiers of
   3745     //     P's type are ignored for type deduction.
   3746     else
   3747       P = P.getUnqualifiedType();
   3748 
   3749     // C++0x [temp.deduct.conv]p4:
   3750     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
   3751     //   type are ignored for type deduction. If A is a reference type, the type
   3752     //   referred to by A is used for type deduction.
   3753     A = A.getUnqualifiedType();
   3754   }
   3755 
   3756   // Unevaluated SFINAE context.
   3757   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3758   SFINAETrap Trap(*this);
   3759 
   3760   // C++ [temp.deduct.conv]p1:
   3761   //   Template argument deduction is done by comparing the return
   3762   //   type of the template conversion function (call it P) with the
   3763   //   type that is required as the result of the conversion (call it
   3764   //   A) as described in 14.8.2.4.
   3765   TemplateParameterList *TemplateParams
   3766     = ConversionTemplate->getTemplateParameters();
   3767   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3768   Deduced.resize(TemplateParams->size());
   3769 
   3770   // C++0x [temp.deduct.conv]p4:
   3771   //   In general, the deduction process attempts to find template
   3772   //   argument values that will make the deduced A identical to
   3773   //   A. However, there are two cases that allow a difference:
   3774   unsigned TDF = 0;
   3775   //     - If the original A is a reference type, A can be more
   3776   //       cv-qualified than the deduced A (i.e., the type referred to
   3777   //       by the reference)
   3778   if (ToType->isReferenceType())
   3779     TDF |= TDF_ParamWithReferenceType;
   3780   //     - The deduced A can be another pointer or pointer to member
   3781   //       type that can be converted to A via a qualification
   3782   //       conversion.
   3783   //
   3784   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
   3785   // both P and A are pointers or member pointers. In this case, we
   3786   // just ignore cv-qualifiers completely).
   3787   if ((P->isPointerType() && A->isPointerType()) ||
   3788       (P->isMemberPointerType() && A->isMemberPointerType()))
   3789     TDF |= TDF_IgnoreQualifiers;
   3790   if (TemplateDeductionResult Result
   3791         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3792                                              P, A, Info, Deduced, TDF))
   3793     return Result;
   3794 
   3795   // Create an Instantiation Scope for finalizing the operator.
   3796   LocalInstantiationScope InstScope(*this);
   3797   // Finish template argument deduction.
   3798   FunctionDecl *ConversionSpecialized = nullptr;
   3799   TemplateDeductionResult Result
   3800       = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
   3801                                         ConversionSpecialized, Info);
   3802   Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
   3803 
   3804   // If the conversion operator is being invoked on a lambda closure to convert
   3805   // to a ptr-to-function, use the deduced arguments from the conversion
   3806   // function to specialize the corresponding call operator.
   3807   //   e.g., int (*fp)(int) = [](auto a) { return a; };
   3808   if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
   3809 
   3810     // Get the return type of the destination ptr-to-function we are converting
   3811     // to.  This is necessary for matching the lambda call operator's return
   3812     // type to that of the destination ptr-to-function's return type.
   3813     assert(A->isPointerType() &&
   3814         "Can only convert from lambda to ptr-to-function");
   3815     const FunctionType *ToFunType =
   3816         A->getPointeeType().getTypePtr()->getAs<FunctionType>();
   3817     const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
   3818 
   3819     // Create the corresponding specializations of the call operator and
   3820     // the static-invoker; and if the return type is auto,
   3821     // deduce the return type and check if it matches the
   3822     // DestFunctionPtrReturnType.
   3823     // For instance:
   3824     //   auto L = [](auto a) { return f(a); };
   3825     //   int (*fp)(int) = L;
   3826     //   char (*fp2)(int) = L; <-- Not OK.
   3827 
   3828     Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
   3829         Specialization, Deduced, DestFunctionPtrReturnType,
   3830         Info, *this);
   3831   }
   3832   return Result;
   3833 }
   3834 
   3835 /// \brief Deduce template arguments for a function template when there is
   3836 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
   3837 ///
   3838 /// \param FunctionTemplate the function template for which we are performing
   3839 /// template argument deduction.
   3840 ///
   3841 /// \param ExplicitTemplateArgs the explicitly-specified template
   3842 /// arguments.
   3843 ///
   3844 /// \param Specialization if template argument deduction was successful,
   3845 /// this will be set to the function template specialization produced by
   3846 /// template argument deduction.
   3847 ///
   3848 /// \param Info the argument will be updated to provide additional information
   3849 /// about template argument deduction.
   3850 ///
   3851 /// \returns the result of template argument deduction.
   3852 Sema::TemplateDeductionResult
   3853 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3854                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3855                               FunctionDecl *&Specialization,
   3856                               TemplateDeductionInfo &Info,
   3857                               bool InOverloadResolution) {
   3858   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
   3859                                  QualType(), Specialization, Info,
   3860                                  InOverloadResolution);
   3861 }
   3862 
   3863 namespace {
   3864   /// Substitute the 'auto' type specifier within a type for a given replacement
   3865   /// type.
   3866   class SubstituteAutoTransform :
   3867     public TreeTransform<SubstituteAutoTransform> {
   3868     QualType Replacement;
   3869   public:
   3870     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement)
   3871         : TreeTransform<SubstituteAutoTransform>(SemaRef),
   3872           Replacement(Replacement) {}
   3873 
   3874     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
   3875       // If we're building the type pattern to deduce against, don't wrap the
   3876       // substituted type in an AutoType. Certain template deduction rules
   3877       // apply only when a template type parameter appears directly (and not if
   3878       // the parameter is found through desugaring). For instance:
   3879       //   auto &&lref = lvalue;
   3880       // must transform into "rvalue reference to T" not "rvalue reference to
   3881       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
   3882       if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
   3883         QualType Result = Replacement;
   3884         TemplateTypeParmTypeLoc NewTL =
   3885           TLB.push<TemplateTypeParmTypeLoc>(Result);
   3886         NewTL.setNameLoc(TL.getNameLoc());
   3887         return Result;
   3888       } else {
   3889         bool Dependent =
   3890           !Replacement.isNull() && Replacement->isDependentType();
   3891         QualType Result =
   3892           SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
   3893                                       TL.getTypePtr()->isDecltypeAuto(),
   3894                                       Dependent);
   3895         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
   3896         NewTL.setNameLoc(TL.getNameLoc());
   3897         return Result;
   3898       }
   3899     }
   3900 
   3901     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   3902       // Lambdas never need to be transformed.
