Home | History | Annotate | Download | only in Sema
      1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for C++ declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTConsumer.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTLambda.h"
     18 #include "clang/AST/ASTMutationListener.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/AST/EvaluatedExprVisitor.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/RecordLayout.h"
     24 #include "clang/AST/RecursiveASTVisitor.h"
     25 #include "clang/AST/StmtVisitor.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/AST/TypeOrdering.h"
     28 #include "clang/Basic/PartialDiagnostic.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/Lex/LiteralSupport.h"
     31 #include "clang/Lex/Preprocessor.h"
     32 #include "clang/Sema/CXXFieldCollector.h"
     33 #include "clang/Sema/DeclSpec.h"
     34 #include "clang/Sema/Initialization.h"
     35 #include "clang/Sema/Lookup.h"
     36 #include "clang/Sema/ParsedTemplate.h"
     37 #include "clang/Sema/Scope.h"
     38 #include "clang/Sema/ScopeInfo.h"
     39 #include "clang/Sema/Template.h"
     40 #include "llvm/ADT/STLExtras.h"
     41 #include "llvm/ADT/SmallString.h"
     42 #include <map>
     43 #include <set>
     44 
     45 using namespace clang;
     46 
     47 //===----------------------------------------------------------------------===//
     48 // CheckDefaultArgumentVisitor
     49 //===----------------------------------------------------------------------===//
     50 
     51 namespace {
     52   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
     53   /// the default argument of a parameter to determine whether it
     54   /// contains any ill-formed subexpressions. For example, this will
     55   /// diagnose the use of local variables or parameters within the
     56   /// default argument expression.
     57   class CheckDefaultArgumentVisitor
     58     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
     59     Expr *DefaultArg;
     60     Sema *S;
     61 
     62   public:
     63     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
     64       : DefaultArg(defarg), S(s) {}
     65 
     66     bool VisitExpr(Expr *Node);
     67     bool VisitDeclRefExpr(DeclRefExpr *DRE);
     68     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
     69     bool VisitLambdaExpr(LambdaExpr *Lambda);
     70     bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
     71   };
     72 
     73   /// VisitExpr - Visit all of the children of this expression.
     74   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
     75     bool IsInvalid = false;
     76     for (Stmt::child_range I = Node->children(); I; ++I)
     77       IsInvalid |= Visit(*I);
     78     return IsInvalid;
     79   }
     80 
     81   /// VisitDeclRefExpr - Visit a reference to a declaration, to
     82   /// determine whether this declaration can be used in the default
     83   /// argument expression.
     84   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
     85     NamedDecl *Decl = DRE->getDecl();
     86     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
     87       // C++ [dcl.fct.default]p9
     88       //   Default arguments are evaluated each time the function is
     89       //   called. The order of evaluation of function arguments is
     90       //   unspecified. Consequently, parameters of a function shall not
     91       //   be used in default argument expressions, even if they are not
     92       //   evaluated. Parameters of a function declared before a default
     93       //   argument expression are in scope and can hide namespace and
     94       //   class member names.
     95       return S->Diag(DRE->getLocStart(),
     96                      diag::err_param_default_argument_references_param)
     97          << Param->getDeclName() << DefaultArg->getSourceRange();
     98     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
     99       // C++ [dcl.fct.default]p7
    100       //   Local variables shall not be used in default argument
    101       //   expressions.
    102       if (VDecl->isLocalVarDecl())
    103         return S->Diag(DRE->getLocStart(),
    104                        diag::err_param_default_argument_references_local)
    105           << VDecl->getDeclName() << DefaultArg->getSourceRange();
    106     }
    107 
    108     return false;
    109   }
    110 
    111   /// VisitCXXThisExpr - Visit a C++ "this" expression.
    112   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
    113     // C++ [dcl.fct.default]p8:
    114     //   The keyword this shall not be used in a default argument of a
    115     //   member function.
    116     return S->Diag(ThisE->getLocStart(),
    117                    diag::err_param_default_argument_references_this)
    118                << ThisE->getSourceRange();
    119   }
    120 
    121   bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
    122     bool Invalid = false;
    123     for (PseudoObjectExpr::semantics_iterator
    124            i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
    125       Expr *E = *i;
    126 
    127       // Look through bindings.
    128       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
    129         E = OVE->getSourceExpr();
    130         assert(E && "pseudo-object binding without source expression?");
    131       }
    132 
    133       Invalid |= Visit(E);
    134     }
    135     return Invalid;
    136   }
    137 
    138   bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
    139     // C++11 [expr.lambda.prim]p13:
    140     //   A lambda-expression appearing in a default argument shall not
    141     //   implicitly or explicitly capture any entity.
    142     if (Lambda->capture_begin() == Lambda->capture_end())
    143       return false;
    144 
    145     return S->Diag(Lambda->getLocStart(),
    146                    diag::err_lambda_capture_default_arg);
    147   }
    148 }
    149 
    150 void
    151 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
    152                                                  const CXXMethodDecl *Method) {
    153   // If we have an MSAny spec already, don't bother.
    154   if (!Method || ComputedEST == EST_MSAny)
    155     return;
    156 
    157   const FunctionProtoType *Proto
    158     = Method->getType()->getAs<FunctionProtoType>();
    159   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
    160   if (!Proto)
    161     return;
    162 
    163   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
    164 
    165   // If this function can throw any exceptions, make a note of that.
    166   if (EST == EST_MSAny || EST == EST_None) {
    167     ClearExceptions();
    168     ComputedEST = EST;
    169     return;
    170   }
    171 
    172   // FIXME: If the call to this decl is using any of its default arguments, we
    173   // need to search them for potentially-throwing calls.
    174 
    175   // If this function has a basic noexcept, it doesn't affect the outcome.
    176   if (EST == EST_BasicNoexcept)
    177     return;
    178 
    179   // If we have a throw-all spec at this point, ignore the function.
    180   if (ComputedEST == EST_None)
    181     return;
    182 
    183   // If we're still at noexcept(true) and there's a nothrow() callee,
    184   // change to that specification.
    185   if (EST == EST_DynamicNone) {
    186     if (ComputedEST == EST_BasicNoexcept)
    187       ComputedEST = EST_DynamicNone;
    188     return;
    189   }
    190 
    191   // Check out noexcept specs.
    192   if (EST == EST_ComputedNoexcept) {
    193     FunctionProtoType::NoexceptResult NR =
    194         Proto->getNoexceptSpec(Self->Context);
    195     assert(NR != FunctionProtoType::NR_NoNoexcept &&
    196            "Must have noexcept result for EST_ComputedNoexcept.");
    197     assert(NR != FunctionProtoType::NR_Dependent &&
    198            "Should not generate implicit declarations for dependent cases, "
    199            "and don't know how to handle them anyway.");
    200 
    201     // noexcept(false) -> no spec on the new function
    202     if (NR == FunctionProtoType::NR_Throw) {
    203       ClearExceptions();
    204       ComputedEST = EST_None;
    205     }
    206     // noexcept(true) won't change anything either.
    207     return;
    208   }
    209 
    210   assert(EST == EST_Dynamic && "EST case not considered earlier.");
    211   assert(ComputedEST != EST_None &&
    212          "Shouldn't collect exceptions when throw-all is guaranteed.");
    213   ComputedEST = EST_Dynamic;
    214   // Record the exceptions in this function's exception specification.
    215   for (const auto &E : Proto->exceptions())
    216     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
    217       Exceptions.push_back(E);
    218 }
    219 
    220 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
    221   if (!E || ComputedEST == EST_MSAny)
    222     return;
    223 
    224   // FIXME:
    225   //
    226   // C++0x [except.spec]p14:
    227   //   [An] implicit exception-specification specifies the type-id T if and
    228   // only if T is allowed by the exception-specification of a function directly
    229   // invoked by f's implicit definition; f shall allow all exceptions if any
    230   // function it directly invokes allows all exceptions, and f shall allow no
    231   // exceptions if every function it directly invokes allows no exceptions.
    232   //
    233   // Note in particular that if an implicit exception-specification is generated
    234   // for a function containing a throw-expression, that specification can still
    235   // be noexcept(true).
    236   //
    237   // Note also that 'directly invoked' is not defined in the standard, and there
    238   // is no indication that we should only consider potentially-evaluated calls.
    239   //
    240   // Ultimately we should implement the intent of the standard: the exception
    241   // specification should be the set of exceptions which can be thrown by the
    242   // implicit definition. For now, we assume that any non-nothrow expression can
    243   // throw any exception.
    244 
    245   if (Self->canThrow(E))
    246     ComputedEST = EST_None;
    247 }
    248 
    249 bool
    250 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
    251                               SourceLocation EqualLoc) {
    252   if (RequireCompleteType(Param->getLocation(), Param->getType(),
    253                           diag::err_typecheck_decl_incomplete_type)) {
    254     Param->setInvalidDecl();
    255     return true;
    256   }
    257 
    258   // C++ [dcl.fct.default]p5
    259   //   A default argument expression is implicitly converted (clause
    260   //   4) to the parameter type. The default argument expression has
    261   //   the same semantic constraints as the initializer expression in
    262   //   a declaration of a variable of the parameter type, using the
    263   //   copy-initialization semantics (8.5).
    264   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
    265                                                                     Param);
    266   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
    267                                                            EqualLoc);
    268   InitializationSequence InitSeq(*this, Entity, Kind, Arg);
    269   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
    270   if (Result.isInvalid())
    271     return true;
    272   Arg = Result.getAs<Expr>();
    273 
    274   CheckCompletedExpr(Arg, EqualLoc);
    275   Arg = MaybeCreateExprWithCleanups(Arg);
    276 
    277   // Okay: add the default argument to the parameter
    278   Param->setDefaultArg(Arg);
    279 
    280   // We have already instantiated this parameter; provide each of the
    281   // instantiations with the uninstantiated default argument.
    282   UnparsedDefaultArgInstantiationsMap::iterator InstPos
    283     = UnparsedDefaultArgInstantiations.find(Param);
    284   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
    285     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
    286       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
    287 
    288     // We're done tracking this parameter's instantiations.
    289     UnparsedDefaultArgInstantiations.erase(InstPos);
    290   }
    291 
    292   return false;
    293 }
    294 
    295 /// ActOnParamDefaultArgument - Check whether the default argument
    296 /// provided for a function parameter is well-formed. If so, attach it
    297 /// to the parameter declaration.
    298 void
    299 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
    300                                 Expr *DefaultArg) {
    301   if (!param || !DefaultArg)
    302     return;
    303 
    304   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    305   UnparsedDefaultArgLocs.erase(Param);
    306 
    307   // Default arguments are only permitted in C++
    308   if (!getLangOpts().CPlusPlus) {
    309     Diag(EqualLoc, diag::err_param_default_argument)
    310       << DefaultArg->getSourceRange();
    311     Param->setInvalidDecl();
    312     return;
    313   }
    314 
    315   // Check for unexpanded parameter packs.
    316   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
    317     Param->setInvalidDecl();
    318     return;
    319   }
    320 
    321   // C++11 [dcl.fct.default]p3
    322   //   A default argument expression [...] shall not be specified for a
    323   //   parameter pack.
    324   if (Param->isParameterPack()) {
    325     Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
    326         << DefaultArg->getSourceRange();
    327     return;
    328   }
    329 
    330   // Check that the default argument is well-formed
    331   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
    332   if (DefaultArgChecker.Visit(DefaultArg)) {
    333     Param->setInvalidDecl();
    334     return;
    335   }
    336 
    337   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
    338 }
    339 
    340 /// ActOnParamUnparsedDefaultArgument - We've seen a default
    341 /// argument for a function parameter, but we can't parse it yet
    342 /// because we're inside a class definition. Note that this default
    343 /// argument will be parsed later.
    344 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
    345                                              SourceLocation EqualLoc,
    346                                              SourceLocation ArgLoc) {
    347   if (!param)
    348     return;
    349 
    350   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    351   Param->setUnparsedDefaultArg();
    352   UnparsedDefaultArgLocs[Param] = ArgLoc;
    353 }
    354 
    355 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
    356 /// the default argument for the parameter param failed.
    357 void Sema::ActOnParamDefaultArgumentError(Decl *param,
    358                                           SourceLocation EqualLoc) {
    359   if (!param)
    360     return;
    361 
    362   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    363   Param->setInvalidDecl();
    364   UnparsedDefaultArgLocs.erase(Param);
    365   Param->setDefaultArg(new(Context)
    366                        OpaqueValueExpr(EqualLoc,
    367                                        Param->getType().getNonReferenceType(),
    368                                        VK_RValue));
    369 }
    370 
    371 /// CheckExtraCXXDefaultArguments - Check for any extra default
    372 /// arguments in the declarator, which is not a function declaration
    373 /// or definition and therefore is not permitted to have default
    374 /// arguments. This routine should be invoked for every declarator
    375 /// that is not a function declaration or definition.
    376 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
    377   // C++ [dcl.fct.default]p3
    378   //   A default argument expression shall be specified only in the
    379   //   parameter-declaration-clause of a function declaration or in a
    380   //   template-parameter (14.1). It shall not be specified for a
    381   //   parameter pack. If it is specified in a
    382   //   parameter-declaration-clause, it shall not occur within a
    383   //   declarator or abstract-declarator of a parameter-declaration.
    384   bool MightBeFunction = D.isFunctionDeclarationContext();
    385   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    386     DeclaratorChunk &chunk = D.getTypeObject(i);
    387     if (chunk.Kind == DeclaratorChunk::Function) {
    388       if (MightBeFunction) {
    389         // This is a function declaration. It can have default arguments, but
    390         // keep looking in case its return type is a function type with default
    391         // arguments.
    392         MightBeFunction = false;
    393         continue;
    394       }
    395       for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
    396            ++argIdx) {
    397         ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
    398         if (Param->hasUnparsedDefaultArg()) {
    399           CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens;
    400           SourceRange SR;
    401           if (Toks->size() > 1)
    402             SR = SourceRange((*Toks)[1].getLocation(),
    403                              Toks->back().getLocation());
    404           else
    405             SR = UnparsedDefaultArgLocs[Param];
    406           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
    407             << SR;
    408           delete Toks;
    409           chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr;
    410         } else if (Param->getDefaultArg()) {
    411           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
    412             << Param->getDefaultArg()->getSourceRange();
    413           Param->setDefaultArg(nullptr);
    414         }
    415       }
    416     } else if (chunk.Kind != DeclaratorChunk::Paren) {
    417       MightBeFunction = false;
    418     }
    419   }
    420 }
    421 
    422 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
    423   for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
    424     const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
    425     if (!PVD->hasDefaultArg())
    426       return false;
    427     if (!PVD->hasInheritedDefaultArg())
    428       return true;
    429   }
    430   return false;
    431 }
    432 
    433 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
    434 /// function, once we already know that they have the same
    435 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
    436 /// error, false otherwise.
    437 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
    438                                 Scope *S) {
    439   bool Invalid = false;
    440 
    441   // C++ [dcl.fct.default]p4:
    442   //   For non-template functions, default arguments can be added in
    443   //   later declarations of a function in the same
    444   //   scope. Declarations in different scopes have completely
    445   //   distinct sets of default arguments. That is, declarations in
    446   //   inner scopes do not acquire default arguments from
    447   //   declarations in outer scopes, and vice versa. In a given
    448   //   function declaration, all parameters subsequent to a
    449   //   parameter with a default argument shall have default
    450   //   arguments supplied in this or previous declarations. A
    451   //   default argument shall not be redefined by a later
    452   //   declaration (not even to the same value).
    453   //
    454   // C++ [dcl.fct.default]p6:
    455   //   Except for member functions of class templates, the default arguments
    456   //   in a member function definition that appears outside of the class
    457   //   definition are added to the set of default arguments provided by the
    458   //   member function declaration in the class definition.
    459   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
    460     ParmVarDecl *OldParam = Old->getParamDecl(p);
    461     ParmVarDecl *NewParam = New->getParamDecl(p);
    462 
    463     bool OldParamHasDfl = OldParam->hasDefaultArg();
    464     bool NewParamHasDfl = NewParam->hasDefaultArg();
    465 
    466     // The declaration context corresponding to the scope is the semantic
    467     // parent, unless this is a local function declaration, in which case
    468     // it is that surrounding function.
    469     DeclContext *ScopeDC = New->isLocalExternDecl()
    470                                ? New->getLexicalDeclContext()
    471                                : New->getDeclContext();
    472     if (S && !isDeclInScope(Old, ScopeDC, S) &&
    473         !New->getDeclContext()->isRecord())
    474       // Ignore default parameters of old decl if they are not in
    475       // the same scope and this is not an out-of-line definition of
    476       // a member function.
    477       OldParamHasDfl = false;
    478     if (New->isLocalExternDecl() != Old->isLocalExternDecl())
    479       // If only one of these is a local function declaration, then they are
    480       // declared in different scopes, even though isDeclInScope may think
    481       // they're in the same scope. (If both are local, the scope check is
    482       // sufficent, and if neither is local, then they are in the same scope.)
    483       OldParamHasDfl = false;
    484 
    485     if (OldParamHasDfl && NewParamHasDfl) {
    486 
    487       unsigned DiagDefaultParamID =
    488         diag::err_param_default_argument_redefinition;
    489 
    490       // MSVC accepts that default parameters be redefined for member functions
    491       // of template class. The new default parameter's value is ignored.
    492       Invalid = true;
    493       if (getLangOpts().MicrosoftExt) {
    494         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
    495         if (MD && MD->getParent()->getDescribedClassTemplate()) {
    496           // Merge the old default argument into the new parameter.
    497           NewParam->setHasInheritedDefaultArg();
    498           if (OldParam->hasUninstantiatedDefaultArg())
    499             NewParam->setUninstantiatedDefaultArg(
    500                                       OldParam->getUninstantiatedDefaultArg());
    501           else
    502             NewParam->setDefaultArg(OldParam->getInit());
    503           DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
    504           Invalid = false;
    505         }
    506       }
    507 
    508       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
    509       // hint here. Alternatively, we could walk the type-source information
    510       // for NewParam to find the last source location in the type... but it
    511       // isn't worth the effort right now. This is the kind of test case that
    512       // is hard to get right:
    513       //   int f(int);
    514       //   void g(int (*fp)(int) = f);
    515       //   void g(int (*fp)(int) = &f);
    516       Diag(NewParam->getLocation(), DiagDefaultParamID)
    517         << NewParam->getDefaultArgRange();
    518 
    519       // Look for the function declaration where the default argument was
    520       // actually written, which may be a declaration prior to Old.
    521       for (auto Older = Old; OldParam->hasInheritedDefaultArg();) {
    522         Older = Older->getPreviousDecl();
    523         OldParam = Older->getParamDecl(p);
    524       }
    525 
    526       Diag(OldParam->getLocation(), diag::note_previous_definition)
    527         << OldParam->getDefaultArgRange();
    528     } else if (OldParamHasDfl) {
    529       // Merge the old default argument into the new parameter.
    530       // It's important to use getInit() here;  getDefaultArg()
    531       // strips off any top-level ExprWithCleanups.
    532       NewParam->setHasInheritedDefaultArg();
    533       if (OldParam->hasUnparsedDefaultArg())
    534         NewParam->setUnparsedDefaultArg();
    535       else if (OldParam->hasUninstantiatedDefaultArg())
    536         NewParam->setUninstantiatedDefaultArg(
    537                                       OldParam->getUninstantiatedDefaultArg());
    538       else
    539         NewParam->setDefaultArg(OldParam->getInit());
    540     } else if (NewParamHasDfl) {
    541       if (New->getDescribedFunctionTemplate()) {
    542         // Paragraph 4, quoted above, only applies to non-template functions.
    543         Diag(NewParam->getLocation(),
    544              diag::err_param_default_argument_template_redecl)
    545           << NewParam->getDefaultArgRange();
    546         Diag(Old->getLocation(), diag::note_template_prev_declaration)
    547           << false;
    548       } else if (New->getTemplateSpecializationKind()
    549                    != TSK_ImplicitInstantiation &&
    550                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
    551         // C++ [temp.expr.spec]p21:
    552         //   Default function arguments shall not be specified in a declaration
    553         //   or a definition for one of the following explicit specializations:
    554         //     - the explicit specialization of a function template;
    555         //     - the explicit specialization of a member function template;
    556         //     - the explicit specialization of a member function of a class
    557         //       template where the class template specialization to which the
    558         //       member function specialization belongs is implicitly
    559         //       instantiated.
    560         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
    561           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
    562           << New->getDeclName()
    563           << NewParam->getDefaultArgRange();
    564       } else if (New->getDeclContext()->isDependentContext()) {
    565         // C++ [dcl.fct.default]p6 (DR217):
    566         //   Default arguments for a member function of a class template shall
    567         //   be specified on the initial declaration of the member function
    568         //   within the class template.
    569         //
    570         // Reading the tea leaves a bit in DR217 and its reference to DR205
    571         // leads me to the conclusion that one cannot add default function
    572         // arguments for an out-of-line definition of a member function of a
    573         // dependent type.
    574         int WhichKind = 2;
    575         if (CXXRecordDecl *Record
    576               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
    577           if (Record->getDescribedClassTemplate())
    578             WhichKind = 0;
    579           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
    580             WhichKind = 1;
    581           else
    582             WhichKind = 2;
    583         }
    584 
    585         Diag(NewParam->getLocation(),
    586              diag::err_param_default_argument_member_template_redecl)
    587           << WhichKind
    588           << NewParam->getDefaultArgRange();
    589       }
    590     }
    591   }
    592 
    593   // DR1344: If a default argument is added outside a class definition and that
    594   // default argument makes the function a special member function, the program
    595   // is ill-formed. This can only happen for constructors.
    596   if (isa<CXXConstructorDecl>(New) &&
    597       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
    598     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
    599                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
    600     if (NewSM != OldSM) {
    601       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
    602       assert(NewParam->hasDefaultArg());
    603       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
    604         << NewParam->getDefaultArgRange() << NewSM;
    605       Diag(Old->getLocation(), diag::note_previous_declaration);
    606     }
    607   }
    608 
    609   const FunctionDecl *Def;
    610   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
    611   // template has a constexpr specifier then all its declarations shall
    612   // contain the constexpr specifier.
    613   if (New->isConstexpr() != Old->isConstexpr()) {
    614     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
    615       << New << New->isConstexpr();
    616     Diag(Old->getLocation(), diag::note_previous_declaration);
    617     Invalid = true;
    618   } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
    619              Old->isDefined(Def)) {
    620     // C++11 [dcl.fcn.spec]p4:
    621     //   If the definition of a function appears in a translation unit before its
    622     //   first declaration as inline, the program is ill-formed.
    623     Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
    624     Diag(Def->getLocation(), diag::note_previous_definition);
    625     Invalid = true;
    626   }
    627 
    628   // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
    629   // argument expression, that declaration shall be a definition and shall be
    630   // the only declaration of the function or function template in the
    631   // translation unit.
    632   if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
    633       functionDeclHasDefaultArgument(Old)) {
    634     Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
    635     Diag(Old->getLocation(), diag::note_previous_declaration);
    636     Invalid = true;
    637   }
    638 
    639   if (CheckEquivalentExceptionSpec(Old, New))
    640     Invalid = true;
    641 
    642   return Invalid;
    643 }
    644 
    645 /// \brief Merge the exception specifications of two variable declarations.
    646 ///
    647 /// This is called when there's a redeclaration of a VarDecl. The function
    648 /// checks if the redeclaration might have an exception specification and
    649 /// validates compatibility and merges the specs if necessary.
    650 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
    651   // Shortcut if exceptions are disabled.
    652   if (!getLangOpts().CXXExceptions)
    653     return;
    654 
    655   assert(Context.hasSameType(New->getType(), Old->getType()) &&
    656          "Should only be called if types are otherwise the same.");
    657 
    658   QualType NewType = New->getType();
    659   QualType OldType = Old->getType();
    660 
    661   // We're only interested in pointers and references to functions, as well
    662   // as pointers to member functions.
    663   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
    664     NewType = R->getPointeeType();
    665     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
    666   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
    667     NewType = P->getPointeeType();
    668     OldType = OldType->getAs<PointerType>()->getPointeeType();
    669   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
    670     NewType = M->getPointeeType();
    671     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
    672   }
    673 
    674   if (!NewType->isFunctionProtoType())
    675     return;
    676 
    677   // There's lots of special cases for functions. For function pointers, system
    678   // libraries are hopefully not as broken so that we don't need these
    679   // workarounds.
    680   if (CheckEquivalentExceptionSpec(
    681         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
    682         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
    683     New->setInvalidDecl();
    684   }
    685 }
    686 
    687 /// CheckCXXDefaultArguments - Verify that the default arguments for a
    688 /// function declaration are well-formed according to C++
    689 /// [dcl.fct.default].
    690 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
    691   unsigned NumParams = FD->getNumParams();
    692   unsigned p;
    693 
    694   // Find first parameter with a default argument
    695   for (p = 0; p < NumParams; ++p) {
    696     ParmVarDecl *Param = FD->getParamDecl(p);
    697     if (Param->hasDefaultArg())
    698       break;
    699   }
    700 
    701   // C++11 [dcl.fct.default]p4:
    702   //   In a given function declaration, each parameter subsequent to a parameter
    703   //   with a default argument shall have a default argument supplied in this or
    704   //   a previous declaration or shall be a function parameter pack. A default
    705   //   argument shall not be redefined by a later declaration (not even to the
    706   //   same value).
    707   unsigned LastMissingDefaultArg = 0;
    708   for (; p < NumParams; ++p) {
    709     ParmVarDecl *Param = FD->getParamDecl(p);
    710     if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
    711       if (Param->isInvalidDecl())
    712         /* We already complained about this parameter. */;
    713       else if (Param->getIdentifier())
    714         Diag(Param->getLocation(),
    715              diag::err_param_default_argument_missing_name)
    716           << Param->getIdentifier();
    717       else
    718         Diag(Param->getLocation(),
    719              diag::err_param_default_argument_missing);
    720 
    721       LastMissingDefaultArg = p;
    722     }
    723   }
    724 
    725   if (LastMissingDefaultArg > 0) {
    726     // Some default arguments were missing. Clear out all of the
    727     // default arguments up to (and including) the last missing
    728     // default argument, so that we leave the function parameters
    729     // in a semantically valid state.
    730     for (p = 0; p <= LastMissingDefaultArg; ++p) {
    731       ParmVarDecl *Param = FD->getParamDecl(p);
    732       if (Param->hasDefaultArg()) {
    733         Param->setDefaultArg(nullptr);
    734       }
    735     }
    736   }
    737 }
    738 
    739 // CheckConstexprParameterTypes - Check whether a function's parameter types
    740 // are all literal types. If so, return true. If not, produce a suitable
    741 // diagnostic and return false.
    742 static bool CheckConstexprParameterTypes(Sema &SemaRef,
    743                                          const FunctionDecl *FD) {
    744   unsigned ArgIndex = 0;
    745   const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
    746   for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
    747                                               e = FT->param_type_end();
    748        i != e; ++i, ++ArgIndex) {
    749     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
    750     SourceLocation ParamLoc = PD->getLocation();
    751     if (!(*i)->isDependentType() &&
    752         SemaRef.RequireLiteralType(ParamLoc, *i,
    753                                    diag::err_constexpr_non_literal_param,
    754                                    ArgIndex+1, PD->getSourceRange(),
    755                                    isa<CXXConstructorDecl>(FD)))
    756       return false;
    757   }
    758   return true;
    759 }
    760 
    761 /// \brief Get diagnostic %select index for tag kind for
    762 /// record diagnostic message.
    763 /// WARNING: Indexes apply to particular diagnostics only!
    764 ///
    765 /// \returns diagnostic %select index.
    766 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
    767   switch (Tag) {
    768   case TTK_Struct: return 0;
    769   case TTK_Interface: return 1;
    770   case TTK_Class:  return 2;
    771   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
    772   }
    773 }
    774 
    775 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
    776 // the requirements of a constexpr function definition or a constexpr
    777 // constructor definition. If so, return true. If not, produce appropriate
    778 // diagnostics and return false.
    779 //
    780 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
    781 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
    782   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
    783   if (MD && MD->isInstance()) {
    784     // C++11 [dcl.constexpr]p4:
    785     //  The definition of a constexpr constructor shall satisfy the following
    786     //  constraints:
    787     //  - the class shall not have any virtual base classes;
    788     const CXXRecordDecl *RD = MD->getParent();
    789     if (RD->getNumVBases()) {
    790       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
    791         << isa<CXXConstructorDecl>(NewFD)
    792         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
    793       for (const auto &I : RD->vbases())
    794         Diag(I.getLocStart(),
    795              diag::note_constexpr_virtual_base_here) << I.getSourceRange();
    796       return false;
    797     }
    798   }
    799 
    800   if (!isa<CXXConstructorDecl>(NewFD)) {
    801     // C++11 [dcl.constexpr]p3:
    802     //  The definition of a constexpr function shall satisfy the following
    803     //  constraints:
    804     // - it shall not be virtual;
    805     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
    806     if (Method && Method->isVirtual()) {
    807       Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
    808 
    809       // If it's not obvious why this function is virtual, find an overridden
    810       // function which uses the 'virtual' keyword.
    811       const CXXMethodDecl *WrittenVirtual = Method;
    812       while (!WrittenVirtual->isVirtualAsWritten())
    813         WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
    814       if (WrittenVirtual != Method)
    815         Diag(WrittenVirtual->getLocation(),
    816              diag::note_overridden_virtual_function);
    817       return false;
    818     }
    819 
    820     // - its return type shall be a literal type;
    821     QualType RT = NewFD->getReturnType();
    822     if (!RT->isDependentType() &&
    823         RequireLiteralType(NewFD->getLocation(), RT,
    824                            diag::err_constexpr_non_literal_return))
    825       return false;
    826   }
    827 
    828   // - each of its parameter types shall be a literal type;
    829   if (!CheckConstexprParameterTypes(*this, NewFD))
    830     return false;
    831 
    832   return true;
    833 }
    834 
    835 /// Check the given declaration statement is legal within a constexpr function
    836 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
    837 ///
    838 /// \return true if the body is OK (maybe only as an extension), false if we
    839 ///         have diagnosed a problem.
    840 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
    841                                    DeclStmt *DS, SourceLocation &Cxx1yLoc) {
    842   // C++11 [dcl.constexpr]p3 and p4:
    843   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
    844   //  contain only
    845   for (const auto *DclIt : DS->decls()) {
    846     switch (DclIt->getKind()) {
    847     case Decl::StaticAssert:
    848     case Decl::Using:
    849     case Decl::UsingShadow:
    850     case Decl::UsingDirective:
    851     case Decl::UnresolvedUsingTypename:
    852     case Decl::UnresolvedUsingValue:
    853       //   - static_assert-declarations
    854       //   - using-declarations,
    855       //   - using-directives,
    856       continue;
    857 
    858     case Decl::Typedef:
    859     case Decl::TypeAlias: {
    860       //   - typedef declarations and alias-declarations that do not define
    861       //     classes or enumerations,
    862       const auto *TN = cast<TypedefNameDecl>(DclIt);
    863       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
    864         // Don't allow variably-modified types in constexpr functions.
    865         TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
    866         SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
    867           << TL.getSourceRange() << TL.getType()
    868           << isa<CXXConstructorDecl>(Dcl);
    869         return false;
    870       }
    871       continue;
    872     }
    873 
    874     case Decl::Enum:
    875     case Decl::CXXRecord:
    876       // C++1y allows types to be defined, not just declared.
    877       if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
    878         SemaRef.Diag(DS->getLocStart(),
    879                      SemaRef.getLangOpts().CPlusPlus14
    880                        ? diag::warn_cxx11_compat_constexpr_type_definition
    881                        : diag::ext_constexpr_type_definition)
    882           << isa<CXXConstructorDecl>(Dcl);
    883       continue;
    884 
    885     case Decl::EnumConstant:
    886     case Decl::IndirectField:
    887     case Decl::ParmVar:
    888       // These can only appear with other declarations which are banned in
    889       // C++11 and permitted in C++1y, so ignore them.
    890       continue;
    891 
    892     case Decl::Var: {
    893       // C++1y [dcl.constexpr]p3 allows anything except:
    894       //   a definition of a variable of non-literal type or of static or
    895       //   thread storage duration or for which no initialization is performed.
    896       const auto *VD = cast<VarDecl>(DclIt);
    897       if (VD->isThisDeclarationADefinition()) {
    898         if (VD->isStaticLocal()) {
    899           SemaRef.Diag(VD->getLocation(),
    900                        diag::err_constexpr_local_var_static)
    901             << isa<CXXConstructorDecl>(Dcl)
    902             << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
    903           return false;
    904         }
    905         if (!VD->getType()->isDependentType() &&
    906             SemaRef.RequireLiteralType(
    907               VD->getLocation(), VD->getType(),
    908               diag::err_constexpr_local_var_non_literal_type,
    909               isa<CXXConstructorDecl>(Dcl)))
    910           return false;
    911         if (!VD->getType()->isDependentType() &&
    912             !VD->hasInit() && !VD->isCXXForRangeDecl()) {
    913           SemaRef.Diag(VD->getLocation(),
    914                        diag::err_constexpr_local_var_no_init)
    915             << isa<CXXConstructorDecl>(Dcl);
    916           return false;
    917         }
    918       }
    919       SemaRef.Diag(VD->getLocation(),
    920                    SemaRef.getLangOpts().CPlusPlus14
    921                     ? diag::warn_cxx11_compat_constexpr_local_var
    922                     : diag::ext_constexpr_local_var)
    923         << isa<CXXConstructorDecl>(Dcl);
    924       continue;
    925     }
    926 
    927     case Decl::NamespaceAlias:
    928     case Decl::Function:
    929       // These are disallowed in C++11 and permitted in C++1y. Allow them
    930       // everywhere as an extension.
    931       if (!Cxx1yLoc.isValid())
    932         Cxx1yLoc = DS->getLocStart();
    933       continue;
    934 
    935     default:
    936       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
    937         << isa<CXXConstructorDecl>(Dcl);
    938       return false;
    939     }
    940   }
    941 
    942   return true;
    943 }
    944 
    945 /// Check that the given field is initialized within a constexpr constructor.
    946 ///
    947 /// \param Dcl The constexpr constructor being checked.
    948 /// \param Field The field being checked. This may be a member of an anonymous
    949 ///        struct or union nested within the class being checked.
    950 /// \param Inits All declarations, including anonymous struct/union members and
    951 ///        indirect members, for which any initialization was provided.
    952 /// \param Diagnosed Set to true if an error is produced.
    953 static void CheckConstexprCtorInitializer(Sema &SemaRef,
    954                                           const FunctionDecl *Dcl,
    955                                           FieldDecl *Field,
    956                                           llvm::SmallSet<Decl*, 16> &Inits,
    957                                           bool &Diagnosed) {
    958   if (Field->isInvalidDecl())
    959     return;
    960 
    961   if (Field->isUnnamedBitfield())
    962     return;
    963 
    964   // Anonymous unions with no variant members and empty anonymous structs do not
    965   // need to be explicitly initialized. FIXME: Anonymous structs that contain no
    966   // indirect fields don't need initializing.
    967   if (Field->isAnonymousStructOrUnion() &&
    968       (Field->getType()->isUnionType()
    969            ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
    970            : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
    971     return;
    972 
    973   if (!Inits.count(Field)) {
    974     if (!Diagnosed) {
    975       SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
    976       Diagnosed = true;
    977     }
    978     SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
    979   } else if (Field->isAnonymousStructOrUnion()) {
    980     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
    981     for (auto *I : RD->fields())
    982       // If an anonymous union contains an anonymous struct of which any member
    983       // is initialized, all members must be initialized.
    984       if (!RD->isUnion() || Inits.count(I))
    985         CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
    986   }
    987 }
    988 
    989 /// Check the provided statement is allowed in a constexpr function
    990 /// definition.
    991 static bool
    992 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
    993                            SmallVectorImpl<SourceLocation> &ReturnStmts,
    994                            SourceLocation &Cxx1yLoc) {
    995   // - its function-body shall be [...] a compound-statement that contains only
    996   switch (S->getStmtClass()) {
    997   case Stmt::NullStmtClass:
    998     //   - null statements,
    999     return true;
   1000 
   1001   case Stmt::DeclStmtClass:
   1002     //   - static_assert-declarations
   1003     //   - using-declarations,
   1004     //   - using-directives,
   1005     //   - typedef declarations and alias-declarations that do not define
   1006     //     classes or enumerations,
   1007     if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
   1008       return false;
   1009     return true;
   1010 
   1011   case Stmt::ReturnStmtClass:
   1012     //   - and exactly one return statement;
   1013     if (isa<CXXConstructorDecl>(Dcl)) {
   1014       // C++1y allows return statements in constexpr constructors.
   1015       if (!Cxx1yLoc.isValid())
   1016         Cxx1yLoc = S->getLocStart();
   1017       return true;
   1018     }
   1019 
   1020     ReturnStmts.push_back(S->getLocStart());
   1021     return true;
   1022 
   1023   case Stmt::CompoundStmtClass: {
   1024     // C++1y allows compound-statements.
   1025     if (!Cxx1yLoc.isValid())
   1026       Cxx1yLoc = S->getLocStart();
   1027 
   1028     CompoundStmt *CompStmt = cast<CompoundStmt>(S);
   1029     for (auto *BodyIt : CompStmt->body()) {
   1030       if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
   1031                                       Cxx1yLoc))
   1032         return false;
   1033     }
   1034     return true;
   1035   }
   1036 
   1037   case Stmt::AttributedStmtClass:
   1038     if (!Cxx1yLoc.isValid())
   1039       Cxx1yLoc = S->getLocStart();
   1040     return true;
   1041 
   1042   case Stmt::IfStmtClass: {
   1043     // C++1y allows if-statements.
   1044     if (!Cxx1yLoc.isValid())
   1045       Cxx1yLoc = S->getLocStart();
   1046 
   1047     IfStmt *If = cast<IfStmt>(S);
   1048     if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
   1049                                     Cxx1yLoc))
   1050       return false;
   1051     if (If->getElse() &&
   1052         !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
   1053                                     Cxx1yLoc))
   1054       return false;
   1055     return true;
   1056   }
   1057 
   1058   case Stmt::WhileStmtClass:
   1059   case Stmt::DoStmtClass:
   1060   case Stmt::ForStmtClass:
   1061   case Stmt::CXXForRangeStmtClass:
   1062   case Stmt::ContinueStmtClass:
   1063     // C++1y allows all of these. We don't allow them as extensions in C++11,
   1064     // because they don't make sense without variable mutation.
   1065     if (!SemaRef.getLangOpts().CPlusPlus14)
   1066       break;
   1067     if (!Cxx1yLoc.isValid())
   1068       Cxx1yLoc = S->getLocStart();
   1069     for (Stmt::child_range Children = S->children(); Children; ++Children)
   1070       if (*Children &&
   1071           !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
   1072                                       Cxx1yLoc))
   1073         return false;
   1074     return true;
   1075 
   1076   case Stmt::SwitchStmtClass:
   1077   case Stmt::CaseStmtClass:
   1078   case Stmt::DefaultStmtClass:
   1079   case Stmt::BreakStmtClass:
   1080     // C++1y allows switch-statements, and since they don't need variable
   1081     // mutation, we can reasonably allow them in C++11 as an extension.
   1082     if (!Cxx1yLoc.isValid())
   1083       Cxx1yLoc = S->getLocStart();
   1084     for (Stmt::child_range Children = S->children(); Children; ++Children)
   1085       if (*Children &&
   1086           !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
   1087                                       Cxx1yLoc))
   1088         return false;
   1089     return true;
   1090 
   1091   default:
   1092     if (!isa<Expr>(S))
   1093       break;
   1094 
   1095     // C++1y allows expression-statements.
   1096     if (!Cxx1yLoc.isValid())
   1097       Cxx1yLoc = S->getLocStart();
   1098     return true;
   1099   }
   1100 
   1101   SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
   1102     << isa<CXXConstructorDecl>(Dcl);
   1103   return false;
   1104 }
   1105 
   1106 /// Check the body for the given constexpr function declaration only contains
   1107 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
   1108 ///
   1109 /// \return true if the body is OK, false if we have diagnosed a problem.
   1110 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
   1111   if (isa<CXXTryStmt>(Body)) {
   1112     // C++11 [dcl.constexpr]p3:
   1113     //  The definition of a constexpr function shall satisfy the following
   1114     //  constraints: [...]
   1115     // - its function-body shall be = delete, = default, or a
   1116     //   compound-statement
   1117     //
   1118     // C++11 [dcl.constexpr]p4:
   1119     //  In the definition of a constexpr constructor, [...]
   1120     // - its function-body shall not be a function-try-block;
   1121     Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
   1122       << isa<CXXConstructorDecl>(Dcl);
   1123     return false;
   1124   }
   1125 
   1126   SmallVector<SourceLocation, 4> ReturnStmts;
   1127 
   1128   // - its function-body shall be [...] a compound-statement that contains only
   1129   //   [... list of cases ...]
   1130   CompoundStmt *CompBody = cast<CompoundStmt>(Body);
   1131   SourceLocation Cxx1yLoc;
   1132   for (auto *BodyIt : CompBody->body()) {
   1133     if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
   1134       return false;
   1135   }
   1136 
   1137   if (Cxx1yLoc.isValid())
   1138     Diag(Cxx1yLoc,
   1139          getLangOpts().CPlusPlus14
   1140            ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
   1141            : diag::ext_constexpr_body_invalid_stmt)
   1142       << isa<CXXConstructorDecl>(Dcl);
   1143 
   1144   if (const CXXConstructorDecl *Constructor
   1145         = dyn_cast<CXXConstructorDecl>(Dcl)) {
   1146     const CXXRecordDecl *RD = Constructor->getParent();
   1147     // DR1359:
   1148     // - every non-variant non-static data member and base class sub-object
   1149     //   shall be initialized;
   1150     // DR1460:
   1151     // - if the class is a union having variant members, exactly one of them
   1152     //   shall be initialized;
   1153     if (RD->isUnion()) {
   1154       if (Constructor->getNumCtorInitializers() == 0 &&
   1155           RD->hasVariantMembers()) {
   1156         Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
   1157         return false;
   1158       }
   1159     } else if (!Constructor->isDependentContext() &&
   1160                !Constructor->isDelegatingConstructor()) {
   1161       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
   1162 
   1163       // Skip detailed checking if we have enough initializers, and we would
   1164       // allow at most one initializer per member.
   1165       bool AnyAnonStructUnionMembers = false;
   1166       unsigned Fields = 0;
   1167       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
   1168            E = RD->field_end(); I != E; ++I, ++Fields) {
   1169         if (I->isAnonymousStructOrUnion()) {
   1170           AnyAnonStructUnionMembers = true;
   1171           break;
   1172         }
   1173       }
   1174       // DR1460:
   1175       // - if the class is a union-like class, but is not a union, for each of
   1176       //   its anonymous union members having variant members, exactly one of
   1177       //   them shall be initialized;
   1178       if (AnyAnonStructUnionMembers ||
   1179           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
   1180         // Check initialization of non-static data members. Base classes are
   1181         // always initialized so do not need to be checked. Dependent bases
   1182         // might not have initializers in the member initializer list.
   1183         llvm::SmallSet<Decl*, 16> Inits;
   1184         for (const auto *I: Constructor->inits()) {
   1185           if (FieldDecl *FD = I->getMember())
   1186             Inits.insert(FD);
   1187           else if (IndirectFieldDecl *ID = I->getIndirectMember())
   1188             Inits.insert(ID->chain_begin(), ID->chain_end());
   1189         }
   1190 
   1191         bool Diagnosed = false;
   1192         for (auto *I : RD->fields())
   1193           CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
   1194         if (Diagnosed)
   1195           return false;
   1196       }
   1197     }
   1198   } else {
   1199     if (ReturnStmts.empty()) {
   1200       // C++1y doesn't require constexpr functions to contain a 'return'
   1201       // statement. We still do, unless the return type might be void, because
   1202       // otherwise if there's no return statement, the function cannot
   1203       // be used in a core constant expression.