   3903       return E;
   3904     }
   3905 
   3906     QualType Apply(TypeLoc TL) {
   3907       // Create some scratch storage for the transformed type locations.
   3908       // FIXME: We're just going to throw this information away. Don't build it.
   3909       TypeLocBuilder TLB;
   3910       TLB.reserve(TL.getFullDataSize());
   3911       return TransformType(TLB, TL);
   3912     }
   3913   };
   3914 }
   3915 
   3916 Sema::DeduceAutoResult
   3917 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
   3918   return DeduceAutoType(Type->getTypeLoc(), Init, Result);
   3919 }
   3920 
   3921 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
   3922 ///
   3923 /// \param Type the type pattern using the auto type-specifier.
   3924 /// \param Init the initializer for the variable whose type is to be deduced.
   3925 /// \param Result if type deduction was successful, this will be set to the
   3926 ///        deduced type.
   3927 Sema::DeduceAutoResult
   3928 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
   3929   if (Init->getType()->isNonOverloadPlaceholderType()) {
   3930     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
   3931     if (NonPlaceholder.isInvalid())
   3932       return DAR_FailedAlreadyDiagnosed;
   3933     Init = NonPlaceholder.get();
   3934   }
   3935 
   3936   if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
   3937     Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
   3938     assert(!Result.isNull() && "substituting DependentTy can't fail");
   3939     return DAR_Succeeded;
   3940   }
   3941 
   3942   // If this is a 'decltype(auto)' specifier, do the decltype dance.
   3943   // Since 'decltype(auto)' can only occur at the top of the type, we
   3944   // don't need to go digging for it.
   3945   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
   3946     if (AT->isDecltypeAuto()) {
   3947       if (isa<InitListExpr>(Init)) {
   3948         Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
   3949         return DAR_FailedAlreadyDiagnosed;
   3950       }
   3951 
   3952       QualType Deduced = BuildDecltypeType(Init, Init->getLocStart(), false);
   3953       // FIXME: Support a non-canonical deduced type for 'auto'.
   3954       Deduced = Context.getCanonicalType(Deduced);
   3955       Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
   3956       if (Result.isNull())
   3957         return DAR_FailedAlreadyDiagnosed;
   3958       return DAR_Succeeded;
   3959     }
   3960   }
   3961 
   3962   SourceLocation Loc = Init->getExprLoc();
   3963 
   3964   LocalInstantiationScope InstScope(*this);
   3965 
   3966   // Build template<class TemplParam> void Func(FuncParam);
   3967   TemplateTypeParmDecl *TemplParam =
   3968     TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0,
   3969                                  nullptr, false, false);
   3970   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
   3971   NamedDecl *TemplParamPtr = TemplParam;
   3972   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
   3973                                                    Loc);
   3974 
   3975   QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
   3976   assert(!FuncParam.isNull() &&
   3977          "substituting template parameter for 'auto' failed");
   3978 
   3979   // Deduce type of TemplParam in Func(Init)
   3980   SmallVector<DeducedTemplateArgument, 1> Deduced;
   3981   Deduced.resize(1);
   3982   QualType InitType = Init->getType();
   3983   unsigned TDF = 0;
   3984 
   3985   TemplateDeductionInfo Info(Loc);
   3986 
   3987   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
   3988   if (InitList) {
   3989     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
   3990       if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
   3991                                               TemplArg,
   3992                                               InitList->getInit(i),
   3993                                               Info, Deduced, TDF))
   3994         return DAR_Failed;
   3995     }
   3996   } else {
   3997     if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
   3998                                                   FuncParam, InitType, Init,
   3999                                                   TDF))
   4000       return DAR_Failed;
   4001 
   4002     if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
   4003                                            InitType, Info, Deduced, TDF))
   4004       return DAR_Failed;
   4005   }
   4006 
   4007   if (Deduced[0].getKind() != TemplateArgument::Type)
   4008     return DAR_Failed;
   4009 
   4010   QualType DeducedType = Deduced[0].getAsType();
   4011 
   4012   if (InitList) {
   4013     DeducedType = BuildStdInitializerList(DeducedType, Loc);
   4014     if (DeducedType.isNull())
   4015       return DAR_FailedAlreadyDiagnosed;
   4016   }
   4017 
   4018   Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
   4019   if (Result.isNull())
   4020    return DAR_FailedAlreadyDiagnosed;
   4021 
   4022   // Check that the deduced argument type is compatible with the original
   4023   // argument type per C++ [temp.deduct.call]p4.
   4024   if (!InitList && !Result.isNull() &&
   4025       CheckOriginalCallArgDeduction(*this,
   4026                                     Sema::OriginalCallArg(FuncParam,0,InitType),
   4027                                     Result)) {
   4028     Result = QualType();
   4029     return DAR_Failed;
   4030   }
   4031 
   4032   return DAR_Succeeded;
   4033 }
   4034 
   4035 QualType Sema::SubstAutoType(QualType TypeWithAuto,
   4036                              QualType TypeToReplaceAuto) {
   4037   return SubstituteAutoTransform(*this, TypeToReplaceAuto).
   4038                TransformType(TypeWithAuto);
   4039 }
   4040 
   4041 TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
   4042                              QualType TypeToReplaceAuto) {
   4043     return SubstituteAutoTransform(*this, TypeToReplaceAuto).