   1204       bool OK = getLangOpts().CPlusPlus14 &&
   1205                 (Dcl->getReturnType()->isVoidType() ||
   1206                  Dcl->getReturnType()->isDependentType());
   1207       Diag(Dcl->getLocation(),
   1208            OK ? diag::warn_cxx11_compat_constexpr_body_no_return
   1209               : diag::err_constexpr_body_no_return);
   1210       return OK;
   1211     }
   1212     if (ReturnStmts.size() > 1) {
   1213       Diag(ReturnStmts.back(),
   1214            getLangOpts().CPlusPlus14
   1215              ? diag::warn_cxx11_compat_constexpr_body_multiple_return
   1216              : diag::ext_constexpr_body_multiple_return);
   1217       for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
   1218         Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
   1219     }
   1220   }
   1221 
   1222   // C++11 [dcl.constexpr]p5:
   1223   //   if no function argument values exist such that the function invocation
   1224   //   substitution would produce a constant expression, the program is
   1225   //   ill-formed; no diagnostic required.
   1226   // C++11 [dcl.constexpr]p3:
   1227   //   - every constructor call and implicit conversion used in initializing the
   1228   //     return value shall be one of those allowed in a constant expression.
   1229   // C++11 [dcl.constexpr]p4:
   1230   //   - every constructor involved in initializing non-static data members and
   1231   //     base class sub-objects shall be a constexpr constructor.
   1232   SmallVector<PartialDiagnosticAt, 8> Diags;
   1233   if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
   1234     Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
   1235       << isa<CXXConstructorDecl>(Dcl);
   1236     for (size_t I = 0, N = Diags.size(); I != N; ++I)
   1237       Diag(Diags[I].first, Diags[I].second);
   1238     // Don't return false here: we allow this for compatibility in
   1239     // system headers.
   1240   }
   1241 
   1242   return true;
   1243 }
   1244 
   1245 /// isCurrentClassName - Determine whether the identifier II is the
   1246 /// name of the class type currently being defined. In the case of
   1247 /// nested classes, this will only return true if II is the name of
   1248 /// the innermost class.
   1249 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
   1250                               const CXXScopeSpec *SS) {
   1251   assert(getLangOpts().CPlusPlus && "No class names in C!");
   1252 
   1253   CXXRecordDecl *CurDecl;
   1254   if (SS && SS->isSet() && !SS->isInvalid()) {
   1255     DeclContext *DC = computeDeclContext(*SS, true);
   1256     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
   1257   } else
   1258     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
   1259 
   1260   if (CurDecl && CurDecl->getIdentifier())
   1261     return &II == CurDecl->getIdentifier();
   1262   return false;
   1263 }
   1264 
   1265 /// \brief Determine whether the identifier II is a typo for the name of
   1266 /// the class type currently being defined. If so, update it to the identifier
   1267 /// that should have been used.
   1268 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
   1269   assert(getLangOpts().CPlusPlus && "No class names in C!");
   1270 
   1271   if (!getLangOpts().SpellChecking)
   1272     return false;
   1273 
   1274   CXXRecordDecl *CurDecl;
   1275   if (SS && SS->isSet() && !SS->isInvalid()) {
   1276     DeclContext *DC = computeDeclContext(*SS, true);
   1277     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
   1278   } else
   1279     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
   1280 
   1281   if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
   1282       3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
   1283           < II->getLength()) {
   1284     II = CurDecl->getIdentifier();
   1285     return true;
   1286   }
   1287 
   1288   return false;
   1289 }
   1290 
   1291 /// \brief Determine whether the given class is a base class of the given
   1292 /// class, including looking at dependent bases.
   1293 static bool findCircularInheritance(const CXXRecordDecl *Class,
   1294                                     const CXXRecordDecl *Current) {
   1295   SmallVector<const CXXRecordDecl*, 8> Queue;
   1296 
   1297   Class = Class->getCanonicalDecl();
   1298   while (true) {
   1299     for (const auto &I : Current->bases()) {
   1300       CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
   1301       if (!Base)
   1302         continue;
   1303 
   1304       Base = Base->getDefinition();
   1305       if (!Base)
   1306         continue;
   1307 
   1308       if (Base->getCanonicalDecl() == Class)
   1309         return true;
   1310 
   1311       Queue.push_back(Base);
   1312     }
   1313 
   1314     if (Queue.empty())
   1315       return false;
   1316 
   1317     Current = Queue.pop_back_val();
   1318   }
   1319 
   1320   return false;
   1321 }
   1322 
   1323 /// \brief Perform propagation of DLL attributes from a derived class to a
   1324 /// templated base class for MS compatibility.
   1325 static void propagateDLLAttrToBaseClassTemplate(
   1326     Sema &S, CXXRecordDecl *Class, Attr *ClassAttr,
   1327     ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
   1328   if (getDLLAttr(
   1329           BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
   1330     // If the base class template has a DLL attribute, don't try to change it.
   1331     return;
   1332   }
   1333 
   1334   if (BaseTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
   1335     // If the base class is not already specialized, we can do the propagation.
   1336     auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
   1337     NewAttr->setInherited(true);
   1338     BaseTemplateSpec->addAttr(NewAttr);
   1339     return;
   1340   }
   1341 
   1342   bool DifferentAttribute = false;
   1343   if (Attr *SpecializationAttr = getDLLAttr(BaseTemplateSpec)) {
   1344     if (!SpecializationAttr->isInherited()) {
   1345       // The template has previously been specialized or instantiated with an
   1346       // explicit attribute. We should not try to change it.
   1347       return;
   1348     }
   1349     if (SpecializationAttr->getKind() == ClassAttr->getKind()) {
   1350       // The specialization already has the right attribute.
   1351       return;
   1352     }
   1353     DifferentAttribute = true;
   1354   }
   1355 
   1356   // The template was previously instantiated or explicitly specialized without
   1357   // a dll attribute, or the template was previously instantiated with a
   1358   // different inherited attribute. It's too late for us to change the
   1359   // attribute, so warn that this is unsupported.
   1360   S.Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
   1361       << BaseTemplateSpec->isExplicitSpecialization() << DifferentAttribute;
   1362   S.Diag(ClassAttr->getLocation(), diag::note_attribute);
   1363   if (BaseTemplateSpec->isExplicitSpecialization()) {
   1364     S.Diag(BaseTemplateSpec->getLocation(),
   1365            diag::note_template_class_explicit_specialization_was_here)
   1366         << BaseTemplateSpec;
   1367   } else {
   1368     S.Diag(BaseTemplateSpec->getPointOfInstantiation(),
   1369            diag::note_template_class_instantiation_was_here)
   1370         << BaseTemplateSpec;
   1371   }
   1372 }
   1373 
   1374 /// \brief Check the validity of a C++ base class specifier.
   1375 ///
   1376 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
   1377 /// and returns NULL otherwise.
   1378 CXXBaseSpecifier *
   1379 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
   1380                          SourceRange SpecifierRange,
   1381                          bool Virtual, AccessSpecifier Access,
   1382                          TypeSourceInfo *TInfo,
   1383                          SourceLocation EllipsisLoc) {
   1384   QualType BaseType = TInfo->getType();
   1385 
   1386   // C++ [class.union]p1:
   1387   //   A union shall not have base classes.
   1388   if (Class->isUnion()) {
   1389     Diag(Class->getLocation(), diag::err_base_clause_on_union)
   1390       << SpecifierRange;
   1391     return nullptr;
   1392   }
   1393 
   1394   if (EllipsisLoc.isValid() &&
   1395       !TInfo->getType()->containsUnexpandedParameterPack()) {
   1396     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
   1397       << TInfo->getTypeLoc().getSourceRange();
   1398     EllipsisLoc = SourceLocation();
   1399   }
   1400 
   1401   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
   1402 
   1403   if (BaseType->isDependentType()) {
   1404     // Make sure that we don't have circular inheritance among our dependent
   1405     // bases. For non-dependent bases, the check for completeness below handles
   1406     // this.
   1407     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
   1408       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
   1409           ((BaseDecl = BaseDecl->getDefinition()) &&
   1410            findCircularInheritance(Class, BaseDecl))) {
   1411         Diag(BaseLoc, diag::err_circular_inheritance)
   1412           << BaseType << Context.getTypeDeclType(Class);
   1413 
   1414         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
   1415           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
   1416             << BaseType;
   1417 
   1418         return nullptr;
   1419       }
   1420     }
   1421 
   1422     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
   1423                                           Class->getTagKind() == TTK_Class,
   1424                                           Access, TInfo, EllipsisLoc);
   1425   }
   1426 
   1427   // Base specifiers must be record types.
   1428   if (!BaseType->isRecordType()) {
   1429     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
   1430     return nullptr;
   1431   }
   1432 
   1433   // C++ [class.union]p1:
   1434   //   A union shall not be used as a base class.
   1435   if (BaseType->isUnionType()) {
   1436     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
   1437     return nullptr;
   1438   }
   1439 
   1440   // For the MS ABI, propagate DLL attributes to base class templates.
   1441   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   1442     if (Attr *ClassAttr = getDLLAttr(Class)) {
   1443       if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
   1444               BaseType->getAsCXXRecordDecl())) {
   1445         propagateDLLAttrToBaseClassTemplate(*this, Class, ClassAttr,
   1446                                             BaseTemplate, BaseLoc);
   1447       }
   1448     }
   1449   }
   1450 
   1451   // C++ [class.derived]p2:
   1452   //   The class-name in a base-specifier shall not be an incompletely
   1453   //   defined class.
   1454   if (RequireCompleteType(BaseLoc, BaseType,
   1455                           diag::err_incomplete_base_class, SpecifierRange)) {
   1456     Class->setInvalidDecl();
   1457     return nullptr;
   1458   }
   1459 
   1460   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
   1461   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
   1462   assert(BaseDecl && "Record type has no declaration");
   1463   BaseDecl = BaseDecl->getDefinition();
   1464   assert(BaseDecl && "Base type is not incomplete, but has no definition");
   1465   CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
   1466   assert(CXXBaseDecl && "Base type is not a C++ type");
   1467 
   1468   // A class which contains a flexible array member is not suitable for use as a
   1469   // base class:
   1470   //   - If the layout determines that a base comes before another base,
   1471   //     the flexible array member would index into the subsequent base.
   1472   //   - If the layout determines that base comes before the derived class,
   1473   //     the flexible array member would index into the derived class.
   1474   if (CXXBaseDecl->hasFlexibleArrayMember()) {
   1475     Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
   1476       << CXXBaseDecl->getDeclName();
   1477     return nullptr;
   1478   }
   1479 
   1480   // C++ [class]p3:
   1481   //   If a class is marked final and it appears as a base-type-specifier in
   1482   //   base-clause, the program is ill-formed.
   1483   if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
   1484     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
   1485       << CXXBaseDecl->getDeclName()
   1486       << FA->isSpelledAsSealed();
   1487     Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
   1488         << CXXBaseDecl->getDeclName() << FA->getRange();
   1489     return nullptr;
   1490   }
   1491 
   1492   if (BaseDecl->isInvalidDecl())
   1493     Class->setInvalidDecl();
   1494 
   1495   // Create the base specifier.
   1496   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
   1497                                         Class->getTagKind() == TTK_Class,
   1498                                         Access, TInfo, EllipsisLoc);
   1499 }
   1500 
   1501 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
   1502 /// one entry in the base class list of a class specifier, for
   1503 /// example:
   1504 ///    class foo : public bar, virtual private baz {
   1505 /// 'public bar' and 'virtual private baz' are each base-specifiers.
   1506 BaseResult
   1507 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
   1508                          ParsedAttributes &Attributes,
   1509                          bool Virtual, AccessSpecifier Access,
   1510                          ParsedType basetype, SourceLocation BaseLoc,
   1511                          SourceLocation EllipsisLoc) {
   1512   if (!classdecl)
   1513     return true;
   1514 
   1515   AdjustDeclIfTemplate(classdecl);
   1516   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
   1517   if (!Class)
   1518     return true;
   1519 
   1520   // We haven't yet attached the base specifiers.
   1521   Class->setIsParsingBaseSpecifiers();
   1522 
   1523   // We do not support any C++11 attributes on base-specifiers yet.
   1524   // Diagnose any attributes we see.
   1525   if (!Attributes.empty()) {
   1526     for (AttributeList *Attr = Attributes.getList(); Attr;
   1527          Attr = Attr->getNext()) {
   1528       if (Attr->isInvalid() ||
   1529           Attr->getKind() == AttributeList::IgnoredAttribute)
   1530         continue;
   1531       Diag(Attr->getLoc(),
   1532            Attr->getKind() == AttributeList::UnknownAttribute
   1533              ? diag::warn_unknown_attribute_ignored
   1534              : diag::err_base_specifier_attribute)
   1535         << Attr->getName();
   1536     }
   1537   }
   1538 
   1539   TypeSourceInfo *TInfo = nullptr;
   1540   GetTypeFromParser(basetype, &TInfo);
   1541 
   1542   if (EllipsisLoc.isInvalid() &&
   1543       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
   1544                                       UPPC_BaseType))
   1545     return true;
   1546 
   1547   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
   1548                                                       Virtual, Access, TInfo,
   1549                                                       EllipsisLoc))
   1550     return BaseSpec;
   1551   else
   1552     Class->setInvalidDecl();
   1553 
   1554   return true;
   1555 }
   1556 
   1557 /// Use small set to collect indirect bases.  As this is only used
   1558 /// locally, there's no need to abstract the small size parameter.
   1559 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
   1560 
   1561 /// \brief Recursively add the bases of Type.  Don't add Type itself.
   1562 static void
   1563 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
   1564                   const QualType &Type)
   1565 {
   1566   // Even though the incoming type is a base, it might not be
   1567   // a class -- it could be a template parm, for instance.
   1568   if (auto Rec = Type->getAs<RecordType>()) {
   1569     auto Decl = Rec->getAsCXXRecordDecl();
   1570 
   1571     // Iterate over its bases.
   1572     for (const auto &BaseSpec : Decl->bases()) {
   1573       QualType Base = Context.getCanonicalType(BaseSpec.getType())
   1574         .getUnqualifiedType();
   1575       if (Set.insert(Base).second)
   1576         // If we've not already seen it, recurse.
   1577         NoteIndirectBases(Context, Set, Base);
   1578     }
   1579   }
   1580 }
   1581 
   1582 /// \brief Performs the actual work of attaching the given base class
   1583 /// specifiers to a C++ class.
   1584 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
   1585                                 unsigned NumBases) {
   1586  if (NumBases == 0)
   1587     return false;
   1588 
   1589   // Used to keep track of which base types we have already seen, so
   1590   // that we can properly diagnose redundant direct base types. Note
   1591   // that the key is always the unqualified canonical type of the base
   1592   // class.
   1593   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
   1594 
   1595   // Used to track indirect bases so we can see if a direct base is
   1596   // ambiguous.
   1597   IndirectBaseSet IndirectBaseTypes;
   1598 
   1599   // Copy non-redundant base specifiers into permanent storage.
   1600   unsigned NumGoodBases = 0;
   1601   bool Invalid = false;
   1602   for (unsigned idx = 0; idx < NumBases; ++idx) {
   1603     QualType NewBaseType
   1604       = Context.getCanonicalType(Bases[idx]->getType());
   1605     NewBaseType = NewBaseType.getLocalUnqualifiedType();
   1606 
   1607     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
   1608     if (KnownBase) {
   1609       // C++ [class.mi]p3:
   1610       //   A class shall not be specified as a direct base class of a
   1611       //   derived class more than once.
   1612       Diag(Bases[idx]->getLocStart(),
   1613            diag::err_duplicate_base_class)
   1614         << KnownBase->getType()
   1615         << Bases[idx]->getSourceRange();
   1616 
   1617       // Delete the duplicate base class specifier; we're going to
   1618       // overwrite its pointer later.
   1619       Context.Deallocate(Bases[idx]);
   1620 
   1621       Invalid = true;
   1622     } else {
   1623       // Okay, add this new base class.
   1624       KnownBase = Bases[idx];
   1625       Bases[NumGoodBases++] = Bases[idx];
   1626 
   1627       // Note this base's direct & indirect bases, if there could be ambiguity.
   1628       if (NumBases > 1)
   1629         NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
   1630 
   1631       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
   1632         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   1633         if (Class->isInterface() &&
   1634               (!RD->isInterface() ||
   1635                KnownBase->getAccessSpecifier() != AS_public)) {
   1636           // The Microsoft extension __interface does not permit bases that
   1637           // are not themselves public interfaces.
   1638           Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
   1639             << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
   1640             << RD->getSourceRange();
   1641           Invalid = true;
   1642         }
   1643         if (RD->hasAttr<WeakAttr>())
   1644           Class->addAttr(WeakAttr::CreateImplicit(Context));
   1645       }
   1646     }
   1647   }
   1648 
   1649   // Attach the remaining base class specifiers to the derived class.
   1650   Class->setBases(Bases, NumGoodBases);
   1651 
   1652   for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
   1653     // Check whether this direct base is inaccessible due to ambiguity.
   1654     QualType BaseType = Bases[idx]->getType();
   1655     CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
   1656       .getUnqualifiedType();
   1657 
   1658     if (IndirectBaseTypes.count(CanonicalBase)) {
   1659       CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   1660                          /*DetectVirtual=*/true);
   1661       bool found
   1662         = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
   1663       assert(found);
   1664       (void)found;
   1665 
   1666       if (Paths.isAmbiguous(CanonicalBase))
   1667         Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
   1668           << BaseType << getAmbiguousPathsDisplayString(Paths)
   1669           << Bases[idx]->getSourceRange();
   1670       else
   1671         assert(Bases[idx]->isVirtual());
   1672     }
   1673 
   1674     // Delete the base class specifier, since its data has been copied
   1675     // into the CXXRecordDecl.
   1676     Context.Deallocate(Bases[idx]);
   1677   }
   1678 
   1679   return Invalid;
   1680 }
   1681 
   1682 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
   1683 /// class, after checking whether there are any duplicate base
   1684 /// classes.
   1685 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
   1686                                unsigned NumBases) {
   1687   if (!ClassDecl || !Bases || !NumBases)
   1688     return;
   1689 
   1690   AdjustDeclIfTemplate(ClassDecl);
   1691   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
   1692 }
   1693 
   1694 /// \brief Determine whether the type \p Derived is a C++ class that is
   1695 /// derived from the type \p Base.
   1696 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
   1697   if (!getLangOpts().CPlusPlus)
   1698     return false;
   1699 
   1700   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
   1701   if (!DerivedRD)
   1702     return false;
   1703 
   1704   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
   1705   if (!BaseRD)
   1706     return false;
   1707 
   1708   // If either the base or the derived type is invalid, don't try to
   1709   // check whether one is derived from the other.
   1710   if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
   1711     return false;
   1712 
   1713   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
   1714   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
   1715 }
   1716 
   1717 /// \brief Determine whether the type \p Derived is a C++ class that is
   1718 /// derived from the type \p Base.
   1719 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
   1720   if (!getLangOpts().CPlusPlus)
   1721     return false;
   1722 
   1723   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
   1724   if (!DerivedRD)
   1725     return false;
   1726 
   1727   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
   1728   if (!BaseRD)
   1729     return false;
   1730 
   1731   return DerivedRD->isDerivedFrom(BaseRD, Paths);
   1732 }
   1733 
   1734 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
   1735                               CXXCastPath &BasePathArray) {
   1736   assert(BasePathArray.empty() && "Base path array must be empty!");
   1737   assert(Paths.isRecordingPaths() && "Must record paths!");
   1738 
   1739   const CXXBasePath &Path = Paths.front();
   1740 
   1741   // We first go backward and check if we have a virtual base.
   1742   // FIXME: It would be better if CXXBasePath had the base specifier for
   1743   // the nearest virtual base.
   1744   unsigned Start = 0;
   1745   for (unsigned I = Path.size(); I != 0; --I) {
   1746     if (Path[I - 1].Base->isVirtual()) {
   1747       Start = I - 1;
   1748       break;
   1749     }
   1750   }
   1751 
   1752   // Now add all bases.
   1753   for (unsigned I = Start, E = Path.size(); I != E; ++I)
   1754     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
   1755 }
   1756 
   1757 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
   1758 /// conversion (where Derived and Base are class types) is
   1759 /// well-formed, meaning that the conversion is unambiguous (and
   1760 /// that all of the base classes are accessible). Returns true
   1761 /// and emits a diagnostic if the code is ill-formed, returns false
   1762 /// otherwise. Loc is the location where this routine should point to
   1763 /// if there is an error, and Range is the source range to highlight
   1764 /// if there is an error.
   1765 bool
   1766 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
   1767                                    unsigned InaccessibleBaseID,
   1768                                    unsigned AmbigiousBaseConvID,
   1769                                    SourceLocation Loc, SourceRange Range,
   1770                                    DeclarationName Name,
   1771                                    CXXCastPath *BasePath) {
   1772   // First, determine whether the path from Derived to Base is
   1773   // ambiguous. This is slightly more expensive than checking whether
   1774   // the Derived to Base conversion exists, because here we need to
   1775   // explore multiple paths to determine if there is an ambiguity.
   1776   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   1777                      /*DetectVirtual=*/false);
   1778   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
   1779   assert(DerivationOkay &&
   1780          "Can only be used with a derived-to-base conversion");
   1781   (void)DerivationOkay;
   1782 
   1783   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
   1784     if (InaccessibleBaseID) {
   1785       // Check that the base class can be accessed.
   1786       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
   1787                                    InaccessibleBaseID)) {
   1788         case AR_inaccessible:
   1789           return true;
   1790         case AR_accessible:
   1791         case AR_dependent:
   1792         case AR_delayed:
   1793           break;
   1794       }
   1795     }
   1796 
   1797     // Build a base path if necessary.
   1798     if (BasePath)
   1799       BuildBasePathArray(Paths, *BasePath);
   1800     return false;
   1801   }
   1802 
   1803   if (AmbigiousBaseConvID) {
   1804     // We know that the derived-to-base conversion is ambiguous, and
   1805     // we're going to produce a diagnostic. Perform the derived-to-base
   1806     // search just one more time to compute all of the possible paths so
   1807     // that we can print them out. This is more expensive than any of
   1808     // the previous derived-to-base checks we've done, but at this point
   1809     // performance isn't as much of an issue.
   1810     Paths.clear();
   1811     Paths.setRecordingPaths(true);
   1812     bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
   1813     assert(StillOkay && "Can only be used with a derived-to-base conversion");
   1814     (void)StillOkay;
   1815 
   1816     // Build up a textual representation of the ambiguous paths, e.g.,
   1817     // D -> B -> A, that will be used to illustrate the ambiguous
   1818     // conversions in the diagnostic. We only print one of the paths
   1819     // to each base class subobject.
   1820     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
   1821 
   1822     Diag(Loc, AmbigiousBaseConvID)
   1823     << Derived << Base << PathDisplayStr << Range << Name;
   1824   }
   1825   return true;
   1826 }
   1827 
   1828 bool
   1829 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
   1830                                    SourceLocation Loc, SourceRange Range,
   1831                                    CXXCastPath *BasePath,
   1832                                    bool IgnoreAccess) {
   1833   return CheckDerivedToBaseConversion(Derived, Base,
   1834                                       IgnoreAccess ? 0
   1835                                        : diag::err_upcast_to_inaccessible_base,
   1836                                       diag::err_ambiguous_derived_to_base_conv,
   1837                                       Loc, Range, DeclarationName(),
   1838                                       BasePath);
   1839 }
   1840 
   1841 
   1842 /// @brief Builds a string representing ambiguous paths from a
   1843 /// specific derived class to different subobjects of the same base
   1844 /// class.
   1845 ///
   1846 /// This function builds a string that can be used in error messages
   1847 /// to show the different paths that one can take through the
   1848 /// inheritance hierarchy to go from the derived class to different
   1849 /// subobjects of a base class. The result looks something like this:
   1850 /// @code
   1851 /// struct D -> struct B -> struct A
   1852 /// struct D -> struct C -> struct A
   1853 /// @endcode
   1854 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
   1855   std::string PathDisplayStr;
   1856   std::set<unsigned> DisplayedPaths;
   1857   for (CXXBasePaths::paths_iterator Path = Paths.begin();
   1858        Path != Paths.end(); ++Path) {
   1859     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
   1860       // We haven't displayed a path to this particular base
   1861       // class subobject yet.
   1862       PathDisplayStr += "\n    ";
   1863       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
   1864       for (CXXBasePath::const_iterator Element = Path->begin();
   1865            Element != Path->end(); ++Element)
   1866         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
   1867     }
   1868   }
   1869 
   1870   return PathDisplayStr;
   1871 }
   1872 
   1873 //===----------------------------------------------------------------------===//
   1874 // C++ class member Handling
   1875 //===----------------------------------------------------------------------===//
   1876 
   1877 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
   1878 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
   1879                                 SourceLocation ASLoc,
   1880                                 SourceLocation ColonLoc,
   1881                                 AttributeList *Attrs) {
   1882   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
   1883   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
   1884                                                   ASLoc, ColonLoc);
   1885   CurContext->addHiddenDecl(ASDecl);
   1886   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
   1887 }
   1888 
   1889 /// CheckOverrideControl - Check C++11 override control semantics.
   1890 void Sema::CheckOverrideControl(NamedDecl *D) {
   1891   if (D->isInvalidDecl())
   1892     return;
   1893 
   1894   // We only care about "override" and "final" declarations.
   1895   if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
   1896     return;
   1897 
   1898   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
   1899 
   1900   // We can't check dependent instance methods.
   1901   if (MD && MD->isInstance() &&
   1902       (MD->getParent()->hasAnyDependentBases() ||
   1903        MD->getType()->isDependentType()))
   1904     return;
   1905 
   1906   if (MD && !MD->isVirtual()) {
   1907     // If we have a non-virtual method, check if if hides a virtual method.
   1908     // (In that case, it's most likely the method has the wrong type.)
   1909     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
   1910     FindHiddenVirtualMethods(MD, OverloadedMethods);
   1911 
   1912     if (!OverloadedMethods.empty()) {
   1913       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
   1914         Diag(OA->getLocation(),
   1915              diag::override_keyword_hides_virtual_member_function)
   1916           << "override" << (OverloadedMethods.size() > 1);
   1917       } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
   1918         Diag(FA->getLocation(),
   1919              diag::override_keyword_hides_virtual_member_function)
   1920           << (FA->isSpelledAsSealed() ? "sealed" : "final")
   1921           << (OverloadedMethods.size() > 1);
   1922       }
   1923       NoteHiddenVirtualMethods(MD, OverloadedMethods);
   1924       MD->setInvalidDecl();
   1925       return;
   1926     }
   1927     // Fall through into the general case diagnostic.
   1928     // FIXME: We might want to attempt typo correction here.
   1929   }
   1930 
   1931   if (!MD || !MD->isVirtual()) {
   1932     if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
   1933       Diag(OA->getLocation(),
   1934            diag::override_keyword_only_allowed_on_virtual_member_functions)
   1935         << "override" << FixItHint::CreateRemoval(OA->getLocation());
   1936       D->dropAttr<OverrideAttr>();
   1937     }
   1938     if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
   1939       Diag(FA->getLocation(),
   1940            diag::override_keyword_only_allowed_on_virtual_member_functions)
   1941         << (FA->isSpelledAsSealed() ? "sealed" : "final")
   1942         << FixItHint::CreateRemoval(FA->getLocation());
   1943       D->dropAttr<FinalAttr>();
   1944     }
   1945     return;
   1946   }
   1947 
   1948   // C++11 [class.virtual]p5:
   1949   //   If a function is marked with the virt-specifier override and
   1950   //   does not override a member function of a base class, the program is
   1951   //   ill-formed.
   1952   bool HasOverriddenMethods =
   1953     MD->begin_overridden_methods() != MD->end_overridden_methods();
   1954   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
   1955     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
   1956       << MD->getDeclName();
   1957 }
   1958 
   1959 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
   1960   if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
   1961     return;
   1962   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
   1963   if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>() ||
   1964       isa<CXXDestructorDecl>(MD))
   1965     return;
   1966 
   1967   SourceLocation Loc = MD->getLocation();
   1968   SourceLocation SpellingLoc = Loc;
   1969   if (getSourceManager().isMacroArgExpansion(Loc))
   1970     SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
   1971   SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
   1972   if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
   1973       return;
   1974 
   1975   if (MD->size_overridden_methods() > 0) {
   1976     Diag(MD->getLocation(), diag::warn_function_marked_not_override_overriding)
   1977       << MD->getDeclName();
   1978     const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
   1979     Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
   1980   }
   1981 }
   1982 
   1983 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
   1984 /// function overrides a virtual member function marked 'final', according to
   1985 /// C++11 [class.virtual]p4.
   1986 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
   1987                                                   const CXXMethodDecl *Old) {
   1988   FinalAttr *FA = Old->getAttr<FinalAttr>();
   1989   if (!FA)
   1990     return false;
   1991 
   1992   Diag(New->getLocation(), diag::err_final_function_overridden)
   1993     << New->getDeclName()
   1994     << FA->isSpelledAsSealed();
   1995   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   1996   return true;
   1997 }
   1998 
   1999 static bool InitializationHasSideEffects(const FieldDecl &FD) {
   2000   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
   2001   // FIXME: Destruction of ObjC lifetime types has side-effects.
   2002   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   2003     return !RD->isCompleteDefinition() ||
   2004            !RD->hasTrivialDefaultConstructor() ||
   2005            !RD->hasTrivialDestructor();
   2006   return false;
   2007 }
   2008 
   2009 static AttributeList *getMSPropertyAttr(AttributeList *list) {
   2010   for (AttributeList *it = list; it != nullptr; it = it->getNext())
   2011     if (it->isDeclspecPropertyAttribute())
   2012       return it;
   2013   return nullptr;
   2014 }
   2015 
   2016 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
   2017 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
   2018 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
   2019 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
   2020 /// present (but parsing it has been deferred).
   2021 NamedDecl *
   2022 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
   2023                                MultiTemplateParamsArg TemplateParameterLists,
   2024                                Expr *BW, const VirtSpecifiers &VS,
   2025                                InClassInitStyle InitStyle) {
   2026   const DeclSpec &DS = D.getDeclSpec();
   2027   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   2028   DeclarationName Name = NameInfo.getName();
   2029   SourceLocation Loc = NameInfo.getLoc();
   2030 
   2031   // For anonymous bitfields, the location should point to the type.
   2032   if (Loc.isInvalid())
   2033     Loc = D.getLocStart();
   2034 
   2035   Expr *BitWidth = static_cast<Expr*>(BW);
   2036 
   2037   assert(isa<CXXRecordDecl>(CurContext));
   2038   assert(!DS.isFriendSpecified());
   2039 
   2040   bool isFunc = D.isDeclarationOfFunction();
   2041 
   2042   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
   2043     // The Microsoft extension __interface only permits public member functions
   2044     // and prohibits constructors, destructors, operators, non-public member
   2045     // functions, static methods and data members.
   2046     unsigned InvalidDecl;
   2047     bool ShowDeclName = true;
   2048     if (!isFunc)
   2049       InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
   2050     else if (AS != AS_public)
   2051       InvalidDecl = 2;
   2052     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
   2053       InvalidDecl = 3;
   2054     else switch (Name.getNameKind()) {
   2055       case DeclarationName::CXXConstructorName:
   2056         InvalidDecl = 4;
   2057         ShowDeclName = false;
   2058         break;
   2059 
   2060       case DeclarationName::CXXDestructorName:
   2061         InvalidDecl = 5;
   2062         ShowDeclName = false;
   2063         break;
   2064 
   2065       case DeclarationName::CXXOperatorName:
   2066       case DeclarationName::CXXConversionFunctionName:
   2067         InvalidDecl = 6;
   2068         break;
   2069 
   2070       default:
   2071         InvalidDecl = 0;
   2072         break;
   2073     }
   2074 
   2075     if (InvalidDecl) {
   2076       if (ShowDeclName)
   2077         Diag(Loc, diag::err_invalid_member_in_interface)
   2078           << (InvalidDecl-1) << Name;
   2079       else
   2080         Diag(Loc, diag::err_invalid_member_in_interface)
   2081           << (InvalidDecl-1) << "";
   2082       return nullptr;
   2083     }
   2084   }
   2085 
   2086   // C++ 9.2p6: A member shall not be declared to have automatic storage
   2087   // duration (auto, register) or with the extern storage-class-specifier.
   2088   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
   2089   // data members and cannot be applied to names declared const or static,
   2090   // and cannot be applied to reference members.
   2091   switch (DS.getStorageClassSpec()) {
   2092   case DeclSpec::SCS_unspecified:
   2093   case DeclSpec::SCS_typedef:
   2094   case DeclSpec::SCS_static:
   2095     break;
   2096   case DeclSpec::SCS_mutable:
   2097     if (isFunc) {
   2098       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
   2099 
   2100       // FIXME: It would be nicer if the keyword was ignored only for this
   2101       // declarator. Otherwise we could get follow-up errors.
   2102       D.getMutableDeclSpec().ClearStorageClassSpecs();
   2103     }
   2104     break;
   2105   default:
   2106     Diag(DS.getStorageClassSpecLoc(),
   2107          diag::err_storageclass_invalid_for_member);
   2108     D.getMutableDeclSpec().ClearStorageClassSpecs();
   2109     break;
   2110   }
   2111 
   2112   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
   2113                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
   2114                       !isFunc);
   2115 
   2116   if (DS.isConstexprSpecified() && isInstField) {
   2117     SemaDiagnosticBuilder B =
   2118         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
   2119     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
   2120     if (InitStyle == ICIS_NoInit) {
   2121       B << 0 << 0;
   2122       if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
   2123         B << FixItHint::CreateRemoval(ConstexprLoc);
   2124       else {
   2125         B << FixItHint::CreateReplacement(ConstexprLoc, "const");
   2126         D.getMutableDeclSpec().ClearConstexprSpec();
   2127         const char *PrevSpec;
   2128         unsigned DiagID;
   2129         bool Failed = D.getMutableDeclSpec().SetTypeQual(
   2130             DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
   2131         (void)Failed;
   2132         assert(!Failed && "Making a constexpr member const shouldn't fail");
   2133       }
   2134     } else {
   2135       B << 1;
   2136       const char *PrevSpec;
   2137       unsigned DiagID;
   2138       if (D.getMutableDeclSpec().SetStorageClassSpec(
   2139           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
   2140           Context.getPrintingPolicy())) {
   2141         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
   2142                "This is the only DeclSpec that should fail to be applied");
   2143         B << 1;
   2144       } else {
   2145         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
   2146         isInstField = false;
   2147       }
   2148     }
   2149   }
   2150 
   2151   NamedDecl *Member;
   2152   if (isInstField) {
   2153     CXXScopeSpec &SS = D.getCXXScopeSpec();
   2154 
   2155     // Data members must have identifiers for names.
   2156     if (!Name.isIdentifier()) {
   2157       Diag(Loc, diag::err_bad_variable_name)
   2158         << Name;
   2159       return nullptr;
   2160     }
   2161 
   2162     IdentifierInfo *II = Name.getAsIdentifierInfo();
   2163 
   2164     // Member field could not be with "template" keyword.
   2165     // So TemplateParameterLists should be empty in this case.
   2166     if (TemplateParameterLists.size()) {
   2167       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
   2168       if (TemplateParams->size()) {
   2169         // There is no such thing as a member field template.
   2170         Diag(D.getIdentifierLoc(), diag::err_template_member)
   2171             << II
   2172             << SourceRange(TemplateParams->getTemplateLoc(),
   2173                 TemplateParams->getRAngleLoc());
   2174       } else {
   2175         // There is an extraneous 'template<>' for this member.
   2176         Diag(TemplateParams->getTemplateLoc(),
   2177             diag::err_template_member_noparams)
   2178             << II
   2179             << SourceRange(TemplateParams->getTemplateLoc(),
   2180                 TemplateParams->getRAngleLoc());
   2181       }
   2182       return nullptr;
   2183     }
   2184 
   2185     if (SS.isSet() && !SS.isInvalid()) {
   2186       // The user provided a superfluous scope specifier inside a class
   2187       // definition:
   2188       //
   2189       // class X {
   2190       //   int X::member;
   2191       // };
   2192       if (DeclContext *DC = computeDeclContext(SS, false))
   2193         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
   2194       else
   2195         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
   2196           << Name << SS.getRange();
   2197 
   2198       SS.clear();
   2199     }
   2200 
   2201     AttributeList *MSPropertyAttr =
   2202       getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
   2203     if (MSPropertyAttr) {
   2204       Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
   2205                                 BitWidth, InitStyle, AS, MSPropertyAttr);
   2206       if (!Member)
   2207         return nullptr;
   2208       isInstField = false;
   2209     } else {
   2210       Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
   2211                                 BitWidth, InitStyle, AS);
   2212       assert(Member && "HandleField never returns null");
   2213     }
   2214   } else {
   2215     assert(InitStyle == ICIS_NoInit ||
   2216            D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
   2217 
   2218     Member = HandleDeclarator(S, D, TemplateParameterLists);
   2219     if (!Member)
   2220       return nullptr;
   2221 
   2222     // Non-instance-fields can't have a bitfield.
   2223     if (BitWidth) {
   2224       if (Member->isInvalidDecl()) {
   2225         // don't emit another diagnostic.
   2226       } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
   2227         // C++ 9.6p3: A bit-field shall not be a static member.
   2228         // "static member 'A' cannot be a bit-field"
   2229         Diag(Loc, diag::err_static_not_bitfield)
   2230           << Name << BitWidth->getSourceRange();
   2231       } else if (isa<TypedefDecl>(Member)) {
   2232         // "typedef member 'x' cannot be a bit-field"
   2233         Diag(Loc, diag::err_typedef_not_bitfield)
   2234           << Name << BitWidth->getSourceRange();
   2235       } else {
   2236         // A function typedef ("typedef int f(); f a;").
   2237         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   2238         Diag(Loc, diag::err_not_integral_type_bitfield)
   2239           << Name << cast<ValueDecl>(Member)->getType()
   2240           << BitWidth->getSourceRange();
   2241       }
   2242 
   2243       BitWidth = nullptr;
   2244       Member->setInvalidDecl();
   2245     }
   2246 
   2247     Member->setAccess(AS);
   2248 
   2249     // If we have declared a member function template or static data member
   2250     // template, set the access of the templated declaration as well.
   2251     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
   2252       FunTmpl->getTemplatedDecl()->setAccess(AS);
   2253     else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
   2254       VarTmpl->getTemplatedDecl()->setAccess(AS);
   2255   }
   2256 
   2257   if (VS.isOverrideSpecified())
   2258     Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
   2259   if (VS.isFinalSpecified())
   2260     Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
   2261                                             VS.isFinalSpelledSealed()));
   2262 
   2263   if (VS.getLastLocation().isValid()) {
   2264     // Update the end location of a method that has a virt-specifiers.
   2265     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
   2266       MD->setRangeEnd(VS.getLastLocation());
   2267   }
   2268 
   2269   CheckOverrideControl(Member);
   2270 
   2271   assert((Name || isInstField) && "No identifier for non-field ?");
   2272 
   2273   if (isInstField) {
   2274     FieldDecl *FD = cast<FieldDecl>(Member);
   2275     FieldCollector->Add(FD);
   2276 
   2277     if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
   2278       // Remember all explicit private FieldDecls that have a name, no side
   2279       // effects and are not part of a dependent type declaration.
   2280       if (!FD->isImplicit() && FD->getDeclName() &&
   2281           FD->getAccess() == AS_private &&
   2282           !FD->hasAttr<UnusedAttr>() &&
   2283           !FD->getParent()->isDependentContext() &&
   2284           !InitializationHasSideEffects(*FD))
   2285         UnusedPrivateFields.insert(FD);
   2286     }
   2287   }
   2288 
   2289   return Member;
   2290 }
   2291 
   2292 namespace {
   2293   class UninitializedFieldVisitor
   2294       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
   2295     Sema &S;
   2296     // List of Decls to generate a warning on.  Also remove Decls that become
   2297     // initialized.
   2298     llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
   2299     // List of base classes of the record.  Classes are removed after their
   2300     // initializers.
   2301     llvm::SmallPtrSetImpl<QualType> &BaseClasses;
   2302     // Vector of decls to be removed from the Decl set prior to visiting the
   2303     // nodes.  These Decls may have been initialized in the prior initializer.
   2304     llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
   2305     // If non-null, add a note to the warning pointing back to the constructor.
   2306     const CXXConstructorDecl *Constructor;
   2307     // Variables to hold state when processing an initializer list.  When
   2308     // InitList is true, special case initialization of FieldDecls matching
   2309     // InitListFieldDecl.
   2310     bool InitList;
   2311     FieldDecl *InitListFieldDecl;
   2312     llvm::SmallVector<unsigned, 4> InitFieldIndex;
   2313 
   2314   public:
   2315     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
   2316     UninitializedFieldVisitor(Sema &S,
   2317                               llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
   2318                               llvm::SmallPtrSetImpl<QualType> &BaseClasses)
   2319       : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
   2320         Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
   2321 
   2322     // Returns true if the use of ME is not an uninitialized use.
   2323     bool IsInitListMemberExprInitialized(MemberExpr *ME,
   2324                                          bool CheckReferenceOnly) {
   2325       llvm::SmallVector<FieldDecl*, 4> Fields;
   2326       bool ReferenceField = false;
   2327       while (ME) {
   2328         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
   2329         if (!FD)
   2330           return false;
   2331         Fields.push_back(FD);
   2332         if (FD->getType()->isReferenceType())
   2333           ReferenceField = true;
   2334         ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
   2335       }
   2336 
   2337       // Binding a reference to an unintialized field is not an
   2338       // uninitialized use.
   2339       if (CheckReferenceOnly && !ReferenceField)
   2340         return true;
   2341 
   2342       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
   2343       // Discard the first field since it is the field decl that is being
   2344       // initialized.
   2345       for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
   2346         UsedFieldIndex.push_back((*I)->getFieldIndex());
   2347       }
   2348 
   2349       for (auto UsedIter = UsedFieldIndex.begin(),
   2350                 UsedEnd = UsedFieldIndex.end(),
   2351                 OrigIter = InitFieldIndex.begin(),
   2352                 OrigEnd = InitFieldIndex.end();
   2353            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
   2354         if (*UsedIter < *OrigIter)
   2355           return true;
   2356         if (*UsedIter > *OrigIter)
   2357           break;
   2358       }
   2359 
   2360       return false;
   2361     }
   2362 
   2363     void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
   2364                           bool AddressOf) {
   2365       if (isa<EnumConstantDecl>(ME->getMemberDecl()))
   2366         return;
   2367 
   2368       // FieldME is the inner-most MemberExpr that is not an anonymous struct
   2369       // or union.
   2370       MemberExpr *FieldME = ME;
   2371 
   2372       bool AllPODFields = FieldME->getType().isPODType(S.Context);
   2373 
   2374       Expr *Base = ME;
   2375       while (MemberExpr *SubME =
   2376                  dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
   2377 
   2378         if (isa<VarDecl>(SubME->getMemberDecl()))
   2379           return;
   2380 
   2381         if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
   2382           if (!FD->isAnonymousStructOrUnion())
   2383             FieldME = SubME;
   2384 
   2385         if (!FieldME->getType().isPODType(S.Context))
   2386           AllPODFields = false;
   2387 
   2388         Base = SubME->getBase();
   2389       }
   2390 
   2391       if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
   2392         return;
   2393 
   2394       if (AddressOf && AllPODFields)
   2395         return;
   2396 
   2397       ValueDecl* FoundVD = FieldME->getMemberDecl();
   2398 
   2399       if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
   2400         while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
   2401           BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
   2402         }
   2403 
   2404         if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
   2405           QualType T = BaseCast->getType();
   2406           if (T->isPointerType() &&
   2407               BaseClasses.count(T->getPointeeType())) {
   2408             S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
   2409                 << T->getPointeeType() << FoundVD;
   2410           }
   2411         }
   2412       }
   2413 
   2414       if (!Decls.count(FoundVD))
   2415         return;
   2416 
   2417       const bool IsReference = FoundVD->getType()->isReferenceType();
   2418 
   2419       if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
   2420         // Special checking for initializer lists.
   2421         if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
   2422           return;
   2423         }
   2424       } else {
   2425         // Prevent double warnings on use of unbounded references.
   2426         if (CheckReferenceOnly && !IsReference)
   2427           return;
   2428       }
   2429 
   2430       unsigned diag = IsReference
   2431           ? diag::warn_reference_field_is_uninit
   2432           : diag::warn_field_is_uninit;
   2433       S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
   2434       if (Constructor)
   2435         S.Diag(Constructor->getLocation(),
   2436                diag::note_uninit_in_this_constructor)
   2437           << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
   2438 
   2439     }
   2440 
   2441     void HandleValue(Expr *E, bool AddressOf) {
   2442       E = E->IgnoreParens();
   2443 
   2444       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   2445         HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
   2446                          AddressOf /*AddressOf*/);
   2447         return;
   2448       }
   2449 
   2450       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   2451         Visit(CO->getCond());
   2452         HandleValue(CO->getTrueExpr(), AddressOf);
   2453         HandleValue(CO->getFalseExpr(), AddressOf);
   2454         return;
   2455       }
   2456 
   2457       if (BinaryConditionalOperator *BCO =
   2458               dyn_cast<BinaryConditionalOperator>(E)) {
   2459         Visit(BCO->getCond());
   2460         HandleValue(BCO->getFalseExpr(), AddressOf);
   2461         return;
   2462       }
   2463 
   2464       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
   2465         HandleValue(OVE->getSourceExpr(), AddressOf);
   2466         return;
   2467       }
   2468 
   2469       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   2470         switch (BO->getOpcode()) {
   2471         default:
   2472           break;
   2473         case(BO_PtrMemD):
   2474         case(BO_PtrMemI):
   2475           HandleValue(BO->getLHS(), AddressOf);
   2476           Visit(BO->getRHS());
   2477           return;
   2478         case(BO_Comma):
   2479           Visit(BO->getLHS());
   2480           HandleValue(BO->getRHS(), AddressOf);
   2481           return;
   2482         }
   2483       }
   2484 
   2485       Visit(E);
   2486     }
   2487 
   2488     void CheckInitListExpr(InitListExpr *ILE) {
   2489       InitFieldIndex.push_back(0);
   2490       for (auto Child : ILE->children()) {
   2491         if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
   2492           CheckInitListExpr(SubList);
   2493         } else {
   2494           Visit(Child);
   2495         }
   2496         ++InitFieldIndex.back();
   2497       }
   2498       InitFieldIndex.pop_back();
   2499     }
   2500 
   2501     void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
   2502                           FieldDecl *Field, const Type *BaseClass) {
   2503       // Remove Decls that may have been initialized in the previous
   2504       // initializer.
   2505       for (ValueDecl* VD : DeclsToRemove)
   2506         Decls.erase(VD);
   2507       DeclsToRemove.clear();
   2508 
   2509       Constructor = FieldConstructor;
   2510       InitListExpr *ILE = dyn_cast<InitListExpr>(E);
   2511 
   2512       if (ILE && Field) {
   2513         InitList = true;
   2514         InitListFieldDecl = Field;
   2515         InitFieldIndex.clear();
   2516         CheckInitListExpr(ILE);
   2517       } else {
   2518         InitList = false;
   2519         Visit(E);
   2520       }
   2521 
   2522       if (Field)
   2523         Decls.erase(Field);
   2524       if (BaseClass)
   2525         BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
   2526     }
   2527 
   2528     void VisitMemberExpr(MemberExpr *ME) {
   2529       // All uses of unbounded reference fields will warn.
   2530       HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
   2531     }
   2532 
   2533     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   2534       if (E->getCastKind() == CK_LValueToRValue) {
   2535         HandleValue(E->getSubExpr(), false /*AddressOf*/);
   2536         return;
   2537       }
   2538 
   2539       Inherited::VisitImplicitCastExpr(E);
   2540     }
   2541 
   2542     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   2543       if (E->getConstructor()->isCopyConstructor()) {
   2544         Expr *ArgExpr = E->getArg(0);
   2545         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
   2546           if (ILE->getNumInits() == 1)
   2547             ArgExpr = ILE->getInit(0);
   2548         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
   2549           if (ICE->getCastKind() == CK_NoOp)
   2550             ArgExpr = ICE->getSubExpr();
   2551         HandleValue(ArgExpr, false /*AddressOf*/);
   2552         return;
   2553       }
   2554       Inherited::VisitCXXConstructExpr(E);
   2555     }
   2556 
   2557     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
   2558       Expr *Callee = E->getCallee();
   2559       if (isa<MemberExpr>(Callee)) {
   2560         HandleValue(Callee, false /*AddressOf*/);
   2561         for (auto Arg : E->arguments())
   2562           Visit(Arg);
   2563         return;
   2564       }
   2565 
   2566       Inherited::VisitCXXMemberCallExpr(E);
   2567     }
   2568 
   2569     void VisitCallExpr(CallExpr *E) {
   2570       // Treat std::move as a use.
   2571       if (E->getNumArgs() == 1) {
   2572         if (FunctionDecl *FD = E->getDirectCallee()) {
   2573           if (FD->isInStdNamespace() && FD->getIdentifier() &&
   2574               FD->getIdentifier()->isStr("move")) {
   2575             HandleValue(E->getArg(0), false /*AddressOf*/);
   2576             return;
   2577           }
   2578         }
   2579       }
   2580 
   2581       Inherited::VisitCallExpr(E);
   2582     }
   2583 
   2584     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
   2585       Expr *Callee = E->getCallee();
   2586 
   2587       if (isa<UnresolvedLookupExpr>(Callee))
   2588         return Inherited::VisitCXXOperatorCallExpr(E);
   2589 
   2590       Visit(Callee);
   2591       for (auto Arg : E->arguments())
   2592         HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
   2593     }
   2594 
   2595     void VisitBinaryOperator(BinaryOperator *E) {
   2596       // If a field assignment is detected, remove the field from the
   2597       // uninitiailized field set.
   2598       if (E->getOpcode() == BO_Assign)
   2599         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
   2600           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
   2601             if (!FD->getType()->isReferenceType())
   2602               DeclsToRemove.push_back(FD);
   2603 
   2604       if (E->isCompoundAssignmentOp()) {
   2605         HandleValue(E->getLHS(), false /*AddressOf*/);
   2606         Visit(E->getRHS());
   2607         return;
   2608       }
   2609 
   2610       Inherited::VisitBinaryOperator(E);
   2611     }
   2612 
   2613     void VisitUnaryOperator(UnaryOperator *E) {
   2614       if (E->isIncrementDecrementOp()) {
   2615         HandleValue(E->getSubExpr(), false /*AddressOf*/);
   2616         return;
   2617       }
   2618       if (E->getOpcode() == UO_AddrOf) {
   2619         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
   2620           HandleValue(ME->getBase(), true /*AddressOf*/);
   2621           return;
   2622         }
   2623       }
   2624 
   2625       Inherited::VisitUnaryOperator(E);
   2626     }
   2627   };
   2628 
   2629   // Diagnose value-uses of fields to initialize themselves, e.g.
   2630   //   foo(foo)
   2631   // where foo is not also a parameter to the constructor.
   2632   // Also diagnose across field uninitialized use such as
   2633   //   x(y), y(x)
   2634   // TODO: implement -Wuninitialized and fold this into that framework.
   2635   static void DiagnoseUninitializedFields(
   2636       Sema &SemaRef, const CXXConstructorDecl *Constructor) {
   2637 
   2638     if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
   2639                                            Constructor->getLocation())) {
   2640       return;
   2641     }
   2642 
   2643     if (Constructor->isInvalidDecl())
   2644       return;
   2645 
   2646     const CXXRecordDecl *RD = Constructor->getParent();
   2647 
   2648     if (RD->getDescribedClassTemplate())
   2649       return;
   2650 
   2651     // Holds fields that are uninitialized.
   2652     llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
   2653 
   2654     // At the beginning, all fields are uninitialized.
   2655     for (auto *I : RD->decls()) {
   2656       if (auto *FD = dyn_cast<FieldDecl>(I)) {
   2657         UninitializedFields.insert(FD);
   2658       } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
   2659         UninitializedFields.insert(IFD->getAnonField());
   2660       }
   2661     }
   2662 
   2663     llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
   2664     for (auto I : RD->bases())
   2665       UninitializedBaseClasses.insert(I.getType().getCanonicalType());
   2666 
   2667     if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
   2668       return;
   2669 
   2670     UninitializedFieldVisitor UninitializedChecker(SemaRef,
   2671                                                    UninitializedFields,
   2672                                                    UninitializedBaseClasses);
   2673 
   2674     for (const auto *FieldInit : Constructor->inits()) {
   2675       if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
   2676         break;
   2677 
   2678       Expr *InitExpr = FieldInit->getInit();
   2679       if (!InitExpr)
   2680         continue;
   2681 
   2682       if (CXXDefaultInitExpr *Default =
   2683               dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
   2684         InitExpr = Default->getExpr();
   2685         if (!InitExpr)
   2686           continue;
   2687         // In class initializers will point to the constructor.
   2688         UninitializedChecker.CheckInitializer(InitExpr, Constructor,
   2689                                               FieldInit->getAnyMember(),
   2690                                               FieldInit->getBaseClass());
   2691       } else {
   2692         UninitializedChecker.CheckInitializer(InitExpr, nullptr,
   2693                                               FieldInit->getAnyMember(),
   2694                                               FieldInit->getBaseClass());
   2695       }
   2696     }
   2697   }
   2698 } // namespace
   2699 
   2700 /// \brief Enter a new C++ default initializer scope. After calling this, the
   2701 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
   2702 /// parsing or instantiating the initializer failed.
   2703 void Sema::ActOnStartCXXInClassMemberInitializer() {
   2704   // Create a synthetic function scope to represent the call to the constructor
   2705   // that notionally surrounds a use of this initializer.
   2706   PushFunctionScope();
   2707 }
   2708 
   2709 /// \brief This is invoked after parsing an in-class initializer for a
   2710 /// non-static C++ class member, and after instantiating an in-class initializer
   2711 /// in a class template. Such actions are deferred until the class is complete.
   2712 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
   2713                                                   SourceLocation InitLoc,
   2714                                                   Expr *InitExpr) {
   2715   // Pop the notional constructor scope we created earlier.
   2716   PopFunctionScopeInfo(nullptr, D);
   2717 
   2718   FieldDecl *FD = dyn_cast<FieldDecl>(D);
   2719   assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
   2720          "must set init style when field is created");
   2721 
   2722   if (!InitExpr) {
   2723     D->setInvalidDecl();
   2724     if (FD)
   2725       FD->removeInClassInitializer();
   2726     return;
   2727   }
   2728 
   2729   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
   2730     FD->setInvalidDecl();
   2731     FD->removeInClassInitializer();
   2732     return;
   2733   }
   2734 
   2735   ExprResult Init = InitExpr;
   2736   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
   2737     InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
   2738     InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
   2739         ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
   2740         : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
   2741     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
   2742     Init = Seq.Perform(*this, Entity, Kind, InitExpr);
   2743     if (Init.isInvalid()) {
   2744       FD->setInvalidDecl();
   2745       return;
   2746     }
   2747   }
   2748 
   2749   // C++11 [class.base.init]p7:
   2750   //   The initialization of each base and member constitutes a
   2751   //   full-expression.
   2752   Init = ActOnFinishFullExpr(Init.get(), InitLoc);
   2753   if (Init.isInvalid()) {
   2754     FD->setInvalidDecl();
   2755     return;
   2756   }
   2757 
   2758   InitExpr = Init.get();
   2759 
   2760   FD->setInClassInitializer(InitExpr);
   2761 }
   2762 
   2763 /// \brief Find the direct and/or virtual base specifiers that
   2764 /// correspond to the given base type, for use in base initialization
   2765 /// within a constructor.
   2766 static bool FindBaseInitializer(Sema &SemaRef,
   2767                                 CXXRecordDecl *ClassDecl,
   2768                                 QualType BaseType,
   2769                                 const CXXBaseSpecifier *&DirectBaseSpec,
   2770                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
   2771   // First, check for a direct base class.
   2772   DirectBaseSpec = nullptr;
   2773   for (const auto &Base : ClassDecl->bases()) {
   2774     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
   2775       // We found a direct base of this type. That's what we're
   2776       // initializing.
   2777       DirectBaseSpec = &Base;
   2778       break;
   2779     }
   2780   }
   2781 
   2782   // Check for a virtual base class.
   2783   // FIXME: We might be able to short-circuit this if we know in advance that
   2784   // there are no virtual bases.
   2785   VirtualBaseSpec = nullptr;
   2786   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
   2787     // We haven't found a base yet; search the class hierarchy for a
   2788     // virtual base class.
   2789     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   2790                        /*DetectVirtual=*/false);
   2791     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
   2792                               BaseType, Paths)) {
   2793       for (CXXBasePaths::paths_iterator Path = Paths.begin();
   2794            Path != Paths.end(); ++Path) {
   2795         if (Path->back().Base->isVirtual()) {
   2796           VirtualBaseSpec = Path->back().Base;
   2797           break;
   2798         }
   2799       }
   2800     }
   2801   }
   2802 
   2803   return DirectBaseSpec || VirtualBaseSpec;
   2804 }
   2805 
   2806 /// \brief Handle a C++ member initializer using braced-init-list syntax.
   2807 MemInitResult
   2808 Sema::ActOnMemInitializer(Decl *ConstructorD,
   2809                           Scope *S,
   2810                           CXXScopeSpec &SS,
   2811                           IdentifierInfo *MemberOrBase,
   2812                           ParsedType TemplateTypeTy,
   2813                           const DeclSpec &DS,
   2814                           SourceLocation IdLoc,
   2815                           Expr *InitList,
   2816                           SourceLocation EllipsisLoc) {
   2817   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
   2818                              DS, IdLoc, InitList,
   2819                              EllipsisLoc);
   2820 }
   2821 
   2822 /// \brief Handle a C++ member initializer using parentheses syntax.
   2823 MemInitResult
   2824 Sema::ActOnMemInitializer(Decl *ConstructorD,
   2825                           Scope *S,
   2826                           CXXScopeSpec &SS,
   2827                           IdentifierInfo *MemberOrBase,
   2828                           ParsedType TemplateTypeTy,
   2829                           const DeclSpec &DS,
   2830                           SourceLocation IdLoc,
   2831                           SourceLocation LParenLoc,
   2832                           ArrayRef<Expr *> Args,
   2833                           SourceLocation RParenLoc,
   2834                           SourceLocation EllipsisLoc) {
   2835   Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
   2836                                            Args, RParenLoc);
   2837   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
   2838                              DS, IdLoc, List, EllipsisLoc);
   2839 }
   2840 
   2841 namespace {
   2842 
   2843 // Callback to only accept typo corrections that can be a valid C++ member
   2844 // intializer: either a non-static field member or a base class.
   2845 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
   2846 public:
   2847   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
   2848       : ClassDecl(ClassDecl) {}
   2849 
   2850   bool ValidateCandidate(const TypoCorrection &candidate) override {
   2851     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
   2852       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
   2853         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
   2854       return isa<TypeDecl>(ND);
   2855     }
   2856     return false;
   2857   }
   2858 
   2859 private:
   2860   CXXRecordDecl *ClassDecl;
   2861 };
   2862 
   2863 }
   2864 
   2865 /// \brief Handle a C++ member initializer.
   2866 MemInitResult
   2867 Sema::BuildMemInitializer(Decl *ConstructorD,
   2868                           Scope *S,
   2869                           CXXScopeSpec &SS,
   2870                           IdentifierInfo *MemberOrBase,
   2871                           ParsedType TemplateTypeTy,
   2872                           const DeclSpec &DS,
   2873                           SourceLocation IdLoc,
   2874                           Expr *Init,
   2875                           SourceLocation EllipsisLoc) {
   2876   ExprResult Res = CorrectDelayedTyposInExpr(Init);
   2877   if (!Res.isUsable())
   2878     return true;
   2879   Init = Res.get();
   2880 
   2881   if (!ConstructorD)
   2882     return true;
   2883 
   2884   AdjustDeclIfTemplate(ConstructorD);
   2885 
   2886   CXXConstructorDecl *Constructor
   2887     = dyn_cast<CXXConstructorDecl>(ConstructorD);
   2888   if (!Constructor) {
   2889     // The user wrote a constructor initializer on a function that is
   2890     // not a C++ constructor. Ignore the error for now, because we may
   2891     // have more member initializers coming; we'll diagnose it just
   2892     // once in ActOnMemInitializers.
   2893     return true;
   2894   }
   2895 
   2896   CXXRecordDecl *ClassDecl = Constructor->getParent();
   2897 
   2898   // C++ [class.base.init]p2:
   2899   //   Names in a mem-initializer-id are looked up in the scope of the
   2900   //   constructor's class and, if not found in that scope, are looked
   2901   //   up in the scope containing the constructor's definition.
   2902   //   [Note: if the constructor's class contains a member with the
   2903   //   same name as a direct or virtual base class of the class, a
   2904   //   mem-initializer-id naming the member or base class and composed
   2905   //   of a single identifier refers to the class member. A
   2906   //   mem-initializer-id for the hidden base class may be specified
   2907   //   using a qualified name. ]
   2908   if (!SS.getScopeRep() && !TemplateTypeTy) {
   2909     // Look for a member, first.
   2910     DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
   2911     if (!Result.empty()) {
   2912       ValueDecl *Member;
   2913       if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
   2914           (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
   2915         if (EllipsisLoc.isValid())
   2916           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
   2917             << MemberOrBase
   2918             << SourceRange(IdLoc, Init->getSourceRange().getEnd());
   2919 
   2920         return BuildMemberInitializer(Member, Init, IdLoc);
   2921       }
   2922     }
   2923   }
   2924   // It didn't name a member, so see if it names a class.
   2925   QualType BaseType;
   2926   TypeSourceInfo *TInfo = nullptr;
   2927 
   2928   if (TemplateTypeTy) {
   2929     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
   2930   } else if (DS.getTypeSpecType() == TST_decltype) {
   2931     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
   2932   } else {
   2933     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
   2934     LookupParsedName(R, S, &SS);
   2935 
   2936     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
   2937     if (!TyD) {
   2938       if (R.isAmbiguous()) return true;
   2939 
   2940       // We don't want access-control diagnostics here.
   2941       R.suppressDiagnostics();
   2942 
   2943       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
   2944         bool NotUnknownSpecialization = false;
   2945         DeclContext *DC = computeDeclContext(SS, false);
   2946         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
   2947           NotUnknownSpecialization = !Record->hasAnyDependentBases();
   2948 
   2949         if (!NotUnknownSpecialization) {
   2950           // When the scope specifier can refer to a member of an unknown
   2951           // specialization, we take it as a type name.
   2952           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
   2953                                        SS.getWithLocInContext(Context),
   2954                                        *MemberOrBase, IdLoc);
   2955           if (BaseType.isNull())
   2956             return true;
   2957 
   2958           R.clear();
   2959           R.setLookupName(MemberOrBase);
   2960         }
   2961       }
   2962 
   2963       // If no results were found, try to correct typos.
   2964       TypoCorrection Corr;
   2965       if (R.empty() && BaseType.isNull() &&
   2966           (Corr = CorrectTypo(
   2967                R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
   2968                llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
   2969                CTK_ErrorRecovery, ClassDecl))) {
   2970         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
   2971           // We have found a non-static data member with a similar
   2972           // name to what was typed; complain and initialize that
   2973           // member.
   2974           diagnoseTypo(Corr,
   2975                        PDiag(diag::err_mem_init_not_member_or_class_suggest)
   2976                          << MemberOrBase << true);
   2977           return BuildMemberInitializer(Member, Init, IdLoc);
   2978         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
   2979           const CXXBaseSpecifier *DirectBaseSpec;
   2980           const CXXBaseSpecifier *VirtualBaseSpec;
   2981           if (FindBaseInitializer(*this, ClassDecl,
   2982                                   Context.getTypeDeclType(Type),
   2983                                   DirectBaseSpec, VirtualBaseSpec)) {
   2984             // We have found a direct or virtual base class with a
   2985             // similar name to what was typed; complain and initialize
   2986             // that base class.
   2987             diagnoseTypo(Corr,
   2988                          PDiag(diag::err_mem_init_not_member_or_class_suggest)
   2989                            << MemberOrBase << false,
   2990                          PDiag() /*Suppress note, we provide our own.*/);
   2991 
   2992             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
   2993                                                               : VirtualBaseSpec;
   2994             Diag(BaseSpec->getLocStart(),
   2995                  diag::note_base_class_specified_here)
   2996               << BaseSpec->getType()
   2997               << BaseSpec->getSourceRange();
   2998 
   2999             TyD = Type;
   3000           }
   3001         }
   3002       }
   3003 
   3004       if (!TyD && BaseType.isNull()) {
   3005         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
   3006           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
   3007         return true;
   3008       }
   3009     }
   3010 
   3011     if (BaseType.isNull()) {
   3012       BaseType = Context.getTypeDeclType(TyD);
   3013       MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
   3014       if (SS.isSet())
   3015         // FIXME: preserve source range information
   3016         BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
   3017                                              BaseType);
   3018     }
   3019   }
   3020 
   3021   if (!TInfo)
   3022     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
   3023 
   3024   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
   3025 }
   3026 
   3027 /// Checks a member initializer expression for cases where reference (or
   3028 /// pointer) members are bound to by-value parameters (or their addresses).
   3029 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
   3030                                                Expr *Init,
   3031                                                SourceLocation IdLoc) {
   3032   QualType MemberTy = Member->getType();
   3033 
   3034   // We only handle pointers and references currently.
   3035   // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
   3036   if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
   3037     return;
   3038 
   3039   const bool IsPointer = MemberTy->isPointerType();
   3040   if (IsPointer) {
   3041     if (const UnaryOperator *Op
   3042           = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
   3043       // The only case we're worried about with pointers requires taking the
   3044       // address.
   3045       if (Op->getOpcode() != UO_AddrOf)
   3046         return;
   3047 
   3048       Init = Op->getSubExpr();
   3049     } else {
   3050       // We only handle address-of expression initializers for pointers.
   3051       return;
   3052     }
   3053   }
   3054 
   3055   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
   3056     // We only warn when referring to a non-reference parameter declaration.
   3057     const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
   3058     if (!Parameter || Parameter->getType()->isReferenceType())
   3059       return;
   3060 
   3061     S.Diag(Init->getExprLoc(),
   3062            IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
   3063                      : diag::warn_bind_ref_member_to_parameter)
   3064       << Member << Parameter << Init->getSourceRange();
   3065   } else {
   3066     // Other initializers are fine.
   3067     return;
   3068   }
   3069 
   3070   S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
   3071     << (unsigned)IsPointer;
   3072 }
   3073 
   3074 MemInitResult
   3075 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
   3076                              SourceLocation IdLoc) {
   3077   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
   3078   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
   3079   assert((DirectMember || IndirectMember) &&
   3080          "Member must be a FieldDecl or IndirectFieldDecl");
   3081 
   3082   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
   3083     return true;
   3084 
   3085   if (Member->isInvalidDecl())
   3086     return true;
   3087 
   3088   MultiExprArg Args;
   3089   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
   3090     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
   3091   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
   3092     Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
   3093   } else {
   3094     // Template instantiation doesn't reconstruct ParenListExprs for us.
   3095     Args = Init;
   3096   }
   3097 
   3098   SourceRange InitRange = Init->getSourceRange();
   3099 
   3100   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
   3101     // Can't check initialization for a member of dependent type or when
   3102     // any of the arguments are type-dependent expressions.
   3103     DiscardCleanupsInEvaluationContext();
   3104   } else {
   3105     bool InitList = false;
   3106     if (isa<InitListExpr>(Init)) {
   3107       InitList = true;
   3108       Args = Init;
   3109     }
   3110 
   3111     // Initialize the member.
   3112     InitializedEntity MemberEntity =
   3113       DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
   3114                    : InitializedEntity::InitializeMember(IndirectMember,
   3115                                                          nullptr);
   3116     InitializationKind Kind =
   3117       InitList ? InitializationKind::CreateDirectList(IdLoc)
   3118                : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
   3119                                                   InitRange.getEnd());
   3120 
   3121     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
   3122     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
   3123                                             nullptr);
   3124     if (MemberInit.isInvalid())
   3125       return true;
   3126 
   3127     CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
   3128 
   3129     // C++11 [class.base.init]p7:
   3130     //   The initialization of each base and member constitutes a
   3131     //   full-expression.
   3132     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
   3133     if (MemberInit.isInvalid())
   3134       return true;
   3135 
   3136     Init = MemberInit.get();
   3137   }
   3138 
   3139   if (DirectMember) {
   3140     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
   3141                                             InitRange.getBegin(), Init,
   3142                                             InitRange.getEnd());
   3143   } else {
   3144     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
   3145                                             InitRange.getBegin(), Init,
   3146                                             InitRange.getEnd());
   3147   }
   3148 }
   3149 
   3150 MemInitResult
   3151 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
   3152                                  CXXRecordDecl *ClassDecl) {
   3153   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
   3154   if (!LangOpts.CPlusPlus11)
   3155     return Diag(NameLoc, diag::err_delegating_ctor)
   3156       << TInfo->getTypeLoc().getLocalSourceRange();
   3157   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
   3158 
   3159   bool InitList = true;
   3160   MultiExprArg Args = Init;
   3161   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
   3162     InitList = false;
   3163     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
   3164   }
   3165 
   3166   SourceRange InitRange = Init->getSourceRange();
   3167   // Initialize the object.
   3168   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
   3169                                      QualType(ClassDecl->getTypeForDecl(), 0));
   3170   InitializationKind Kind =
   3171     InitList ? InitializationKind::CreateDirectList(NameLoc)
   3172              : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
   3173                                                 InitRange.getEnd());
   3174   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
   3175   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
   3176                                               Args, nullptr);
   3177   if (DelegationInit.isInvalid())
   3178     return true;
   3179 
   3180   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
   3181          "Delegating constructor with no target?");
   3182 
   3183   // C++11 [class.base.init]p7:
   3184   //   The initialization of each base and member constitutes a
   3185   //   full-expression.
   3186   DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
   3187                                        InitRange.getBegin());
   3188   if (DelegationInit.isInvalid())
   3189     return true;
   3190 
   3191   // If we are in a dependent context, template instantiation will
   3192   // perform this type-checking again. Just save the arguments that we
   3193   // received in a ParenListExpr.
   3194   // FIXME: This isn't quite ideal, since our ASTs don't capture all
   3195   // of the information that we have about the base
   3196   // initializer. However, deconstructing the ASTs is a dicey process,
   3197   // and this approach is far more likely to get the corner cases right.
   3198   if (CurContext->isDependentContext())
   3199     DelegationInit = Init;
   3200 
   3201   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
   3202                                           DelegationInit.getAs<Expr>(),
   3203                                           InitRange.getEnd());
   3204 }
   3205 
   3206 MemInitResult
   3207 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
   3208                            Expr *Init, CXXRecordDecl *ClassDecl,
   3209                            SourceLocation EllipsisLoc) {
   3210   SourceLocation BaseLoc
   3211     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
   3212 
   3213   if (!BaseType->isDependentType() && !BaseType->isRecordType())
   3214     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
   3215              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
   3216 
   3217   // C++ [class.base.init]p2:
   3218   //   [...] Unless the mem-initializer-id names a nonstatic data
   3219   //   member of the constructor's class or a direct or virtual base
   3220   //   of that class, the mem-initializer is ill-formed. A
   3221   //   mem-initializer-list can initialize a base class using any
   3222   //   name that denotes that base class type.
   3223   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
   3224 
   3225   SourceRange InitRange = Init->getSourceRange();
   3226   if (EllipsisLoc.isValid()) {
   3227     // This is a pack expansion.
   3228     if (!BaseType->containsUnexpandedParameterPack())  {
   3229       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
   3230         << SourceRange(BaseLoc, InitRange.getEnd());
   3231 
   3232       EllipsisLoc = SourceLocation();
   3233     }
   3234   } else {
   3235     // Check for any unexpanded parameter packs.
   3236     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
   3237       return true;
   3238 
   3239     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
   3240       return true;
   3241   }
   3242 
   3243   // Check for direct and virtual base classes.
   3244   const CXXBaseSpecifier *DirectBaseSpec = nullptr;
   3245   const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
   3246   if (!Dependent) {
   3247     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
   3248                                        BaseType))
   3249       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
   3250 
   3251     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
   3252                         VirtualBaseSpec);
   3253 
   3254     // C++ [base.class.init]p2:
   3255     // Unless the mem-initializer-id names a nonstatic data member of the
   3256     // constructor's class or a direct or virtual base of that class, the
   3257     // mem-initializer is ill-formed.
   3258     if (!DirectBaseSpec && !VirtualBaseSpec) {
   3259       // If the class has any dependent bases, then it's possible that
   3260       // one of those types will resolve to the same type as
   3261       // BaseType. Therefore, just treat this as a dependent base
   3262       // class initialization.  FIXME: Should we try to check the
   3263       // initialization anyway? It seems odd.
   3264       if (ClassDecl->hasAnyDependentBases())
   3265         Dependent = true;
   3266       else
   3267         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
   3268           << BaseType << Context.getTypeDeclType(ClassDecl)
   3269           << BaseTInfo->getTypeLoc().getLocalSourceRange();
   3270     }
   3271   }
   3272 
   3273   if (Dependent) {
   3274     DiscardCleanupsInEvaluationContext();
   3275 
   3276     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
   3277                                             /*IsVirtual=*/false,
   3278                                             InitRange.getBegin(), Init,
   3279                                             InitRange.getEnd(), EllipsisLoc);
   3280   }
   3281 
   3282   // C++ [base.class.init]p2:
   3283   //   If a mem-initializer-id is ambiguous because it designates both
   3284   //   a direct non-virtual base class and an inherited virtual base
   3285   //   class, the mem-initializer is ill-formed.
   3286   if (DirectBaseSpec && VirtualBaseSpec)
   3287     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
   3288       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
   3289 
   3290   const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
   3291   if (!BaseSpec)
   3292     BaseSpec = VirtualBaseSpec;
   3293 
   3294   // Initialize the base.
   3295   bool InitList = true;
   3296   MultiExprArg Args = Init;
   3297   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
   3298     InitList = false;
   3299     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
   3300   }
   3301 
   3302   InitializedEntity BaseEntity =
   3303     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
   3304   InitializationKind Kind =
   3305     InitList ? InitializationKind::CreateDirectList(BaseLoc)
   3306              : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
   3307                                                 InitRange.getEnd());
   3308   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
   3309   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
   3310   if (BaseInit.isInvalid())
   3311     return true;
   3312 
   3313   // C++11 [class.base.init]p7:
   3314   //   The initialization of each base and member constitutes a
   3315   //   full-expression.
   3316   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
   3317   if (BaseInit.isInvalid())
   3318     return true;
   3319 
   3320   // If we are in a dependent context, template instantiation will
   3321   // perform this type-checking again. Just save the arguments that we
   3322   // received in a ParenListExpr.
   3323   // FIXME: This isn't quite ideal, since our ASTs don't capture all
   3324   // of the information that we have about the base
   3325   // initializer. However, deconstructing the ASTs is a dicey process,
   3326   // and this approach is far more likely to get the corner cases right.
   3327   if (CurContext->isDependentContext())
   3328     BaseInit = Init;
   3329 
   3330   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
   3331                                           BaseSpec->isVirtual(),
   3332                                           InitRange.getBegin(),
   3333                                           BaseInit.getAs<Expr>(),
   3334                                           InitRange.getEnd(), EllipsisLoc);
   3335 }
   3336 
   3337 // Create a static_cast\<T&&>(expr).
   3338 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
   3339   if (T.isNull()) T = E->getType();
   3340   QualType TargetType = SemaRef.BuildReferenceType(
   3341       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
   3342   SourceLocation ExprLoc = E->getLocStart();
   3343   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
   3344       TargetType, ExprLoc);
   3345 
   3346   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
   3347                                    SourceRange(ExprLoc, ExprLoc),
   3348                                    E->getSourceRange()).get();
   3349 }
   3350 
   3351 /// ImplicitInitializerKind - How an implicit base or member initializer should
   3352 /// initialize its base or member.
   3353 enum ImplicitInitializerKind {
   3354   IIK_Default,
   3355   IIK_Copy,
   3356   IIK_Move,
   3357   IIK_Inherit
   3358 };
   3359 
   3360 static bool
   3361 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
   3362                              ImplicitInitializerKind ImplicitInitKind,
   3363                              CXXBaseSpecifier *BaseSpec,
   3364                              bool IsInheritedVirtualBase,
   3365                              CXXCtorInitializer *&CXXBaseInit) {
   3366   InitializedEntity InitEntity
   3367     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
   3368                                         IsInheritedVirtualBase);
   3369 
   3370   ExprResult BaseInit;
   3371 
   3372   switch (ImplicitInitKind) {
   3373   case IIK_Inherit: {
   3374     const CXXRecordDecl *Inherited =
   3375         Constructor->getInheritedConstructor()->getParent();
   3376     const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
   3377     if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
   3378       // C++11 [class.inhctor]p8:
   3379       //   Each expression in the expression-list is of the form
   3380       //   static_cast<T&&>(p), where p is the name of the corresponding
   3381       //   constructor parameter and T is the declared type of p.
   3382       SmallVector<Expr*, 16> Args;
   3383       for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
   3384         ParmVarDecl *PD = Constructor->getParamDecl(I);
   3385         ExprResult ArgExpr =
   3386             SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
   3387                                      VK_LValue, SourceLocation());
   3388         if (ArgExpr.isInvalid())
   3389           return true;
   3390         Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType()));
   3391       }
   3392 
   3393       InitializationKind InitKind = InitializationKind::CreateDirect(
   3394           Constructor->getLocation(), SourceLocation(), SourceLocation());
   3395       InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
   3396       BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
   3397       break;
   3398     }
   3399   }
   3400   // Fall through.
   3401   case IIK_Default: {
   3402     InitializationKind InitKind
   3403       = InitializationKind::CreateDefault(Constructor->getLocation());
   3404     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
   3405     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
   3406     break;
   3407   }
   3408 
   3409   case IIK_Move:
   3410   case IIK_Copy: {
   3411     bool Moving = ImplicitInitKind == IIK_Move;
   3412     ParmVarDecl *Param = Constructor->getParamDecl(0);
   3413     QualType ParamType = Param->getType().getNonReferenceType();
   3414 
   3415     Expr *CopyCtorArg =
   3416       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
   3417                           SourceLocation(), Param, false,
   3418                           Constructor->getLocation(), ParamType,
   3419                           VK_LValue, nullptr);
   3420 
   3421     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
   3422 
   3423     // Cast to the base class to avoid ambiguities.
   3424     QualType ArgTy =
   3425       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
   3426                                        ParamType.getQualifiers());
   3427 
   3428     if (Moving) {
   3429       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
   3430     }
   3431 
   3432     CXXCastPath BasePath;
   3433     BasePath.push_back(BaseSpec);
   3434     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
   3435                                             CK_UncheckedDerivedToBase,
   3436                                             Moving ? VK_XValue : VK_LValue,
   3437                                             &BasePath).get();
   3438 
   3439     InitializationKind InitKind
   3440       = InitializationKind::CreateDirect(Constructor->getLocation(),
   3441                                          SourceLocation(), SourceLocation());
   3442     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
   3443     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
   3444     break;
   3445   }
   3446   }
   3447 
   3448   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
   3449   if (BaseInit.isInvalid())
   3450     return true;
   3451 
   3452   CXXBaseInit =
   3453     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
   3454                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
   3455                                                         SourceLocation()),
   3456                                              BaseSpec->isVirtual(),
   3457                                              SourceLocation(),
   3458                                              BaseInit.getAs<Expr>(),
   3459                                              SourceLocation(),
   3460                                              SourceLocation());
   3461 
   3462   return false;
   3463 }
   3464 
   3465 static bool RefersToRValueRef(Expr *MemRef) {
   3466   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
   3467   return Referenced->getType()->isRValueReferenceType();
   3468 }
   3469 
   3470 static bool
   3471 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
   3472                                ImplicitInitializerKind ImplicitInitKind,
   3473                                FieldDecl *Field, IndirectFieldDecl *Indirect,
   3474                                CXXCtorInitializer *&CXXMemberInit) {
   3475   if (Field->isInvalidDecl())
   3476     return true;
   3477 
   3478   SourceLocation Loc = Constructor->getLocation();
   3479 
   3480   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
   3481     bool Moving = ImplicitInitKind == IIK_Move;
   3482     ParmVarDecl *Param = Constructor->getParamDecl(0);
   3483     QualType ParamType = Param->getType().getNonReferenceType();
   3484 
   3485     // Suppress copying zero-width bitfields.
   3486     if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
   3487       return false;
   3488 
   3489     Expr *MemberExprBase =
   3490       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
   3491                           SourceLocation(), Param, false,
   3492                           Loc, ParamType, VK_LValue, nullptr);
   3493 
   3494     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
   3495 
   3496     if (Moving) {
   3497       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
   3498     }
   3499 
   3500     // Build a reference to this field within the parameter.
   3501     CXXScopeSpec SS;
   3502     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
   3503                               Sema::LookupMemberName);
   3504     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
   3505                                   : cast<ValueDecl>(Field), AS_public);
   3506     MemberLookup.resolveKind();
   3507     ExprResult CtorArg
   3508       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
   3509                                          ParamType, Loc,
   3510                                          /*IsArrow=*/false,
   3511                                          SS,
   3512                                          /*TemplateKWLoc=*/SourceLocation(),
   3513                                          /*FirstQualifierInScope=*/nullptr,
   3514                                          MemberLookup,
   3515                                          /*TemplateArgs=*/nullptr);
   3516     if (CtorArg.isInvalid())
   3517       return true;
   3518 
   3519     // C++11 [class.copy]p15:
   3520     //   - if a member m has rvalue reference type T&&, it is direct-initialized
   3521     //     with static_cast<T&&>(x.m);
   3522     if (RefersToRValueRef(CtorArg.get())) {
   3523       CtorArg = CastForMoving(SemaRef, CtorArg.get());
   3524     }
   3525 
   3526     // When the field we are copying is an array, create index variables for
   3527     // each dimension of the array. We use these index variables to subscript
   3528     // the source array, and other clients (e.g., CodeGen) will perform the
   3529     // necessary iteration with these index variables.
   3530     SmallVector<VarDecl *, 4> IndexVariables;
   3531     QualType BaseType = Field->getType();
   3532     QualType SizeType = SemaRef.Context.getSizeType();
   3533     bool InitializingArray = false;
   3534     while (const ConstantArrayType *Array
   3535                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
   3536       InitializingArray = true;
   3537       // Create the iteration variable for this array index.
   3538       IdentifierInfo *IterationVarName = nullptr;
   3539       {
   3540         SmallString<8> Str;
   3541         llvm::raw_svector_ostream OS(Str);
   3542         OS << "__i" << IndexVariables.size();
   3543         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
   3544       }
   3545       VarDecl *IterationVar
   3546         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
   3547                           IterationVarName, SizeType,
   3548                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   3549                           SC_None);
   3550       IndexVariables.push_back(IterationVar);
   3551 
   3552       // Create a reference to the iteration variable.
   3553       ExprResult IterationVarRef
   3554         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
   3555       assert(!IterationVarRef.isInvalid() &&
   3556              "Reference to invented variable cannot fail!");
   3557       IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get());
   3558       assert(!IterationVarRef.isInvalid() &&
   3559              "Conversion of invented variable cannot fail!");
   3560 
   3561       // Subscript the array with this iteration variable.
   3562       CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc,
   3563                                                         IterationVarRef.get(),
   3564                                                         Loc);
   3565       if (CtorArg.isInvalid())
   3566         return true;
   3567 
   3568       BaseType = Array->getElementType();
   3569     }
   3570 
   3571     // The array subscript expression is an lvalue, which is wrong for moving.
   3572     if (Moving && InitializingArray)
   3573       CtorArg = CastForMoving(SemaRef, CtorArg.get());
   3574 
   3575     // Construct the entity that we will be initializing. For an array, this
   3576     // will be first element in the array, which may require several levels
   3577     // of array-subscript entities.
   3578     SmallVector<InitializedEntity, 4> Entities;
   3579     Entities.reserve(1 + IndexVariables.size());
   3580     if (Indirect)
   3581       Entities.push_back(InitializedEntity::InitializeMember(Indirect));
   3582     else
   3583       Entities.push_back(InitializedEntity::InitializeMember(Field));
   3584     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
   3585       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
   3586                                                               0,
   3587                                                               Entities.back()));
   3588 
   3589     // Direct-initialize to use the copy constructor.
   3590     InitializationKind InitKind =
   3591       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
   3592 
   3593     Expr *CtorArgE = CtorArg.getAs<Expr>();
   3594     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
   3595                                    CtorArgE);
   3596 
   3597     ExprResult MemberInit
   3598       = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
   3599                         MultiExprArg(&CtorArgE, 1));
   3600     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
   3601     if (MemberInit.isInvalid())
   3602       return true;
   3603 
   3604     if (Indirect) {
   3605       assert(IndexVariables.size() == 0 &&
   3606              "Indirect field improperly initialized");
   3607       CXXMemberInit
   3608         = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
   3609                                                    Loc, Loc,
   3610                                                    MemberInit.getAs<Expr>(),
   3611                                                    Loc);
   3612     } else
   3613       CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
   3614                                                  Loc, MemberInit.getAs<Expr>(),
   3615                                                  Loc,
   3616                                                  IndexVariables.data(),
   3617                                                  IndexVariables.size());
   3618     return false;
   3619   }
   3620 
   3621   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
   3622          "Unhandled implicit init kind!");
   3623 
   3624   QualType FieldBaseElementType =
   3625     SemaRef.Context.getBaseElementType(Field->getType());
   3626 
   3627   if (FieldBaseElementType->isRecordType()) {
   3628     InitializedEntity InitEntity
   3629       = Indirect? InitializedEntity::InitializeMember(Indirect)
   3630                 : InitializedEntity::InitializeMember(Field);
   3631     InitializationKind InitKind =
   3632       InitializationKind::CreateDefault(Loc);
   3633 
   3634     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
   3635     ExprResult MemberInit =
   3636       InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
   3637 
   3638     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
   3639     if (MemberInit.isInvalid())
   3640       return true;
   3641 
   3642     if (Indirect)
   3643       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
   3644                                                                Indirect, Loc,
   3645                                                                Loc,
   3646                                                                MemberInit.get(),
   3647                                                                Loc);
   3648     else
   3649       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
   3650                                                                Field, Loc, Loc,
   3651                                                                MemberInit.get(),
   3652                                                                Loc);
   3653     return false;
   3654   }
   3655 
   3656   if (!Field->getParent()->isUnion()) {
   3657     if (FieldBaseElementType->isReferenceType()) {
   3658       SemaRef.Diag(Constructor->getLocation(),
   3659                    diag::err_uninitialized_member_in_ctor)
   3660       << (int)Constructor->isImplicit()
   3661       << SemaRef.Context.getTagDeclType(Constructor->getParent())
   3662       << 0 << Field->getDeclName();
   3663       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
   3664       return true;
   3665     }
   3666 
   3667     if (FieldBaseElementType.isConstQualified()) {
   3668       SemaRef.Diag(Constructor->getLocation(),
   3669                    diag::err_uninitialized_member_in_ctor)
   3670       << (int)Constructor->isImplicit()
   3671       << SemaRef.Context.getTagDeclType(Constructor->getParent())
   3672       << 1 << Field->getDeclName();
   3673       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
   3674       return true;
   3675     }
   3676   }
   3677 
   3678   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
   3679       FieldBaseElementType->isObjCRetainableType() &&
   3680       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
   3681       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
   3682     // ARC:
   3683     //   Default-initialize Objective-C pointers to NULL.
   3684     CXXMemberInit
   3685       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
   3686                                                  Loc, Loc,
   3687                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
   3688                                                  Loc);
   3689     return false;
   3690   }
   3691 
   3692   // Nothing to initialize.
   3693   CXXMemberInit = nullptr;
   3694   return false;
   3695 }
   3696 
   3697 namespace {
   3698 struct BaseAndFieldInfo {
   3699   Sema &S;
   3700   CXXConstructorDecl *Ctor;
   3701   bool AnyErrorsInInits;
   3702   ImplicitInitializerKind IIK;
   3703   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
   3704   SmallVector<CXXCtorInitializer*, 8> AllToInit;
   3705   llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
   3706 
   3707   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
   3708     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
   3709     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
   3710     if (Generated && Ctor->isCopyConstructor())
   3711       IIK = IIK_Copy;
   3712     else if (Generated && Ctor->isMoveConstructor())
   3713       IIK = IIK_Move;
   3714     else if (Ctor->getInheritedConstructor())
   3715       IIK = IIK_Inherit;
   3716     else
   3717       IIK = IIK_Default;
   3718   }
   3719 
   3720   bool isImplicitCopyOrMove() const {
   3721     switch (IIK) {
   3722     case IIK_Copy:
   3723     case IIK_Move:
   3724       return true;
   3725 
   3726     case IIK_Default:
   3727     case IIK_Inherit:
   3728       return false;
   3729     }
   3730 
   3731     llvm_unreachable("Invalid ImplicitInitializerKind!");
   3732   }
   3733 
   3734   bool addFieldInitializer(CXXCtorInitializer *Init) {
   3735     AllToInit.push_back(Init);
   3736 
   3737     // Check whether this initializer makes the field "used".