   4044                TransformType(TypeWithAuto);
   4045 }
   4046 
   4047 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
   4048   if (isa<InitListExpr>(Init))
   4049     Diag(VDecl->getLocation(),
   4050          VDecl->isInitCapture()
   4051              ? diag::err_init_capture_deduction_failure_from_init_list
   4052              : diag::err_auto_var_deduction_failure_from_init_list)
   4053       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
   4054   else
   4055     Diag(VDecl->getLocation(),
   4056          VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
   4057                                 : diag::err_auto_var_deduction_failure)
   4058       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   4059       << Init->getSourceRange();
   4060 }
   4061 
   4062 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
   4063                             bool Diagnose) {
   4064   assert(FD->getReturnType()->isUndeducedType());
   4065 
   4066   if (FD->getTemplateInstantiationPattern())
   4067     InstantiateFunctionDefinition(Loc, FD);
   4068 
   4069   bool StillUndeduced = FD->getReturnType()->isUndeducedType();
   4070   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
   4071     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
   4072     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
   4073   }
   4074 
   4075   return StillUndeduced;
   4076 }
   4077 
   4078 static void
   4079 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4080                            bool OnlyDeduced,
   4081                            unsigned Level,
   4082                            llvm::SmallBitVector &Deduced);
   4083 
   4084 /// \brief If this is a non-static member function,
   4085 static void
   4086 AddImplicitObjectParameterType(ASTContext &Context,
   4087                                CXXMethodDecl *Method,
   4088                                SmallVectorImpl<QualType> &ArgTypes) {
   4089   // C++11 [temp.func.order]p3:
   4090   //   [...] The new parameter is of type "reference to cv A," where cv are
   4091   //   the cv-qualifiers of the function template (if any) and A is
   4092   //   the class of which the function template is a member.
   4093   //
   4094   // The standard doesn't say explicitly, but we pick the appropriate kind of
   4095   // reference type based on [over.match.funcs]p4.
   4096   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
   4097   ArgTy = Context.getQualifiedType(ArgTy,
   4098                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   4099   if (Method->getRefQualifier() == RQ_RValue)
   4100     ArgTy = Context.getRValueReferenceType(ArgTy);
   4101   else
   4102     ArgTy = Context.getLValueReferenceType(ArgTy);
   4103   ArgTypes.push_back(ArgTy);
   4104 }
   4105 
   4106 /// \brief Determine whether the function template \p FT1 is at least as
   4107 /// specialized as \p FT2.
   4108 static bool isAtLeastAsSpecializedAs(Sema &S,
   4109                                      SourceLocation Loc,
   4110                                      FunctionTemplateDecl *FT1,
   4111                                      FunctionTemplateDecl *FT2,
   4112                                      TemplatePartialOrderingContext TPOC,
   4113                                      unsigned NumCallArguments1) {
   4114   FunctionDecl *FD1 = FT1->getTemplatedDecl();
   4115   FunctionDecl *FD2 = FT2->getTemplatedDecl();
   4116   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
   4117   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
   4118 
   4119   assert(Proto1 && Proto2 && "Function templates must have prototypes");
   4120   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
   4121   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4122   Deduced.resize(TemplateParams->size());
   4123 
   4124   // C++0x [temp.deduct.partial]p3:
   4125   //   The types used to determine the ordering depend on the context in which
   4126   //   the partial ordering is done:
   4127   TemplateDeductionInfo Info(Loc);
   4128   SmallVector<QualType, 4> Args2;
   4129   switch (TPOC) {
   4130   case TPOC_Call: {
   4131     //   - In the context of a function call, the function parameter types are
   4132     //     used.
   4133     CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
   4134     CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
   4135 
   4136     // C++11 [temp.func.order]p3:
   4137     //   [...] If only one of the function templates is a non-static
   4138     //   member, that function template is considered to have a new
   4139     //   first parameter inserted in its function parameter list. The
   4140     //   new parameter is of type "reference to cv A," where cv are
   4141     //   the cv-qualifiers of the function template (if any) and A is
   4142     //   the class of which the function template is a member.
   4143     //
   4144     // Note that we interpret this to mean "if one of the function
   4145     // templates is a non-static member and the other is a non-member";
   4146     // otherwise, the ordering rules for static functions against non-static
   4147     // functions don't make any sense.
   4148     //
   4149     // C++98/03 doesn't have this provision but we've extended DR532 to cover
   4150     // it as wording was broken prior to it.
   4151     SmallVector<QualType, 4> Args1;
   4152 
   4153     unsigned NumComparedArguments = NumCallArguments1;
   4154 
   4155     if (!Method2 && Method1 && !Method1->isStatic()) {
   4156       // Compare 'this' from Method1 against first parameter from Method2.
   4157       AddImplicitObjectParameterType(S.Context, Method1, Args1);
   4158       ++NumComparedArguments;
   4159     } else if (!Method1 && Method2 && !Method2->isStatic()) {
   4160       // Compare 'this' from Method2 against first parameter from Method1.
   4161       AddImplicitObjectParameterType(S.Context, Method2, Args2);
   4162     }
   4163 
   4164     Args1.insert(Args1.end(), Proto1->param_type_begin(),
   4165                  Proto1->param_type_end());
   4166     Args2.insert(Args2.end(), Proto2->param_type_begin(),
   4167                  Proto2->param_type_end());
   4168 
   4169     // C++ [temp.func.order]p5:
   4170     //   The presence of unused ellipsis and default arguments has no effect on
   4171     //   the partial ordering of function templates.