   3738     if (Init->getInit()->HasSideEffects(S.Context))
   3739       S.UnusedPrivateFields.remove(Init->getAnyMember());
   3740 
   3741     return false;
   3742   }
   3743 
   3744   bool isInactiveUnionMember(FieldDecl *Field) {
   3745     RecordDecl *Record = Field->getParent();
   3746     if (!Record->isUnion())
   3747       return false;
   3748 
   3749     if (FieldDecl *Active =
   3750             ActiveUnionMember.lookup(Record->getCanonicalDecl()))
   3751       return Active != Field->getCanonicalDecl();
   3752 
   3753     // In an implicit copy or move constructor, ignore any in-class initializer.
   3754     if (isImplicitCopyOrMove())
   3755       return true;
   3756 
   3757     // If there's no explicit initialization, the field is active only if it
   3758     // has an in-class initializer...
   3759     if (Field->hasInClassInitializer())
   3760       return false;
   3761     // ... or it's an anonymous struct or union whose class has an in-class
   3762     // initializer.
   3763     if (!Field->isAnonymousStructOrUnion())
   3764       return true;
   3765     CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
   3766     return !FieldRD->hasInClassInitializer();
   3767   }
   3768 
   3769   /// \brief Determine whether the given field is, or is within, a union member
   3770   /// that is inactive (because there was an initializer given for a different
   3771   /// member of the union, or because the union was not initialized at all).
   3772   bool isWithinInactiveUnionMember(FieldDecl *Field,
   3773                                    IndirectFieldDecl *Indirect) {
   3774     if (!Indirect)
   3775       return isInactiveUnionMember(Field);
   3776 
   3777     for (auto *C : Indirect->chain()) {
   3778       FieldDecl *Field = dyn_cast<FieldDecl>(C);
   3779       if (Field && isInactiveUnionMember(Field))
   3780         return true;
   3781     }
   3782     return false;
   3783   }
   3784 };
   3785 }
   3786 
   3787 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
   3788 /// array type.
   3789 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
   3790   if (T->isIncompleteArrayType())
   3791     return true;
   3792 
   3793   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
   3794     if (!ArrayT->getSize())
   3795       return true;
   3796 
   3797     T = ArrayT->getElementType();
   3798   }
   3799 
   3800   return false;
   3801 }
   3802 
   3803 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
   3804                                     FieldDecl *Field,
   3805                                     IndirectFieldDecl *Indirect = nullptr) {
   3806   if (Field->isInvalidDecl())
   3807     return false;
   3808 
   3809   // Overwhelmingly common case: we have a direct initializer for this field.
   3810   if (CXXCtorInitializer *Init =
   3811           Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
   3812     return Info.addFieldInitializer(Init);
   3813 
   3814   // C++11 [class.base.init]p8:
   3815   //   if the entity is a non-static data member that has a
   3816   //   brace-or-equal-initializer and either
   3817   //   -- the constructor's class is a union and no other variant member of that
   3818   //      union is designated by a mem-initializer-id or
   3819   //   -- the constructor's class is not a union, and, if the entity is a member
   3820   //      of an anonymous union, no other member of that union is designated by
   3821   //      a mem-initializer-id,
   3822   //   the entity is initialized as specified in [dcl.init].
   3823   //
   3824   // We also apply the same rules to handle anonymous structs within anonymous
   3825   // unions.
   3826   if (Info.isWithinInactiveUnionMember(Field, Indirect))
   3827     return false;
   3828 
   3829   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
   3830     ExprResult DIE =
   3831         SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
   3832     if (DIE.isInvalid())
   3833       return true;
   3834     CXXCtorInitializer *Init;
   3835     if (Indirect)
   3836       Init = new (SemaRef.Context)
   3837           CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
   3838                              SourceLocation(), DIE.get(), SourceLocation());
   3839     else
   3840       Init = new (SemaRef.Context)
   3841           CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
   3842                              SourceLocation(), DIE.get(), SourceLocation());
   3843     return Info.addFieldInitializer(Init);
   3844   }
   3845 
   3846   // Don't initialize incomplete or zero-length arrays.
   3847   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
   3848     return false;
   3849 
   3850   // Don't try to build an implicit initializer if there were semantic
   3851   // errors in any of the initializers (and therefore we might be
   3852   // missing some that the user actually wrote).
   3853   if (Info.AnyErrorsInInits)
   3854     return false;
   3855 
   3856   CXXCtorInitializer *Init = nullptr;
   3857   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
   3858                                      Indirect, Init))
   3859     return true;
   3860 
   3861   if (!Init)
   3862     return false;
   3863 
   3864   return Info.addFieldInitializer(Init);
   3865 }
   3866 
   3867 bool
   3868 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
   3869                                CXXCtorInitializer *Initializer) {
   3870   assert(Initializer->isDelegatingInitializer());
   3871   Constructor->setNumCtorInitializers(1);
   3872   CXXCtorInitializer **initializer =
   3873     new (Context) CXXCtorInitializer*[1];
   3874   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
   3875   Constructor->setCtorInitializers(initializer);
   3876 
   3877   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
   3878     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
   3879     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
   3880   }
   3881 
   3882   DelegatingCtorDecls.push_back(Constructor);
   3883 
   3884   DiagnoseUninitializedFields(*this, Constructor);
   3885 
   3886   return false;
   3887 }
   3888 
   3889 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
   3890                                ArrayRef<CXXCtorInitializer *> Initializers) {
   3891   if (Constructor->isDependentContext()) {
   3892     // Just store the initializers as written, they will be checked during
   3893     // instantiation.
   3894     if (!Initializers.empty()) {
   3895       Constructor->setNumCtorInitializers(Initializers.size());
   3896       CXXCtorInitializer **baseOrMemberInitializers =
   3897         new (Context) CXXCtorInitializer*[Initializers.size()];
   3898       memcpy(baseOrMemberInitializers, Initializers.data(),
   3899              Initializers.size() * sizeof(CXXCtorInitializer*));
   3900       Constructor->setCtorInitializers(baseOrMemberInitializers);
   3901     }
   3902 
   3903     // Let template instantiation know whether we had errors.
   3904     if (AnyErrors)
   3905       Constructor->setInvalidDecl();
   3906 
   3907     return false;
   3908   }
   3909 
   3910   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
   3911 
   3912   // We need to build the initializer AST according to order of construction
   3913   // and not what user specified in the Initializers list.
   3914   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
   3915   if (!ClassDecl)
   3916     return true;
   3917 
   3918   bool HadError = false;
   3919 
   3920   for (unsigned i = 0; i < Initializers.size(); i++) {
   3921     CXXCtorInitializer *Member = Initializers[i];
   3922 
   3923     if (Member->isBaseInitializer())
   3924       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
   3925     else {
   3926       Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
   3927 
   3928       if (IndirectFieldDecl *F = Member->getIndirectMember()) {
   3929         for (auto *C : F->chain()) {
   3930           FieldDecl *FD = dyn_cast<FieldDecl>(C);
   3931           if (FD && FD->getParent()->isUnion())
   3932             Info.ActiveUnionMember.insert(std::make_pair(
   3933                 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
   3934         }
   3935       } else if (FieldDecl *FD = Member->getMember()) {
   3936         if (FD->getParent()->isUnion())
   3937           Info.ActiveUnionMember.insert(std::make_pair(
   3938               FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
   3939       }
   3940     }
   3941   }
   3942 
   3943   // Keep track of the direct virtual bases.
   3944   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
   3945   for (auto &I : ClassDecl->bases()) {
   3946     if (I.isVirtual())
   3947       DirectVBases.insert(&I);
   3948   }
   3949 
   3950   // Push virtual bases before others.
   3951   for (auto &VBase : ClassDecl->vbases()) {
   3952     if (CXXCtorInitializer *Value
   3953         = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
   3954       // [class.base.init]p7, per DR257:
   3955       //   A mem-initializer where the mem-initializer-id names a virtual base
   3956       //   class is ignored during execution of a constructor of any class that
   3957       //   is not the most derived class.
   3958       if (ClassDecl->isAbstract()) {
   3959         // FIXME: Provide a fixit to remove the base specifier. This requires
   3960         // tracking the location of the associated comma for a base specifier.
   3961         Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
   3962           << VBase.getType() << ClassDecl;
   3963         DiagnoseAbstractType(ClassDecl);
   3964       }
   3965 
   3966       Info.AllToInit.push_back(Value);
   3967     } else if (!AnyErrors && !ClassDecl->isAbstract()) {
   3968       // [class.base.init]p8, per DR257:
   3969       //   If a given [...] base class is not named by a mem-initializer-id
   3970       //   [...] and the entity is not a virtual base class of an abstract
   3971       //   class, then [...] the entity is default-initialized.
   3972       bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
   3973       CXXCtorInitializer *CXXBaseInit;
   3974       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
   3975                                        &VBase, IsInheritedVirtualBase,
   3976                                        CXXBaseInit)) {
   3977         HadError = true;
   3978         continue;
   3979       }
   3980 
   3981       Info.AllToInit.push_back(CXXBaseInit);
   3982     }
   3983   }
   3984 
   3985   // Non-virtual bases.
   3986   for (auto &Base : ClassDecl->bases()) {
   3987     // Virtuals are in the virtual base list and already constructed.
   3988     if (Base.isVirtual())
   3989       continue;
   3990 
   3991     if (CXXCtorInitializer *Value
   3992           = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
   3993       Info.AllToInit.push_back(Value);
   3994     } else if (!AnyErrors) {
   3995       CXXCtorInitializer *CXXBaseInit;
   3996       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
   3997                                        &Base, /*IsInheritedVirtualBase=*/false,
   3998                                        CXXBaseInit)) {
   3999         HadError = true;
   4000         continue;
   4001       }
   4002 
   4003       Info.AllToInit.push_back(CXXBaseInit);
   4004     }
   4005   }
   4006 
   4007   // Fields.
   4008   for (auto *Mem : ClassDecl->decls()) {
   4009     if (auto *F = dyn_cast<FieldDecl>(Mem)) {
   4010       // C++ [class.bit]p2:
   4011       //   A declaration for a bit-field that omits the identifier declares an
   4012       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
   4013       //   initialized.
   4014       if (F->isUnnamedBitfield())
   4015         continue;
   4016 
   4017       // If we're not generating the implicit copy/move constructor, then we'll
   4018       // handle anonymous struct/union fields based on their individual
   4019       // indirect fields.
   4020       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
   4021         continue;
   4022 
   4023       if (CollectFieldInitializer(*this, Info, F))
   4024         HadError = true;
   4025       continue;
   4026     }
   4027 
   4028     // Beyond this point, we only consider default initialization.
   4029     if (Info.isImplicitCopyOrMove())
   4030       continue;
   4031 
   4032     if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
   4033       if (F->getType()->isIncompleteArrayType()) {
   4034         assert(ClassDecl->hasFlexibleArrayMember() &&
   4035                "Incomplete array type is not valid");
   4036         continue;
   4037       }
   4038 
   4039       // Initialize each field of an anonymous struct individually.
   4040       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
   4041         HadError = true;
   4042 
   4043       continue;
   4044     }
   4045   }
   4046 
   4047   unsigned NumInitializers = Info.AllToInit.size();
   4048   if (NumInitializers > 0) {
   4049     Constructor->setNumCtorInitializers(NumInitializers);
   4050     CXXCtorInitializer **baseOrMemberInitializers =
   4051       new (Context) CXXCtorInitializer*[NumInitializers];
   4052     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
   4053            NumInitializers * sizeof(CXXCtorInitializer*));
   4054     Constructor->setCtorInitializers(baseOrMemberInitializers);
   4055 
   4056     // Constructors implicitly reference the base and member
   4057     // destructors.
   4058     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
   4059                                            Constructor->getParent());
   4060   }
   4061 
   4062   return HadError;
   4063 }
   4064 
   4065 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
   4066   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
   4067     const RecordDecl *RD = RT->getDecl();
   4068     if (RD->isAnonymousStructOrUnion()) {
   4069       for (auto *Field : RD->fields())
   4070         PopulateKeysForFields(Field, IdealInits);
   4071       return;
   4072     }
   4073   }
   4074   IdealInits.push_back(Field->getCanonicalDecl());
   4075 }
   4076 
   4077 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
   4078   return Context.getCanonicalType(BaseType).getTypePtr();
   4079 }
   4080 
   4081 static const void *GetKeyForMember(ASTContext &Context,
   4082                                    CXXCtorInitializer *Member) {
   4083   if (!Member->isAnyMemberInitializer())
   4084     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
   4085 
   4086   return Member->getAnyMember()->getCanonicalDecl();
   4087 }
   4088 
   4089 static void DiagnoseBaseOrMemInitializerOrder(
   4090     Sema &SemaRef, const CXXConstructorDecl *Constructor,
   4091     ArrayRef<CXXCtorInitializer *> Inits) {
   4092   if (Constructor->getDeclContext()->isDependentContext())
   4093     return;
   4094 
   4095   // Don't check initializers order unless the warning is enabled at the
   4096   // location of at least one initializer.
   4097   bool ShouldCheckOrder = false;
   4098   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
   4099     CXXCtorInitializer *Init = Inits[InitIndex];
   4100     if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
   4101                                  Init->getSourceLocation())) {
   4102       ShouldCheckOrder = true;
   4103       break;
   4104     }
   4105   }
   4106   if (!ShouldCheckOrder)
   4107     return;
   4108 
   4109   // Build the list of bases and members in the order that they'll
   4110   // actually be initialized.  The explicit initializers should be in
   4111   // this same order but may be missing things.
   4112   SmallVector<const void*, 32> IdealInitKeys;
   4113 
   4114   const CXXRecordDecl *ClassDecl = Constructor->getParent();
   4115 
   4116   // 1. Virtual bases.
   4117   for (const auto &VBase : ClassDecl->vbases())
   4118     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
   4119 
   4120   // 2. Non-virtual bases.
   4121   for (const auto &Base : ClassDecl->bases()) {
   4122     if (Base.isVirtual())
   4123       continue;
   4124     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
   4125   }
   4126 
   4127   // 3. Direct fields.
   4128   for (auto *Field : ClassDecl->fields()) {
   4129     if (Field->isUnnamedBitfield())
   4130       continue;
   4131 
   4132     PopulateKeysForFields(Field, IdealInitKeys);
   4133   }
   4134 
   4135   unsigned NumIdealInits = IdealInitKeys.size();
   4136   unsigned IdealIndex = 0;
   4137 
   4138   CXXCtorInitializer *PrevInit = nullptr;
   4139   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
   4140     CXXCtorInitializer *Init = Inits[InitIndex];
   4141     const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
   4142 
   4143     // Scan forward to try to find this initializer in the idealized
   4144     // initializers list.
   4145     for (; IdealIndex != NumIdealInits; ++IdealIndex)
   4146       if (InitKey == IdealInitKeys[IdealIndex])
   4147         break;
   4148 
   4149     // If we didn't find this initializer, it must be because we
   4150     // scanned past it on a previous iteration.  That can only
   4151     // happen if we're out of order;  emit a warning.
   4152     if (IdealIndex == NumIdealInits && PrevInit) {
   4153       Sema::SemaDiagnosticBuilder D =
   4154         SemaRef.Diag(PrevInit->getSourceLocation(),
   4155                      diag::warn_initializer_out_of_order);
   4156 
   4157       if (PrevInit->isAnyMemberInitializer())
   4158         D << 0 << PrevInit->getAnyMember()->getDeclName();
   4159       else
   4160         D << 1 << PrevInit->getTypeSourceInfo()->getType();
   4161 
   4162       if (Init->isAnyMemberInitializer())
   4163         D << 0 << Init->getAnyMember()->getDeclName();
   4164       else
   4165         D << 1 << Init->getTypeSourceInfo()->getType();
   4166 
   4167       // Move back to the initializer's location in the ideal list.
   4168       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
   4169         if (InitKey == IdealInitKeys[IdealIndex])
   4170           break;
   4171 
   4172       assert(IdealIndex != NumIdealInits &&
   4173              "initializer not found in initializer list");
   4174     }
   4175 
   4176     PrevInit = Init;
   4177   }
   4178 }
   4179 
   4180 namespace {
   4181 bool CheckRedundantInit(Sema &S,
   4182                         CXXCtorInitializer *Init,
   4183                         CXXCtorInitializer *&PrevInit) {
   4184   if (!PrevInit) {
   4185     PrevInit = Init;
   4186     return false;
   4187   }
   4188 
   4189   if (FieldDecl *Field = Init->getAnyMember())
   4190     S.Diag(Init->getSourceLocation(),
   4191            diag::err_multiple_mem_initialization)
   4192       << Field->getDeclName()
   4193       << Init->getSourceRange();
   4194   else {
   4195     const Type *BaseClass = Init->getBaseClass();
   4196     assert(BaseClass && "neither field nor base");
   4197     S.Diag(Init->getSourceLocation(),
   4198            diag::err_multiple_base_initialization)
   4199       << QualType(BaseClass, 0)
   4200       << Init->getSourceRange();
   4201   }
   4202   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
   4203     << 0 << PrevInit->getSourceRange();
   4204 
   4205   return true;
   4206 }
   4207 
   4208 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
   4209 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
   4210 
   4211 bool CheckRedundantUnionInit(Sema &S,
   4212                              CXXCtorInitializer *Init,
   4213                              RedundantUnionMap &Unions) {
   4214   FieldDecl *Field = Init->getAnyMember();
   4215   RecordDecl *Parent = Field->getParent();
   4216   NamedDecl *Child = Field;
   4217 
   4218   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
   4219     if (Parent->isUnion()) {
   4220       UnionEntry &En = Unions[Parent];
   4221       if (En.first && En.first != Child) {
   4222         S.Diag(Init->getSourceLocation(),
   4223                diag::err_multiple_mem_union_initialization)
   4224           << Field->getDeclName()
   4225           << Init->getSourceRange();
   4226         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
   4227           << 0 << En.second->getSourceRange();
   4228         return true;
   4229       }
   4230       if (!En.first) {
   4231         En.first = Child;
   4232         En.second = Init;
   4233       }
   4234       if (!Parent->isAnonymousStructOrUnion())
   4235         return false;
   4236     }
   4237 
   4238     Child = Parent;
   4239     Parent = cast<RecordDecl>(Parent->getDeclContext());
   4240   }
   4241 
   4242   return false;
   4243 }
   4244 }
   4245 
   4246 /// ActOnMemInitializers - Handle the member initializers for a constructor.
   4247 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
   4248                                 SourceLocation ColonLoc,
   4249                                 ArrayRef<CXXCtorInitializer*> MemInits,
   4250                                 bool AnyErrors) {
   4251   if (!ConstructorDecl)
   4252     return;
   4253 
   4254   AdjustDeclIfTemplate(ConstructorDecl);
   4255 
   4256   CXXConstructorDecl *Constructor
   4257     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
   4258 
   4259   if (!Constructor) {
   4260     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
   4261     return;
   4262   }
   4263 
   4264   // Mapping for the duplicate initializers check.
   4265   // For member initializers, this is keyed with a FieldDecl*.
   4266   // For base initializers, this is keyed with a Type*.
   4267   llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
   4268 
   4269   // Mapping for the inconsistent anonymous-union initializers check.
   4270   RedundantUnionMap MemberUnions;
   4271 
   4272   bool HadError = false;
   4273   for (unsigned i = 0; i < MemInits.size(); i++) {
   4274     CXXCtorInitializer *Init = MemInits[i];
   4275 
   4276     // Set the source order index.
   4277     Init->setSourceOrder(i);
   4278 
   4279     if (Init->isAnyMemberInitializer()) {
   4280       const void *Key = GetKeyForMember(Context, Init);
   4281       if (CheckRedundantInit(*this, Init, Members[Key]) ||
   4282           CheckRedundantUnionInit(*this, Init, MemberUnions))
   4283         HadError = true;
   4284     } else if (Init->isBaseInitializer()) {
   4285       const void *Key = GetKeyForMember(Context, Init);
   4286       if (CheckRedundantInit(*this, Init, Members[Key]))
   4287         HadError = true;
   4288     } else {
   4289       assert(Init->isDelegatingInitializer());
   4290       // This must be the only initializer
   4291       if (MemInits.size() != 1) {
   4292         Diag(Init->getSourceLocation(),
   4293              diag::err_delegating_initializer_alone)
   4294           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
   4295         // We will treat this as being the only initializer.
   4296       }
   4297       SetDelegatingInitializer(Constructor, MemInits[i]);
   4298       // Return immediately as the initializer is set.
   4299       return;
   4300     }
   4301   }
   4302 
   4303   if (HadError)
   4304     return;
   4305 
   4306   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
   4307 
   4308   SetCtorInitializers(Constructor, AnyErrors, MemInits);
   4309 
   4310   DiagnoseUninitializedFields(*this, Constructor);
   4311 }
   4312 
   4313 void
   4314 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
   4315                                              CXXRecordDecl *ClassDecl) {
   4316   // Ignore dependent contexts. Also ignore unions, since their members never
   4317   // have destructors implicitly called.
   4318   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
   4319     return;
   4320 
   4321   // FIXME: all the access-control diagnostics are positioned on the
   4322   // field/base declaration.  That's probably good; that said, the
   4323   // user might reasonably want to know why the destructor is being
   4324   // emitted, and we currently don't say.
   4325 
   4326   // Non-static data members.
   4327   for (auto *Field : ClassDecl->fields()) {
   4328     if (Field->isInvalidDecl())
   4329       continue;
   4330 
   4331     // Don't destroy incomplete or zero-length arrays.
   4332     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
   4333       continue;
   4334 
   4335     QualType FieldType = Context.getBaseElementType(Field->getType());
   4336 
   4337     const RecordType* RT = FieldType->getAs<RecordType>();
   4338     if (!RT)
   4339       continue;
   4340 
   4341     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   4342     if (FieldClassDecl->isInvalidDecl())
   4343       continue;
   4344     if (FieldClassDecl->hasIrrelevantDestructor())
   4345       continue;
   4346     // The destructor for an implicit anonymous union member is never invoked.
   4347     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
   4348       continue;
   4349 
   4350     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
   4351     assert(Dtor && "No dtor found for FieldClassDecl!");
   4352     CheckDestructorAccess(Field->getLocation(), Dtor,
   4353                           PDiag(diag::err_access_dtor_field)
   4354                             << Field->getDeclName()
   4355                             << FieldType);
   4356 
   4357     MarkFunctionReferenced(Location, Dtor);
   4358     DiagnoseUseOfDecl(Dtor, Location);
   4359   }
   4360 
   4361   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
   4362 
   4363   // Bases.
   4364   for (const auto &Base : ClassDecl->bases()) {
   4365     // Bases are always records in a well-formed non-dependent class.
   4366     const RecordType *RT = Base.getType()->getAs<RecordType>();
   4367 
   4368     // Remember direct virtual bases.
   4369     if (Base.isVirtual())
   4370       DirectVirtualBases.insert(RT);
   4371 
   4372     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   4373     // If our base class is invalid, we probably can't get its dtor anyway.
   4374     if (BaseClassDecl->isInvalidDecl())
   4375       continue;
   4376     if (BaseClassDecl->hasIrrelevantDestructor())
   4377       continue;
   4378 
   4379     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
   4380     assert(Dtor && "No dtor found for BaseClassDecl!");
   4381 
   4382     // FIXME: caret should be on the start of the class name
   4383     CheckDestructorAccess(Base.getLocStart(), Dtor,
   4384                           PDiag(diag::err_access_dtor_base)
   4385                             << Base.getType()
   4386                             << Base.getSourceRange(),
   4387                           Context.getTypeDeclType(ClassDecl));
   4388 
   4389     MarkFunctionReferenced(Location, Dtor);
   4390     DiagnoseUseOfDecl(Dtor, Location);
   4391   }
   4392 
   4393   // Virtual bases.
   4394   for (const auto &VBase : ClassDecl->vbases()) {
   4395     // Bases are always records in a well-formed non-dependent class.
   4396     const RecordType *RT = VBase.getType()->castAs<RecordType>();
   4397 
   4398     // Ignore direct virtual bases.
   4399     if (DirectVirtualBases.count(RT))
   4400       continue;
   4401 
   4402     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   4403     // If our base class is invalid, we probably can't get its dtor anyway.
   4404     if (BaseClassDecl->isInvalidDecl())
   4405       continue;
   4406     if (BaseClassDecl->hasIrrelevantDestructor())
   4407       continue;
   4408 
   4409     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
   4410     assert(Dtor && "No dtor found for BaseClassDecl!");
   4411     if (CheckDestructorAccess(
   4412             ClassDecl->getLocation(), Dtor,
   4413             PDiag(diag::err_access_dtor_vbase)
   4414                 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
   4415             Context.getTypeDeclType(ClassDecl)) ==
   4416         AR_accessible) {
   4417       CheckDerivedToBaseConversion(
   4418           Context.getTypeDeclType(ClassDecl), VBase.getType(),
   4419           diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
   4420           SourceRange(), DeclarationName(), nullptr);
   4421     }
   4422 
   4423     MarkFunctionReferenced(Location, Dtor);
   4424     DiagnoseUseOfDecl(Dtor, Location);
   4425   }
   4426 }
   4427 
   4428 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
   4429   if (!CDtorDecl)
   4430     return;
   4431 
   4432   if (CXXConstructorDecl *Constructor
   4433       = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
   4434     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
   4435     DiagnoseUninitializedFields(*this, Constructor);
   4436   }
   4437 }
   4438 
   4439 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
   4440                                   unsigned DiagID, AbstractDiagSelID SelID) {
   4441   class NonAbstractTypeDiagnoser : public TypeDiagnoser {
   4442     unsigned DiagID;
   4443     AbstractDiagSelID SelID;
   4444 
   4445   public:
   4446     NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
   4447       : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
   4448 
   4449     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   4450       if (Suppressed) return;
   4451       if (SelID == -1)
   4452         S.Diag(Loc, DiagID) << T;
   4453       else
   4454         S.Diag(Loc, DiagID) << SelID << T;
   4455     }
   4456   } Diagnoser(DiagID, SelID);
   4457 
   4458   return RequireNonAbstractType(Loc, T, Diagnoser);
   4459 }
   4460 
   4461 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
   4462                                   TypeDiagnoser &Diagnoser) {
   4463   if (!getLangOpts().CPlusPlus)
   4464     return false;
   4465 
   4466   if (const ArrayType *AT = Context.getAsArrayType(T))
   4467     return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
   4468 
   4469   if (const PointerType *PT = T->getAs<PointerType>()) {
   4470     // Find the innermost pointer type.
   4471     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
   4472       PT = T;
   4473 
   4474     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
   4475       return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
   4476   }
   4477 
   4478   const RecordType *RT = T->getAs<RecordType>();
   4479   if (!RT)
   4480     return false;
   4481 
   4482   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4483 
   4484   // We can't answer whether something is abstract until it has a
   4485   // definition.  If it's currently being defined, we'll walk back
   4486   // over all the declarations when we have a full definition.
   4487   const CXXRecordDecl *Def = RD->getDefinition();
   4488   if (!Def || Def->isBeingDefined())
   4489     return false;
   4490 
   4491   if (!RD->isAbstract())
   4492     return false;
   4493 
   4494   Diagnoser.diagnose(*this, Loc, T);
   4495   DiagnoseAbstractType(RD);
   4496 
   4497   return true;
   4498 }
   4499 
   4500 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
   4501   // Check if we've already emitted the list of pure virtual functions
   4502   // for this class.
   4503   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
   4504     return;
   4505 
   4506   // If the diagnostic is suppressed, don't emit the notes. We're only
   4507   // going to emit them once, so try to attach them to a diagnostic we're
   4508   // actually going to show.
   4509   if (Diags.isLastDiagnosticIgnored())
   4510     return;
   4511 
   4512   CXXFinalOverriderMap FinalOverriders;
   4513   RD->getFinalOverriders(FinalOverriders);
   4514 
   4515   // Keep a set of seen pure methods so we won't diagnose the same method
   4516   // more than once.
   4517   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
   4518 
   4519   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   4520                                    MEnd = FinalOverriders.end();
   4521        M != MEnd;
   4522        ++M) {
   4523     for (OverridingMethods::iterator SO = M->second.begin(),
   4524                                   SOEnd = M->second.end();
   4525          SO != SOEnd; ++SO) {
   4526       // C++ [class.abstract]p4:
   4527       //   A class is abstract if it contains or inherits at least one
   4528       //   pure virtual function for which the final overrider is pure
   4529       //   virtual.
   4530 
   4531       //
   4532       if (SO->second.size() != 1)
   4533         continue;
   4534 
   4535       if (!SO->second.front().Method->isPure())
   4536         continue;
   4537 
   4538       if (!SeenPureMethods.insert(SO->second.front().Method).second)
   4539         continue;
   4540 
   4541       Diag(SO->second.front().Method->getLocation(),
   4542            diag::note_pure_virtual_function)
   4543         << SO->second.front().Method->getDeclName() << RD->getDeclName();
   4544     }
   4545   }
   4546 
   4547   if (!PureVirtualClassDiagSet)
   4548     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
   4549   PureVirtualClassDiagSet->insert(RD);
   4550 }
   4551 
   4552 namespace {
   4553 struct AbstractUsageInfo {
   4554   Sema &S;
   4555   CXXRecordDecl *Record;
   4556   CanQualType AbstractType;
   4557   bool Invalid;
   4558 
   4559   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
   4560     : S(S), Record(Record),
   4561       AbstractType(S.Context.getCanonicalType(
   4562                    S.Context.getTypeDeclType(Record))),
   4563       Invalid(false) {}
   4564 
   4565   void DiagnoseAbstractType() {
   4566     if (Invalid) return;
   4567     S.DiagnoseAbstractType(Record);
   4568     Invalid = true;
   4569   }
   4570 
   4571   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
   4572 };
   4573 
   4574 struct CheckAbstractUsage {
   4575   AbstractUsageInfo &Info;
   4576   const NamedDecl *Ctx;
   4577 
   4578   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
   4579     : Info(Info), Ctx(Ctx) {}
   4580 
   4581   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
   4582     switch (TL.getTypeLocClass()) {
   4583 #define ABSTRACT_TYPELOC(CLASS, PARENT)
   4584 #define TYPELOC(CLASS, PARENT) \
   4585     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
   4586 #include "clang/AST/TypeLocNodes.def"
   4587     }
   4588   }
   4589 
   4590   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   4591     Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
   4592     for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
   4593       if (!TL.getParam(I))
   4594         continue;
   4595 
   4596       TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
   4597       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
   4598     }
   4599   }
   4600 
   4601   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   4602     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
   4603   }
   4604 
   4605   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   4606     // Visit the type parameters from a permissive context.
   4607     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
   4608       TemplateArgumentLoc TAL = TL.getArgLoc(I);
   4609       if (TAL.getArgument().getKind() == TemplateArgument::Type)
   4610         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
   4611           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
   4612       // TODO: other template argument types?
   4613     }
   4614   }
   4615 
   4616   // Visit pointee types from a permissive context.
   4617 #define CheckPolymorphic(Type) \
   4618   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
   4619     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
   4620   }
   4621   CheckPolymorphic(PointerTypeLoc)
   4622   CheckPolymorphic(ReferenceTypeLoc)
   4623   CheckPolymorphic(MemberPointerTypeLoc)
   4624   CheckPolymorphic(BlockPointerTypeLoc)
   4625   CheckPolymorphic(AtomicTypeLoc)
   4626 
   4627   /// Handle all the types we haven't given a more specific
   4628   /// implementation for above.
   4629   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
   4630     // Every other kind of type that we haven't called out already
   4631     // that has an inner type is either (1) sugar or (2) contains that
   4632     // inner type in some way as a subobject.
   4633     if (TypeLoc Next = TL.getNextTypeLoc())
   4634       return Visit(Next, Sel);
   4635 
   4636     // If there's no inner type and we're in a permissive context,
   4637     // don't diagnose.
   4638     if (Sel == Sema::AbstractNone) return;
   4639 
   4640     // Check whether the type matches the abstract type.
   4641     QualType T = TL.getType();
   4642     if (T->isArrayType()) {
   4643       Sel = Sema::AbstractArrayType;
   4644       T = Info.S.Context.getBaseElementType(T);
   4645     }
   4646     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
   4647     if (CT != Info.AbstractType) return;
   4648 
   4649     // It matched; do some magic.
   4650     if (Sel == Sema::AbstractArrayType) {
   4651       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
   4652         << T << TL.getSourceRange();
   4653     } else {
   4654       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
   4655         << Sel << T << TL.getSourceRange();
   4656     }
   4657     Info.DiagnoseAbstractType();
   4658   }
   4659 };
   4660 
   4661 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
   4662                                   Sema::AbstractDiagSelID Sel) {
   4663   CheckAbstractUsage(*this, D).Visit(TL, Sel);
   4664 }
   4665 
   4666 }
   4667 
   4668 /// Check for invalid uses of an abstract type in a method declaration.
   4669 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
   4670                                     CXXMethodDecl *MD) {
   4671   // No need to do the check on definitions, which require that
   4672   // the return/param types be complete.
   4673   if (MD->doesThisDeclarationHaveABody())
   4674     return;
   4675 
   4676   // For safety's sake, just ignore it if we don't have type source
   4677   // information.  This should never happen for non-implicit methods,
   4678   // but...
   4679   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
   4680     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
   4681 }
   4682 
   4683 /// Check for invalid uses of an abstract type within a class definition.
   4684 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
   4685                                     CXXRecordDecl *RD) {
   4686   for (auto *D : RD->decls()) {
   4687     if (D->isImplicit()) continue;
   4688 
   4689     // Methods and method templates.
   4690     if (isa<CXXMethodDecl>(D)) {
   4691       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
   4692     } else if (isa<FunctionTemplateDecl>(D)) {
   4693       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
   4694       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
   4695 
   4696     // Fields and static variables.
   4697     } else if (isa<FieldDecl>(D)) {
   4698       FieldDecl *FD = cast<FieldDecl>(D);
   4699       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
   4700         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
   4701     } else if (isa<VarDecl>(D)) {
   4702       VarDecl *VD = cast<VarDecl>(D);
   4703       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
   4704         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
   4705 
   4706     // Nested classes and class templates.
   4707     } else if (isa<CXXRecordDecl>(D)) {
   4708       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
   4709     } else if (isa<ClassTemplateDecl>(D)) {
   4710       CheckAbstractClassUsage(Info,
   4711                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
   4712     }
   4713   }
   4714 }
   4715 
   4716 /// \brief Check class-level dllimport/dllexport attribute.
   4717 static void checkDLLAttribute(Sema &S, CXXRecordDecl *Class) {
   4718   Attr *ClassAttr = getDLLAttr(Class);
   4719 
   4720   // MSVC inherits DLL attributes to partial class template specializations.
   4721   if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
   4722     if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
   4723       if (Attr *TemplateAttr =
   4724               getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
   4725         auto *A = cast<InheritableAttr>(TemplateAttr->clone(S.getASTContext()));
   4726         A->setInherited(true);
   4727         ClassAttr = A;
   4728       }
   4729     }
   4730   }
   4731 
   4732   if (!ClassAttr)
   4733     return;
   4734 
   4735   if (!Class->isExternallyVisible()) {
   4736     S.Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
   4737         << Class << ClassAttr;
   4738     return;
   4739   }
   4740 
   4741   if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
   4742       !ClassAttr->isInherited()) {
   4743     // Diagnose dll attributes on members of class with dll attribute.
   4744     for (Decl *Member : Class->decls()) {
   4745       if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
   4746         continue;
   4747       InheritableAttr *MemberAttr = getDLLAttr(Member);
   4748       if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
   4749         continue;
   4750 
   4751       S.Diag(MemberAttr->getLocation(),
   4752              diag::err_attribute_dll_member_of_dll_class)
   4753           << MemberAttr << ClassAttr;
   4754       S.Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
   4755       Member->setInvalidDecl();
   4756     }
   4757   }
   4758 
   4759   if (Class->getDescribedClassTemplate())
   4760     // Don't inherit dll attribute until the template is instantiated.
   4761     return;
   4762 
   4763   // The class is either imported or exported.
   4764   const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
   4765   const bool ClassImported = !ClassExported;
   4766 
   4767   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
   4768 
   4769   // Don't dllexport explicit class template instantiation declarations.
   4770   if (ClassExported && TSK == TSK_ExplicitInstantiationDeclaration) {
   4771     Class->dropAttr<DLLExportAttr>();
   4772     return;
   4773   }
   4774 
   4775   // Force declaration of implicit members so they can inherit the attribute.
   4776   S.ForceDeclarationOfImplicitMembers(Class);
   4777 
   4778   // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
   4779   // seem to be true in practice?
   4780 
   4781   for (Decl *Member : Class->decls()) {
   4782     VarDecl *VD = dyn_cast<VarDecl>(Member);
   4783     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
   4784 
   4785     // Only methods and static fields inherit the attributes.
   4786     if (!VD && !MD)
   4787       continue;
   4788 
   4789     if (MD) {
   4790       // Don't process deleted methods.
   4791       if (MD->isDeleted())
   4792         continue;
   4793 
   4794       if (MD->isMoveAssignmentOperator() && ClassImported && MD->isInlined()) {
   4795         // Current MSVC versions don't export the move assignment operators, so
   4796         // don't attempt to import them if we have a definition.
   4797         continue;
   4798       }
   4799 
   4800       if (MD->isInlined() &&
   4801           !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   4802         // MinGW does not import or export inline methods.
   4803         continue;
   4804       }
   4805     }
   4806 
   4807     if (!getDLLAttr(Member)) {
   4808       auto *NewAttr =
   4809           cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
   4810       NewAttr->setInherited(true);
   4811       Member->addAttr(NewAttr);
   4812     }
   4813 
   4814     if (MD && ClassExported) {
   4815       if (MD->isUserProvided()) {
   4816         // Instantiate non-default class member functions ...
   4817 
   4818         // .. except for certain kinds of template specializations.
   4819         if (TSK == TSK_ExplicitInstantiationDeclaration)
   4820           continue;
   4821         if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
   4822           continue;
   4823 
   4824         S.MarkFunctionReferenced(Class->getLocation(), MD);
   4825 
   4826         // The function will be passed to the consumer when its definition is
   4827         // encountered.
   4828       } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
   4829                  MD->isCopyAssignmentOperator() ||
   4830                  MD->isMoveAssignmentOperator()) {
   4831         // Synthesize and instantiate non-trivial implicit methods, explicitly
   4832         // defaulted methods, and the copy and move assignment operators. The
   4833         // latter are exported even if they are trivial, because the address of
   4834         // an operator can be taken and should compare equal accross libraries.
   4835         DiagnosticErrorTrap Trap(S.Diags);
   4836         S.MarkFunctionReferenced(Class->getLocation(), MD);
   4837         if (Trap.hasErrorOccurred()) {
   4838           S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
   4839               << Class->getName() << !S.getLangOpts().CPlusPlus11;
   4840           break;
   4841         }
   4842 
   4843         // There is no later point when we will see the definition of this
   4844         // function, so pass it to the consumer now.
   4845         S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
   4846       }
   4847     }
   4848   }
   4849 }
   4850 
   4851 /// \brief Perform semantic checks on a class definition that has been
   4852 /// completing, introducing implicitly-declared members, checking for
   4853 /// abstract types, etc.
   4854 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
   4855   if (!Record)
   4856     return;
   4857 
   4858   if (Record->isAbstract() && !Record->isInvalidDecl()) {
   4859     AbstractUsageInfo Info(*this, Record);
   4860     CheckAbstractClassUsage(Info, Record);
   4861   }
   4862 
   4863   // If this is not an aggregate type and has no user-declared constructor,
   4864   // complain about any non-static data members of reference or const scalar
   4865   // type, since they will never get initializers.
   4866   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
   4867       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
   4868       !Record->isLambda()) {
   4869     bool Complained = false;
   4870     for (const auto *F : Record->fields()) {
   4871       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
   4872         continue;
   4873 
   4874       if (F->getType()->isReferenceType() ||
   4875           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
   4876         if (!Complained) {
   4877           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
   4878             << Record->getTagKind() << Record;
   4879           Complained = true;
   4880         }
   4881 
   4882         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
   4883           << F->getType()->isReferenceType()
   4884           << F->getDeclName();
   4885       }
   4886     }
   4887   }
   4888 
   4889   if (Record->getIdentifier()) {
   4890     // C++ [class.mem]p13:
   4891     //   If T is the name of a class, then each of the following shall have a
   4892     //   name different from T:
   4893     //     - every member of every anonymous union that is a member of class T.
   4894     //
   4895     // C++ [class.mem]p14:
   4896     //   In addition, if class T has a user-declared constructor (12.1), every
   4897     //   non-static data member of class T shall have a name different from T.
   4898     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
   4899     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
   4900          ++I) {
   4901       NamedDecl *D = *I;
   4902       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
   4903           isa<IndirectFieldDecl>(D)) {
   4904         Diag(D->getLocation(), diag::err_member_name_of_class)
   4905           << D->getDeclName();
   4906         break;
   4907       }
   4908     }
   4909   }
   4910 
   4911   // Warn if the class has virtual methods but non-virtual public destructor.
   4912   if (Record->isPolymorphic() && !Record->isDependentType()) {
   4913     CXXDestructorDecl *dtor = Record->getDestructor();
   4914     if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
   4915         !Record->hasAttr<FinalAttr>())
   4916       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
   4917            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
   4918   }
   4919 
   4920   if (Record->isAbstract()) {
   4921     if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
   4922       Diag(Record->getLocation(), diag::warn_abstract_final_class)
   4923         << FA->isSpelledAsSealed();
   4924       DiagnoseAbstractType(Record);
   4925     }
   4926   }
   4927 
   4928   bool HasMethodWithOverrideControl = false,
   4929        HasOverridingMethodWithoutOverrideControl = false;
   4930   if (!Record->isDependentType()) {
   4931     for (auto *M : Record->methods()) {
   4932       // See if a method overloads virtual methods in a base
   4933       // class without overriding any.
   4934       if (!M->isStatic())
   4935         DiagnoseHiddenVirtualMethods(M);
   4936       if (M->hasAttr<OverrideAttr>())
   4937         HasMethodWithOverrideControl = true;
   4938       else if (M->size_overridden_methods() > 0)
   4939         HasOverridingMethodWithoutOverrideControl = true;
   4940       // Check whether the explicitly-defaulted special members are valid.
   4941       if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
   4942         CheckExplicitlyDefaultedSpecialMember(M);
   4943 
   4944       // For an explicitly defaulted or deleted special member, we defer
   4945       // determining triviality until the class is complete. That time is now!
   4946       if (!M->isImplicit() && !M->isUserProvided()) {
   4947         CXXSpecialMember CSM = getSpecialMember(M);
   4948         if (CSM != CXXInvalid) {
   4949           M->setTrivial(SpecialMemberIsTrivial(M, CSM));
   4950 
   4951           // Inform the class that we've finished declaring this member.
   4952           Record->finishedDefaultedOrDeletedMember(M);
   4953         }
   4954       }
   4955     }
   4956   }
   4957 
   4958   if (HasMethodWithOverrideControl &&
   4959       HasOverridingMethodWithoutOverrideControl) {
   4960     // At least one method has the 'override' control declared.
   4961     // Diagnose all other overridden methods which do not have 'override' specified on them.
   4962     for (auto *M : Record->methods())
   4963       DiagnoseAbsenceOfOverrideControl(M);
   4964   }
   4965 
   4966   // ms_struct is a request to use the same ABI rules as MSVC.  Check
   4967   // whether this class uses any C++ features that are implemented
   4968   // completely differently in MSVC, and if so, emit a diagnostic.
   4969   // That diagnostic defaults to an error, but we allow projects to
   4970   // map it down to a warning (or ignore it).  It's a fairly common
   4971   // practice among users of the ms_struct pragma to mass-annotate
   4972   // headers, sweeping up a bunch of types that the project doesn't
   4973   // really rely on MSVC-compatible layout for.  We must therefore
   4974   // support "ms_struct except for C++ stuff" as a secondary ABI.
   4975   if (Record->isMsStruct(Context) &&
   4976       (Record->isPolymorphic() || Record->getNumBases())) {
   4977     Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
   4978   }
   4979 
   4980   // Declare inheriting constructors. We do this eagerly here because:
   4981   // - The standard requires an eager diagnostic for conflicting inheriting
   4982   //   constructors from different classes.
   4983   // - The lazy declaration of the other implicit constructors is so as to not
   4984   //   waste space and performance on classes that are not meant to be
   4985   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
   4986   //   have inheriting constructors.
   4987   DeclareInheritingConstructors(Record);
   4988 
   4989   checkDLLAttribute(*this, Record);
   4990 }
   4991 
   4992 /// Look up the special member function that would be called by a special
   4993 /// member function for a subobject of class type.
   4994 ///
   4995 /// \param Class The class type of the subobject.
   4996 /// \param CSM The kind of special member function.
   4997 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
   4998 /// \param ConstRHS True if this is a copy operation with a const object
   4999 ///        on its RHS, that is, if the argument to the outer special member
   5000 ///        function is 'const' and this is not a field marked 'mutable'.
   5001 static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
   5002     Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
   5003     unsigned FieldQuals, bool ConstRHS) {
   5004   unsigned LHSQuals = 0;
   5005   if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
   5006     LHSQuals = FieldQuals;
   5007 
   5008   unsigned RHSQuals = FieldQuals;
   5009   if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
   5010     RHSQuals = 0;
   5011   else if (ConstRHS)
   5012     RHSQuals |= Qualifiers::Const;
   5013 
   5014   return S.LookupSpecialMember(Class, CSM,
   5015                                RHSQuals & Qualifiers::Const,
   5016                                RHSQuals & Qualifiers::Volatile,
   5017                                false,
   5018                                LHSQuals & Qualifiers::Const,
   5019                                LHSQuals & Qualifiers::Volatile);
   5020 }
   5021 
   5022 /// Is the special member function which would be selected to perform the
   5023 /// specified operation on the specified class type a constexpr constructor?
   5024 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
   5025                                      Sema::CXXSpecialMember CSM,
   5026                                      unsigned Quals, bool ConstRHS) {
   5027   Sema::SpecialMemberOverloadResult *SMOR =
   5028       lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
   5029   if (!SMOR || !SMOR->getMethod())
   5030     // A constructor we wouldn't select can't be "involved in initializing"
   5031     // anything.
   5032     return true;
   5033   return SMOR->getMethod()->isConstexpr();
   5034 }
   5035 
   5036 /// Determine whether the specified special member function would be constexpr
   5037 /// if it were implicitly defined.
   5038 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
   5039                                               Sema::CXXSpecialMember CSM,
   5040                                               bool ConstArg) {
   5041   if (!S.getLangOpts().CPlusPlus11)
   5042     return false;
   5043 
   5044   // C++11 [dcl.constexpr]p4:
   5045   // In the definition of a constexpr constructor [...]
   5046   bool Ctor = true;
   5047   switch (CSM) {
   5048   case Sema::CXXDefaultConstructor:
   5049     // Since default constructor lookup is essentially trivial (and cannot
   5050     // involve, for instance, template instantiation), we compute whether a
   5051     // defaulted default constructor is constexpr directly within CXXRecordDecl.
   5052     //
   5053     // This is important for performance; we need to know whether the default
   5054     // constructor is constexpr to determine whether the type is a literal type.
   5055     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
   5056 
   5057   case Sema::CXXCopyConstructor:
   5058   case Sema::CXXMoveConstructor:
   5059     // For copy or move constructors, we need to perform overload resolution.
   5060     break;
   5061 
   5062   case Sema::CXXCopyAssignment:
   5063   case Sema::CXXMoveAssignment:
   5064     if (!S.getLangOpts().CPlusPlus14)
   5065       return false;
   5066     // In C++1y, we need to perform overload resolution.
   5067     Ctor = false;
   5068     break;
   5069 
   5070   case Sema::CXXDestructor:
   5071   case Sema::CXXInvalid:
   5072     return false;
   5073   }
   5074 
   5075   //   -- if the class is a non-empty union, or for each non-empty anonymous
   5076   //      union member of a non-union class, exactly one non-static data member
   5077   //      shall be initialized; [DR1359]
   5078   //
   5079   // If we squint, this is guaranteed, since exactly one non-static data member
   5080   // will be initialized (if the constructor isn't deleted), we just don't know
   5081   // which one.
   5082   if (Ctor && ClassDecl->isUnion())
   5083     return true;
   5084 
   5085   //   -- the class shall not have any virtual base classes;
   5086   if (Ctor && ClassDecl->getNumVBases())
   5087     return false;
   5088 
   5089   // C++1y [class.copy]p26:
   5090   //   -- [the class] is a literal type, and
   5091   if (!Ctor && !ClassDecl->isLiteral())
   5092     return false;
   5093 
   5094   //   -- every constructor involved in initializing [...] base class
   5095   //      sub-objects shall be a constexpr constructor;
   5096   //   -- the assignment operator selected to copy/move each direct base
   5097   //      class is a constexpr function, and
   5098   for (const auto &B : ClassDecl->bases()) {
   5099     const RecordType *BaseType = B.getType()->getAs<RecordType>();
   5100     if (!BaseType) continue;
   5101 
   5102     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   5103     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg))
   5104       return false;
   5105   }
   5106 
   5107   //   -- every constructor involved in initializing non-static data members
   5108   //      [...] shall be a constexpr constructor;
   5109   //   -- every non-static data member and base class sub-object shall be
   5110   //      initialized
   5111   //   -- for each non-static data member of X that is of class type (or array
   5112   //      thereof), the assignment operator selected to copy/move that member is
   5113   //      a constexpr function
   5114   for (const auto *F : ClassDecl->fields()) {
   5115     if (F->isInvalidDecl())
   5116       continue;
   5117     QualType BaseType = S.Context.getBaseElementType(F->getType());
   5118     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
   5119       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   5120       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
   5121                                     BaseType.getCVRQualifiers(),
   5122                                     ConstArg && !F->isMutable()))
   5123         return false;
   5124     }
   5125   }
   5126 
   5127   // All OK, it's constexpr!
   5128   return true;
   5129 }
   5130 
   5131 static Sema::ImplicitExceptionSpecification
   5132 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
   5133   switch (S.getSpecialMember(MD)) {
   5134   case Sema::CXXDefaultConstructor:
   5135     return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
   5136   case Sema::CXXCopyConstructor:
   5137     return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
   5138   case Sema::CXXCopyAssignment:
   5139     return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
   5140   case Sema::CXXMoveConstructor:
   5141     return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
   5142   case Sema::CXXMoveAssignment:
   5143     return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
   5144   case Sema::CXXDestructor:
   5145     return S.ComputeDefaultedDtorExceptionSpec(MD);
   5146   case Sema::CXXInvalid:
   5147     break;
   5148   }
   5149   assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
   5150          "only special members have implicit exception specs");
   5151   return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
   5152 }
   5153 
   5154 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
   5155                                                             CXXMethodDecl *MD) {
   5156   FunctionProtoType::ExtProtoInfo EPI;
   5157 
   5158   // Build an exception specification pointing back at this member.
   5159   EPI.ExceptionSpec.Type = EST_Unevaluated;
   5160   EPI.ExceptionSpec.SourceDecl = MD;
   5161 
   5162   // Set the calling convention to the default for C++ instance methods.
   5163   EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
   5164       S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
   5165                                             /*IsCXXMethod=*/true));
   5166   return EPI;
   5167 }
   5168 
   5169 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
   5170   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
   5171   if (FPT->getExceptionSpecType() != EST_Unevaluated)
   5172     return;
   5173 
   5174   // Evaluate the exception specification.
   5175   auto ESI = computeImplicitExceptionSpec(*this, Loc, MD).getExceptionSpec();
   5176 
   5177   // Update the type of the special member to use it.
   5178   UpdateExceptionSpec(MD, ESI);
   5179 
   5180   // A user-provided destructor can be defined outside the class. When that
   5181   // happens, be sure to update the exception specification on both
   5182   // declarations.
   5183   const FunctionProtoType *CanonicalFPT =
   5184     MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
   5185   if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
   5186     UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
   5187 }
   5188 
   5189 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
   5190   CXXRecordDecl *RD = MD->getParent();
   5191   CXXSpecialMember CSM = getSpecialMember(MD);
   5192 
   5193   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
   5194          "not an explicitly-defaulted special member");
   5195 
   5196   // Whether this was the first-declared instance of the constructor.
   5197   // This affects whether we implicitly add an exception spec and constexpr.
   5198   bool First = MD == MD->getCanonicalDecl();
   5199 
   5200   bool HadError = false;
   5201 
   5202   // C++11 [dcl.fct.def.default]p1:
   5203   //   A function that is explicitly defaulted shall
   5204   //     -- be a special member function (checked elsewhere),
   5205   //     -- have the same type (except for ref-qualifiers, and except that a
   5206   //        copy operation can take a non-const reference) as an implicit
   5207   //        declaration, and
   5208   //     -- not have default arguments.
   5209   unsigned ExpectedParams = 1;
   5210   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
   5211     ExpectedParams = 0;
   5212   if (MD->getNumParams() != ExpectedParams) {
   5213     // This also checks for default arguments: a copy or move constructor with a
   5214     // default argument is classified as a default constructor, and assignment
   5215     // operations and destructors can't have default arguments.
   5216     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
   5217       << CSM << MD->getSourceRange();
   5218     HadError = true;
   5219   } else if (MD->isVariadic()) {
   5220     Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
   5221       << CSM << MD->getSourceRange();
   5222     HadError = true;
   5223   }
   5224 
   5225   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
   5226 
   5227   bool CanHaveConstParam = false;
   5228   if (CSM == CXXCopyConstructor)
   5229     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
   5230   else if (CSM == CXXCopyAssignment)
   5231     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
   5232 
   5233   QualType ReturnType = Context.VoidTy;
   5234   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
   5235     // Check for return type matching.
   5236     ReturnType = Type->getReturnType();
   5237     QualType ExpectedReturnType =
   5238         Context.getLValueReferenceType(Context.getTypeDeclType(RD));
   5239     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
   5240       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
   5241         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
   5242       HadError = true;
   5243     }
   5244 
   5245     // A defaulted special member cannot have cv-qualifiers.
   5246     if (Type->getTypeQuals()) {
   5247       Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
   5248         << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
   5249       HadError = true;
   5250     }
   5251   }
   5252 
   5253   // Check for parameter type matching.
   5254   QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
   5255   bool HasConstParam = false;
   5256   if (ExpectedParams && ArgType->isReferenceType()) {
   5257     // Argument must be reference to possibly-const T.
   5258     QualType ReferentType = ArgType->getPointeeType();
   5259     HasConstParam = ReferentType.isConstQualified();
   5260 
   5261     if (ReferentType.isVolatileQualified()) {
   5262       Diag(MD->getLocation(),
   5263            diag::err_defaulted_special_member_volatile_param) << CSM;
   5264       HadError = true;
   5265     }
   5266 
   5267     if (HasConstParam && !CanHaveConstParam) {
   5268       if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
   5269         Diag(MD->getLocation(),
   5270              diag::err_defaulted_special_member_copy_const_param)
   5271           << (CSM == CXXCopyAssignment);
   5272         // FIXME: Explain why this special member can't be const.
   5273       } else {
   5274         Diag(MD->getLocation(),
   5275              diag::err_defaulted_special_member_move_const_param)
   5276           << (CSM == CXXMoveAssignment);
   5277       }
   5278       HadError = true;
   5279     }
   5280   } else if (ExpectedParams) {
   5281     // A copy assignment operator can take its argument by value, but a
   5282     // defaulted one cannot.
   5283     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
   5284     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
   5285     HadError = true;
   5286   }
   5287 
   5288   // C++11 [dcl.fct.def.default]p2:
   5289   //   An explicitly-defaulted function may be declared constexpr only if it
   5290   //   would have been implicitly declared as constexpr,
   5291   // Do not apply this rule to members of class templates, since core issue 1358
   5292   // makes such functions always instantiate to constexpr functions. For
   5293   // functions which cannot be constexpr (for non-constructors in C++11 and for
   5294   // destructors in C++1y), this is checked elsewhere.
   5295   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
   5296                                                      HasConstParam);
   5297   if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
   5298                                  : isa<CXXConstructorDecl>(MD)) &&
   5299       MD->isConstexpr() && !Constexpr &&
   5300       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
   5301     Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
   5302     // FIXME: Explain why the special member can't be constexpr.
   5303     HadError = true;
   5304   }
   5305 
   5306   //   and may have an explicit exception-specification only if it is compatible
   5307   //   with the exception-specification on the implicit declaration.
   5308   if (Type->hasExceptionSpec()) {
   5309     // Delay the check if this is the first declaration of the special member,
   5310     // since we may not have parsed some necessary in-class initializers yet.
   5311     if (First) {
   5312       // If the exception specification needs to be instantiated, do so now,
   5313       // before we clobber it with an EST_Unevaluated specification below.
   5314       if (Type->getExceptionSpecType() == EST_Uninstantiated) {
   5315         InstantiateExceptionSpec(MD->getLocStart(), MD);
   5316         Type = MD->getType()->getAs<FunctionProtoType>();
   5317       }
   5318       DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
   5319     } else
   5320       CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
   5321   }
   5322 
   5323   //   If a function is explicitly defaulted on its first declaration,
   5324   if (First) {
   5325     //  -- it is implicitly considered to be constexpr if the implicit
   5326     //     definition would be,
   5327     MD->setConstexpr(Constexpr);
   5328 
   5329     //  -- it is implicitly considered to have the same exception-specification
   5330     //     as if it had been implicitly declared,
   5331     FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
   5332     EPI.ExceptionSpec.Type = EST_Unevaluated;
   5333     EPI.ExceptionSpec.SourceDecl = MD;
   5334     MD->setType(Context.getFunctionType(ReturnType,
   5335                                         llvm::makeArrayRef(&ArgType,
   5336                                                            ExpectedParams),
   5337                                         EPI));
   5338   }
   5339 
   5340   if (ShouldDeleteSpecialMember(MD, CSM)) {
   5341     if (First) {
   5342       SetDeclDeleted(MD, MD->getLocation());
   5343     } else {
   5344       // C++11 [dcl.fct.def.default]p4:
   5345       //   [For a] user-provided explicitly-defaulted function [...] if such a
   5346       //   function is implicitly defined as deleted, the program is ill-formed.
   5347       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
   5348       ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true);
   5349       HadError = true;
   5350     }
   5351   }
   5352 
   5353   if (HadError)
   5354     MD->setInvalidDecl();
   5355 }
   5356 
   5357 /// Check whether the exception specification provided for an
   5358 /// explicitly-defaulted special member matches the exception specification
   5359 /// that would have been generated for an implicit special member, per
   5360 /// C++11 [dcl.fct.def.default]p2.
   5361 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
   5362     CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
   5363   // If the exception specification was explicitly specified but hadn't been
   5364   // parsed when the method was defaulted, grab it now.
   5365   if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
   5366     SpecifiedType =
   5367         MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
   5368 
   5369   // Compute the implicit exception specification.
   5370   CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
   5371                                                        /*IsCXXMethod=*/true);
   5372   FunctionProtoType::ExtProtoInfo EPI(CC);
   5373   EPI.ExceptionSpec = computeImplicitExceptionSpec(*this, MD->getLocation(), MD)
   5374                           .getExceptionSpec();
   5375   const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
   5376     Context.getFunctionType(Context.VoidTy, None, EPI));
   5377 
   5378   // Ensure that it matches.
   5379   CheckEquivalentExceptionSpec(
   5380     PDiag(diag::err_incorrect_defaulted_exception_spec)
   5381       << getSpecialMember(MD), PDiag(),
   5382     ImplicitType, SourceLocation(),
   5383     SpecifiedType, MD->getLocation());
   5384 }
   5385 
   5386 void Sema::CheckDelayedMemberExceptionSpecs() {
   5387   decltype(DelayedExceptionSpecChecks) Checks;
   5388   decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
   5389 
   5390   std::swap(Checks, DelayedExceptionSpecChecks);
   5391   std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
   5392 
   5393   // Perform any deferred checking of exception specifications for virtual
   5394   // destructors.
   5395   for (auto &Check : Checks)
   5396     CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
   5397 
   5398   // Check that any explicitly-defaulted methods have exception specifications
   5399   // compatible with their implicit exception specifications.
   5400   for (auto &Spec : Specs)
   5401     CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
   5402 }
   5403 
   5404 namespace {
   5405 struct SpecialMemberDeletionInfo {
   5406   Sema &S;
   5407   CXXMethodDecl *MD;
   5408   Sema::CXXSpecialMember CSM;
   5409   bool Diagnose;
   5410 
   5411   // Properties of the special member, computed for convenience.
   5412   bool IsConstructor, IsAssignment, IsMove, ConstArg;
   5413   SourceLocation Loc;
   5414 
   5415   bool AllFieldsAreConst;
   5416 
   5417   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
   5418                             Sema::CXXSpecialMember CSM, bool Diagnose)
   5419     : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
   5420       IsConstructor(false), IsAssignment(false), IsMove(false),
   5421       ConstArg(false), Loc(MD->getLocation()),
   5422       AllFieldsAreConst(true) {
   5423     switch (CSM) {
   5424       case Sema::CXXDefaultConstructor:
   5425       case Sema::CXXCopyConstructor:
   5426         IsConstructor = true;
   5427         break;
   5428       case Sema::CXXMoveConstructor:
   5429         IsConstructor = true;
   5430         IsMove = true;
   5431         break;
   5432       case Sema::CXXCopyAssignment:
   5433         IsAssignment = true;
   5434         break;
   5435       case Sema::CXXMoveAssignment:
   5436         IsAssignment = true;
   5437         IsMove = true;
   5438         break;
   5439       case Sema::CXXDestructor:
   5440         break;
   5441       case Sema::CXXInvalid:
   5442         llvm_unreachable("invalid special member kind");
   5443     }
   5444 
   5445     if (MD->getNumParams()) {
   5446       if (const ReferenceType *RT =
   5447               MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
   5448         ConstArg = RT->getPointeeType().isConstQualified();
   5449     }
   5450   }
   5451 
   5452   bool inUnion() const { return MD->getParent()->isUnion(); }
   5453 
   5454   /// Look up the corresponding special member in the given class.
   5455   Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
   5456                                               unsigned Quals, bool IsMutable) {
   5457     return lookupCallFromSpecialMember(S, Class, CSM, Quals,
   5458                                        ConstArg && !IsMutable);
   5459   }
   5460 
   5461   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
   5462 
   5463   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
   5464   bool shouldDeleteForField(FieldDecl *FD);
   5465   bool shouldDeleteForAllConstMembers();
   5466 
   5467   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
   5468                                      unsigned Quals);
   5469   bool shouldDeleteForSubobjectCall(Subobject Subobj,
   5470                                     Sema::SpecialMemberOverloadResult *SMOR,
   5471                                     bool IsDtorCallInCtor);
   5472 
   5473   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
   5474 };
   5475 }
   5476 
   5477 /// Is the given special member inaccessible when used on the given
   5478 /// sub-object.
   5479 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
   5480                                              CXXMethodDecl *target) {
   5481   /// If we're operating on a base class, the object type is the
   5482   /// type of this special member.
   5483   QualType objectTy;
   5484   AccessSpecifier access = target->getAccess();
   5485   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
   5486     objectTy = S.Context.getTypeDeclType(MD->getParent());
   5487     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
   5488 
   5489   // If we're operating on a field, the object type is the type of the field.
   5490   } else {
   5491     objectTy = S.Context.getTypeDeclType(target->getParent());
   5492   }
   5493 
   5494   return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
   5495 }
   5496 
   5497 /// Check whether we should delete a special member due to the implicit
   5498 /// definition containing a call to a special member of a subobject.
   5499 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
   5500     Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
   5501     bool IsDtorCallInCtor) {
   5502   CXXMethodDecl *Decl = SMOR->getMethod();
   5503   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
   5504 
   5505   int DiagKind = -1;
   5506 
   5507   if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
   5508     DiagKind = !Decl ? 0 : 1;
   5509   else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
   5510     DiagKind = 2;
   5511   else if (!isAccessible(Subobj, Decl))
   5512     DiagKind = 3;
   5513   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
   5514            !Decl->isTrivial()) {
   5515     // A member of a union must have a trivial corresponding special member.
   5516     // As a weird special case, a destructor call from a union's constructor
   5517     // must be accessible and non-deleted, but need not be trivial. Such a
   5518     // destructor is never actually called, but is semantically checked as
   5519     // if it were.
   5520     DiagKind = 4;
   5521   }
   5522 
   5523   if (DiagKind == -1)
   5524     return false;
   5525 
   5526   if (Diagnose) {
   5527     if (Field) {
   5528       S.Diag(Field->getLocation(),
   5529              diag::note_deleted_special_member_class_subobject)
   5530         << CSM << MD->getParent() << /*IsField*/true
   5531         << Field << DiagKind << IsDtorCallInCtor;
   5532     } else {
   5533       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
   5534       S.Diag(Base->getLocStart(),
   5535              diag::note_deleted_special_member_class_subobject)
   5536         << CSM << MD->getParent() << /*IsField*/false
   5537         << Base->getType() << DiagKind << IsDtorCallInCtor;
   5538     }
   5539 
   5540     if (DiagKind == 1)
   5541       S.NoteDeletedFunction(Decl);
   5542     // FIXME: Explain inaccessibility if DiagKind == 3.
   5543   }
   5544 
   5545   return true;
   5546 }
   5547 
   5548 /// Check whether we should delete a special member function due to having a
   5549 /// direct or virtual base class or non-static data member of class type M.
   5550 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
   5551     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
   5552   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
   5553   bool IsMutable = Field && Field->isMutable();
   5554 
   5555   // C++11 [class.ctor]p5:
   5556   // -- any direct or virtual base class, or non-static data member with no
   5557   //    brace-or-equal-initializer, has class type M (or array thereof) and
   5558   //    either M has no default constructor or overload resolution as applied
   5559   //    to M's default constructor results in an ambiguity or in a function
   5560   //    that is deleted or inaccessible
   5561   // C++11 [class.copy]p11, C++11 [class.copy]p23:
   5562   // -- a direct or virtual base class B that cannot be copied/moved because
   5563   //    overload resolution, as applied to B's corresponding special member,
   5564   //    results in an ambiguity or a function that is deleted or inaccessible
   5565   //    from the defaulted special member
   5566   // C++11 [class.dtor]p5:
   5567   // -- any direct or virtual base class [...] has a type with a destructor
   5568   //    that is deleted or inaccessible
   5569   if (!(CSM == Sema::CXXDefaultConstructor &&
   5570         Field && Field->hasInClassInitializer()) &&
   5571       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
   5572                                    false))
   5573     return true;
   5574 
   5575   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
   5576   // -- any direct or virtual base class or non-static data member has a
   5577   //    type with a destructor that is deleted or inaccessible
   5578   if (IsConstructor) {
   5579     Sema::SpecialMemberOverloadResult *SMOR =
   5580         S.LookupSpecialMember(Class, Sema::CXXDestructor,
   5581                               false, false, false, false, false);
   5582     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
   5583       return true;
   5584   }
   5585 
   5586   return false;
   5587 }
   5588 
   5589 /// Check whether we should delete a special member function due to the class
   5590 /// having a particular direct or virtual base class.
   5591 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
   5592   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
   5593   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
   5594 }
   5595 
   5596 /// Check whether we should delete a special member function due to the class
   5597 /// having a particular non-static data member.
   5598 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
   5599   QualType FieldType = S.Context.getBaseElementType(FD->getType());
   5600   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
   5601 
   5602   if (CSM == Sema::CXXDefaultConstructor) {
   5603     // For a default constructor, all references must be initialized in-class
   5604     // and, if a union, it must have a non-const member.
   5605     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
   5606       if (Diagnose)
   5607         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
   5608           << MD->getParent() << FD << FieldType << /*Reference*/0;
   5609       return true;
   5610     }
   5611     // C++11 [class.ctor]p5: any non-variant non-static data member of
   5612     // const-qualified type (or array thereof) with no
   5613     // brace-or-equal-initializer does not have a user-provided default
   5614     // constructor.
   5615     if (!inUnion() && FieldType.isConstQualified() &&
   5616         !FD->hasInClassInitializer() &&
   5617         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
   5618       if (Diagnose)
   5619         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
   5620           << MD->getParent() << FD << FD->getType() << /*Const*/1;
   5621       return true;
   5622     }
   5623 
   5624     if (inUnion() && !FieldType.isConstQualified())
   5625       AllFieldsAreConst = false;
   5626   } else if (CSM == Sema::CXXCopyConstructor) {
   5627     // For a copy constructor, data members must not be of rvalue reference
   5628     // type.
   5629     if (FieldType->isRValueReferenceType()) {
   5630       if (Diagnose)
   5631         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
   5632           << MD->getParent() << FD << FieldType;
   5633       return true;
   5634     }
   5635   } else if (IsAssignment) {
   5636     // For an assignment operator, data members must not be of reference type.
   5637     if (FieldType->isReferenceType()) {
   5638       if (Diagnose)
   5639         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
   5640           << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
   5641       return true;
   5642     }
   5643     if (!FieldRecord && FieldType.isConstQualified()) {
   5644       // C++11 [class.copy]p23:
   5645       // -- a non-static data member of const non-class type (or array thereof)
   5646       if (Diagnose)
   5647         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
   5648           << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
   5649       return true;
   5650     }
   5651   }
   5652 
   5653   if (FieldRecord) {
   5654     // Some additional restrictions exist on the variant members.
   5655     if (!inUnion() && FieldRecord->isUnion() &&
   5656         FieldRecord->isAnonymousStructOrUnion()) {
   5657       bool AllVariantFieldsAreConst = true;
   5658 
   5659       // FIXME: Handle anonymous unions declared within anonymous unions.
   5660       for (auto *UI : FieldRecord->fields()) {
   5661         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
   5662 
   5663         if (!UnionFieldType.isConstQualified())
   5664           AllVariantFieldsAreConst = false;
   5665 
   5666         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
   5667         if (UnionFieldRecord &&
   5668             shouldDeleteForClassSubobject(UnionFieldRecord, UI,
   5669                                           UnionFieldType.getCVRQualifiers()))
   5670           return true;
   5671       }
   5672 
   5673       // At least one member in each anonymous union must be non-const
   5674       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
   5675           !FieldRecord->field_empty()) {
   5676         if (Diagnose)
   5677           S.Diag(FieldRecord->getLocation(),
   5678                  diag::note_deleted_default_ctor_all_const)
   5679             << MD->getParent() << /*anonymous union*/1;
   5680         return true;
   5681       }
   5682 
   5683       // Don't check the implicit member of the anonymous union type.
   5684       // This is technically non-conformant, but sanity demands it.
   5685       return false;
   5686     }
   5687 
   5688     if (shouldDeleteForClassSubobject(FieldRecord, FD,
   5689                                       FieldType.getCVRQualifiers()))
   5690       return true;
   5691   }
   5692 
   5693   return false;
   5694 }
   5695 
   5696 /// C++11 [class.ctor] p5:
   5697 ///   A defaulted default constructor for a class X is defined as deleted if
   5698 /// X is a union and all of its variant members are of const-qualified type.
   5699 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
   5700   // This is a silly definition, because it gives an empty union a deleted
   5701   // default constructor. Don't do that.
   5702   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
   5703       !MD->getParent()->field_empty()) {
   5704     if (Diagnose)
   5705       S.Diag(MD->getParent()->getLocation(),
   5706              diag::note_deleted_default_ctor_all_const)
   5707         << MD->getParent() << /*not anonymous union*/0;
   5708     return true;
   5709   }
   5710   return false;
   5711 }
   5712 
   5713 /// Determine whether a defaulted special member function should be defined as
   5714 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
   5715 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
   5716 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
   5717                                      bool Diagnose) {
   5718   if (MD->isInvalidDecl())
   5719     return false;
   5720   CXXRecordDecl *RD = MD->getParent();
   5721   assert(!RD->isDependentType() && "do deletion after instantiation");
   5722   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
   5723     return false;
   5724 
   5725   // C++11 [expr.lambda.prim]p19:
   5726   //   The closure type associated with a lambda-expression has a
   5727   //   deleted (8.4.3) default constructor and a deleted copy
   5728   //   assignment operator.
   5729   if (RD->isLambda() &&
   5730       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
   5731     if (Diagnose)
   5732       Diag(RD->getLocation(), diag::note_lambda_decl);
   5733     return true;
   5734   }
   5735 
   5736   // For an anonymous struct or union, the copy and assignment special members
   5737   // will never be used, so skip the check. For an anonymous union declared at
   5738   // namespace scope, the constructor and destructor are used.
   5739   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
   5740       RD->isAnonymousStructOrUnion())
   5741     return false;
   5742 
   5743   // C++11 [class.copy]p7, p18:
   5744   //   If the class definition declares a move constructor or move assignment
   5745   //   operator, an implicitly declared copy constructor or copy assignment
   5746   //   operator is defined as deleted.
   5747   if (MD->isImplicit() &&
   5748       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
   5749     CXXMethodDecl *UserDeclaredMove = nullptr;
   5750 
   5751     // In Microsoft mode, a user-declared move only causes the deletion of the
   5752     // corresponding copy operation, not both copy operations.
   5753     if (RD->hasUserDeclaredMoveConstructor() &&
   5754         (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) {
   5755       if (!Diagnose) return true;
   5756 
   5757       // Find any user-declared move constructor.
   5758       for (auto *I : RD->ctors()) {
   5759         if (I->isMoveConstructor()) {
   5760           UserDeclaredMove = I;
   5761           break;
   5762         }
   5763       }
   5764       assert(UserDeclaredMove);
   5765     } else if (RD->hasUserDeclaredMoveAssignment() &&
   5766                (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) {
   5767       if (!Diagnose) return true;
   5768 
   5769       // Find any user-declared move assignment operator.
   5770       for (auto *I : RD->methods()) {
   5771         if (I->isMoveAssignmentOperator()) {
   5772           UserDeclaredMove = I;
   5773           break;
   5774         }
   5775       }
   5776       assert(UserDeclaredMove);
   5777     }
   5778 
   5779     if (UserDeclaredMove) {
   5780       Diag(UserDeclaredMove->getLocation(),
   5781            diag::note_deleted_copy_user_declared_move)
   5782         << (CSM == CXXCopyAssignment) << RD
   5783         << UserDeclaredMove->isMoveAssignmentOperator();
   5784       return true;
   5785     }
   5786   }
   5787 
   5788   // Do access control from the special member function
   5789   ContextRAII MethodContext(*this, MD);
   5790 
   5791   // C++11 [class.dtor]p5:
   5792   // -- for a virtual destructor, lookup of the non-array deallocation function
   5793   //    results in an ambiguity or in a function that is deleted or inaccessible
   5794   if (CSM == CXXDestructor && MD->isVirtual()) {
   5795     FunctionDecl *OperatorDelete = nullptr;
   5796     DeclarationName Name =
   5797       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   5798     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
   5799                                  OperatorDelete, false)) {
   5800       if (Diagnose)
   5801         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
   5802       return true;
   5803     }
   5804   }
   5805 
   5806   SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
   5807 
   5808   for (auto &BI : RD->bases())
   5809     if (!BI.isVirtual() &&
   5810         SMI.shouldDeleteForBase(&BI))
   5811       return true;
   5812 
   5813   // Per DR1611, do not consider virtual bases of constructors of abstract
   5814   // classes, since we are not going to construct them.
   5815   if (!RD->isAbstract() || !SMI.IsConstructor) {
   5816     for (auto &BI : RD->vbases())
   5817       if (SMI.shouldDeleteForBase(&BI))
   5818         return true;
   5819   }
   5820 
   5821   for (auto *FI : RD->fields())
   5822     if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
   5823         SMI.shouldDeleteForField(FI))
   5824       return true;
   5825 
   5826   if (SMI.shouldDeleteForAllConstMembers())
   5827     return true;
   5828 
   5829   if (getLangOpts().CUDA) {
   5830     // We should delete the special member in CUDA mode if target inference
   5831     // failed.
   5832     return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
   5833                                                    Diagnose);
   5834   }
   5835 
   5836   return false;
   5837 }
   5838 
   5839 /// Perform lookup for a special member of the specified kind, and determine
   5840 /// whether it is trivial. If the triviality can be determined without the
   5841 /// lookup, skip it. This is intended for use when determining whether a
   5842 /// special member of a containing object is trivial, and thus does not ever
   5843 /// perform overload resolution for default constructors.
   5844 ///
   5845 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
   5846 /// member that was most likely to be intended to be trivial, if any.
   5847 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
   5848                                      Sema::CXXSpecialMember CSM, unsigned Quals,
   5849                                      bool ConstRHS, CXXMethodDecl **Selected) {
   5850   if (Selected)
   5851     *Selected = nullptr;
   5852 
   5853   switch (CSM) {
   5854   case Sema::CXXInvalid:
   5855     llvm_unreachable("not a special member");
   5856 
   5857   case Sema::CXXDefaultConstructor:
   5858     // C++11 [class.ctor]p5:
   5859     //   A default constructor is trivial if:
   5860     //    - all the [direct subobjects] have trivial default constructors
   5861     //
   5862     // Note, no overload resolution is performed in this case.
   5863     if (RD->hasTrivialDefaultConstructor())
   5864       return true;
   5865 
   5866     if (Selected) {
   5867       // If there's a default constructor which could have been trivial, dig it
   5868       // out. Otherwise, if there's any user-provided default constructor, point
   5869       // to that as an example of why there's not a trivial one.
   5870       CXXConstructorDecl *DefCtor = nullptr;
   5871       if (RD->needsImplicitDefaultConstructor())
   5872         S.DeclareImplicitDefaultConstructor(RD);
   5873       for (auto *CI : RD->ctors()) {
   5874         if (!CI->isDefaultConstructor())
   5875           continue;
   5876         DefCtor = CI;
   5877         if (!DefCtor->isUserProvided())
   5878           break;
   5879       }
   5880 
   5881       *Selected = DefCtor;
   5882     }
   5883 
   5884     return false;
   5885 
   5886   case Sema::CXXDestructor:
   5887     // C++11 [class.dtor]p5:
   5888     //   A destructor is trivial if:
   5889     //    - all the direct [subobjects] have trivial destructors
   5890     if (RD->hasTrivialDestructor())
   5891       return true;
   5892 
   5893     if (Selected) {
   5894       if (RD->needsImplicitDestructor())
   5895         S.DeclareImplicitDestructor(RD);
   5896       *Selected = RD->getDestructor();
   5897     }
   5898 
   5899     return false;
   5900 
   5901   case Sema::CXXCopyConstructor:
   5902     // C++11 [class.copy]p12:
   5903     //   A copy constructor is trivial if:
   5904     //    - the constructor selected to copy each direct [subobject] is trivial
   5905     if (RD->hasTrivialCopyConstructor()) {
   5906       if (Quals == Qualifiers::Const)
   5907         // We must either select the trivial copy constructor or reach an
   5908         // ambiguity; no need to actually perform overload resolution.
   5909         return true;
   5910     } else if (!Selected) {
   5911       return false;
   5912     }
   5913     // In C++98, we are not supposed to perform overload resolution here, but we
   5914     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
   5915     // cases like B as having a non-trivial copy constructor:
   5916     //   struct A { template<typename T> A(T&); };
   5917     //   struct B { mutable A a; };
   5918     goto NeedOverloadResolution;
   5919 
   5920   case Sema::CXXCopyAssignment:
   5921     // C++11 [class.copy]p25:
   5922     //   A copy assignment operator is trivial if:
   5923     //    - the assignment operator selected to copy each direct [subobject] is
   5924     //      trivial
   5925     if (RD->hasTrivialCopyAssignment()) {
   5926       if (Quals == Qualifiers::Const)
   5927         return true;
   5928     } else if (!Selected) {
   5929       return false;
   5930     }
   5931     // In C++98, we are not supposed to perform overload resolution here, but we
   5932     // treat that as a language defect.
   5933     goto NeedOverloadResolution;
   5934 
   5935   case Sema::CXXMoveConstructor:
   5936   case Sema::CXXMoveAssignment:
   5937   NeedOverloadResolution:
   5938     Sema::SpecialMemberOverloadResult *SMOR =
   5939         lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
   5940 
   5941     // The standard doesn't describe how to behave if the lookup is ambiguous.
   5942     // We treat it as not making the member non-trivial, just like the standard
   5943     // mandates for the default constructor. This should rarely matter, because
   5944     // the member will also be deleted.
   5945     if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
   5946       return true;
   5947 
   5948     if (!SMOR->getMethod()) {
   5949       assert(SMOR->getKind() ==
   5950              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
   5951       return false;
   5952     }
   5953 
   5954     // We deliberately don't check if we found a deleted special member. We're
   5955     // not supposed to!
   5956     if (Selected)
   5957       *Selected = SMOR->getMethod();
   5958     return SMOR->getMethod()->isTrivial();
   5959   }
   5960 
   5961   llvm_unreachable("unknown special method kind");
   5962 }
   5963 
   5964 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
   5965   for (auto *CI : RD->ctors())
   5966     if (!CI->isImplicit())
   5967       return CI;
   5968 
   5969   // Look for constructor templates.
   5970   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
   5971   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
   5972     if (CXXConstructorDecl *CD =
   5973           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
   5974       return CD;
   5975   }
   5976 
   5977   return nullptr;
   5978 }
   5979 
   5980 /// The kind of subobject we are checking for triviality. The values of this
   5981 /// enumeration are used in diagnostics.
   5982 enum TrivialSubobjectKind {
   5983   /// The subobject is a base class.
   5984   TSK_BaseClass,
   5985   /// The subobject is a non-static data member.
   5986   TSK_Field,
   5987   /// The object is actually the complete object.
   5988   TSK_CompleteObject
   5989 };
   5990 
   5991 /// Check whether the special member selected for a given type would be trivial.
   5992 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
   5993                                       QualType SubType, bool ConstRHS,
   5994                                       Sema::CXXSpecialMember CSM,
   5995                                       TrivialSubobjectKind Kind,
   5996                                       bool Diagnose) {
   5997   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
   5998   if (!SubRD)
   5999     return true;
   6000 
   6001   CXXMethodDecl *Selected;
   6002   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
   6003                                ConstRHS, Diagnose ? &Selected : nullptr))
   6004     return true;
   6005 
   6006   if (Diagnose) {
   6007     if (ConstRHS)
   6008       SubType.addConst();
   6009 
   6010     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
   6011       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
   6012         << Kind << SubType.getUnqualifiedType();
   6013       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
   6014         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
   6015     } else if (!Selected)
   6016       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
   6017         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
   6018     else if (Selected->isUserProvided()) {
   6019       if (Kind == TSK_CompleteObject)
   6020         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
   6021           << Kind << SubType.getUnqualifiedType() << CSM;
   6022       else {
   6023         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
   6024           << Kind << SubType.getUnqualifiedType() << CSM;
   6025         S.Diag(Selected->getLocation(), diag::note_declared_at);
   6026       }
   6027     } else {
   6028       if (Kind != TSK_CompleteObject)
   6029         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
   6030           << Kind << SubType.getUnqualifiedType() << CSM;
   6031 
   6032       // Explain why the defaulted or deleted special member isn't trivial.
   6033       S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
   6034     }
   6035   }
   6036 
   6037   return false;
   6038 }
   6039 
   6040 /// Check whether the members of a class type allow a special member to be
   6041 /// trivial.
   6042 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
   6043                                      Sema::CXXSpecialMember CSM,
   6044                                      bool ConstArg, bool Diagnose) {
   6045   for (const auto *FI : RD->fields()) {
   6046     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
   6047       continue;
   6048 
   6049     QualType FieldType = S.Context.getBaseElementType(FI->getType());
   6050 
   6051     // Pretend anonymous struct or union members are members of this class.
   6052     if (FI->isAnonymousStructOrUnion()) {
   6053       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
   6054                                     CSM, ConstArg, Diagnose))
   6055         return false;
   6056       continue;
   6057     }
   6058 
   6059     // C++11 [class.ctor]p5:
   6060     //   A default constructor is trivial if [...]
   6061     //    -- no non-static data member of its class has a
   6062     //       brace-or-equal-initializer
   6063     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
   6064       if (Diagnose)
   6065         S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
   6066       return false;
   6067     }
   6068 
   6069     // Objective C ARC 4.3.5:
   6070     //   [...] nontrivally ownership-qualified types are [...] not trivially
   6071     //   default constructible, copy constructible, move constructible, copy
   6072     //   assignable, move assignable, or destructible [...]
   6073     if (S.getLangOpts().ObjCAutoRefCount &&
   6074         FieldType.hasNonTrivialObjCLifetime()) {
   6075       if (Diagnose)
   6076         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
   6077           << RD << FieldType.getObjCLifetime();
   6078       return false;
   6079     }
   6080 
   6081     bool ConstRHS = ConstArg && !FI->isMutable();
   6082     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
   6083                                    CSM, TSK_Field, Diagnose))
   6084       return false;
   6085   }
   6086 
   6087   return true;
   6088 }
   6089 
   6090 /// Diagnose why the specified class does not have a trivial special member of
   6091 /// the given kind.
   6092 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
   6093   QualType Ty = Context.getRecordType(RD);
   6094 
   6095   bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
   6096   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
   6097                             TSK_CompleteObject, /*Diagnose*/true);
   6098 }
   6099 
   6100 /// Determine whether a defaulted or deleted special member function is trivial,
   6101 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
   6102 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
   6103 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
   6104                                   bool Diagnose) {
   6105   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
   6106 
   6107   CXXRecordDecl *RD = MD->getParent();
   6108 
   6109   bool ConstArg = false;
   6110 
   6111   // C++11 [class.copy]p12, p25: [DR1593]
   6112   //   A [special member] is trivial if [...] its parameter-type-list is
   6113   //   equivalent to the parameter-type-list of an implicit declaration [...]
   6114   switch (CSM) {
   6115   case CXXDefaultConstructor:
   6116   case CXXDestructor:
   6117     // Trivial default constructors and destructors cannot have parameters.
   6118     break;
   6119 
   6120   case CXXCopyConstructor:
   6121   case CXXCopyAssignment: {
   6122     // Trivial copy operations always have const, non-volatile parameter types.
   6123     ConstArg = true;
   6124     const ParmVarDecl *Param0 = MD->getParamDecl(0);
   6125     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
   6126     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
   6127       if (Diagnose)
   6128         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
   6129           << Param0->getSourceRange() << Param0->getType()
   6130           << Context.getLValueReferenceType(
   6131                Context.getRecordType(RD).withConst());
   6132       return false;
   6133     }
   6134     break;
   6135   }
   6136 
   6137   case CXXMoveConstructor:
   6138   case CXXMoveAssignment: {
   6139     // Trivial move operations always have non-cv-qualified parameters.
   6140     const ParmVarDecl *Param0 = MD->getParamDecl(0);
   6141     const RValueReferenceType *RT =
   6142       Param0->getType()->getAs<RValueReferenceType>();
   6143     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
   6144       if (Diagnose)
   6145         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
   6146           << Param0->getSourceRange() << Param0->getType()
   6147           << Context.getRValueReferenceType(Context.getRecordType(RD));
   6148       return false;
   6149     }
   6150     break;
   6151   }
   6152 
   6153   case CXXInvalid:
   6154     llvm_unreachable("not a special member");
   6155   }
   6156 
   6157   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
   6158     if (Diagnose)
   6159       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
   6160            diag::note_nontrivial_default_arg)
   6161         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
   6162     return false;
   6163   }
   6164   if (MD->isVariadic()) {
   6165     if (Diagnose)
   6166       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
   6167     return false;
   6168   }
   6169 
   6170   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
   6171   //   A copy/move [constructor or assignment operator] is trivial if
   6172   //    -- the [member] selected to copy/move each direct base class subobject
   6173   //       is trivial
   6174   //
   6175   // C++11 [class.copy]p12, C++11 [class.copy]p25:
   6176   //   A [default constructor or destructor] is trivial if
   6177   //    -- all the direct base classes have trivial [default constructors or
   6178   //       destructors]
   6179   for (const auto &BI : RD->bases())
   6180     if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
   6181                                    ConstArg, CSM, TSK_BaseClass, Diagnose))
   6182       return false;
   6183 
   6184   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
   6185   //   A copy/move [constructor or assignment operator] for a class X is
   6186   //   trivial if
   6187   //    -- for each non-static data member of X that is of class type (or array
   6188   //       thereof), the constructor selected to copy/move that member is
   6189   //       trivial
   6190   //
   6191   // C++11 [class.copy]p12, C++11 [class.copy]p25:
   6192   //   A [default constructor or destructor] is trivial if
   6193   //    -- for all of the non-static data members of its class that are of class
   6194   //       type (or array thereof), each such class has a trivial [default
   6195   //       constructor or destructor]
   6196   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
   6197     return false;
   6198 
   6199   // C++11 [class.dtor]p5:
   6200   //   A destructor is trivial if [...]