   4172     if (Args1.size() > NumComparedArguments)
   4173       Args1.resize(NumComparedArguments);
   4174     if (Args2.size() > NumComparedArguments)
   4175       Args2.resize(NumComparedArguments);
   4176     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
   4177                                 Args1.data(), Args1.size(), Info, Deduced,
   4178                                 TDF_None, /*PartialOrdering=*/true))
   4179       return false;
   4180 
   4181     break;
   4182   }
   4183 
   4184   case TPOC_Conversion:
   4185     //   - In the context of a call to a conversion operator, the return types
   4186     //     of the conversion function templates are used.
   4187     if (DeduceTemplateArgumentsByTypeMatch(
   4188             S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
   4189             Info, Deduced, TDF_None,
   4190             /*PartialOrdering=*/true))
   4191       return false;
   4192     break;
   4193 
   4194   case TPOC_Other:
   4195     //   - In other contexts (14.6.6.2) the function template's function type
   4196     //     is used.
   4197     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   4198                                            FD2->getType(), FD1->getType(),
   4199                                            Info, Deduced, TDF_None,
   4200                                            /*PartialOrdering=*/true))
   4201       return false;
   4202     break;
   4203   }
   4204 
   4205   // C++0x [temp.deduct.partial]p11:
   4206   //   In most cases, all template parameters must have values in order for
   4207   //   deduction to succeed, but for partial ordering purposes a template
   4208   //   parameter may remain without a value provided it is not used in the
   4209   //   types being used for partial ordering. [ Note: a template parameter used
   4210   //   in a non-deduced context is considered used. -end note]
   4211   unsigned ArgIdx = 0, NumArgs = Deduced.size();
   4212   for (; ArgIdx != NumArgs; ++ArgIdx)
   4213     if (Deduced[ArgIdx].isNull())
   4214       break;
   4215 
   4216   if (ArgIdx == NumArgs) {
   4217     // All template arguments were deduced. FT1 is at least as specialized
   4218     // as FT2.
   4219     return true;
   4220   }
   4221 
   4222   // Figure out which template parameters were used.
   4223   llvm::SmallBitVector UsedParameters(TemplateParams->size());
   4224   switch (TPOC) {
   4225   case TPOC_Call:
   4226     for (unsigned I = 0, N = Args2.size(); I != N; ++I)
   4227       ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
   4228                                    TemplateParams->getDepth(),
   4229                                    UsedParameters);
   4230     break;
   4231 
   4232   case TPOC_Conversion:
   4233     ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
   4234                                  TemplateParams->getDepth(), UsedParameters);
   4235     break;
   4236 
   4237   case TPOC_Other:
   4238     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
   4239                                  TemplateParams->getDepth(),
   4240                                  UsedParameters);
   4241     break;
   4242   }
   4243 
   4244   for (; ArgIdx != NumArgs; ++ArgIdx)
   4245     // If this argument had no value deduced but was used in one of the types
   4246     // used for partial ordering, then deduction fails.
   4247     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
   4248       return false;
   4249 
   4250   return true;
   4251 }
   4252 
   4253 /// \brief Determine whether this a function template whose parameter-type-list
   4254 /// ends with a function parameter pack.
   4255 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
   4256   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
   4257   unsigned NumParams = Function->getNumParams();
   4258   if (NumParams == 0)
   4259     return false;
   4260 
   4261   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
   4262   if (!Last->isParameterPack())
   4263     return false;
   4264 
   4265   // Make sure that no previous parameter is a parameter pack.
   4266   while (--NumParams > 0) {
   4267     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
   4268       return false;
   4269   }
   4270 
   4271   return true;
   4272 }
   4273 
   4274 /// \brief Returns the more specialized function template according
   4275 /// to the rules of function template partial ordering (C++ [temp.func.order]).
   4276 ///
   4277 /// \param FT1 the first function template
   4278 ///
   4279 /// \param FT2 the second function template
   4280 ///
   4281 /// \param TPOC the context in which we are performing partial ordering of
   4282 /// function templates.
   4283 ///
   4284 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
   4285 /// only when \c TPOC is \c TPOC_Call.
   4286 ///
   4287 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
   4288 /// only when \c TPOC is \c TPOC_Call.
   4289 ///
   4290 /// \returns the more specialized function template. If neither
   4291 /// template is more specialized, returns NULL.
   4292 FunctionTemplateDecl *
   4293 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
   4294                                  FunctionTemplateDecl *FT2,
   4295                                  SourceLocation Loc,
   4296                                  TemplatePartialOrderingContext TPOC,
   4297                                  unsigned NumCallArguments1,
   4298                                  unsigned NumCallArguments2) {
   4299   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
   4300                                           NumCallArguments1);
   4301   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
   4302                                           NumCallArguments2);
   4303 
   4304   if (Better1 != Better2) // We have a clear winner
   4305     return Better1 ? FT1 : FT2;
   4306 
   4307   if (!Better1 && !Better2) // Neither is better than the other
   4308     return nullptr;
   4309 
   4310   // FIXME: This mimics what GCC implements, but doesn't match up with the
   4311   // proposed resolution for core issue 692. This area needs to be sorted out,
   4312   // but for now we attempt to maintain compatibility.
   4313   bool Variadic1 = isVariadicFunctionTemplate(FT1);
   4314   bool Variadic2 = isVariadicFunctionTemplate(FT2);
   4315   if (Variadic1 != Variadic2)
   4316     return Variadic1? FT2 : FT1;
   4317 
   4318   return nullptr;
   4319 }
   4320 
   4321 /// \brief Determine if the two templates are equivalent.
   4322 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
   4323   if (T1 == T2)
   4324     return true;
   4325 
   4326   if (!T1 || !T2)
   4327     return false;
   4328 
   4329   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
   4330 }
   4331 
   4332 /// \brief Retrieve the most specialized of the given function template
   4333 /// specializations.
   4334 ///
   4335 /// \param SpecBegin the start iterator of the function template
   4336 /// specializations that we will be comparing.
   4337 ///
   4338 /// \param SpecEnd the end iterator of the function template
   4339 /// specializations, paired with \p SpecBegin.