   6201   //    -- the destructor is not virtual
   6202   if (CSM == CXXDestructor && MD->isVirtual()) {
   6203     if (Diagnose)
   6204       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
   6205     return false;
   6206   }
   6207 
   6208   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
   6209   //   A [special member] for class X is trivial if [...]
   6210   //    -- class X has no virtual functions and no virtual base classes
   6211   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
   6212     if (!Diagnose)
   6213       return false;
   6214 
   6215     if (RD->getNumVBases()) {
   6216       // Check for virtual bases. We already know that the corresponding
   6217       // member in all bases is trivial, so vbases must all be direct.
   6218       CXXBaseSpecifier &BS = *RD->vbases_begin();
   6219       assert(BS.isVirtual());
   6220       Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
   6221       return false;
   6222     }
   6223 
   6224     // Must have a virtual method.
   6225     for (const auto *MI : RD->methods()) {
   6226       if (MI->isVirtual()) {
   6227         SourceLocation MLoc = MI->getLocStart();
   6228         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
   6229         return false;
   6230       }
   6231     }
   6232 
   6233     llvm_unreachable("dynamic class with no vbases and no virtual functions");
   6234   }
   6235 
   6236   // Looks like it's trivial!
   6237   return true;
   6238 }
   6239 
   6240 /// \brief Data used with FindHiddenVirtualMethod
   6241 namespace {
   6242   struct FindHiddenVirtualMethodData {
   6243     Sema *S;
   6244     CXXMethodDecl *Method;
   6245     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
   6246     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
   6247   };
   6248 }
   6249 
   6250 /// \brief Check whether any most overriden method from MD in Methods
   6251 static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
   6252                   const llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
   6253   if (MD->size_overridden_methods() == 0)
   6254     return Methods.count(MD->getCanonicalDecl());
   6255   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   6256                                       E = MD->end_overridden_methods();
   6257        I != E; ++I)
   6258     if (CheckMostOverridenMethods(*I, Methods))
   6259       return true;
   6260   return false;
   6261 }
   6262 
   6263 /// \brief Member lookup function that determines whether a given C++
   6264 /// method overloads virtual methods in a base class without overriding any,
   6265 /// to be used with CXXRecordDecl::lookupInBases().
   6266 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
   6267                                     CXXBasePath &Path,
   6268                                     void *UserData) {
   6269   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   6270 
   6271   FindHiddenVirtualMethodData &Data
   6272     = *static_cast<FindHiddenVirtualMethodData*>(UserData);
   6273 
   6274   DeclarationName Name = Data.Method->getDeclName();
   6275   assert(Name.getNameKind() == DeclarationName::Identifier);
   6276 
   6277   bool foundSameNameMethod = false;
   6278   SmallVector<CXXMethodDecl *, 8> overloadedMethods;
   6279   for (Path.Decls = BaseRecord->lookup(Name);
   6280        !Path.Decls.empty();
   6281        Path.Decls = Path.Decls.slice(1)) {
   6282     NamedDecl *D = Path.Decls.front();
   6283     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   6284       MD = MD->getCanonicalDecl();
   6285       foundSameNameMethod = true;
   6286       // Interested only in hidden virtual methods.
   6287       if (!MD->isVirtual())
   6288         continue;
   6289       // If the method we are checking overrides a method from its base
   6290       // don't warn about the other overloaded methods. Clang deviates from GCC
   6291       // by only diagnosing overloads of inherited virtual functions that do not
   6292       // override any other virtual functions in the base. GCC's
   6293       // -Woverloaded-virtual diagnoses any derived function hiding a virtual
   6294       // function from a base class. These cases may be better served by a
   6295       // warning (not specific to virtual functions) on call sites when the call
   6296       // would select a different function from the base class, were it visible.
   6297       // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
   6298       if (!Data.S->IsOverload(Data.Method, MD, false))
   6299         return true;
   6300       // Collect the overload only if its hidden.
   6301       if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
   6302         overloadedMethods.push_back(MD);
   6303     }
   6304   }
   6305 
   6306   if (foundSameNameMethod)
   6307     Data.OverloadedMethods.append(overloadedMethods.begin(),
   6308                                    overloadedMethods.end());
   6309   return foundSameNameMethod;
   6310 }
   6311 
   6312 /// \brief Add the most overriden methods from MD to Methods
   6313 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
   6314                         llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
   6315   if (MD->size_overridden_methods() == 0)
   6316     Methods.insert(MD->getCanonicalDecl());
   6317   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   6318                                       E = MD->end_overridden_methods();
   6319        I != E; ++I)
   6320     AddMostOverridenMethods(*I, Methods);
   6321 }
   6322 
   6323 /// \brief Check if a method overloads virtual methods in a base class without
   6324 /// overriding any.
   6325 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
   6326                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
   6327   if (!MD->getDeclName().isIdentifier())
   6328     return;
   6329 
   6330   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
   6331                      /*bool RecordPaths=*/false,
   6332                      /*bool DetectVirtual=*/false);
   6333   FindHiddenVirtualMethodData Data;
   6334   Data.Method = MD;
   6335   Data.S = this;
   6336 
   6337   // Keep the base methods that were overriden or introduced in the subclass
   6338   // by 'using' in a set. A base method not in this set is hidden.
   6339   CXXRecordDecl *DC = MD->getParent();
   6340   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
   6341   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
   6342     NamedDecl *ND = *I;
   6343     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
   6344       ND = shad->getTargetDecl();
   6345     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
   6346       AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
   6347   }
   6348 
   6349   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
   6350     OverloadedMethods = Data.OverloadedMethods;
   6351 }
   6352 
   6353 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
   6354                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
   6355   for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
   6356     CXXMethodDecl *overloadedMD = OverloadedMethods[i];
   6357     PartialDiagnostic PD = PDiag(
   6358          diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
   6359     HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
   6360     Diag(overloadedMD->getLocation(), PD);
   6361   }
   6362 }
   6363 
   6364 /// \brief Diagnose methods which overload virtual methods in a base class
   6365 /// without overriding any.
   6366 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
   6367   if (MD->isInvalidDecl())
   6368     return;
   6369 
   6370   if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
   6371     return;
   6372 
   6373   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
   6374   FindHiddenVirtualMethods(MD, OverloadedMethods);
   6375   if (!OverloadedMethods.empty()) {
   6376     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
   6377       << MD << (OverloadedMethods.size() > 1);
   6378 
   6379     NoteHiddenVirtualMethods(MD, OverloadedMethods);
   6380   }
   6381 }
   6382 
   6383 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
   6384                                              Decl *TagDecl,
   6385                                              SourceLocation LBrac,
   6386                                              SourceLocation RBrac,
   6387                                              AttributeList *AttrList) {
   6388   if (!TagDecl)
   6389     return;
   6390 
   6391   AdjustDeclIfTemplate(TagDecl);
   6392 
   6393   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
   6394     if (l->getKind() != AttributeList::AT_Visibility)
   6395       continue;
   6396     l->setInvalid();
   6397     Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
   6398       l->getName();
   6399   }
   6400 
   6401   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
   6402               // strict aliasing violation!
   6403               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
   6404               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
   6405 
   6406   CheckCompletedCXXClass(
   6407                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
   6408 }
   6409 
   6410 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
   6411 /// special functions, such as the default constructor, copy
   6412 /// constructor, or destructor, to the given C++ class (C++
   6413 /// [special]p1).  This routine can only be executed just before the
   6414 /// definition of the class is complete.
   6415 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
   6416   if (!ClassDecl->hasUserDeclaredConstructor())
   6417     ++ASTContext::NumImplicitDefaultConstructors;
   6418 
   6419   if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
   6420     ++ASTContext::NumImplicitCopyConstructors;
   6421 
   6422     // If the properties or semantics of the copy constructor couldn't be
   6423     // determined while the class was being declared, force a declaration
   6424     // of it now.
   6425     if (ClassDecl->needsOverloadResolutionForCopyConstructor())
   6426       DeclareImplicitCopyConstructor(ClassDecl);
   6427   }
   6428 
   6429   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
   6430     ++ASTContext::NumImplicitMoveConstructors;
   6431 
   6432     if (ClassDecl->needsOverloadResolutionForMoveConstructor())
   6433       DeclareImplicitMoveConstructor(ClassDecl);
   6434   }
   6435 
   6436   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
   6437     ++ASTContext::NumImplicitCopyAssignmentOperators;
   6438 
   6439     // If we have a dynamic class, then the copy assignment operator may be
   6440     // virtual, so we have to declare it immediately. This ensures that, e.g.,
   6441     // it shows up in the right place in the vtable and that we diagnose
   6442     // problems with the implicit exception specification.
   6443     if (ClassDecl->isDynamicClass() ||
   6444         ClassDecl->needsOverloadResolutionForCopyAssignment())
   6445       DeclareImplicitCopyAssignment(ClassDecl);
   6446   }
   6447 
   6448   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
   6449     ++ASTContext::NumImplicitMoveAssignmentOperators;
   6450 
   6451     // Likewise for the move assignment operator.
   6452     if (ClassDecl->isDynamicClass() ||
   6453         ClassDecl->needsOverloadResolutionForMoveAssignment())
   6454       DeclareImplicitMoveAssignment(ClassDecl);
   6455   }
   6456 
   6457   if (!ClassDecl->hasUserDeclaredDestructor()) {
   6458     ++ASTContext::NumImplicitDestructors;
   6459 
   6460     // If we have a dynamic class, then the destructor may be virtual, so we
   6461     // have to declare the destructor immediately. This ensures that, e.g., it
   6462     // shows up in the right place in the vtable and that we diagnose problems
   6463     // with the implicit exception specification.
   6464     if (ClassDecl->isDynamicClass() ||
   6465         ClassDecl->needsOverloadResolutionForDestructor())
   6466       DeclareImplicitDestructor(ClassDecl);
   6467   }
   6468 }
   6469 
   6470 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
   6471   if (!D)
   6472     return 0;
   6473 
   6474   // The order of template parameters is not important here. All names
   6475   // get added to the same scope.
   6476   SmallVector<TemplateParameterList *, 4> ParameterLists;
   6477 
   6478   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   6479     D = TD->getTemplatedDecl();
   6480 
   6481   if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
   6482     ParameterLists.push_back(PSD->getTemplateParameters());
   6483 
   6484   if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
   6485     for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
   6486       ParameterLists.push_back(DD->getTemplateParameterList(i));
   6487 
   6488     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   6489       if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
   6490         ParameterLists.push_back(FTD->getTemplateParameters());
   6491     }
   6492   }
   6493 
   6494   if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
   6495     for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
   6496       ParameterLists.push_back(TD->getTemplateParameterList(i));
   6497 
   6498     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
   6499       if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
   6500         ParameterLists.push_back(CTD->getTemplateParameters());
   6501     }
   6502   }
   6503 
   6504   unsigned Count = 0;
   6505   for (TemplateParameterList *Params : ParameterLists) {
   6506     if (Params->size() > 0)
   6507       // Ignore explicit specializations; they don't contribute to the template
   6508       // depth.
   6509       ++Count;
   6510     for (NamedDecl *Param : *Params) {
   6511       if (Param->getDeclName()) {
   6512         S->AddDecl(Param);
   6513         IdResolver.AddDecl(Param);
   6514       }
   6515     }
   6516   }
   6517 
   6518   return Count;
   6519 }
   6520 
   6521 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
   6522   if (!RecordD) return;
   6523   AdjustDeclIfTemplate(RecordD);
   6524   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
   6525   PushDeclContext(S, Record);
   6526 }
   6527 
   6528 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
   6529   if (!RecordD) return;
   6530   PopDeclContext();
   6531 }
   6532 
   6533 /// This is used to implement the constant expression evaluation part of the
   6534 /// attribute enable_if extension. There is nothing in standard C++ which would
   6535 /// require reentering parameters.
   6536 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
   6537   if (!Param)
   6538     return;
   6539 
   6540   S->AddDecl(Param);
   6541   if (Param->getDeclName())
   6542     IdResolver.AddDecl(Param);
   6543 }
   6544 
   6545 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
   6546 /// parsing a top-level (non-nested) C++ class, and we are now
   6547 /// parsing those parts of the given Method declaration that could
   6548 /// not be parsed earlier (C++ [class.mem]p2), such as default
   6549 /// arguments. This action should enter the scope of the given
   6550 /// Method declaration as if we had just parsed the qualified method
   6551 /// name. However, it should not bring the parameters into scope;
   6552 /// that will be performed by ActOnDelayedCXXMethodParameter.
   6553 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
   6554 }
   6555 
   6556 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
   6557 /// C++ method declaration. We're (re-)introducing the given
   6558 /// function parameter into scope for use in parsing later parts of
   6559 /// the method declaration. For example, we could see an
   6560 /// ActOnParamDefaultArgument event for this parameter.
   6561 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
   6562   if (!ParamD)
   6563     return;
   6564 
   6565   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
   6566 
   6567   // If this parameter has an unparsed default argument, clear it out
   6568   // to make way for the parsed default argument.
   6569   if (Param->hasUnparsedDefaultArg())
   6570     Param->setDefaultArg(nullptr);
   6571 
   6572   S->AddDecl(Param);
   6573   if (Param->getDeclName())
   6574     IdResolver.AddDecl(Param);
   6575 }
   6576 
   6577 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
   6578 /// processing the delayed method declaration for Method. The method
   6579 /// declaration is now considered finished. There may be a separate
   6580 /// ActOnStartOfFunctionDef action later (not necessarily
   6581 /// immediately!) for this method, if it was also defined inside the
   6582 /// class body.
   6583 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
   6584   if (!MethodD)
   6585     return;
   6586 
   6587   AdjustDeclIfTemplate(MethodD);
   6588 
   6589   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
   6590 
   6591   // Now that we have our default arguments, check the constructor
   6592   // again. It could produce additional diagnostics or affect whether
   6593   // the class has implicitly-declared destructors, among other
   6594   // things.
   6595   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
   6596     CheckConstructor(Constructor);
   6597 
   6598   // Check the default arguments, which we may have added.
   6599   if (!Method->isInvalidDecl())
   6600     CheckCXXDefaultArguments(Method);
   6601 }
   6602 
   6603 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
   6604 /// the well-formedness of the constructor declarator @p D with type @p
   6605 /// R. If there are any errors in the declarator, this routine will
   6606 /// emit diagnostics and set the invalid bit to true.  In any case, the type
   6607 /// will be updated to reflect a well-formed type for the constructor and
   6608 /// returned.
   6609 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
   6610                                           StorageClass &SC) {
   6611   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   6612 
   6613   // C++ [class.ctor]p3:
   6614   //   A constructor shall not be virtual (10.3) or static (9.4). A
   6615   //   constructor can be invoked for a const, volatile or const
   6616   //   volatile object. A constructor shall not be declared const,
   6617   //   volatile, or const volatile (9.3.2).
   6618   if (isVirtual) {
   6619     if (!D.isInvalidType())
   6620       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
   6621         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
   6622         << SourceRange(D.getIdentifierLoc());
   6623     D.setInvalidType();
   6624   }
   6625   if (SC == SC_Static) {
   6626     if (!D.isInvalidType())
   6627       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
   6628         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   6629         << SourceRange(D.getIdentifierLoc());
   6630     D.setInvalidType();
   6631     SC = SC_None;
   6632   }
   6633 
   6634   if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
   6635     diagnoseIgnoredQualifiers(
   6636         diag::err_constructor_return_type, TypeQuals, SourceLocation(),
   6637         D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
   6638         D.getDeclSpec().getRestrictSpecLoc(),
   6639         D.getDeclSpec().getAtomicSpecLoc());
   6640     D.setInvalidType();
   6641   }
   6642 
   6643   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   6644   if (FTI.TypeQuals != 0) {
   6645     if (FTI.TypeQuals & Qualifiers::Const)
   6646       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   6647         << "const" << SourceRange(D.getIdentifierLoc());
   6648     if (FTI.TypeQuals & Qualifiers::Volatile)
   6649       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   6650         << "volatile" << SourceRange(D.getIdentifierLoc());
   6651     if (FTI.TypeQuals & Qualifiers::Restrict)
   6652       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   6653         << "restrict" << SourceRange(D.getIdentifierLoc());
   6654     D.setInvalidType();
   6655   }
   6656 
   6657   // C++0x [class.ctor]p4:
   6658   //   A constructor shall not be declared with a ref-qualifier.
   6659   if (FTI.hasRefQualifier()) {
   6660     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
   6661       << FTI.RefQualifierIsLValueRef
   6662       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
   6663     D.setInvalidType();
   6664   }
   6665 
   6666   // Rebuild the function type "R" without any type qualifiers (in
   6667   // case any of the errors above fired) and with "void" as the
   6668   // return type, since constructors don't have return types.
   6669   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   6670   if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
   6671     return R;
   6672 
   6673   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
   6674   EPI.TypeQuals = 0;
   6675   EPI.RefQualifier = RQ_None;
   6676 
   6677   return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
   6678 }
   6679 
   6680 /// CheckConstructor - Checks a fully-formed constructor for
   6681 /// well-formedness, issuing any diagnostics required. Returns true if
   6682 /// the constructor declarator is invalid.
   6683 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
   6684   CXXRecordDecl *ClassDecl
   6685     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
   6686   if (!ClassDecl)
   6687     return Constructor->setInvalidDecl();
   6688 
   6689   // C++ [class.copy]p3:
   6690   //   A declaration of a constructor for a class X is ill-formed if
   6691   //   its first parameter is of type (optionally cv-qualified) X and
   6692   //   either there are no other parameters or else all other
   6693   //   parameters have default arguments.
   6694   if (!Constructor->isInvalidDecl() &&
   6695       ((Constructor->getNumParams() == 1) ||
   6696        (Constructor->getNumParams() > 1 &&
   6697         Constructor->getParamDecl(1)->hasDefaultArg())) &&
   6698       Constructor->getTemplateSpecializationKind()
   6699                                               != TSK_ImplicitInstantiation) {
   6700     QualType ParamType = Constructor->getParamDecl(0)->getType();
   6701     QualType ClassTy = Context.getTagDeclType(ClassDecl);
   6702     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
   6703       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
   6704       const char *ConstRef
   6705         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
   6706                                                         : " const &";
   6707       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
   6708         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
   6709 
   6710       // FIXME: Rather that making the constructor invalid, we should endeavor
   6711       // to fix the type.
   6712       Constructor->setInvalidDecl();
   6713     }
   6714   }
   6715 }
   6716 
   6717 /// CheckDestructor - Checks a fully-formed destructor definition for
   6718 /// well-formedness, issuing any diagnostics required.  Returns true
   6719 /// on error.
   6720 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
   6721   CXXRecordDecl *RD = Destructor->getParent();
   6722 
   6723   if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
   6724     SourceLocation Loc;
   6725 
   6726     if (!Destructor->isImplicit())
   6727       Loc = Destructor->getLocation();
   6728     else
   6729       Loc = RD->getLocation();
   6730 
   6731     // If we have a virtual destructor, look up the deallocation function
   6732     FunctionDecl *OperatorDelete = nullptr;
   6733     DeclarationName Name =
   6734     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   6735     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
   6736       return true;
   6737     // If there's no class-specific operator delete, look up the global
   6738     // non-array delete.
   6739     if (!OperatorDelete)
   6740       OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
   6741 
   6742     MarkFunctionReferenced(Loc, OperatorDelete);
   6743 
   6744     Destructor->setOperatorDelete(OperatorDelete);
   6745   }
   6746 
   6747   return false;
   6748 }
   6749 
   6750 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
   6751 /// the well-formednes of the destructor declarator @p D with type @p
   6752 /// R. If there are any errors in the declarator, this routine will
   6753 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
   6754 /// will be updated to reflect a well-formed type for the destructor and
   6755 /// returned.
   6756 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
   6757                                          StorageClass& SC) {
   6758   // C++ [class.dtor]p1:
   6759   //   [...] A typedef-name that names a class is a class-name
   6760   //   (7.1.3); however, a typedef-name that names a class shall not
   6761   //   be used as the identifier in the declarator for a destructor
   6762   //   declaration.
   6763   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
   6764   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
   6765     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
   6766       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
   6767   else if (const TemplateSpecializationType *TST =
   6768              DeclaratorType->getAs<TemplateSpecializationType>())
   6769     if (TST->isTypeAlias())
   6770       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
   6771         << DeclaratorType << 1;
   6772 
   6773   // C++ [class.dtor]p2:
   6774   //   A destructor is used to destroy objects of its class type. A
   6775   //   destructor takes no parameters, and no return type can be
   6776   //   specified for it (not even void). The address of a destructor
   6777   //   shall not be taken. A destructor shall not be static. A
   6778   //   destructor can be invoked for a const, volatile or const
   6779   //   volatile object. A destructor shall not be declared const,
   6780   //   volatile or const volatile (9.3.2).
   6781   if (SC == SC_Static) {
   6782     if (!D.isInvalidType())
   6783       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
   6784         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   6785         << SourceRange(D.getIdentifierLoc())
   6786         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   6787 
   6788     SC = SC_None;
   6789   }
   6790   if (!D.isInvalidType()) {
   6791     // Destructors don't have return types, but the parser will
   6792     // happily parse something like:
   6793     //
   6794     //   class X {
   6795     //     float ~X();
   6796     //   };
   6797     //
   6798     // The return type will be eliminated later.
   6799     if (D.getDeclSpec().hasTypeSpecifier())
   6800       Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
   6801         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   6802         << SourceRange(D.getIdentifierLoc());
   6803     else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
   6804       diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
   6805                                 SourceLocation(),
   6806                                 D.getDeclSpec().getConstSpecLoc(),
   6807                                 D.getDeclSpec().getVolatileSpecLoc(),
   6808                                 D.getDeclSpec().getRestrictSpecLoc(),
   6809                                 D.getDeclSpec().getAtomicSpecLoc());
   6810       D.setInvalidType();
   6811     }
   6812   }
   6813 
   6814   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   6815   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
   6816     if (FTI.TypeQuals & Qualifiers::Const)
   6817       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   6818         << "const" << SourceRange(D.getIdentifierLoc());
   6819     if (FTI.TypeQuals & Qualifiers::Volatile)
   6820       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   6821         << "volatile" << SourceRange(D.getIdentifierLoc());
   6822     if (FTI.TypeQuals & Qualifiers::Restrict)
   6823       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   6824         << "restrict" << SourceRange(D.getIdentifierLoc());
   6825     D.setInvalidType();
   6826   }
   6827 
   6828   // C++0x [class.dtor]p2:
   6829   //   A destructor shall not be declared with a ref-qualifier.
   6830   if (FTI.hasRefQualifier()) {
   6831     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
   6832       << FTI.RefQualifierIsLValueRef
   6833       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
   6834     D.setInvalidType();
   6835   }
   6836 
   6837   // Make sure we don't have any parameters.
   6838   if (FTIHasNonVoidParameters(FTI)) {
   6839     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
   6840 
   6841     // Delete the parameters.
   6842     FTI.freeParams();
   6843     D.setInvalidType();
   6844   }
   6845 
   6846   // Make sure the destructor isn't variadic.
   6847   if (FTI.isVariadic) {
   6848     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
   6849     D.setInvalidType();
   6850   }
   6851 
   6852   // Rebuild the function type "R" without any type qualifiers or
   6853   // parameters (in case any of the errors above fired) and with
   6854   // "void" as the return type, since destructors don't have return
   6855   // types.
   6856   if (!D.isInvalidType())
   6857     return R;
   6858 
   6859   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   6860   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
   6861   EPI.Variadic = false;
   6862   EPI.TypeQuals = 0;
   6863   EPI.RefQualifier = RQ_None;
   6864   return Context.getFunctionType(Context.VoidTy, None, EPI);
   6865 }
   6866 
   6867 static void extendLeft(SourceRange &R, const SourceRange &Before) {
   6868   if (Before.isInvalid())
   6869     return;
   6870   R.setBegin(Before.getBegin());
   6871   if (R.getEnd().isInvalid())
   6872     R.setEnd(Before.getEnd());
   6873 }
   6874 
   6875 static void extendRight(SourceRange &R, const SourceRange &After) {
   6876   if (After.isInvalid())
   6877     return;
   6878   if (R.getBegin().isInvalid())
   6879     R.setBegin(After.getBegin());
   6880   R.setEnd(After.getEnd());
   6881 }
   6882 
   6883 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
   6884 /// well-formednes of the conversion function declarator @p D with
   6885 /// type @p R. If there are any errors in the declarator, this routine
   6886 /// will emit diagnostics and return true. Otherwise, it will return
   6887 /// false. Either way, the type @p R will be updated to reflect a
   6888 /// well-formed type for the conversion operator.
   6889 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
   6890                                      StorageClass& SC) {
   6891   // C++ [class.conv.fct]p1:
   6892   //   Neither parameter types nor return type can be specified. The
   6893   //   type of a conversion function (8.3.5) is "function taking no
   6894   //   parameter returning conversion-type-id."
   6895   if (SC == SC_Static) {
   6896     if (!D.isInvalidType())
   6897       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
   6898         << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   6899         << D.getName().getSourceRange();
   6900     D.setInvalidType();
   6901     SC = SC_None;
   6902   }
   6903 
   6904   TypeSourceInfo *ConvTSI = nullptr;
   6905   QualType ConvType =
   6906       GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
   6907 
   6908   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
   6909     // Conversion functions don't have return types, but the parser will
   6910     // happily parse something like:
   6911     //
   6912     //   class X {
   6913     //     float operator bool();
   6914     //   };
   6915     //
   6916     // The return type will be changed later anyway.
   6917     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
   6918       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   6919       << SourceRange(D.getIdentifierLoc());
   6920     D.setInvalidType();
   6921   }
   6922 
   6923   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   6924 
   6925   // Make sure we don't have any parameters.
   6926   if (Proto->getNumParams() > 0) {
   6927     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
   6928 
   6929     // Delete the parameters.
   6930     D.getFunctionTypeInfo().freeParams();
   6931     D.setInvalidType();
   6932   } else if (Proto->isVariadic()) {
   6933     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
   6934     D.setInvalidType();
   6935   }
   6936 
   6937   // Diagnose "&operator bool()" and other such nonsense.  This
   6938   // is actually a gcc extension which we don't support.
   6939   if (Proto->getReturnType() != ConvType) {
   6940     bool NeedsTypedef = false;
   6941     SourceRange Before, After;
   6942 
   6943     // Walk the chunks and extract information on them for our diagnostic.
   6944     bool PastFunctionChunk = false;
   6945     for (auto &Chunk : D.type_objects()) {
   6946       switch (Chunk.Kind) {
   6947       case DeclaratorChunk::Function:
   6948         if (!PastFunctionChunk) {
   6949           if (Chunk.Fun.HasTrailingReturnType) {
   6950             TypeSourceInfo *TRT = nullptr;
   6951             GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
   6952             if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
   6953           }
   6954           PastFunctionChunk = true;
   6955           break;
   6956         }
   6957         // Fall through.
   6958       case DeclaratorChunk::Array:
   6959         NeedsTypedef = true;
   6960         extendRight(After, Chunk.getSourceRange());
   6961         break;
   6962 
   6963       case DeclaratorChunk::Pointer:
   6964       case DeclaratorChunk::BlockPointer:
   6965       case DeclaratorChunk::Reference:
   6966       case DeclaratorChunk::MemberPointer:
   6967         extendLeft(Before, Chunk.getSourceRange());
   6968         break;
   6969 
   6970       case DeclaratorChunk::Paren:
   6971         extendLeft(Before, Chunk.Loc);
   6972         extendRight(After, Chunk.EndLoc);
   6973         break;
   6974       }
   6975     }
   6976 
   6977     SourceLocation Loc = Before.isValid() ? Before.getBegin() :
   6978                          After.isValid()  ? After.getBegin() :
   6979                                             D.getIdentifierLoc();
   6980     auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
   6981     DB << Before << After;
   6982 
   6983     if (!NeedsTypedef) {
   6984       DB << /*don't need a typedef*/0;
   6985 
   6986       // If we can provide a correct fix-it hint, do so.
   6987       if (After.isInvalid() && ConvTSI) {
   6988         SourceLocation InsertLoc =
   6989             PP.getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
   6990         DB << FixItHint::CreateInsertion(InsertLoc, " ")
   6991            << FixItHint::CreateInsertionFromRange(
   6992                   InsertLoc, CharSourceRange::getTokenRange(Before))
   6993            << FixItHint::CreateRemoval(Before);
   6994       }
   6995     } else if (!Proto->getReturnType()->isDependentType()) {
   6996       DB << /*typedef*/1 << Proto->getReturnType();
   6997     } else if (getLangOpts().CPlusPlus11) {
   6998       DB << /*alias template*/2 << Proto->getReturnType();
   6999     } else {
   7000       DB << /*might not be fixable*/3;
   7001     }
   7002 
   7003     // Recover by incorporating the other type chunks into the result type.
   7004     // Note, this does *not* change the name of the function. This is compatible
   7005     // with the GCC extension:
   7006     //   struct S { &operator int(); } s;
   7007     //   int &r = s.operator int(); // ok in GCC
   7008     //   S::operator int&() {} // error in GCC, function name is 'operator int'.
   7009     ConvType = Proto->getReturnType();
   7010   }
   7011 
   7012   // C++ [class.conv.fct]p4:
   7013   //   The conversion-type-id shall not represent a function type nor
   7014   //   an array type.
   7015   if (ConvType->isArrayType()) {
   7016     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
   7017     ConvType = Context.getPointerType(ConvType);
   7018     D.setInvalidType();
   7019   } else if (ConvType->isFunctionType()) {
   7020     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
   7021     ConvType = Context.getPointerType(ConvType);
   7022     D.setInvalidType();
   7023   }
   7024 
   7025   // Rebuild the function type "R" without any parameters (in case any
   7026   // of the errors above fired) and with the conversion type as the
   7027   // return type.
   7028   if (D.isInvalidType())
   7029     R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
   7030 
   7031   // C++0x explicit conversion operators.
   7032   if (D.getDeclSpec().isExplicitSpecified())
   7033     Diag(D.getDeclSpec().getExplicitSpecLoc(),
   7034          getLangOpts().CPlusPlus11 ?
   7035            diag::warn_cxx98_compat_explicit_conversion_functions :
   7036            diag::ext_explicit_conversion_functions)
   7037       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
   7038 }
   7039 
   7040 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
   7041 /// the declaration of the given C++ conversion function. This routine
   7042 /// is responsible for recording the conversion function in the C++
   7043 /// class, if possible.
   7044 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
   7045   assert(Conversion && "Expected to receive a conversion function declaration");
   7046 
   7047   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
   7048 
   7049   // Make sure we aren't redeclaring the conversion function.
   7050   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
   7051 
   7052   // C++ [class.conv.fct]p1:
   7053   //   [...] A conversion function is never used to convert a
   7054   //   (possibly cv-qualified) object to the (possibly cv-qualified)
   7055   //   same object type (or a reference to it), to a (possibly
   7056   //   cv-qualified) base class of that type (or a reference to it),
   7057   //   or to (possibly cv-qualified) void.
   7058   // FIXME: Suppress this warning if the conversion function ends up being a
   7059   // virtual function that overrides a virtual function in a base class.
   7060   QualType ClassType
   7061     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   7062   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
   7063     ConvType = ConvTypeRef->getPointeeType();
   7064   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
   7065       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
   7066     /* Suppress diagnostics for instantiations. */;
   7067   else if (ConvType->isRecordType()) {
   7068     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
   7069     if (ConvType == ClassType)
   7070       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
   7071         << ClassType;
   7072     else if (IsDerivedFrom(ClassType, ConvType))
   7073       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
   7074         <<  ClassType << ConvType;
   7075   } else if (ConvType->isVoidType()) {
   7076     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
   7077       << ClassType << ConvType;
   7078   }
   7079 
   7080   if (FunctionTemplateDecl *ConversionTemplate
   7081                                 = Conversion->getDescribedFunctionTemplate())
   7082     return ConversionTemplate;
   7083 
   7084   return Conversion;
   7085 }
   7086 
   7087 //===----------------------------------------------------------------------===//
   7088 // Namespace Handling
   7089 //===----------------------------------------------------------------------===//
   7090 
   7091 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
   7092 /// reopened.
   7093 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
   7094                                             SourceLocation Loc,
   7095                                             IdentifierInfo *II, bool *IsInline,
   7096                                             NamespaceDecl *PrevNS) {
   7097   assert(*IsInline != PrevNS->isInline());
   7098 
   7099   // HACK: Work around a bug in libstdc++4.6's <atomic>, where
   7100   // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
   7101   // inline namespaces, with the intention of bringing names into namespace std.
   7102   //
   7103   // We support this just well enough to get that case working; this is not
   7104   // sufficient to support reopening namespaces as inline in general.
   7105   if (*IsInline && II && II->getName().startswith("__atomic") &&
   7106       S.getSourceManager().isInSystemHeader(Loc)) {
   7107     // Mark all prior declarations of the namespace as inline.
   7108     for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
   7109          NS = NS->getPreviousDecl())
   7110       NS->setInline(*IsInline);
   7111     // Patch up the lookup table for the containing namespace. This isn't really
   7112     // correct, but it's good enough for this particular case.
   7113     for (auto *I : PrevNS->decls())
   7114       if (auto *ND = dyn_cast<NamedDecl>(I))
   7115         PrevNS->getParent()->makeDeclVisibleInContext(ND);
   7116     return;
   7117   }
   7118 
   7119   if (PrevNS->isInline())
   7120     // The user probably just forgot the 'inline', so suggest that it
   7121     // be added back.
   7122     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
   7123       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
   7124   else
   7125     S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline;
   7126 
   7127   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
   7128   *IsInline = PrevNS->isInline();
   7129 }
   7130 
   7131 /// ActOnStartNamespaceDef - This is called at the start of a namespace
   7132 /// definition.
   7133 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
   7134                                    SourceLocation InlineLoc,
   7135                                    SourceLocation NamespaceLoc,
   7136                                    SourceLocation IdentLoc,
   7137                                    IdentifierInfo *II,
   7138                                    SourceLocation LBrace,
   7139                                    AttributeList *AttrList) {
   7140   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
   7141   // For anonymous namespace, take the location of the left brace.
   7142   SourceLocation Loc = II ? IdentLoc : LBrace;
   7143   bool IsInline = InlineLoc.isValid();
   7144   bool IsInvalid = false;
   7145   bool IsStd = false;
   7146   bool AddToKnown = false;
   7147   Scope *DeclRegionScope = NamespcScope->getParent();
   7148 
   7149   NamespaceDecl *PrevNS = nullptr;
   7150   if (II) {
   7151     // C++ [namespace.def]p2:
   7152     //   The identifier in an original-namespace-definition shall not
   7153     //   have been previously defined in the declarative region in
   7154     //   which the original-namespace-definition appears. The
   7155     //   identifier in an original-namespace-definition is the name of
   7156     //   the namespace. Subsequently in that declarative region, it is
   7157     //   treated as an original-namespace-name.
   7158     //
   7159     // Since namespace names are unique in their scope, and we don't
   7160     // look through using directives, just look for any ordinary names.
   7161 
   7162     const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
   7163     Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
   7164     Decl::IDNS_Namespace;
   7165     NamedDecl *PrevDecl = nullptr;
   7166     DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
   7167     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
   7168          ++I) {
   7169       if ((*I)->getIdentifierNamespace() & IDNS) {
   7170         PrevDecl = *I;
   7171         break;
   7172       }
   7173     }
   7174 
   7175     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
   7176 
   7177     if (PrevNS) {
   7178       // This is an extended namespace definition.
   7179       if (IsInline != PrevNS->isInline())
   7180         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
   7181                                         &IsInline, PrevNS);
   7182     } else if (PrevDecl) {
   7183       // This is an invalid name redefinition.
   7184       Diag(Loc, diag::err_redefinition_different_kind)
   7185         << II;
   7186       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   7187       IsInvalid = true;
   7188       // Continue on to push Namespc as current DeclContext and return it.
   7189     } else if (II->isStr("std") &&
   7190                CurContext->getRedeclContext()->isTranslationUnit()) {
   7191       // This is the first "real" definition of the namespace "std", so update
   7192       // our cache of the "std" namespace to point at this definition.
   7193       PrevNS = getStdNamespace();
   7194       IsStd = true;
   7195       AddToKnown = !IsInline;
   7196     } else {
   7197       // We've seen this namespace for the first time.
   7198       AddToKnown = !IsInline;
   7199     }
   7200   } else {
   7201     // Anonymous namespaces.
   7202 
   7203     // Determine whether the parent already has an anonymous namespace.
   7204     DeclContext *Parent = CurContext->getRedeclContext();
   7205     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
   7206       PrevNS = TU->getAnonymousNamespace();
   7207     } else {
   7208       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
   7209       PrevNS = ND->getAnonymousNamespace();
   7210     }
   7211 
   7212     if (PrevNS && IsInline != PrevNS->isInline())
   7213       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
   7214                                       &IsInline, PrevNS);
   7215   }
   7216 
   7217   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
   7218                                                  StartLoc, Loc, II, PrevNS);
   7219   if (IsInvalid)
   7220     Namespc->setInvalidDecl();
   7221 
   7222   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
   7223 
   7224   // FIXME: Should we be merging attributes?
   7225   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
   7226     PushNamespaceVisibilityAttr(Attr, Loc);
   7227 
   7228   if (IsStd)
   7229     StdNamespace = Namespc;
   7230   if (AddToKnown)
   7231     KnownNamespaces[Namespc] = false;
   7232 
   7233   if (II) {
   7234     PushOnScopeChains(Namespc, DeclRegionScope);
   7235   } else {
   7236     // Link the anonymous namespace into its parent.
   7237     DeclContext *Parent = CurContext->getRedeclContext();
   7238     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
   7239       TU->setAnonymousNamespace(Namespc);
   7240     } else {
   7241       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
   7242     }
   7243 
   7244     CurContext->addDecl(Namespc);
   7245 
   7246     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
   7247     //   behaves as if it were replaced by
   7248     //     namespace unique { /* empty body */ }
   7249     //     using namespace unique;
   7250     //     namespace unique { namespace-body }
   7251     //   where all occurrences of 'unique' in a translation unit are
   7252     //   replaced by the same identifier and this identifier differs
   7253     //   from all other identifiers in the entire program.
   7254 
   7255     // We just create the namespace with an empty name and then add an
   7256     // implicit using declaration, just like the standard suggests.
   7257     //
   7258     // CodeGen enforces the "universally unique" aspect by giving all
   7259     // declarations semantically contained within an anonymous
   7260     // namespace internal linkage.
   7261 
   7262     if (!PrevNS) {
   7263       UsingDirectiveDecl* UD
   7264         = UsingDirectiveDecl::Create(Context, Parent,
   7265                                      /* 'using' */ LBrace,
   7266                                      /* 'namespace' */ SourceLocation(),
   7267                                      /* qualifier */ NestedNameSpecifierLoc(),
   7268                                      /* identifier */ SourceLocation(),
   7269                                      Namespc,
   7270                                      /* Ancestor */ Parent);
   7271       UD->setImplicit();
   7272       Parent->addDecl(UD);
   7273     }
   7274   }
   7275 
   7276   ActOnDocumentableDecl(Namespc);
   7277 
   7278   // Although we could have an invalid decl (i.e. the namespace name is a
   7279   // redefinition), push it as current DeclContext and try to continue parsing.
   7280   // FIXME: We should be able to push Namespc here, so that the each DeclContext
   7281   // for the namespace has the declarations that showed up in that particular
   7282   // namespace definition.
   7283   PushDeclContext(NamespcScope, Namespc);
   7284   return Namespc;
   7285 }
   7286 
   7287 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
   7288 /// is a namespace alias, returns the namespace it points to.
   7289 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
   7290   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
   7291     return AD->getNamespace();
   7292   return dyn_cast_or_null<NamespaceDecl>(D);
   7293 }
   7294 
   7295 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
   7296 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
   7297 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
   7298   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
   7299   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
   7300   Namespc->setRBraceLoc(RBrace);
   7301   PopDeclContext();
   7302   if (Namespc->hasAttr<VisibilityAttr>())
   7303     PopPragmaVisibility(true, RBrace);
   7304 }
   7305 
   7306 CXXRecordDecl *Sema::getStdBadAlloc() const {
   7307   return cast_or_null<CXXRecordDecl>(
   7308                                   StdBadAlloc.get(Context.getExternalSource()));
   7309 }
   7310 
   7311 NamespaceDecl *Sema::getStdNamespace() const {
   7312   return cast_or_null<NamespaceDecl>(
   7313                                  StdNamespace.get(Context.getExternalSource()));
   7314 }
   7315 
   7316 /// \brief Retrieve the special "std" namespace, which may require us to
   7317 /// implicitly define the namespace.
   7318 NamespaceDecl *Sema::getOrCreateStdNamespace() {
   7319   if (!StdNamespace) {
   7320     // The "std" namespace has not yet been defined, so build one implicitly.
   7321     StdNamespace = NamespaceDecl::Create(Context,
   7322                                          Context.getTranslationUnitDecl(),
   7323                                          /*Inline=*/false,
   7324                                          SourceLocation(), SourceLocation(),
   7325                                          &PP.getIdentifierTable().get("std"),
   7326                                          /*PrevDecl=*/nullptr);
   7327     getStdNamespace()->setImplicit(true);
   7328   }
   7329 
   7330   return getStdNamespace();
   7331 }
   7332 
   7333 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
   7334   assert(getLangOpts().CPlusPlus &&
   7335          "Looking for std::initializer_list outside of C++.");
   7336 
   7337   // We're looking for implicit instantiations of
   7338   // template <typename E> class std::initializer_list.
   7339 
   7340   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
   7341     return false;
   7342 
   7343   ClassTemplateDecl *Template = nullptr;
   7344   const TemplateArgument *Arguments = nullptr;
   7345 
   7346   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   7347 
   7348     ClassTemplateSpecializationDecl *Specialization =
   7349         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
   7350     if (!Specialization)
   7351       return false;
   7352 
   7353     Template = Specialization->getSpecializedTemplate();
   7354     Arguments = Specialization->getTemplateArgs().data();
   7355   } else if (const TemplateSpecializationType *TST =
   7356                  Ty->getAs<TemplateSpecializationType>()) {
   7357     Template = dyn_cast_or_null<ClassTemplateDecl>(
   7358         TST->getTemplateName().getAsTemplateDecl());
   7359     Arguments = TST->getArgs();
   7360   }
   7361   if (!Template)
   7362     return false;
   7363 
   7364   if (!StdInitializerList) {
   7365     // Haven't recognized std::initializer_list yet, maybe this is it.
   7366     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
   7367     if (TemplateClass->getIdentifier() !=
   7368             &PP.getIdentifierTable().get("initializer_list") ||
   7369         !getStdNamespace()->InEnclosingNamespaceSetOf(
   7370             TemplateClass->getDeclContext()))
   7371       return false;
   7372     // This is a template called std::initializer_list, but is it the right
   7373     // template?
   7374     TemplateParameterList *Params = Template->getTemplateParameters();
   7375     if (Params->getMinRequiredArguments() != 1)
   7376       return false;
   7377     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
   7378       return false;
   7379 
   7380     // It's the right template.
   7381     StdInitializerList = Template;
   7382   }
   7383 
   7384   if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
   7385     return false;
   7386 
   7387   // This is an instance of std::initializer_list. Find the argument type.
   7388   if (Element)
   7389     *Element = Arguments[0].getAsType();
   7390   return true;
   7391 }
   7392 
   7393 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
   7394   NamespaceDecl *Std = S.getStdNamespace();
   7395   if (!Std) {
   7396     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
   7397     return nullptr;
   7398   }
   7399 
   7400   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
   7401                       Loc, Sema::LookupOrdinaryName);
   7402   if (!S.LookupQualifiedName(Result, Std)) {
   7403     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
   7404     return nullptr;
   7405   }
   7406   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
   7407   if (!Template) {
   7408     Result.suppressDiagnostics();
   7409     // We found something weird. Complain about the first thing we found.
   7410     NamedDecl *Found = *Result.begin();
   7411     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
   7412     return nullptr;
   7413   }
   7414 
   7415   // We found some template called std::initializer_list. Now verify that it's
   7416   // correct.
   7417   TemplateParameterList *Params = Template->getTemplateParameters();
   7418   if (Params->getMinRequiredArguments() != 1 ||
   7419       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
   7420     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
   7421     return nullptr;
   7422   }
   7423 
   7424   return Template;
   7425 }
   7426 
   7427 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
   7428   if (!StdInitializerList) {
   7429     StdInitializerList = LookupStdInitializerList(*this, Loc);
   7430     if (!StdInitializerList)
   7431       return QualType();
   7432   }
   7433 
   7434   TemplateArgumentListInfo Args(Loc, Loc);
   7435   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
   7436                                        Context.getTrivialTypeSourceInfo(Element,
   7437                                                                         Loc)));
   7438   return Context.getCanonicalType(
   7439       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
   7440 }
   7441 
   7442 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
   7443   // C++ [dcl.init.list]p2:
   7444   //   A constructor is an initializer-list constructor if its first parameter
   7445   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
   7446   //   std::initializer_list<E> for some type E, and either there are no other
   7447   //   parameters or else all other parameters have default arguments.
   7448   if (Ctor->getNumParams() < 1 ||
   7449       (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
   7450     return false;
   7451 
   7452   QualType ArgType = Ctor->getParamDecl(0)->getType();
   7453   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
   7454     ArgType = RT->getPointeeType().getUnqualifiedType();
   7455 
   7456   return isStdInitializerList(ArgType, nullptr);
   7457 }
   7458 
   7459 /// \brief Determine whether a using statement is in a context where it will be
   7460 /// apply in all contexts.
   7461 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
   7462   switch (CurContext->getDeclKind()) {
   7463     case Decl::TranslationUnit:
   7464       return true;
   7465     case Decl::LinkageSpec:
   7466       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
   7467     default:
   7468       return false;
   7469   }
   7470 }
   7471 
   7472 namespace {
   7473 
   7474 // Callback to only accept typo corrections that are namespaces.
   7475 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
   7476 public:
   7477   bool ValidateCandidate(const TypoCorrection &candidate) override {
   7478     if (NamedDecl *ND = candidate.getCorrectionDecl())
   7479       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
   7480     return false;
   7481   }
   7482 };
   7483 
   7484 }
   7485 
   7486 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
   7487                                        CXXScopeSpec &SS,
   7488                                        SourceLocation IdentLoc,
   7489                                        IdentifierInfo *Ident) {
   7490   R.clear();
   7491   if (TypoCorrection Corrected =
   7492           S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS,
   7493                         llvm::make_unique<NamespaceValidatorCCC>(),
   7494                         Sema::CTK_ErrorRecovery)) {
   7495     if (DeclContext *DC = S.computeDeclContext(SS, false)) {
   7496       std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
   7497       bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
   7498                               Ident->getName().equals(CorrectedStr);
   7499       S.diagnoseTypo(Corrected,
   7500                      S.PDiag(diag::err_using_directive_member_suggest)
   7501                        << Ident << DC << DroppedSpecifier << SS.getRange(),
   7502                      S.PDiag(diag::note_namespace_defined_here));
   7503     } else {
   7504       S.diagnoseTypo(Corrected,
   7505                      S.PDiag(diag::err_using_directive_suggest) << Ident,
   7506                      S.PDiag(diag::note_namespace_defined_here));
   7507     }
   7508     R.addDecl(Corrected.getCorrectionDecl());
   7509     return true;
   7510   }
   7511   return false;
   7512 }
   7513 
   7514 Decl *Sema::ActOnUsingDirective(Scope *S,
   7515                                           SourceLocation UsingLoc,
   7516                                           SourceLocation NamespcLoc,
   7517                                           CXXScopeSpec &SS,
   7518                                           SourceLocation IdentLoc,
   7519                                           IdentifierInfo *NamespcName,
   7520                                           AttributeList *AttrList) {
   7521   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
   7522   assert(NamespcName && "Invalid NamespcName.");
   7523   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
   7524 
   7525   // This can only happen along a recovery path.
   7526   while (S->getFlags() & Scope::TemplateParamScope)
   7527     S = S->getParent();
   7528   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
   7529 
   7530   UsingDirectiveDecl *UDir = nullptr;
   7531   NestedNameSpecifier *Qualifier = nullptr;
   7532   if (SS.isSet())
   7533     Qualifier = SS.getScopeRep();
   7534 
   7535   // Lookup namespace name.
   7536   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
   7537   LookupParsedName(R, S, &SS);
   7538   if (R.isAmbiguous())
   7539     return nullptr;
   7540 
   7541   if (R.empty()) {
   7542     R.clear();
   7543     // Allow "using namespace std;" or "using namespace ::std;" even if
   7544     // "std" hasn't been defined yet, for GCC compatibility.
   7545     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
   7546         NamespcName->isStr("std")) {
   7547       Diag(IdentLoc, diag::ext_using_undefined_std);
   7548       R.addDecl(getOrCreateStdNamespace());
   7549       R.resolveKind();
   7550     }
   7551     // Otherwise, attempt typo correction.
   7552     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
   7553   }
   7554 
   7555   if (!R.empty()) {
   7556     NamedDecl *Named = R.getFoundDecl();
   7557     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
   7558         && "expected namespace decl");
   7559 
   7560     // The use of a nested name specifier may trigger deprecation warnings.
   7561     DiagnoseUseOfDecl(Named, IdentLoc);
   7562 
   7563     // C++ [namespace.udir]p1:
   7564     //   A using-directive specifies that the names in the nominated
   7565     //   namespace can be used in the scope in which the
   7566     //   using-directive appears after the using-directive. During
   7567     //   unqualified name lookup (3.4.1), the names appear as if they
   7568     //   were declared in the nearest enclosing namespace which
   7569     //   contains both the using-directive and the nominated
   7570     //   namespace. [Note: in this context, "contains" means "contains
   7571     //   directly or indirectly". ]
   7572 
   7573     // Find enclosing context containing both using-directive and
   7574     // nominated namespace.
   7575     NamespaceDecl *NS = getNamespaceDecl(Named);
   7576     DeclContext *CommonAncestor = cast<DeclContext>(NS);
   7577     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
   7578       CommonAncestor = CommonAncestor->getParent();
   7579 
   7580     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
   7581                                       SS.getWithLocInContext(Context),
   7582                                       IdentLoc, Named, CommonAncestor);
   7583 
   7584     if (IsUsingDirectiveInToplevelContext(CurContext) &&
   7585         !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
   7586       Diag(IdentLoc, diag::warn_using_directive_in_header);
   7587     }
   7588 
   7589     PushUsingDirective(S, UDir);
   7590   } else {
   7591     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
   7592   }
   7593 
   7594   if (UDir)
   7595     ProcessDeclAttributeList(S, UDir, AttrList);
   7596 
   7597   return UDir;
   7598 }
   7599 
   7600 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
   7601   // If the scope has an associated entity and the using directive is at
   7602   // namespace or translation unit scope, add the UsingDirectiveDecl into
   7603   // its lookup structure so qualified name lookup can find it.
   7604   DeclContext *Ctx = S->getEntity();
   7605   if (Ctx && !Ctx->isFunctionOrMethod())
   7606     Ctx->addDecl(UDir);
   7607   else
   7608     // Otherwise, it is at block scope. The using-directives will affect lookup
   7609     // only to the end of the scope.
   7610     S->PushUsingDirective(UDir);
   7611 }
   7612 
   7613 
   7614 Decl *Sema::ActOnUsingDeclaration(Scope *S,
   7615                                   AccessSpecifier AS,
   7616                                   bool HasUsingKeyword,
   7617                                   SourceLocation UsingLoc,
   7618                                   CXXScopeSpec &SS,
   7619                                   UnqualifiedId &Name,
   7620                                   AttributeList *AttrList,
   7621                                   bool HasTypenameKeyword,
   7622                                   SourceLocation TypenameLoc) {
   7623   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
   7624 
   7625   switch (Name.getKind()) {
   7626   case UnqualifiedId::IK_ImplicitSelfParam:
   7627   case UnqualifiedId::IK_Identifier:
   7628   case UnqualifiedId::IK_OperatorFunctionId:
   7629   case UnqualifiedId::IK_LiteralOperatorId:
   7630   case UnqualifiedId::IK_ConversionFunctionId:
   7631     break;
   7632 
   7633   case UnqualifiedId::IK_ConstructorName:
   7634   case UnqualifiedId::IK_ConstructorTemplateId:
   7635     // C++11 inheriting constructors.
   7636     Diag(Name.getLocStart(),
   7637          getLangOpts().CPlusPlus11 ?
   7638            diag::warn_cxx98_compat_using_decl_constructor :
   7639            diag::err_using_decl_constructor)
   7640       << SS.getRange();
   7641 
   7642     if (getLangOpts().CPlusPlus11) break;
   7643 
   7644     return nullptr;
   7645 
   7646   case UnqualifiedId::IK_DestructorName:
   7647     Diag(Name.getLocStart(), diag::err_using_decl_destructor)
   7648       << SS.getRange();
   7649     return nullptr;
   7650 
   7651   case UnqualifiedId::IK_TemplateId:
   7652     Diag(Name.getLocStart(), diag::err_using_decl_template_id)
   7653       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
   7654     return nullptr;
   7655   }
   7656 
   7657   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   7658   DeclarationName TargetName = TargetNameInfo.getName();
   7659   if (!TargetName)
   7660     return nullptr;
   7661 
   7662   // Warn about access declarations.
   7663   if (!HasUsingKeyword) {
   7664     Diag(Name.getLocStart(),
   7665          getLangOpts().CPlusPlus11 ? diag::err_access_decl
   7666                                    : diag::warn_access_decl_deprecated)
   7667       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
   7668   }
   7669 
   7670   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
   7671       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
   7672     return nullptr;
   7673 
   7674   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
   7675                                         TargetNameInfo, AttrList,
   7676                                         /* IsInstantiation */ false,
   7677                                         HasTypenameKeyword, TypenameLoc);
   7678   if (UD)
   7679     PushOnScopeChains(UD, S, /*AddToContext*/ false);
   7680 
   7681   return UD;
   7682 }
   7683 
   7684 /// \brief Determine whether a using declaration considers the given
   7685 /// declarations as "equivalent", e.g., if they are redeclarations of
   7686 /// the same entity or are both typedefs of the same type.
   7687 static bool
   7688 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
   7689   if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
   7690     return true;
   7691 
   7692   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
   7693     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
   7694       return Context.hasSameType(TD1->getUnderlyingType(),
   7695                                  TD2->getUnderlyingType());
   7696 
   7697   return false;
   7698 }
   7699 
   7700 
   7701 /// Determines whether to create a using shadow decl for a particular
   7702 /// decl, given the set of decls existing prior to this using lookup.
   7703 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
   7704                                 const LookupResult &Previous,
   7705                                 UsingShadowDecl *&PrevShadow) {
   7706   // Diagnose finding a decl which is not from a base class of the
   7707   // current class.  We do this now because there are cases where this
   7708   // function will silently decide not to build a shadow decl, which
   7709   // will pre-empt further diagnostics.
   7710   //
   7711   // We don't need to do this in C++0x because we do the check once on
   7712   // the qualifier.
   7713   //
   7714   // FIXME: diagnose the following if we care enough:
   7715   //   struct A { int foo; };
   7716   //   struct B : A { using A::foo; };
   7717   //   template <class T> struct C : A {};
   7718   //   template <class T> struct D : C<T> { using B::foo; } // <---
   7719   // This is invalid (during instantiation) in C++03 because B::foo
   7720   // resolves to the using decl in B, which is not a base class of D<T>.
   7721   // We can't diagnose it immediately because C<T> is an unknown
   7722   // specialization.  The UsingShadowDecl in D<T> then points directly
   7723   // to A::foo, which will look well-formed when we instantiate.
   7724   // The right solution is to not collapse the shadow-decl chain.
   7725   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
   7726     DeclContext *OrigDC = Orig->getDeclContext();
   7727 
   7728     // Handle enums and anonymous structs.
   7729     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
   7730     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
   7731     while (OrigRec->isAnonymousStructOrUnion())
   7732       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
   7733 
   7734     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
   7735       if (OrigDC == CurContext) {
   7736         Diag(Using->getLocation(),
   7737              diag::err_using_decl_nested_name_specifier_is_current_class)
   7738           << Using->getQualifierLoc().getSourceRange();
   7739         Diag(Orig->getLocation(), diag::note_using_decl_target);
   7740         return true;
   7741       }
   7742 
   7743       Diag(Using->getQualifierLoc().getBeginLoc(),
   7744            diag::err_using_decl_nested_name_specifier_is_not_base_class)
   7745         << Using->getQualifier()
   7746         << cast<CXXRecordDecl>(CurContext)
   7747         << Using->getQualifierLoc().getSourceRange();
   7748       Diag(Orig->getLocation(), diag::note_using_decl_target);
   7749       return true;
   7750     }
   7751   }
   7752 
   7753   if (Previous.empty()) return false;
   7754 
   7755   NamedDecl *Target = Orig;
   7756   if (isa<UsingShadowDecl>(Target))
   7757     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
   7758 
   7759   // If the target happens to be one of the previous declarations, we
   7760   // don't have a conflict.
   7761   //
   7762   // FIXME: but we might be increasing its access, in which case we
   7763   // should redeclare it.
   7764   NamedDecl *NonTag = nullptr, *Tag = nullptr;
   7765   bool FoundEquivalentDecl = false;
   7766   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   7767          I != E; ++I) {
   7768     NamedDecl *D = (*I)->getUnderlyingDecl();
   7769     if (IsEquivalentForUsingDecl(Context, D, Target)) {
   7770       if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
   7771         PrevShadow = Shadow;
   7772       FoundEquivalentDecl = true;
   7773     }
   7774 
   7775     (isa<TagDecl>(D) ? Tag : NonTag) = D;
   7776   }
   7777 
   7778   if (FoundEquivalentDecl)
   7779     return false;
   7780 
   7781   if (FunctionDecl *FD = Target->getAsFunction()) {
   7782     NamedDecl *OldDecl = nullptr;
   7783     switch (CheckOverload(nullptr, FD, Previous, OldDecl,
   7784                           /*IsForUsingDecl*/ true)) {
   7785     case Ovl_Overload:
   7786       return false;
   7787 
   7788     case Ovl_NonFunction:
   7789       Diag(Using->getLocation(), diag::err_using_decl_conflict);
   7790       break;
   7791 
   7792     // We found a decl with the exact signature.
   7793     case Ovl_Match:
   7794       // If we're in a record, we want to hide the target, so we
   7795       // return true (without a diagnostic) to tell the caller not to
   7796       // build a shadow decl.
   7797       if (CurContext->isRecord())
   7798         return true;
   7799 
   7800       // If we're not in a record, this is an error.
   7801       Diag(Using->getLocation(), diag::err_using_decl_conflict);
   7802       break;
   7803     }
   7804 
   7805     Diag(Target->getLocation(), diag::note_using_decl_target);
   7806     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
   7807     return true;
   7808   }
   7809 
   7810   // Target is not a function.
   7811 
   7812   if (isa<TagDecl>(Target)) {
   7813     // No conflict between a tag and a non-tag.
   7814     if (!Tag) return false;
   7815 
   7816     Diag(Using->getLocation(), diag::err_using_decl_conflict);
   7817     Diag(Target->getLocation(), diag::note_using_decl_target);
   7818     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
   7819     return true;
   7820   }
   7821 
   7822   // No conflict between a tag and a non-tag.
   7823   if (!NonTag) return false;
   7824 
   7825   Diag(Using->getLocation(), diag::err_using_decl_conflict);
   7826   Diag(Target->getLocation(), diag::note_using_decl_target);
   7827   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
   7828   return true;
   7829 }
   7830 
   7831 /// Builds a shadow declaration corresponding to a 'using' declaration.
   7832 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
   7833                                             UsingDecl *UD,
   7834                                             NamedDecl *Orig,
   7835                                             UsingShadowDecl *PrevDecl) {
   7836 
   7837   // If we resolved to another shadow declaration, just coalesce them.
   7838   NamedDecl *Target = Orig;
   7839   if (isa<UsingShadowDecl>(Target)) {
   7840     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
   7841     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
   7842   }
   7843 
   7844   UsingShadowDecl *Shadow
   7845     = UsingShadowDecl::Create(Context, CurContext,
   7846                               UD->getLocation(), UD, Target);
   7847   UD->addShadowDecl(Shadow);
   7848 
   7849   Shadow->setAccess(UD->getAccess());
   7850   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
   7851     Shadow->setInvalidDecl();
   7852 
   7853   Shadow->setPreviousDecl(PrevDecl);
   7854 
   7855   if (S)
   7856     PushOnScopeChains(Shadow, S);
   7857   else
   7858     CurContext->addDecl(Shadow);
   7859 
   7860 
   7861   return Shadow;
   7862 }
   7863 
   7864 /// Hides a using shadow declaration.  This is required by the current
   7865 /// using-decl implementation when a resolvable using declaration in a
   7866 /// class is followed by a declaration which would hide or override
   7867 /// one or more of the using decl's targets; for example:
   7868 ///
   7869 ///   struct Base { void foo(int); };
   7870 ///   struct Derived : Base {
   7871 ///     using Base::foo;
   7872 ///     void foo(int);
   7873 ///   };
   7874 ///
   7875 /// The governing language is C++03 [namespace.udecl]p12:
   7876 ///
   7877 ///   When a using-declaration brings names from a base class into a
   7878 ///   derived class scope, member functions in the derived class
   7879 ///   override and/or hide member functions with the same name and
   7880 ///   parameter types in a base class (rather than conflicting).
   7881 ///
   7882 /// There are two ways to implement this:
   7883 ///   (1) optimistically create shadow decls when they're not hidden
   7884 ///       by existing declarations, or
   7885 ///   (2) don't create any shadow decls (or at least don't make them
   7886 ///       visible) until we've fully parsed/instantiated the class.
   7887 /// The problem with (1) is that we might have to retroactively remove
   7888 /// a shadow decl, which requires several O(n) operations because the
   7889 /// decl structures are (very reasonably) not designed for removal.
   7890 /// (2) avoids this but is very fiddly and phase-dependent.
   7891 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
   7892   if (Shadow->getDeclName().getNameKind() ==
   7893         DeclarationName::CXXConversionFunctionName)
   7894     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
   7895 
   7896   // Remove it from the DeclContext...
   7897   Shadow->getDeclContext()->removeDecl(Shadow);
   7898 
   7899   // ...and the scope, if applicable...
   7900   if (S) {
   7901     S->RemoveDecl(Shadow);
   7902     IdResolver.RemoveDecl(Shadow);
   7903   }
   7904 
   7905   // ...and the using decl.
   7906   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
   7907 
   7908   // TODO: complain somehow if Shadow was used.  It shouldn't
   7909   // be possible for this to happen, because...?
   7910 }
   7911 
   7912 /// Find the base specifier for a base class with the given type.
   7913 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
   7914                                                 QualType DesiredBase,
   7915                                                 bool &AnyDependentBases) {
   7916   // Check whether the named type is a direct base class.
   7917   CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
   7918   for (auto &Base : Derived->bases()) {
   7919     CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
   7920     if (CanonicalDesiredBase == BaseType)
   7921       return &Base;
   7922     if (BaseType->isDependentType())
   7923       AnyDependentBases = true;
   7924   }
   7925   return nullptr;
   7926 }
   7927 
   7928 namespace {
   7929 class UsingValidatorCCC : public CorrectionCandidateCallback {
   7930 public:
   7931   UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
   7932                     NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
   7933       : HasTypenameKeyword(HasTypenameKeyword),
   7934         IsInstantiation(IsInstantiation), OldNNS(NNS),
   7935         RequireMemberOf(RequireMemberOf) {}
   7936 
   7937   bool ValidateCandidate(const TypoCorrection &Candidate) override {
   7938     NamedDecl *ND = Candidate.getCorrectionDecl();
   7939 
   7940     // Keywords are not valid here.
   7941     if (!ND || isa<NamespaceDecl>(ND))
   7942       return false;
   7943 
   7944     // Completely unqualified names are invalid for a 'using' declaration.
   7945     if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
   7946       return false;
   7947 
   7948     if (RequireMemberOf) {
   7949       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
   7950       if (FoundRecord && FoundRecord->isInjectedClassName()) {
   7951         // No-one ever wants a using-declaration to name an injected-class-name
   7952         // of a base class, unless they're declaring an inheriting constructor.
   7953         ASTContext &Ctx = ND->getASTContext();
   7954         if (!Ctx.getLangOpts().CPlusPlus11)
   7955           return false;
   7956         QualType FoundType = Ctx.getRecordType(FoundRecord);
   7957 
   7958         // Check that the injected-class-name is named as a member of its own
   7959         // type; we don't want to suggest 'using Derived::Base;', since that
   7960         // means something else.
   7961         NestedNameSpecifier *Specifier =
   7962             Candidate.WillReplaceSpecifier()
   7963                 ? Candidate.getCorrectionSpecifier()
   7964                 : OldNNS;
   7965         if (!Specifier->getAsType() ||
   7966             !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
   7967           return false;
   7968 
   7969         // Check that this inheriting constructor declaration actually names a
   7970         // direct base class of the current class.
   7971         bool AnyDependentBases = false;
   7972         if (!findDirectBaseWithType(RequireMemberOf,
   7973                                     Ctx.getRecordType(FoundRecord),
   7974                                     AnyDependentBases) &&
   7975             !AnyDependentBases)
   7976           return false;
   7977       } else {
   7978         auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
   7979         if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
   7980           return false;
   7981 
   7982         // FIXME: Check that the base class member is accessible?
   7983       }
   7984     }
   7985 
   7986     if (isa<TypeDecl>(ND))
   7987       return HasTypenameKeyword || !IsInstantiation;
   7988 
   7989     return !HasTypenameKeyword;
   7990   }
   7991 
   7992 private:
   7993   bool HasTypenameKeyword;
   7994   bool IsInstantiation;
   7995   NestedNameSpecifier *OldNNS;
   7996   CXXRecordDecl *RequireMemberOf;
   7997 };
   7998 } // end anonymous namespace
   7999 
   8000 /// Builds a using declaration.
   8001 ///
   8002 /// \param IsInstantiation - Whether this call arises from an
   8003 ///   instantiation of an unresolved using declaration.  We treat
   8004 ///   the lookup differently for these declarations.
   8005 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
   8006                                        SourceLocation UsingLoc,
   8007                                        CXXScopeSpec &SS,
   8008                                        DeclarationNameInfo NameInfo,
   8009                                        AttributeList *AttrList,
   8010                                        bool IsInstantiation,
   8011                                        bool HasTypenameKeyword,
   8012                                        SourceLocation TypenameLoc) {
   8013   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
   8014   SourceLocation IdentLoc = NameInfo.getLoc();
   8015   assert(IdentLoc.isValid() && "Invalid TargetName location.");
   8016 
   8017   // FIXME: We ignore attributes for now.
   8018 
   8019   if (SS.isEmpty()) {
   8020     Diag(IdentLoc, diag::err_using_requires_qualname);
   8021     return nullptr;
   8022   }
   8023 
   8024   // Do the redeclaration lookup in the current scope.
   8025   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
   8026                         ForRedeclaration);
   8027   Previous.setHideTags(false);
   8028   if (S) {
   8029     LookupName(Previous, S);
   8030 
   8031     // It is really dumb that we have to do this.
   8032     LookupResult::Filter F = Previous.makeFilter();
   8033     while (F.hasNext()) {
   8034       NamedDecl *D = F.next();
   8035       if (!isDeclInScope(D, CurContext, S))
   8036         F.erase();
   8037       // If we found a local extern declaration that's not ordinarily visible,
   8038       // and this declaration is being added to a non-block scope, ignore it.
   8039       // We're only checking for scope conflicts here, not also for violations
   8040       // of the linkage rules.
   8041       else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
   8042                !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
   8043         F.erase();
   8044     }
   8045     F.done();
   8046   } else {
   8047     assert(IsInstantiation && "no scope in non-instantiation");
   8048     assert(CurContext->isRecord() && "scope not record in instantiation");
   8049     LookupQualifiedName(Previous, CurContext);
   8050   }
   8051 
   8052   // Check for invalid redeclarations.
   8053   if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
   8054                                   SS, IdentLoc, Previous))
   8055     return nullptr;
   8056 
   8057   // Check for bad qualifiers.
   8058   if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc))
   8059     return nullptr;
   8060 
   8061   DeclContext *LookupContext = computeDeclContext(SS);
   8062   NamedDecl *D;
   8063   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   8064   if (!LookupContext) {
   8065     if (HasTypenameKeyword) {
   8066       // FIXME: not all declaration name kinds are legal here
   8067       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
   8068                                               UsingLoc, TypenameLoc,
   8069                                               QualifierLoc,
   8070                                               IdentLoc, NameInfo.getName());
   8071     } else {
   8072       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
   8073                                            QualifierLoc, NameInfo);
   8074     }
   8075     D->setAccess(AS);
   8076     CurContext->addDecl(D);
   8077     return D;
   8078   }
   8079 
   8080   auto Build = [&](bool Invalid) {
   8081     UsingDecl *UD =
   8082         UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo,
   8083                           HasTypenameKeyword);
   8084     UD->setAccess(AS);
   8085     CurContext->addDecl(UD);
   8086     UD->setInvalidDecl(Invalid);
   8087     return UD;
   8088   };
   8089   auto BuildInvalid = [&]{ return Build(true); };
   8090   auto BuildValid = [&]{ return Build(false); };
   8091 
   8092   if (RequireCompleteDeclContext(SS, LookupContext))
   8093     return BuildInvalid();
   8094 
   8095   // Look up the target name.
   8096   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   8097 
   8098   // Unlike most lookups, we don't always want to hide tag
   8099   // declarations: tag names are visible through the using declaration
   8100   // even if hidden by ordinary names, *except* in a dependent context
   8101   // where it's important for the sanity of two-phase lookup.
   8102   if (!IsInstantiation)
   8103     R.setHideTags(false);
   8104 
   8105   // For the purposes of this lookup, we have a base object type
   8106   // equal to that of the current context.
   8107   if (CurContext->isRecord()) {
   8108     R.setBaseObjectType(
   8109                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
   8110   }
   8111 
   8112   LookupQualifiedName(R, LookupContext);
   8113 
   8114   // Try to correct typos if possible. If constructor name lookup finds no
   8115   // results, that means the named class has no explicit constructors, and we
   8116   // suppressed declaring implicit ones (probably because it's dependent or
   8117   // invalid).
   8118   if (R.empty() &&
   8119       NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
   8120     if (TypoCorrection Corrected = CorrectTypo(
   8121             R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
   8122             llvm::make_unique<UsingValidatorCCC>(
   8123                 HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
   8124                 dyn_cast<CXXRecordDecl>(CurContext)),
   8125             CTK_ErrorRecovery)) {
   8126       // We reject any correction for which ND would be NULL.
   8127       NamedDecl *ND = Corrected.getCorrectionDecl();
   8128 
   8129       // We reject candidates where DroppedSpecifier == true, hence the
   8130       // literal '0' below.
   8131       diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
   8132                                 << NameInfo.getName() << LookupContext << 0
   8133                                 << SS.getRange());
   8134 
   8135       // If we corrected to an inheriting constructor, handle it as one.
   8136       auto *RD = dyn_cast<CXXRecordDecl>(ND);
   8137       if (RD && RD->isInjectedClassName()) {
   8138         // Fix up the information we'll use to build the using declaration.
   8139         if (Corrected.WillReplaceSpecifier()) {
   8140           NestedNameSpecifierLocBuilder Builder;
   8141           Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
   8142                               QualifierLoc.getSourceRange());
   8143           QualifierLoc = Builder.getWithLocInContext(Context);
   8144         }
   8145 
   8146         NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   8147             Context.getCanonicalType(Context.getRecordType(RD))));
   8148         NameInfo.setNamedTypeInfo(nullptr);
   8149         for (auto *Ctor : LookupConstructors(RD))
   8150           R.addDecl(Ctor);
   8151       } else {
   8152         // FIXME: Pick up all the declarations if we found an overloaded function.
   8153         R.addDecl(ND);
   8154       }
   8155     } else {
   8156       Diag(IdentLoc, diag::err_no_member)
   8157         << NameInfo.getName() << LookupContext << SS.getRange();
   8158       return BuildInvalid();
   8159     }
   8160   }
   8161 
   8162   if (R.isAmbiguous())
   8163     return BuildInvalid();
   8164 
   8165   if (HasTypenameKeyword) {
   8166     // If we asked for a typename and got a non-type decl, error out.
   8167     if (!R.getAsSingle<TypeDecl>()) {
   8168       Diag(IdentLoc, diag::err_using_typename_non_type);
   8169       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   8170         Diag((*I)->getUnderlyingDecl()->getLocation(),
   8171              diag::note_using_decl_target);
   8172       return BuildInvalid();
   8173     }
   8174   } else {
   8175     // If we asked for a non-typename and we got a type, error out,
   8176     // but only if this is an instantiation of an unresolved using
   8177     // decl.  Otherwise just silently find the type name.
   8178     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
   8179       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
   8180       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
   8181       return BuildInvalid();
   8182     }
   8183   }
   8184 
   8185   // C++0x N2914 [namespace.udecl]p6:
   8186   // A using-declaration shall not name a namespace.
   8187   if (R.getAsSingle<NamespaceDecl>()) {
   8188     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
   8189       << SS.getRange();
   8190     return BuildInvalid();
   8191   }
   8192 
   8193   UsingDecl *UD = BuildValid();
   8194 
   8195   // The normal rules do not apply to inheriting constructor declarations.
   8196   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
   8197     // Suppress access diagnostics; the access check is instead performed at the
   8198     // point of use for an inheriting constructor.
   8199     R.suppressDiagnostics();
   8200     CheckInheritingConstructorUsingDecl(UD);
   8201     return UD;
   8202   }
   8203 
   8204   // Otherwise, look up the target name.
   8205 
   8206   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   8207     UsingShadowDecl *PrevDecl = nullptr;
   8208     if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
   8209       BuildUsingShadowDecl(S, UD, *I, PrevDecl);
   8210   }
   8211 
   8212   return UD;
   8213 }
   8214 
   8215 /// Additional checks for a using declaration referring to a constructor name.
   8216 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
   8217   assert(!UD->hasTypename() && "expecting a constructor name");
   8218 
   8219   const Type *SourceType = UD->getQualifier()->getAsType();
   8220   assert(SourceType &&
   8221          "Using decl naming constructor doesn't have type in scope spec.");
   8222   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
   8223 
   8224   // Check whether the named type is a direct base class.
   8225   bool AnyDependentBases = false;
   8226   auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
   8227                                       AnyDependentBases);
   8228   if (!Base && !AnyDependentBases) {
   8229     Diag(UD->getUsingLoc(),
   8230          diag::err_using_decl_constructor_not_in_direct_base)
   8231       << UD->getNameInfo().getSourceRange()
   8232       << QualType(SourceType, 0) << TargetClass;
   8233     UD->setInvalidDecl();
   8234     return true;
   8235   }
   8236 
   8237   if (Base)
   8238     Base->setInheritConstructors();
   8239 
   8240   return false;
   8241 }
   8242 
   8243 /// Checks that the given using declaration is not an invalid
   8244 /// redeclaration.  Note that this is checking only for the using decl
   8245 /// itself, not for any ill-formedness among the UsingShadowDecls.
   8246 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
   8247                                        bool HasTypenameKeyword,
   8248                                        const CXXScopeSpec &SS,
   8249                                        SourceLocation NameLoc,
   8250                                        const LookupResult &Prev) {
   8251   // C++03 [namespace.udecl]p8:
   8252   // C++0x [namespace.udecl]p10:
   8253   //   A using-declaration is a declaration and can therefore be used
   8254   //   repeatedly where (and only where) multiple declarations are
   8255   //   allowed.
   8256   //
   8257   // That's in non-member contexts.
   8258   if (!CurContext->getRedeclContext()->isRecord())
   8259     return false;
   8260 
   8261   NestedNameSpecifier *Qual = SS.getScopeRep();
   8262 
   8263   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
   8264     NamedDecl *D = *I;
   8265 
   8266     bool DTypename;
   8267     NestedNameSpecifier *DQual;
   8268     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
   8269       DTypename = UD->hasTypename();
   8270       DQual = UD->getQualifier();
   8271     } else if (UnresolvedUsingValueDecl *UD
   8272                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
   8273       DTypename = false;
   8274       DQual = UD->getQualifier();
   8275     } else if (UnresolvedUsingTypenameDecl *UD
   8276                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
   8277       DTypename = true;
   8278       DQual = UD->getQualifier();
   8279     } else continue;
   8280 
   8281     // using decls differ if one says 'typename' and the other doesn't.
   8282     // FIXME: non-dependent using decls?
   8283     if (HasTypenameKeyword != DTypename) continue;
   8284 
   8285     // using decls differ if they name different scopes (but note that
   8286     // template instantiation can cause this check to trigger when it
   8287     // didn't before instantiation).
   8288     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
   8289         Context.getCanonicalNestedNameSpecifier(DQual))
   8290       continue;
   8291 
   8292     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
   8293     Diag(D->getLocation(), diag::note_using_decl) << 1;
   8294     return true;
   8295   }
   8296 
   8297   return false;
   8298 }
   8299 
   8300 
   8301 /// Checks that the given nested-name qualifier used in a using decl
   8302 /// in the current context is appropriately related to the current
   8303 /// scope.  If an error is found, diagnoses it and returns true.
   8304 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
   8305                                    const CXXScopeSpec &SS,
   8306                                    const DeclarationNameInfo &NameInfo,
   8307                                    SourceLocation NameLoc) {
   8308   DeclContext *NamedContext = computeDeclContext(SS);
   8309 
   8310   if (!CurContext->isRecord()) {
   8311     // C++03 [namespace.udecl]p3:
   8312     // C++0x [namespace.udecl]p8:
   8313     //   A using-declaration for a class member shall be a member-declaration.
   8314 
   8315     // If we weren't able to compute a valid scope, it must be a
   8316     // dependent class scope.
   8317     if (!NamedContext || NamedContext->isRecord()) {
   8318       auto *RD = dyn_cast_or_null<CXXRecordDecl>(NamedContext);
   8319       if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
   8320         RD = nullptr;
   8321 
   8322       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
   8323         << SS.getRange();
   8324 
   8325       // If we have a complete, non-dependent source type, try to suggest a
   8326       // way to get the same effect.
   8327       if (!RD)
   8328         return true;
   8329 
   8330       // Find what this using-declaration was referring to.
   8331       LookupResult R(*this, NameInfo, LookupOrdinaryName);
   8332       R.setHideTags(false);
   8333       R.suppressDiagnostics();
   8334       LookupQualifiedName(R, RD);
   8335 
   8336       if (R.getAsSingle<TypeDecl>()) {
   8337         if (getLangOpts().CPlusPlus11) {
   8338           // Convert 'using X::Y;' to 'using Y = X::Y;'.
   8339           Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
   8340             << 0 // alias declaration
   8341             << FixItHint::CreateInsertion(SS.getBeginLoc(),
   8342                                           NameInfo.getName().getAsString() +
   8343                                               " = ");
   8344         } else {
   8345           // Convert 'using X::Y;' to 'typedef X::Y Y;'.
   8346           SourceLocation InsertLoc =
   8347               PP.getLocForEndOfToken(NameInfo.getLocEnd());
   8348           Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
   8349             << 1 // typedef declaration
   8350             << FixItHint::CreateReplacement(UsingLoc, "typedef")
   8351             << FixItHint::CreateInsertion(
   8352                    InsertLoc, " " + NameInfo.getName().getAsString());
   8353         }
   8354       } else if (R.getAsSingle<VarDecl>()) {
   8355         // Don't provide a fixit outside C++11 mode; we don't want to suggest
   8356         // repeating the type of the static data member here.
   8357         FixItHint FixIt;
   8358         if (getLangOpts().CPlusPlus11) {
   8359           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
   8360           FixIt = FixItHint::CreateReplacement(
   8361               UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
   8362         }
   8363 
   8364         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
   8365           << 2 // reference declaration
   8366           << FixIt;
   8367       }
   8368       return true;
   8369     }
   8370 
   8371     // Otherwise, everything is known to be fine.
   8372     return false;
   8373   }
   8374 
   8375   // The current scope is a record.
   8376 
   8377   // If the named context is dependent, we can't decide much.
   8378   if (!NamedContext) {
   8379     // FIXME: in C++0x, we can diagnose if we can prove that the
   8380     // nested-name-specifier does not refer to a base class, which is
   8381     // still possible in some cases.
   8382 
   8383     // Otherwise we have to conservatively report that things might be
   8384     // okay.
   8385     return false;
   8386   }
   8387 
   8388   if (!NamedContext->isRecord()) {
   8389     // Ideally this would point at the last name in the specifier,
   8390     // but we don't have that level of source info.
   8391     Diag(SS.getRange().getBegin(),
   8392          diag::err_using_decl_nested_name_specifier_is_not_class)
   8393       << SS.getScopeRep() << SS.getRange();
   8394     return true;
   8395   }
   8396 
   8397   if (!NamedContext->isDependentContext() &&
   8398       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
   8399     return true;
   8400 
   8401   if (getLangOpts().CPlusPlus11) {
   8402     // C++0x [namespace.udecl]p3:
   8403     //   In a using-declaration used as a member-declaration, the
   8404     //   nested-name-specifier shall name a base class of the class
   8405     //   being defined.
   8406 
   8407     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
   8408                                  cast<CXXRecordDecl>(NamedContext))) {
   8409       if (CurContext == NamedContext) {
   8410         Diag(NameLoc,
   8411              diag::err_using_decl_nested_name_specifier_is_current_class)
   8412           << SS.getRange();
   8413         return true;
   8414       }
   8415 
   8416       Diag(SS.getRange().getBegin(),
   8417            diag::err_using_decl_nested_name_specifier_is_not_base_class)
   8418         << SS.getScopeRep()
   8419         << cast<CXXRecordDecl>(CurContext)
   8420         << SS.getRange();
   8421       return true;
   8422     }
   8423 
   8424     return false;
   8425   }
   8426 
   8427   // C++03 [namespace.udecl]p4:
   8428   //   A using-declaration used as a member-declaration shall refer
   8429   //   to a member of a base class of the class being defined [etc.].
   8430 
   8431   // Salient point: SS doesn't have to name a base class as long as
   8432   // lookup only finds members from base classes.  Therefore we can
   8433   // diagnose here only if we can prove that that can't happen,
   8434   // i.e. if the class hierarchies provably don't intersect.
   8435 
   8436   // TODO: it would be nice if "definitely valid" results were cached
   8437   // in the UsingDecl and UsingShadowDecl so that these checks didn't
   8438   // need to be repeated.
   8439 
   8440   struct UserData {
   8441     llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
   8442 
   8443     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
   8444       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
   8445       Data->Bases.insert(Base);
   8446       return true;
   8447     }
   8448 
   8449     bool hasDependentBases(const CXXRecordDecl *Class) {
   8450       return !Class->forallBases(collect, this);
   8451     }
   8452 
   8453     /// Returns true if the base is dependent or is one of the
   8454     /// accumulated base classes.
   8455     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
   8456       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
   8457       return !Data->Bases.count(Base);
   8458     }
   8459 
   8460     bool mightShareBases(const CXXRecordDecl *Class) {
   8461       return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
   8462     }
   8463   };
   8464 
   8465   UserData Data;
   8466 
   8467   // Returns false if we find a dependent base.
   8468   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
   8469     return false;
   8470 
   8471   // Returns false if the class has a dependent base or if it or one
   8472   // of its bases is present in the base set of the current context.
   8473   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
   8474     return false;
   8475 
   8476   Diag(SS.getRange().getBegin(),
   8477        diag::err_using_decl_nested_name_specifier_is_not_base_class)
   8478     << SS.getScopeRep()
   8479     << cast<CXXRecordDecl>(CurContext)
   8480     << SS.getRange();
   8481 
   8482   return true;
   8483 }
   8484 
   8485 Decl *Sema::ActOnAliasDeclaration(Scope *S,
   8486                                   AccessSpecifier AS,
   8487                                   MultiTemplateParamsArg TemplateParamLists,
   8488                                   SourceLocation UsingLoc,
   8489                                   UnqualifiedId &Name,
   8490                                   AttributeList *AttrList,
   8491                                   TypeResult Type,
   8492                                   Decl *DeclFromDeclSpec) {
   8493   // Skip up to the relevant declaration scope.
   8494   while (S->getFlags() & Scope::TemplateParamScope)
   8495     S = S->getParent();
   8496   assert((S->getFlags() & Scope::DeclScope) &&
   8497          "got alias-declaration outside of declaration scope");
   8498 
   8499   if (Type.isInvalid())
   8500     return nullptr;
   8501 
   8502   bool Invalid = false;
   8503   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
   8504   TypeSourceInfo *TInfo = nullptr;
   8505   GetTypeFromParser(Type.get(), &TInfo);
   8506 
   8507   if (DiagnoseClassNameShadow(CurContext, NameInfo))
   8508     return nullptr;
   8509 
   8510   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
   8511                                       UPPC_DeclarationType)) {
   8512     Invalid = true;
   8513     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
   8514                                              TInfo->getTypeLoc().getBeginLoc());
   8515   }
   8516 
   8517   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
   8518   LookupName(Previous, S);
   8519 
   8520   // Warn about shadowing the name of a template parameter.
   8521   if (Previous.isSingleResult() &&
   8522       Previous.getFoundDecl()->isTemplateParameter()) {
   8523     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
   8524     Previous.clear();
   8525   }
   8526 
   8527   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
   8528          "name in alias declaration must be an identifier");
   8529   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
   8530                                                Name.StartLocation,
   8531                                                Name.Identifier, TInfo);
   8532 
   8533   NewTD->setAccess(AS);
   8534 
   8535   if (Invalid)
   8536     NewTD->setInvalidDecl();
   8537 
   8538   ProcessDeclAttributeList(S, NewTD, AttrList);
   8539 
   8540   CheckTypedefForVariablyModifiedType(S, NewTD);
   8541   Invalid |= NewTD->isInvalidDecl();
   8542 
   8543   bool Redeclaration = false;
   8544 
   8545   NamedDecl *NewND;
   8546   if (TemplateParamLists.size()) {
   8547     TypeAliasTemplateDecl *OldDecl = nullptr;
   8548     TemplateParameterList *OldTemplateParams = nullptr;
   8549 
   8550     if (TemplateParamLists.size() != 1) {
   8551       Diag(UsingLoc, diag::err_alias_template_extra_headers)
   8552         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
   8553          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
   8554     }
   8555     TemplateParameterList *TemplateParams = TemplateParamLists[0];
   8556 
   8557     // Only consider previous declarations in the same scope.
   8558     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
   8559                          /*ExplicitInstantiationOrSpecialization*/false);
   8560     if (!Previous.empty()) {
   8561       Redeclaration = true;
   8562 
   8563       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
   8564       if (!OldDecl && !Invalid) {
   8565         Diag(UsingLoc, diag::err_redefinition_different_kind)
   8566           << Name.Identifier;
   8567 
   8568         NamedDecl *OldD = Previous.getRepresentativeDecl();
   8569         if (OldD->getLocation().isValid())
   8570           Diag(OldD->getLocation(), diag::note_previous_definition);
   8571 
   8572         Invalid = true;
   8573       }
   8574 
   8575       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
   8576         if (TemplateParameterListsAreEqual(TemplateParams,
   8577                                            OldDecl->getTemplateParameters(),
   8578                                            /*Complain=*/true,
   8579                                            TPL_TemplateMatch))
   8580           OldTemplateParams = OldDecl->getTemplateParameters();
   8581         else
   8582           Invalid = true;
   8583 
   8584         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
   8585         if (!Invalid &&
   8586             !Context.hasSameType(OldTD->getUnderlyingType(),
   8587                                  NewTD->getUnderlyingType())) {
   8588           // FIXME: The C++0x standard does not clearly say this is ill-formed,
   8589           // but we can't reasonably accept it.
   8590           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
   8591             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
   8592           if (OldTD->getLocation().isValid())
   8593             Diag(OldTD->getLocation(), diag::note_previous_definition);
   8594           Invalid = true;
   8595         }
   8596       }
   8597     }
   8598 
   8599     // Merge any previous default template arguments into our parameters,
   8600     // and check the parameter list.