   4340 ///
   4341 /// \param Loc the location where the ambiguity or no-specializations
   4342 /// diagnostic should occur.
   4343 ///
   4344 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
   4345 /// no matching candidates.
   4346 ///
   4347 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
   4348 /// occurs.
   4349 ///
   4350 /// \param CandidateDiag partial diagnostic used for each function template
   4351 /// specialization that is a candidate in the ambiguous ordering. One parameter
   4352 /// in this diagnostic should be unbound, which will correspond to the string
   4353 /// describing the template arguments for the function template specialization.
   4354 ///
   4355 /// \returns the most specialized function template specialization, if
   4356 /// found. Otherwise, returns SpecEnd.
   4357 UnresolvedSetIterator Sema::getMostSpecialized(
   4358     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
   4359     TemplateSpecCandidateSet &FailedCandidates,
   4360     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
   4361     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
   4362     bool Complain, QualType TargetType) {
   4363   if (SpecBegin == SpecEnd) {
   4364     if (Complain) {
   4365       Diag(Loc, NoneDiag);
   4366       FailedCandidates.NoteCandidates(*this, Loc);
   4367     }
   4368     return SpecEnd;
   4369   }
   4370 
   4371   if (SpecBegin + 1 == SpecEnd)
   4372     return SpecBegin;
   4373 
   4374   // Find the function template that is better than all of the templates it
   4375   // has been compared to.
   4376   UnresolvedSetIterator Best = SpecBegin;
   4377   FunctionTemplateDecl *BestTemplate
   4378     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
   4379   assert(BestTemplate && "Not a function template specialization?");
   4380   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
   4381     FunctionTemplateDecl *Challenger
   4382       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4383     assert(Challenger && "Not a function template specialization?");
   4384     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4385                                                   Loc, TPOC_Other, 0, 0),
   4386                        Challenger)) {
   4387       Best = I;
   4388       BestTemplate = Challenger;
   4389     }
   4390   }
   4391 
   4392   // Make sure that the "best" function template is more specialized than all
   4393   // of the others.
   4394   bool Ambiguous = false;
   4395   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4396     FunctionTemplateDecl *Challenger
   4397       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4398     if (I != Best &&
   4399         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4400                                                    Loc, TPOC_Other, 0, 0),
   4401                         BestTemplate)) {
   4402       Ambiguous = true;
   4403       break;
   4404     }
   4405   }
   4406 
   4407   if (!Ambiguous) {
   4408     // We found an answer. Return it.
   4409     return Best;
   4410   }
   4411 
   4412   // Diagnose the ambiguity.
   4413   if (Complain) {
   4414     Diag(Loc, AmbigDiag);
   4415 
   4416     // FIXME: Can we order the candidates in some sane way?
   4417     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4418       PartialDiagnostic PD = CandidateDiag;
   4419       PD << getTemplateArgumentBindingsText(
   4420           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
   4421                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
   4422       if (!TargetType.isNull())
   4423         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
   4424                                    TargetType);
   4425       Diag((*I)->getLocation(), PD);
   4426     }
   4427   }
   4428 
   4429   return SpecEnd;
   4430 }
   4431 
   4432 /// \brief Returns the more specialized class template partial specialization
   4433 /// according to the rules of partial ordering of class template partial
   4434 /// specializations (C++ [temp.class.order]).
   4435 ///
   4436 /// \param PS1 the first class template partial specialization
   4437 ///
   4438 /// \param PS2 the second class template partial specialization
   4439 ///
   4440 /// \returns the more specialized class template partial specialization. If
   4441 /// neither partial specialization is more specialized, returns NULL.
   4442 ClassTemplatePartialSpecializationDecl *
   4443 Sema::getMoreSpecializedPartialSpecialization(
   4444                                   ClassTemplatePartialSpecializationDecl *PS1,
   4445                                   ClassTemplatePartialSpecializationDecl *PS2,
   4446                                               SourceLocation Loc) {
   4447   // C++ [temp.class.order]p1:
   4448   //   For two class template partial specializations, the first is at least as
   4449   //   specialized as the second if, given the following rewrite to two
   4450   //   function templates, the first function template is at least as
   4451   //   specialized as the second according to the ordering rules for function
   4452   //   templates (14.6.6.2):
   4453   //     - the first function template has the same template parameters as the
   4454   //       first partial specialization and has a single function parameter
   4455   //       whose type is a class template specialization with the template
   4456   //       arguments of the first partial specialization, and
   4457   //     - the second function template has the same template parameters as the
   4458   //       second partial specialization and has a single function parameter
   4459   //       whose type is a class template specialization with the template
   4460   //       arguments of the second partial specialization.
   4461   //
   4462   // Rather than synthesize function templates, we merely perform the
   4463   // equivalent partial ordering by performing deduction directly on
   4464   // the template arguments of the class template partial
   4465   // specializations. This computation is slightly simpler than the
   4466   // general problem of function template partial ordering, because
   4467   // class template partial specializations are more constrained. We
   4468   // know that every template parameter is deducible from the class
   4469   // template partial specialization's template arguments, for
   4470   // example.
   4471   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4472   TemplateDeductionInfo Info(Loc);
   4473 
   4474   QualType PT1 = PS1->getInjectedSpecializationType();
   4475   QualType PT2 = PS2->getInjectedSpecializationType();
   4476 
   4477   // Determine whether PS1 is at least as specialized as PS2
   4478   Deduced.resize(PS2->getTemplateParameters()->size());
   4479   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4480                                             PS2->getTemplateParameters(),
   4481                                             PT2, PT1, Info, Deduced, TDF_None,
   4482                                             /*PartialOrdering=*/true);
   4483   if (Better1) {
   4484     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4485     InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
   4486     Better1 = !::FinishTemplateArgumentDeduction(
   4487         *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
   4488   }
   4489 
   4490   // Determine whether PS2 is at least as specialized as PS1
   4491   Deduced.clear();
   4492   Deduced.resize(PS1->getTemplateParameters()->size());
   4493   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
   4494       *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
   4495       /*PartialOrdering=*/true);
   4496   if (Better2) {
   4497     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
   4498                                                  Deduced.end());
   4499     InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
   4500     Better2 = !::FinishTemplateArgumentDeduction(
   4501         *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
   4502   }
   4503 
   4504   if (Better1 == Better2)
   4505     return nullptr;
   4506 
   4507   return Better1 ? PS1 : PS2;
   4508 }
   4509 
   4510 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   4511 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   4512 ///        VarTemplate(Partial)SpecializationDecl with a new data
   4513 ///        structure Template(Partial)SpecializationDecl, and
   4514 ///        using Template(Partial)SpecializationDecl as input type.
   4515 VarTemplatePartialSpecializationDecl *
   4516 Sema::getMoreSpecializedPartialSpecialization(
   4517     VarTemplatePartialSpecializationDecl *PS1,
   4518     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
   4519   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4520   TemplateDeductionInfo Info(Loc);
   4521 
   4522   assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
   4523          "the partial specializations being compared should specialize"
   4524          " the same template.");
   4525   TemplateName Name(PS1->getSpecializedTemplate());
   4526   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   4527   QualType PT1 = Context.getTemplateSpecializationType(
   4528       CanonTemplate, PS1->getTemplateArgs().data(),
   4529       PS1->getTemplateArgs().size());
   4530   QualType PT2 = Context.getTemplateSpecializationType(
   4531       CanonTemplate, PS2->getTemplateArgs().data(),
   4532       PS2->getTemplateArgs().size());
   4533 
   4534   // Determine whether PS1 is at least as specialized as PS2
   4535   Deduced.resize(PS2->getTemplateParameters()->size());
   4536   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
   4537       *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
   4538       /*PartialOrdering=*/true);
   4539   if (Better1) {
   4540     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
   4541                                                  Deduced.end());
   4542     InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
   4543     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
   4544                                                  PS1->getTemplateArgs(),
   4545                                                  Deduced, Info);
   4546   }
   4547 
   4548   // Determine whether PS2 is at least as specialized as PS1
   4549   Deduced.clear();
   4550   Deduced.resize(PS1->getTemplateParameters()->size());
   4551   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4552                                             PS1->getTemplateParameters(),
   4553                                             PT1, PT2, Info, Deduced, TDF_None,
   4554                                             /*PartialOrdering=*/true);
   4555   if (Better2) {
   4556     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4557     InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
   4558     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
   4559                                                  PS2->getTemplateArgs(),
   4560                                                  Deduced, Info);
   4561   }
   4562 
   4563   if (Better1 == Better2)
   4564     return nullptr;
   4565 
   4566   return Better1? PS1 : PS2;
   4567 }
   4568 
   4569 static void
   4570 MarkUsedTemplateParameters(ASTContext &Ctx,
   4571                            const TemplateArgument &TemplateArg,
   4572                            bool OnlyDeduced,
   4573                            unsigned Depth,
   4574                            llvm::SmallBitVector &Used);
   4575 
   4576 /// \brief Mark the template parameters that are used by the given
   4577 /// expression.
   4578 static void
   4579 MarkUsedTemplateParameters(ASTContext &Ctx,
   4580                            const Expr *E,
   4581                            bool OnlyDeduced,
   4582                            unsigned Depth,
   4583                            llvm::SmallBitVector &Used) {
   4584   // We can deduce from a pack expansion.
   4585   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
   4586     E = Expansion->getPattern();
   4587 
   4588   // Skip through any implicit casts we added while type-checking, and any
   4589   // substitutions performed by template alias expansion.
   4590   while (1) {
   4591     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   4592       E = ICE->getSubExpr();
   4593     else if (const SubstNonTypeTemplateParmExpr *Subst =
   4594                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
   4595       E = Subst->getReplacement();
   4596     else
   4597       break;
   4598   }
   4599 
   4600   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
   4601   // find other occurrences of template parameters.
   4602   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   4603   if (!DRE)
   4604     return;
   4605 
   4606   const NonTypeTemplateParmDecl *NTTP
   4607     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   4608   if (!NTTP)
   4609     return;
   4610 
   4611   if (NTTP->getDepth() == Depth)
   4612     Used[NTTP->getIndex()] = true;
   4613 }
   4614 
   4615 /// \brief Mark the template parameters that are used by the given
   4616 /// nested name specifier.
   4617 static void
   4618 MarkUsedTemplateParameters(ASTContext &Ctx,
   4619                            NestedNameSpecifier *NNS,
   4620                            bool OnlyDeduced,
   4621                            unsigned Depth,
   4622                            llvm::SmallBitVector &Used) {
   4623   if (!NNS)
   4624     return;
   4625 
   4626   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
   4627                              Used);
   4628   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
   4629                              OnlyDeduced, Depth, Used);
   4630 }
   4631 
   4632 /// \brief Mark the template parameters that are used by the given
   4633 /// template name.
   4634 static void
   4635 MarkUsedTemplateParameters(ASTContext &Ctx,
   4636                            TemplateName Name,
   4637                            bool OnlyDeduced,
   4638                            unsigned Depth,
   4639                            llvm::SmallBitVector &Used) {
   4640   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   4641     if (TemplateTemplateParmDecl *TTP
   4642           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
   4643       if (TTP->getDepth() == Depth)
   4644         Used[TTP->getIndex()] = true;
   4645     }
   4646     return;
   4647   }
   4648 
   4649   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
   4650     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
   4651                                Depth, Used);
   4652   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
   4653     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
   4654                                Depth, Used);
   4655 }
   4656 
   4657 /// \brief Mark the template parameters that are used by the given
   4658 /// type.
   4659 static void
   4660 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4661                            bool OnlyDeduced,
   4662                            unsigned Depth,
   4663                            llvm::SmallBitVector &Used) {
   4664   if (T.isNull())
   4665     return;
   4666 
   4667   // Non-dependent types have nothing deducible
   4668   if (!T->isDependentType())
   4669     return;
   4670 
   4671   T = Ctx.getCanonicalType(T);
   4672   switch (T->getTypeClass()) {
   4673   case Type::Pointer:
   4674     MarkUsedTemplateParameters(Ctx,
   4675                                cast<PointerType>(T)->getPointeeType(),
   4676                                OnlyDeduced,
   4677                                Depth,
   4678                                Used);
   4679     break;
   4680 
   4681   case Type::BlockPointer:
   4682     MarkUsedTemplateParameters(Ctx,
   4683                                cast<BlockPointerType>(T)->getPointeeType(),
   4684                                OnlyDeduced,
   4685                                Depth,
   4686                                Used);
   4687     break;
   4688 
   4689   case Type::LValueReference:
   4690   case Type::RValueReference:
   4691     MarkUsedTemplateParameters(Ctx,
   4692                                cast<ReferenceType>(T)->getPointeeType(),
   4693                                OnlyDeduced,
   4694                                Depth,
   4695                                Used);
   4696     break;
   4697 
   4698   case Type::MemberPointer: {
   4699     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
   4700     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
   4701                                Depth, Used);
   4702     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
   4703                                OnlyDeduced, Depth, Used);
   4704     break;
   4705   }
   4706 
   4707   case Type::DependentSizedArray:
   4708     MarkUsedTemplateParameters(Ctx,
   4709                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
   4710                                OnlyDeduced, Depth, Used);
   4711     // Fall through to check the element type
   4712 
   4713   case Type::ConstantArray:
   4714   case Type::IncompleteArray:
   4715     MarkUsedTemplateParameters(Ctx,
   4716                                cast<ArrayType>(T)->getElementType(),
   4717                                OnlyDeduced, Depth, Used);
   4718     break;
   4719 
   4720   case Type::Vector:
   4721   case Type::ExtVector:
   4722     MarkUsedTemplateParameters(Ctx,
   4723                                cast<VectorType>(T)->getElementType(),
   4724                                OnlyDeduced, Depth, Used);
   4725     break;
   4726 
   4727   case Type::DependentSizedExtVector: {
   4728     const DependentSizedExtVectorType *VecType
   4729       = cast<DependentSizedExtVectorType>(T);
   4730     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
   4731                                Depth, Used);
   4732     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
   4733                                Depth, Used);
   4734     break;
   4735   }
   4736 
   4737   case Type::FunctionProto: {
   4738     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   4739     MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
   4740                                Used);
   4741     for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
   4742       MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
   4743                                  Depth, Used);
   4744     break;
   4745   }
   4746 
   4747   case Type::TemplateTypeParm: {
   4748     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
   4749     if (TTP->getDepth() == Depth)
   4750       Used[TTP->getIndex()] = true;
   4751     break;
   4752   }
   4753 
   4754   case Type::SubstTemplateTypeParmPack: {
   4755     const SubstTemplateTypeParmPackType *Subst
   4756       = cast<SubstTemplateTypeParmPackType>(T);
   4757     MarkUsedTemplateParameters(Ctx,
   4758                                QualType(Subst->getReplacedParameter(), 0),
   4759                                OnlyDeduced, Depth, Used);
   4760     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
   4761                                OnlyDeduced, Depth, Used);
   4762     break;
   4763   }
   4764 
   4765   case Type::InjectedClassName:
   4766     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
   4767     // fall through
   4768 
   4769   case Type::TemplateSpecialization: {
   4770     const TemplateSpecializationType *Spec
   4771       = cast<TemplateSpecializationType>(T);
   4772     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
   4773                                Depth, Used);
   4774 
   4775     // C++0x [temp.deduct.type]p9:
   4776     //   If the template argument list of P contains a pack expansion that is
   4777     //   not the last template argument, the entire template argument list is a
   4778     //   non-deduced context.
   4779     if (OnlyDeduced &&
   4780         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4781       break;
   4782 
   4783     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4784       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4785                                  Used);
   4786     break;
   4787   }
   4788 
   4789   case Type::Complex:
   4790     if (!OnlyDeduced)
   4791       MarkUsedTemplateParameters(Ctx,
   4792                                  cast<ComplexType>(T)->getElementType(),
   4793                                  OnlyDeduced, Depth, Used);
   4794     break;
   4795 
   4796   case Type::Atomic:
   4797     if (!OnlyDeduced)
   4798       MarkUsedTemplateParameters(Ctx,
   4799                                  cast<AtomicType>(T)->getValueType(),
   4800                                  OnlyDeduced, Depth, Used);
   4801     break;
   4802 
   4803   case Type::DependentName:
   4804     if (!OnlyDeduced)
   4805       MarkUsedTemplateParameters(Ctx,
   4806                                  cast<DependentNameType>(T)->getQualifier(),
   4807                                  OnlyDeduced, Depth, Used);
   4808     break;
   4809 
   4810   case Type::DependentTemplateSpecialization: {
   4811     const DependentTemplateSpecializationType *Spec
   4812       = cast<DependentTemplateSpecializationType>(T);
   4813     if (!OnlyDeduced)
   4814       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
   4815                                  OnlyDeduced, Depth, Used);
   4816 
   4817     // C++0x [temp.deduct.type]p9:
   4818     //   If the template argument list of P contains a pack expansion that is not
   4819     //   the last template argument, the entire template argument list is a
   4820     //   non-deduced context.
   4821     if (OnlyDeduced &&
   4822         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4823       break;
   4824 
   4825     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4826       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4827                                  Used);
   4828     break;
   4829   }
   4830 
   4831   case Type::TypeOf:
   4832     if (!OnlyDeduced)
   4833       MarkUsedTemplateParameters(Ctx,
   4834                                  cast<TypeOfType>(T)->getUnderlyingType(),
   4835                                  OnlyDeduced, Depth, Used);
   4836     break;
   4837 
   4838   case Type::TypeOfExpr:
   4839     if (!OnlyDeduced)
   4840       MarkUsedTemplateParameters(Ctx,
   4841                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
   4842                                  OnlyDeduced, Depth, Used);
   4843     break;
   4844 
   4845   case Type::Decltype:
   4846     if (!OnlyDeduced)
   4847       MarkUsedTemplateParameters(Ctx,
   4848                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
   4849                                  OnlyDeduced, Depth, Used);
   4850     break;
   4851 
   4852   case Type::UnaryTransform:
   4853     if (!OnlyDeduced)
   4854       MarkUsedTemplateParameters(Ctx,
   4855                                cast<UnaryTransformType>(T)->getUnderlyingType(),
   4856                                  OnlyDeduced, Depth, Used);
   4857     break;
   4858 
   4859   case Type::PackExpansion:
   4860     MarkUsedTemplateParameters(Ctx,
   4861                                cast<PackExpansionType>(T)->getPattern(),
   4862                                OnlyDeduced, Depth, Used);
   4863     break;
   4864 
   4865   case Type::Auto:
   4866     MarkUsedTemplateParameters(Ctx,
   4867                                cast<AutoType>(T)->getDeducedType(),
   4868                                OnlyDeduced, Depth, Used);
   4869 
   4870   // None of these types have any template parameters in them.
   4871   case Type::Builtin:
   4872   case Type::VariableArray:
   4873   case Type::FunctionNoProto:
   4874   case Type::Record:
   4875   case Type::Enum:
   4876   case Type::ObjCInterface:
   4877   case Type::ObjCObject:
   4878   case Type::ObjCObjectPointer:
   4879   case Type::UnresolvedUsing:
   4880 #define TYPE(Class, Base)
   4881 #define ABSTRACT_TYPE(Class, Base)
   4882 #define DEPENDENT_TYPE(Class, Base)
   4883 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   4884 #include "clang/AST/TypeNodes.def"
   4885     break;
   4886   }
   4887 }
   4888 
   4889 /// \brief Mark the template parameters that are used by this
   4890 /// template argument.
   4891 static void
   4892 MarkUsedTemplateParameters(ASTContext &Ctx,
   4893                            const TemplateArgument &TemplateArg,
   4894                            bool OnlyDeduced,
   4895                            unsigned Depth,
   4896                            llvm::SmallBitVector &Used) {
   4897   switch (TemplateArg.getKind()) {
   4898   case TemplateArgument::Null:
   4899   case TemplateArgument::Integral:
   4900   case TemplateArgument::Declaration:
   4901     break;
   4902 
   4903   case TemplateArgument::NullPtr:
   4904     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
   4905                                Depth, Used);
   4906     break;
   4907 
   4908   case TemplateArgument::Type:
   4909     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
   4910                                Depth, Used);
   4911     break;
   4912 
   4913   case TemplateArgument::Template:
   4914   case TemplateArgument::TemplateExpansion:
   4915     MarkUsedTemplateParameters(Ctx,
   4916                                TemplateArg.getAsTemplateOrTemplatePattern(),
   4917                                OnlyDeduced, Depth, Used);
   4918     break;
   4919 
   4920   case TemplateArgument::Expression:
   4921     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
   4922                                Depth, Used);
   4923     break;
   4924 
   4925   case TemplateArgument::Pack:
   4926     for (const auto &P : TemplateArg.pack_elements())
   4927       MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
   4928     break;
   4929   }
   4930 }
   4931 
   4932 /// \brief Mark which template parameters can be deduced from a given
   4933 /// template argument list.
   4934 ///
   4935 /// \param TemplateArgs the template argument list from which template
   4936 /// parameters will be deduced.
   4937 ///
   4938 /// \param Used a bit vector whose elements will be set to \c true
   4939 /// to indicate when the corresponding template parameter will be
   4940 /// deduced.
   4941 void
   4942 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
   4943                                  bool OnlyDeduced, unsigned Depth,
   4944                                  llvm::SmallBitVector &Used) {
   4945   // C++0x [temp.deduct.type]p9:
   4946   //   If the template argument list of P contains a pack expansion that is not
   4947   //   the last template argument, the entire template argument list is a
   4948   //   non-deduced context.
   4949   if (OnlyDeduced &&
   4950       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
   4951     return;
   4952 
   4953   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   4954     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
   4955                                  Depth, Used);
   4956 }
   4957 
   4958 /// \brief Marks all of the template parameters that will be deduced by a
   4959 /// call to the given function template.
   4960 void Sema::MarkDeducedTemplateParameters(
   4961     ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
   4962     llvm::SmallBitVector &Deduced) {
   4963   TemplateParameterList *TemplateParams
   4964     = FunctionTemplate->getTemplateParameters();
   4965   Deduced.clear();
   4966   Deduced.resize(TemplateParams->size());
   4967 
   4968   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   4969   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   4970     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
   4971                                  true, TemplateParams->getDepth(), Deduced);
   4972 }
   4973 
   4974 bool hasDeducibleTemplateParameters(Sema &S,
   4975                                     FunctionTemplateDecl *FunctionTemplate,
   4976                                     QualType T) {
   4977   if (!T->isDependentType())
   4978     return false;
   4979 
   4980   TemplateParameterList *TemplateParams
   4981     = FunctionTemplate->getTemplateParameters();
   4982   llvm::SmallBitVector Deduced(TemplateParams->size());
   4983   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
   4984                                Deduced);
   4985 
   4986   return Deduced.any();
   4987 }
   4988