   8601     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
   8602                                    TPC_TypeAliasTemplate))
   8603       return nullptr;
   8604 
   8605     TypeAliasTemplateDecl *NewDecl =
   8606       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
   8607                                     Name.Identifier, TemplateParams,
   8608                                     NewTD);
   8609     NewTD->setDescribedAliasTemplate(NewDecl);
   8610 
   8611     NewDecl->setAccess(AS);
   8612 
   8613     if (Invalid)
   8614       NewDecl->setInvalidDecl();
   8615     else if (OldDecl)
   8616       NewDecl->setPreviousDecl(OldDecl);
   8617 
   8618     NewND = NewDecl;
   8619   } else {
   8620     if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
   8621       setTagNameForLinkagePurposes(TD, NewTD);
   8622       handleTagNumbering(TD, S);
   8623     }
   8624     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
   8625     NewND = NewTD;
   8626   }
   8627 
   8628   if (!Redeclaration)
   8629     PushOnScopeChains(NewND, S);
   8630 
   8631   ActOnDocumentableDecl(NewND);
   8632   return NewND;
   8633 }
   8634 
   8635 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
   8636                                    SourceLocation AliasLoc,
   8637                                    IdentifierInfo *Alias, CXXScopeSpec &SS,
   8638                                    SourceLocation IdentLoc,
   8639                                    IdentifierInfo *Ident) {
   8640 
   8641   // Lookup the namespace name.
   8642   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
   8643   LookupParsedName(R, S, &SS);
   8644 
   8645   if (R.isAmbiguous())
   8646     return nullptr;
   8647 
   8648   if (R.empty()) {
   8649     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
   8650       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
   8651       return nullptr;
   8652     }
   8653   }
   8654   assert(!R.isAmbiguous() && !R.empty());
   8655 
   8656   // Check if we have a previous declaration with the same name.
   8657   NamedDecl *PrevDecl = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
   8658                                          ForRedeclaration);
   8659   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
   8660     PrevDecl = nullptr;
   8661 
   8662   NamedDecl *ND = R.getFoundDecl();
   8663 
   8664   if (PrevDecl) {
   8665     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
   8666       // We already have an alias with the same name that points to the same
   8667       // namespace; check that it matches.
   8668       if (!AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
   8669         Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
   8670           << Alias;
   8671         Diag(PrevDecl->getLocation(), diag::note_previous_namespace_alias)
   8672           << AD->getNamespace();
   8673         return nullptr;
   8674       }
   8675     } else {
   8676       unsigned DiagID = isa<NamespaceDecl>(PrevDecl)
   8677                             ? diag::err_redefinition
   8678                             : diag::err_redefinition_different_kind;
   8679       Diag(AliasLoc, DiagID) << Alias;
   8680       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   8681       return nullptr;
   8682     }
   8683   }
   8684 
   8685   // The use of a nested name specifier may trigger deprecation warnings.
   8686   DiagnoseUseOfDecl(ND, IdentLoc);
   8687 
   8688   NamespaceAliasDecl *AliasDecl =
   8689     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
   8690                                Alias, SS.getWithLocInContext(Context),
   8691                                IdentLoc, ND);
   8692   if (PrevDecl)
   8693     AliasDecl->setPreviousDecl(cast<NamespaceAliasDecl>(PrevDecl));
   8694 
   8695   PushOnScopeChains(AliasDecl, S);
   8696   return AliasDecl;
   8697 }
   8698 
   8699 Sema::ImplicitExceptionSpecification
   8700 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
   8701                                                CXXMethodDecl *MD) {
   8702   CXXRecordDecl *ClassDecl = MD->getParent();
   8703 
   8704   // C++ [except.spec]p14:
   8705   //   An implicitly declared special member function (Clause 12) shall have an
   8706   //   exception-specification. [...]
   8707   ImplicitExceptionSpecification ExceptSpec(*this);
   8708   if (ClassDecl->isInvalidDecl())
   8709     return ExceptSpec;
   8710 
   8711   // Direct base-class constructors.
   8712   for (const auto &B : ClassDecl->bases()) {
   8713     if (B.isVirtual()) // Handled below.
   8714       continue;
   8715 
   8716     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
   8717       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   8718       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
   8719       // If this is a deleted function, add it anyway. This might be conformant
   8720       // with the standard. This might not. I'm not sure. It might not matter.
   8721       if (Constructor)
   8722         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
   8723     }
   8724   }
   8725 
   8726   // Virtual base-class constructors.
   8727   for (const auto &B : ClassDecl->vbases()) {
   8728     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
   8729       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   8730       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
   8731       // If this is a deleted function, add it anyway. This might be conformant
   8732       // with the standard. This might not. I'm not sure. It might not matter.
   8733       if (Constructor)
   8734         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
   8735     }
   8736   }
   8737 
   8738   // Field constructors.
   8739   for (const auto *F : ClassDecl->fields()) {
   8740     if (F->hasInClassInitializer()) {
   8741       if (Expr *E = F->getInClassInitializer())
   8742         ExceptSpec.CalledExpr(E);
   8743     } else if (const RecordType *RecordTy
   8744               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
   8745       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   8746       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
   8747       // If this is a deleted function, add it anyway. This might be conformant
   8748       // with the standard. This might not. I'm not sure. It might not matter.
   8749       // In particular, the problem is that this function never gets called. It
   8750       // might just be ill-formed because this function attempts to refer to
   8751       // a deleted function here.
   8752       if (Constructor)
   8753         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
   8754     }
   8755   }
   8756 
   8757   return ExceptSpec;
   8758 }
   8759 
   8760 Sema::ImplicitExceptionSpecification
   8761 Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
   8762   CXXRecordDecl *ClassDecl = CD->getParent();
   8763 
   8764   // C++ [except.spec]p14:
   8765   //   An inheriting constructor [...] shall have an exception-specification. [...]
   8766   ImplicitExceptionSpecification ExceptSpec(*this);
   8767   if (ClassDecl->isInvalidDecl())
   8768     return ExceptSpec;
   8769 
   8770   // Inherited constructor.
   8771   const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
   8772   const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
   8773   // FIXME: Copying or moving the parameters could add extra exceptions to the
   8774   // set, as could the default arguments for the inherited constructor. This
   8775   // will be addressed when we implement the resolution of core issue 1351.
   8776   ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
   8777 
   8778   // Direct base-class constructors.
   8779   for (const auto &B : ClassDecl->bases()) {
   8780     if (B.isVirtual()) // Handled below.
   8781       continue;
   8782 
   8783     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
   8784       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   8785       if (BaseClassDecl == InheritedDecl)
   8786         continue;
   8787       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
   8788       if (Constructor)
   8789         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
   8790     }
   8791   }
   8792 
   8793   // Virtual base-class constructors.
   8794   for (const auto &B : ClassDecl->vbases()) {
   8795     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
   8796       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   8797       if (BaseClassDecl == InheritedDecl)
   8798         continue;
   8799       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
   8800       if (Constructor)
   8801         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
   8802     }
   8803   }
   8804 
   8805   // Field constructors.
   8806   for (const auto *F : ClassDecl->fields()) {
   8807     if (F->hasInClassInitializer()) {
   8808       if (Expr *E = F->getInClassInitializer())
   8809         ExceptSpec.CalledExpr(E);
   8810     } else if (const RecordType *RecordTy
   8811               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
   8812       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   8813       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
   8814       if (Constructor)
   8815         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
   8816     }
   8817   }
   8818 
   8819   return ExceptSpec;
   8820 }
   8821 
   8822 namespace {
   8823 /// RAII object to register a special member as being currently declared.
   8824 struct DeclaringSpecialMember {
   8825   Sema &S;
   8826   Sema::SpecialMemberDecl D;
   8827   bool WasAlreadyBeingDeclared;
   8828 
   8829   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
   8830     : S(S), D(RD, CSM) {
   8831     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
   8832     if (WasAlreadyBeingDeclared)
   8833       // This almost never happens, but if it does, ensure that our cache
   8834       // doesn't contain a stale result.
   8835       S.SpecialMemberCache.clear();
   8836 
   8837     // FIXME: Register a note to be produced if we encounter an error while
   8838     // declaring the special member.
   8839   }
   8840   ~DeclaringSpecialMember() {
   8841     if (!WasAlreadyBeingDeclared)
   8842       S.SpecialMembersBeingDeclared.erase(D);
   8843   }
   8844 
   8845   /// \brief Are we already trying to declare this special member?
   8846   bool isAlreadyBeingDeclared() const {
   8847     return WasAlreadyBeingDeclared;
   8848   }
   8849 };
   8850 }
   8851 
   8852 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
   8853                                                      CXXRecordDecl *ClassDecl) {
   8854   // C++ [class.ctor]p5:
   8855   //   A default constructor for a class X is a constructor of class X
   8856   //   that can be called without an argument. If there is no
   8857   //   user-declared constructor for class X, a default constructor is
   8858   //   implicitly declared. An implicitly-declared default constructor
   8859   //   is an inline public member of its class.
   8860   assert(ClassDecl->needsImplicitDefaultConstructor() &&
   8861          "Should not build implicit default constructor!");
   8862 
   8863   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
   8864   if (DSM.isAlreadyBeingDeclared())
   8865     return nullptr;
   8866 
   8867   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
   8868                                                      CXXDefaultConstructor,
   8869                                                      false);
   8870 
   8871   // Create the actual constructor declaration.
   8872   CanQualType ClassType
   8873     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   8874   SourceLocation ClassLoc = ClassDecl->getLocation();
   8875   DeclarationName Name
   8876     = Context.DeclarationNames.getCXXConstructorName(ClassType);
   8877   DeclarationNameInfo NameInfo(Name, ClassLoc);
   8878   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
   8879       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
   8880       /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
   8881       /*isImplicitlyDeclared=*/true, Constexpr);
   8882   DefaultCon->setAccess(AS_public);
   8883   DefaultCon->setDefaulted();
   8884 
   8885   if (getLangOpts().CUDA) {
   8886     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
   8887                                             DefaultCon,
   8888                                             /* ConstRHS */ false,
   8889                                             /* Diagnose */ false);
   8890   }
   8891 
   8892   // Build an exception specification pointing back at this constructor.
   8893   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
   8894   DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
   8895 
   8896   // We don't need to use SpecialMemberIsTrivial here; triviality for default
   8897   // constructors is easy to compute.
   8898   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
   8899 
   8900   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
   8901     SetDeclDeleted(DefaultCon, ClassLoc);
   8902 
   8903   // Note that we have declared this constructor.
   8904   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
   8905 
   8906   if (Scope *S = getScopeForContext(ClassDecl))
   8907     PushOnScopeChains(DefaultCon, S, false);
   8908   ClassDecl->addDecl(DefaultCon);
   8909 
   8910   return DefaultCon;
   8911 }
   8912 
   8913 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
   8914                                             CXXConstructorDecl *Constructor) {
   8915   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
   8916           !Constructor->doesThisDeclarationHaveABody() &&
   8917           !Constructor->isDeleted()) &&
   8918     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
   8919 
   8920   CXXRecordDecl *ClassDecl = Constructor->getParent();
   8921   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
   8922 
   8923   SynthesizedFunctionScope Scope(*this, Constructor);
   8924   DiagnosticErrorTrap Trap(Diags);
   8925   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
   8926       Trap.hasErrorOccurred()) {
   8927     Diag(CurrentLocation, diag::note_member_synthesized_at)
   8928       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
   8929     Constructor->setInvalidDecl();
   8930     return;
   8931   }
   8932 
   8933   // The exception specification is needed because we are defining the
   8934   // function.
   8935   ResolveExceptionSpec(CurrentLocation,
   8936                        Constructor->getType()->castAs<FunctionProtoType>());
   8937 
   8938   SourceLocation Loc = Constructor->getLocEnd().isValid()
   8939                            ? Constructor->getLocEnd()
   8940                            : Constructor->getLocation();
   8941   Constructor->setBody(new (Context) CompoundStmt(Loc));
   8942 
   8943   Constructor->markUsed(Context);
   8944   MarkVTableUsed(CurrentLocation, ClassDecl);
   8945 
   8946   if (ASTMutationListener *L = getASTMutationListener()) {
   8947     L->CompletedImplicitDefinition(Constructor);
   8948   }
   8949 
   8950   DiagnoseUninitializedFields(*this, Constructor);
   8951 }
   8952 
   8953 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
   8954   // Perform any delayed checks on exception specifications.
   8955   CheckDelayedMemberExceptionSpecs();
   8956 }
   8957 
   8958 namespace {
   8959 /// Information on inheriting constructors to declare.
   8960 class InheritingConstructorInfo {
   8961 public:
   8962   InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
   8963       : SemaRef(SemaRef), Derived(Derived) {
   8964     // Mark the constructors that we already have in the derived class.
   8965     //
   8966     // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
   8967     //   unless there is a user-declared constructor with the same signature in
   8968     //   the class where the using-declaration appears.
   8969     visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
   8970   }
   8971 
   8972   void inheritAll(CXXRecordDecl *RD) {
   8973     visitAll(RD, &InheritingConstructorInfo::inherit);
   8974   }
   8975 
   8976 private:
   8977   /// Information about an inheriting constructor.
   8978   struct InheritingConstructor {
   8979     InheritingConstructor()
   8980       : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {}
   8981 
   8982     /// If \c true, a constructor with this signature is already declared
   8983     /// in the derived class.
   8984     bool DeclaredInDerived;
   8985 
   8986     /// The constructor which is inherited.
   8987     const CXXConstructorDecl *BaseCtor;
   8988 
   8989     /// The derived constructor we declared.
   8990     CXXConstructorDecl *DerivedCtor;
   8991   };
   8992 
   8993   /// Inheriting constructors with a given canonical type. There can be at
   8994   /// most one such non-template constructor, and any number of templated
   8995   /// constructors.
   8996   struct InheritingConstructorsForType {
   8997     InheritingConstructor NonTemplate;
   8998     SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
   8999         Templates;
   9000 
   9001     InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
   9002       if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
   9003         TemplateParameterList *ParamList = FTD->getTemplateParameters();
   9004         for (unsigned I = 0, N = Templates.size(); I != N; ++I)
   9005           if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
   9006                                                false, S.TPL_TemplateMatch))
   9007             return Templates[I].second;
   9008         Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
   9009         return Templates.back().second;
   9010       }
   9011 
   9012       return NonTemplate;
   9013     }
   9014   };
   9015 
   9016   /// Get or create the inheriting constructor record for a constructor.
   9017   InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
   9018                                   QualType CtorType) {
   9019     return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
   9020         .getEntry(SemaRef, Ctor);
   9021   }
   9022 
   9023   typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
   9024 
   9025   /// Process all constructors for a class.
   9026   void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
   9027     for (const auto *Ctor : RD->ctors())
   9028       (this->*Callback)(Ctor);
   9029     for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
   9030              I(RD->decls_begin()), E(RD->decls_end());
   9031          I != E; ++I) {
   9032       const FunctionDecl *FD = (*I)->getTemplatedDecl();
   9033       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
   9034         (this->*Callback)(CD);
   9035     }
   9036   }
   9037 
   9038   /// Note that a constructor (or constructor template) was declared in Derived.
   9039   void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
   9040     getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
   9041   }
   9042 
   9043   /// Inherit a single constructor.
   9044   void inherit(const CXXConstructorDecl *Ctor) {
   9045     const FunctionProtoType *CtorType =
   9046         Ctor->getType()->castAs<FunctionProtoType>();
   9047     ArrayRef<QualType> ArgTypes = CtorType->getParamTypes();
   9048     FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
   9049 
   9050     SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
   9051 
   9052     // Core issue (no number yet): the ellipsis is always discarded.
   9053     if (EPI.Variadic) {
   9054       SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
   9055       SemaRef.Diag(Ctor->getLocation(),
   9056                    diag::note_using_decl_constructor_ellipsis);
   9057       EPI.Variadic = false;
   9058     }
   9059 
   9060     // Declare a constructor for each number of parameters.
   9061     //
   9062     // C++11 [class.inhctor]p1:
   9063     //   The candidate set of inherited constructors from the class X named in
   9064     //   the using-declaration consists of [... modulo defects ...] for each
   9065     //   constructor or constructor template of X, the set of constructors or
   9066     //   constructor templates that results from omitting any ellipsis parameter
   9067     //   specification and successively omitting parameters with a default
   9068     //   argument from the end of the parameter-type-list
   9069     unsigned MinParams = minParamsToInherit(Ctor);
   9070     unsigned Params = Ctor->getNumParams();
   9071     if (Params >= MinParams) {
   9072       do
   9073         declareCtor(UsingLoc, Ctor,
   9074                     SemaRef.Context.getFunctionType(
   9075                         Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI));
   9076       while (Params > MinParams &&
   9077              Ctor->getParamDecl(--Params)->hasDefaultArg());
   9078     }
   9079   }
   9080 
   9081   /// Find the using-declaration which specified that we should inherit the
   9082   /// constructors of \p Base.
   9083   SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
   9084     // No fancy lookup required; just look for the base constructor name
   9085     // directly within the derived class.
   9086     ASTContext &Context = SemaRef.Context;
   9087     DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
   9088         Context.getCanonicalType(Context.getRecordType(Base)));
   9089     DeclContext::lookup_result Decls = Derived->lookup(Name);
   9090     return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
   9091   }
   9092 
   9093   unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
   9094     // C++11 [class.inhctor]p3:
   9095     //   [F]or each constructor template in the candidate set of inherited
   9096     //   constructors, a constructor template is implicitly declared
   9097     if (Ctor->getDescribedFunctionTemplate())
   9098       return 0;
   9099 
   9100     //   For each non-template constructor in the candidate set of inherited
   9101     //   constructors other than a constructor having no parameters or a
   9102     //   copy/move constructor having a single parameter, a constructor is
   9103     //   implicitly declared [...]
   9104     if (Ctor->getNumParams() == 0)
   9105       return 1;
   9106     if (Ctor->isCopyOrMoveConstructor())
   9107       return 2;
   9108 
   9109     // Per discussion on core reflector, never inherit a constructor which
   9110     // would become a default, copy, or move constructor of Derived either.
   9111     const ParmVarDecl *PD = Ctor->getParamDecl(0);
   9112     const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
   9113     return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
   9114   }
   9115 
   9116   /// Declare a single inheriting constructor, inheriting the specified
   9117   /// constructor, with the given type.
   9118   void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
   9119                    QualType DerivedType) {
   9120     InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
   9121 
   9122     // C++11 [class.inhctor]p3:
   9123     //   ... a constructor is implicitly declared with the same constructor
   9124     //   characteristics unless there is a user-declared constructor with
   9125     //   the same signature in the class where the using-declaration appears
   9126     if (Entry.DeclaredInDerived)
   9127       return;
   9128 
   9129     // C++11 [class.inhctor]p7:
   9130     //   If two using-declarations declare inheriting constructors with the
   9131     //   same signature, the program is ill-formed
   9132     if (Entry.DerivedCtor) {
   9133       if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
   9134         // Only diagnose this once per constructor.
   9135         if (Entry.DerivedCtor->isInvalidDecl())
   9136           return;
   9137         Entry.DerivedCtor->setInvalidDecl();
   9138 
   9139         SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
   9140         SemaRef.Diag(BaseCtor->getLocation(),
   9141                      diag::note_using_decl_constructor_conflict_current_ctor);
   9142         SemaRef.Diag(Entry.BaseCtor->getLocation(),
   9143                      diag::note_using_decl_constructor_conflict_previous_ctor);
   9144         SemaRef.Diag(Entry.DerivedCtor->getLocation(),
   9145                      diag::note_using_decl_constructor_conflict_previous_using);
   9146       } else {
   9147         // Core issue (no number): if the same inheriting constructor is
   9148         // produced by multiple base class constructors from the same base
   9149         // class, the inheriting constructor is defined as deleted.
   9150         SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
   9151       }
   9152 
   9153       return;
   9154     }
   9155 
   9156     ASTContext &Context = SemaRef.Context;
   9157     DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
   9158         Context.getCanonicalType(Context.getRecordType(Derived)));
   9159     DeclarationNameInfo NameInfo(Name, UsingLoc);
   9160 
   9161     TemplateParameterList *TemplateParams = nullptr;
   9162     if (const FunctionTemplateDecl *FTD =
   9163             BaseCtor->getDescribedFunctionTemplate()) {
   9164       TemplateParams = FTD->getTemplateParameters();
   9165       // We're reusing template parameters from a different DeclContext. This
   9166       // is questionable at best, but works out because the template depth in
   9167       // both places is guaranteed to be 0.
   9168       // FIXME: Rebuild the template parameters in the new context, and
   9169       // transform the function type to refer to them.
   9170     }
   9171 
   9172     // Build type source info pointing at the using-declaration. This is
   9173     // required by template instantiation.
   9174     TypeSourceInfo *TInfo =
   9175         Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
   9176     FunctionProtoTypeLoc ProtoLoc =
   9177         TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
   9178 
   9179     CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
   9180         Context, Derived, UsingLoc, NameInfo, DerivedType,
   9181         TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
   9182         /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
   9183 
   9184     // Build an unevaluated exception specification for this constructor.
   9185     const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
   9186     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   9187     EPI.ExceptionSpec.Type = EST_Unevaluated;
   9188     EPI.ExceptionSpec.SourceDecl = DerivedCtor;
   9189     DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
   9190                                                  FPT->getParamTypes(), EPI));
   9191 
   9192     // Build the parameter declarations.
   9193     SmallVector<ParmVarDecl *, 16> ParamDecls;
   9194     for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
   9195       TypeSourceInfo *TInfo =
   9196           Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
   9197       ParmVarDecl *PD = ParmVarDecl::Create(
   9198           Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
   9199           FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
   9200       PD->setScopeInfo(0, I);
   9201       PD->setImplicit();
   9202       ParamDecls.push_back(PD);
   9203       ProtoLoc.setParam(I, PD);
   9204     }
   9205 
   9206     // Set up the new constructor.
   9207     DerivedCtor->setAccess(BaseCtor->getAccess());
   9208     DerivedCtor->setParams(ParamDecls);
   9209     DerivedCtor->setInheritedConstructor(BaseCtor);
   9210     if (BaseCtor->isDeleted())
   9211       SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
   9212 
   9213     // If this is a constructor template, build the template declaration.
   9214     if (TemplateParams) {
   9215       FunctionTemplateDecl *DerivedTemplate =
   9216           FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
   9217                                        TemplateParams, DerivedCtor);
   9218       DerivedTemplate->setAccess(BaseCtor->getAccess());
   9219       DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
   9220       Derived->addDecl(DerivedTemplate);
   9221     } else {
   9222       Derived->addDecl(DerivedCtor);
   9223     }
   9224 
   9225     Entry.BaseCtor = BaseCtor;
   9226     Entry.DerivedCtor = DerivedCtor;
   9227   }
   9228 
   9229   Sema &SemaRef;
   9230   CXXRecordDecl *Derived;
   9231   typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
   9232   MapType Map;
   9233 };
   9234 }
   9235 
   9236 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
   9237   // Defer declaring the inheriting constructors until the class is
   9238   // instantiated.
   9239   if (ClassDecl->isDependentContext())
   9240     return;
   9241 
   9242   // Find base classes from which we might inherit constructors.
   9243   SmallVector<CXXRecordDecl*, 4> InheritedBases;
   9244   for (const auto &BaseIt : ClassDecl->bases())
   9245     if (BaseIt.getInheritConstructors())
   9246       InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl());
   9247 
   9248   // Go no further if we're not inheriting any constructors.
   9249   if (InheritedBases.empty())
   9250     return;
   9251 
   9252   // Declare the inherited constructors.
   9253   InheritingConstructorInfo ICI(*this, ClassDecl);
   9254   for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
   9255     ICI.inheritAll(InheritedBases[I]);
   9256 }
   9257 
   9258 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
   9259                                        CXXConstructorDecl *Constructor) {
   9260   CXXRecordDecl *ClassDecl = Constructor->getParent();
   9261   assert(Constructor->getInheritedConstructor() &&
   9262          !Constructor->doesThisDeclarationHaveABody() &&
   9263          !Constructor->isDeleted());
   9264 
   9265   SynthesizedFunctionScope Scope(*this, Constructor);
   9266   DiagnosticErrorTrap Trap(Diags);
   9267   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
   9268       Trap.hasErrorOccurred()) {
   9269     Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
   9270       << Context.getTagDeclType(ClassDecl);
   9271     Constructor->setInvalidDecl();
   9272     return;
   9273   }
   9274 
   9275   SourceLocation Loc = Constructor->getLocation();
   9276   Constructor->setBody(new (Context) CompoundStmt(Loc));
   9277 
   9278   Constructor->markUsed(Context);
   9279   MarkVTableUsed(CurrentLocation, ClassDecl);
   9280 
   9281   if (ASTMutationListener *L = getASTMutationListener()) {
   9282     L->CompletedImplicitDefinition(Constructor);
   9283   }
   9284 }
   9285 
   9286 
   9287 Sema::ImplicitExceptionSpecification
   9288 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
   9289   CXXRecordDecl *ClassDecl = MD->getParent();
   9290 
   9291   // C++ [except.spec]p14:
   9292   //   An implicitly declared special member function (Clause 12) shall have
   9293   //   an exception-specification.
   9294   ImplicitExceptionSpecification ExceptSpec(*this);
   9295   if (ClassDecl->isInvalidDecl())
   9296     return ExceptSpec;
   9297 
   9298   // Direct base-class destructors.
   9299   for (const auto &B : ClassDecl->bases()) {
   9300     if (B.isVirtual()) // Handled below.
   9301       continue;
   9302 
   9303     if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
   9304       ExceptSpec.CalledDecl(B.getLocStart(),
   9305                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
   9306   }
   9307 
   9308   // Virtual base-class destructors.
   9309   for (const auto &B : ClassDecl->vbases()) {
   9310     if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
   9311       ExceptSpec.CalledDecl(B.getLocStart(),
   9312                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
   9313   }
   9314 
   9315   // Field destructors.
   9316   for (const auto *F : ClassDecl->fields()) {
   9317     if (const RecordType *RecordTy
   9318         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
   9319       ExceptSpec.CalledDecl(F->getLocation(),
   9320                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
   9321   }
   9322 
   9323   return ExceptSpec;
   9324 }
   9325 
   9326 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
   9327   // C++ [class.dtor]p2:
   9328   //   If a class has no user-declared destructor, a destructor is
   9329   //   declared implicitly. An implicitly-declared destructor is an
   9330   //   inline public member of its class.
   9331   assert(ClassDecl->needsImplicitDestructor());
   9332 
   9333   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
   9334   if (DSM.isAlreadyBeingDeclared())
   9335     return nullptr;
   9336 
   9337   // Create the actual destructor declaration.
   9338   CanQualType ClassType
   9339     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   9340   SourceLocation ClassLoc = ClassDecl->getLocation();
   9341   DeclarationName Name
   9342     = Context.DeclarationNames.getCXXDestructorName(ClassType);
   9343   DeclarationNameInfo NameInfo(Name, ClassLoc);
   9344   CXXDestructorDecl *Destructor
   9345       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
   9346                                   QualType(), nullptr, /*isInline=*/true,
   9347                                   /*isImplicitlyDeclared=*/true);
   9348   Destructor->setAccess(AS_public);
   9349   Destructor->setDefaulted();
   9350 
   9351   if (getLangOpts().CUDA) {
   9352     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
   9353                                             Destructor,
   9354                                             /* ConstRHS */ false,
   9355                                             /* Diagnose */ false);
   9356   }
   9357 
   9358   // Build an exception specification pointing back at this destructor.
   9359   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
   9360   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
   9361 
   9362   AddOverriddenMethods(ClassDecl, Destructor);
   9363 
   9364   // We don't need to use SpecialMemberIsTrivial here; triviality for
   9365   // destructors is easy to compute.
   9366   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
   9367 
   9368   if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
   9369     SetDeclDeleted(Destructor, ClassLoc);
   9370 
   9371   // Note that we have declared this destructor.
   9372   ++ASTContext::NumImplicitDestructorsDeclared;
   9373 
   9374   // Introduce this destructor into its scope.
   9375   if (Scope *S = getScopeForContext(ClassDecl))
   9376     PushOnScopeChains(Destructor, S, false);
   9377   ClassDecl->addDecl(Destructor);
   9378 
   9379   return Destructor;
   9380 }
   9381 
   9382 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
   9383                                     CXXDestructorDecl *Destructor) {
   9384   assert((Destructor->isDefaulted() &&
   9385           !Destructor->doesThisDeclarationHaveABody() &&
   9386           !Destructor->isDeleted()) &&
   9387          "DefineImplicitDestructor - call it for implicit default dtor");
   9388   CXXRecordDecl *ClassDecl = Destructor->getParent();
   9389   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
   9390 
   9391   if (Destructor->isInvalidDecl())
   9392     return;
   9393 
   9394   SynthesizedFunctionScope Scope(*this, Destructor);
   9395 
   9396   DiagnosticErrorTrap Trap(Diags);
   9397   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   9398                                          Destructor->getParent());
   9399 
   9400   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
   9401     Diag(CurrentLocation, diag::note_member_synthesized_at)
   9402       << CXXDestructor << Context.getTagDeclType(ClassDecl);
   9403 
   9404     Destructor->setInvalidDecl();
   9405     return;
   9406   }
   9407 
   9408   // The exception specification is needed because we are defining the
   9409   // function.
   9410   ResolveExceptionSpec(CurrentLocation,
   9411                        Destructor->getType()->castAs<FunctionProtoType>());
   9412 
   9413   SourceLocation Loc = Destructor->getLocEnd().isValid()
   9414                            ? Destructor->getLocEnd()
   9415                            : Destructor->getLocation();
   9416   Destructor->setBody(new (Context) CompoundStmt(Loc));
   9417   Destructor->markUsed(Context);
   9418   MarkVTableUsed(CurrentLocation, ClassDecl);
   9419 
   9420   if (ASTMutationListener *L = getASTMutationListener()) {
   9421     L->CompletedImplicitDefinition(Destructor);
   9422   }
   9423 }
   9424 
   9425 /// \brief Perform any semantic analysis which needs to be delayed until all
   9426 /// pending class member declarations have been parsed.
   9427 void Sema::ActOnFinishCXXMemberDecls() {
   9428   // If the context is an invalid C++ class, just suppress these checks.
   9429   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
   9430     if (Record->isInvalidDecl()) {
   9431       DelayedDefaultedMemberExceptionSpecs.clear();
   9432       DelayedExceptionSpecChecks.clear();
   9433       return;
   9434     }
   9435   }
   9436 }
   9437 
   9438 static void getDefaultArgExprsForConstructors(Sema &S, CXXRecordDecl *Class) {
   9439   // Don't do anything for template patterns.
   9440   if (Class->getDescribedClassTemplate())
   9441     return;
   9442 
   9443   for (Decl *Member : Class->decls()) {
   9444     auto *CD = dyn_cast<CXXConstructorDecl>(Member);
   9445     if (!CD) {
   9446       // Recurse on nested classes.
   9447       if (auto *NestedRD = dyn_cast<CXXRecordDecl>(Member))
   9448         getDefaultArgExprsForConstructors(S, NestedRD);
   9449       continue;
   9450     } else if (!CD->isDefaultConstructor() || !CD->hasAttr<DLLExportAttr>()) {
   9451       continue;
   9452     }
   9453 
   9454     for (unsigned I = 0, E = CD->getNumParams(); I != E; ++I) {
   9455       // Skip any default arguments that we've already instantiated.
   9456       if (S.Context.getDefaultArgExprForConstructor(CD, I))
   9457         continue;
   9458 
   9459       Expr *DefaultArg = S.BuildCXXDefaultArgExpr(Class->getLocation(), CD,
   9460                                                   CD->getParamDecl(I)).get();
   9461       S.Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
   9462     }
   9463   }
   9464 }
   9465 
   9466 void Sema::ActOnFinishCXXMemberDefaultArgs(Decl *D) {
   9467   auto *RD = dyn_cast<CXXRecordDecl>(D);
   9468 
   9469   // Default constructors that are annotated with __declspec(dllexport) which
   9470   // have default arguments or don't use the standard calling convention are
   9471   // wrapped with a thunk called the default constructor closure.
   9472   if (RD && Context.getTargetInfo().getCXXABI().isMicrosoft())
   9473     getDefaultArgExprsForConstructors(*this, RD);
   9474 }
   9475 
   9476 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
   9477                                          CXXDestructorDecl *Destructor) {
   9478   assert(getLangOpts().CPlusPlus11 &&
   9479          "adjusting dtor exception specs was introduced in c++11");
   9480 
   9481   // C++11 [class.dtor]p3:
   9482   //   A declaration of a destructor that does not have an exception-
   9483   //   specification is implicitly considered to have the same exception-
   9484   //   specification as an implicit declaration.
   9485   const FunctionProtoType *DtorType = Destructor->getType()->
   9486                                         getAs<FunctionProtoType>();
   9487   if (DtorType->hasExceptionSpec())
   9488     return;
   9489 
   9490   // Replace the destructor's type, building off the existing one. Fortunately,
   9491   // the only thing of interest in the destructor type is its extended info.
   9492   // The return and arguments are fixed.
   9493   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
   9494   EPI.ExceptionSpec.Type = EST_Unevaluated;
   9495   EPI.ExceptionSpec.SourceDecl = Destructor;
   9496   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
   9497 
   9498   // FIXME: If the destructor has a body that could throw, and the newly created
   9499   // spec doesn't allow exceptions, we should emit a warning, because this
   9500   // change in behavior can break conforming C++03 programs at runtime.
   9501   // However, we don't have a body or an exception specification yet, so it
   9502   // needs to be done somewhere else.
   9503 }
   9504 
   9505 namespace {
   9506 /// \brief An abstract base class for all helper classes used in building the
   9507 //  copy/move operators. These classes serve as factory functions and help us
   9508 //  avoid using the same Expr* in the AST twice.
   9509 class ExprBuilder {
   9510   ExprBuilder(const ExprBuilder&) = delete;
   9511   ExprBuilder &operator=(const ExprBuilder&) = delete;
   9512 
   9513 protected:
   9514   static Expr *assertNotNull(Expr *E) {
   9515     assert(E && "Expression construction must not fail.");
   9516     return E;
   9517   }
   9518 
   9519 public:
   9520   ExprBuilder() {}
   9521   virtual ~ExprBuilder() {}
   9522 
   9523   virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
   9524 };
   9525 
   9526 class RefBuilder: public ExprBuilder {
   9527   VarDecl *Var;
   9528   QualType VarType;
   9529 
   9530 public:
   9531   Expr *build(Sema &S, SourceLocation Loc) const override {
   9532     return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
   9533   }
   9534 
   9535   RefBuilder(VarDecl *Var, QualType VarType)
   9536       : Var(Var), VarType(VarType) {}
   9537 };
   9538 
   9539 class ThisBuilder: public ExprBuilder {
   9540 public:
   9541   Expr *build(Sema &S, SourceLocation Loc) const override {
   9542     return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
   9543   }
   9544 };
   9545 
   9546 class CastBuilder: public ExprBuilder {
   9547   const ExprBuilder &Builder;
   9548   QualType Type;
   9549   ExprValueKind Kind;
   9550   const CXXCastPath &Path;
   9551 
   9552 public:
   9553   Expr *build(Sema &S, SourceLocation Loc) const override {
   9554     return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
   9555                                              CK_UncheckedDerivedToBase, Kind,
   9556                                              &Path).get());
   9557   }
   9558 
   9559   CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
   9560               const CXXCastPath &Path)
   9561       : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
   9562 };
   9563 
   9564 class DerefBuilder: public ExprBuilder {
   9565   const ExprBuilder &Builder;
   9566 
   9567 public:
   9568   Expr *build(Sema &S, SourceLocation Loc) const override {
   9569     return assertNotNull(
   9570         S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
   9571   }
   9572 
   9573   DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
   9574 };
   9575 
   9576 class MemberBuilder: public ExprBuilder {
   9577   const ExprBuilder &Builder;
   9578   QualType Type;
   9579   CXXScopeSpec SS;
   9580   bool IsArrow;
   9581   LookupResult &MemberLookup;
   9582 
   9583 public:
   9584   Expr *build(Sema &S, SourceLocation Loc) const override {
   9585     return assertNotNull(S.BuildMemberReferenceExpr(
   9586         Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
   9587         nullptr, MemberLookup, nullptr).get());
   9588   }
   9589 
   9590   MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
   9591                 LookupResult &MemberLookup)
   9592       : Builder(Builder), Type(Type), IsArrow(IsArrow),
   9593         MemberLookup(MemberLookup) {}
   9594 };
   9595 
   9596 class MoveCastBuilder: public ExprBuilder {
   9597   const ExprBuilder &Builder;
   9598 
   9599 public:
   9600   Expr *build(Sema &S, SourceLocation Loc) const override {
   9601     return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
   9602   }
   9603 
   9604   MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
   9605 };
   9606 
   9607 class LvalueConvBuilder: public ExprBuilder {
   9608   const ExprBuilder &Builder;
   9609 
   9610 public:
   9611   Expr *build(Sema &S, SourceLocation Loc) const override {
   9612     return assertNotNull(
   9613         S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
   9614   }
   9615 
   9616   LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
   9617 };
   9618 
   9619 class SubscriptBuilder: public ExprBuilder {
   9620   const ExprBuilder &Base;
   9621   const ExprBuilder &Index;
   9622 
   9623 public:
   9624   Expr *build(Sema &S, SourceLocation Loc) const override {
   9625     return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
   9626         Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
   9627   }
   9628 
   9629   SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
   9630       : Base(Base), Index(Index) {}
   9631 };
   9632 
   9633 } // end anonymous namespace
   9634 
   9635 /// When generating a defaulted copy or move assignment operator, if a field
   9636 /// should be copied with __builtin_memcpy rather than via explicit assignments,
   9637 /// do so. This optimization only applies for arrays of scalars, and for arrays
   9638 /// of class type where the selected copy/move-assignment operator is trivial.
   9639 static StmtResult
   9640 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
   9641                            const ExprBuilder &ToB, const ExprBuilder &FromB) {
   9642   // Compute the size of the memory buffer to be copied.
   9643   QualType SizeType = S.Context.getSizeType();
   9644   llvm::APInt Size(S.Context.getTypeSize(SizeType),
   9645                    S.Context.getTypeSizeInChars(T).getQuantity());
   9646 
   9647   // Take the address of the field references for "from" and "to". We
   9648   // directly construct UnaryOperators here because semantic analysis
   9649   // does not permit us to take the address of an xvalue.
   9650   Expr *From = FromB.build(S, Loc);
   9651   From = new (S.Context) UnaryOperator(From, UO_AddrOf,
   9652                          S.Context.getPointerType(From->getType()),
   9653                          VK_RValue, OK_Ordinary, Loc);
   9654   Expr *To = ToB.build(S, Loc);
   9655   To = new (S.Context) UnaryOperator(To, UO_AddrOf,
   9656                        S.Context.getPointerType(To->getType()),
   9657                        VK_RValue, OK_Ordinary, Loc);
   9658 
   9659   const Type *E = T->getBaseElementTypeUnsafe();
   9660   bool NeedsCollectableMemCpy =
   9661     E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
   9662 
   9663   // Create a reference to the __builtin_objc_memmove_collectable function
   9664   StringRef MemCpyName = NeedsCollectableMemCpy ?
   9665     "__builtin_objc_memmove_collectable" :
   9666     "__builtin_memcpy";
   9667   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
   9668                  Sema::LookupOrdinaryName);
   9669   S.LookupName(R, S.TUScope, true);
   9670 
   9671   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
   9672   if (!MemCpy)
   9673     // Something went horribly wrong earlier, and we will have complained
   9674     // about it.
   9675     return StmtError();
   9676 
   9677   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
   9678                                             VK_RValue, Loc, nullptr);
   9679   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
   9680 
   9681   Expr *CallArgs[] = {
   9682     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
   9683   };
   9684   ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
   9685                                     Loc, CallArgs, Loc);
   9686 
   9687   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
   9688   return Call.getAs<Stmt>();
   9689 }
   9690 
   9691 /// \brief Builds a statement that copies/moves the given entity from \p From to
   9692 /// \c To.
   9693 ///
   9694 /// This routine is used to copy/move the members of a class with an
   9695 /// implicitly-declared copy/move assignment operator. When the entities being
   9696 /// copied are arrays, this routine builds for loops to copy them.
   9697 ///
   9698 /// \param S The Sema object used for type-checking.
   9699 ///
   9700 /// \param Loc The location where the implicit copy/move is being generated.
   9701 ///
   9702 /// \param T The type of the expressions being copied/moved. Both expressions
   9703 /// must have this type.
   9704 ///
   9705 /// \param To The expression we are copying/moving to.
   9706 ///
   9707 /// \param From The expression we are copying/moving from.
   9708 ///
   9709 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
   9710 /// Otherwise, it's a non-static member subobject.
   9711 ///
   9712 /// \param Copying Whether we're copying or moving.
   9713 ///
   9714 /// \param Depth Internal parameter recording the depth of the recursion.
   9715 ///
   9716 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
   9717 /// if a memcpy should be used instead.
   9718 static StmtResult
   9719 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
   9720                                  const ExprBuilder &To, const ExprBuilder &From,
   9721                                  bool CopyingBaseSubobject, bool Copying,
   9722                                  unsigned Depth = 0) {
   9723   // C++11 [class.copy]p28:
   9724   //   Each subobject is assigned in the manner appropriate to its type:
   9725   //
   9726   //     - if the subobject is of class type, as if by a call to operator= with
   9727   //       the subobject as the object expression and the corresponding
   9728   //       subobject of x as a single function argument (as if by explicit
   9729   //       qualification; that is, ignoring any possible virtual overriding
   9730   //       functions in more derived classes);
   9731   //
   9732   // C++03 [class.copy]p13:
   9733   //     - if the subobject is of class type, the copy assignment operator for
   9734   //       the class is used (as if by explicit qualification; that is,
   9735   //       ignoring any possible virtual overriding functions in more derived
   9736   //       classes);
   9737   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
   9738     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   9739 
   9740     // Look for operator=.
   9741     DeclarationName Name
   9742       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   9743     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
   9744     S.LookupQualifiedName(OpLookup, ClassDecl, false);
   9745 
   9746     // Prior to C++11, filter out any result that isn't a copy/move-assignment
   9747     // operator.
   9748     if (!S.getLangOpts().CPlusPlus11) {
   9749       LookupResult::Filter F = OpLookup.makeFilter();
   9750       while (F.hasNext()) {
   9751         NamedDecl *D = F.next();
   9752         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   9753           if (Method->isCopyAssignmentOperator() ||
   9754               (!Copying && Method->isMoveAssignmentOperator()))
   9755             continue;
   9756 
   9757         F.erase();
   9758       }
   9759       F.done();
   9760     }
   9761 
   9762     // Suppress the protected check (C++ [class.protected]) for each of the
   9763     // assignment operators we found. This strange dance is required when
   9764     // we're assigning via a base classes's copy-assignment operator. To
   9765     // ensure that we're getting the right base class subobject (without
   9766     // ambiguities), we need to cast "this" to that subobject type; to
   9767     // ensure that we don't go through the virtual call mechanism, we need
   9768     // to qualify the operator= name with the base class (see below). However,
   9769     // this means that if the base class has a protected copy assignment
   9770     // operator, the protected member access check will fail. So, we
   9771     // rewrite "protected" access to "public" access in this case, since we
   9772     // know by construction that we're calling from a derived class.
   9773     if (CopyingBaseSubobject) {
   9774       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
   9775            L != LEnd; ++L) {
   9776         if (L.getAccess() == AS_protected)
   9777           L.setAccess(AS_public);
   9778       }
   9779     }
   9780 
   9781     // Create the nested-name-specifier that will be used to qualify the
   9782     // reference to operator=; this is required to suppress the virtual
   9783     // call mechanism.
   9784     CXXScopeSpec SS;
   9785     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
   9786     SS.MakeTrivial(S.Context,
   9787                    NestedNameSpecifier::Create(S.Context, nullptr, false,
   9788                                                CanonicalT),
   9789                    Loc);
   9790 
   9791     // Create the reference to operator=.
   9792     ExprResult OpEqualRef
   9793       = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
   9794                                    SS, /*TemplateKWLoc=*/SourceLocation(),
   9795                                    /*FirstQualifierInScope=*/nullptr,
   9796                                    OpLookup,
   9797                                    /*TemplateArgs=*/nullptr,
   9798                                    /*SuppressQualifierCheck=*/true);
   9799     if (OpEqualRef.isInvalid())
   9800       return StmtError();
   9801 
   9802     // Build the call to the assignment operator.
   9803 
   9804     Expr *FromInst = From.build(S, Loc);
   9805     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
   9806                                                   OpEqualRef.getAs<Expr>(),
   9807                                                   Loc, FromInst, Loc);
   9808     if (Call.isInvalid())
   9809       return StmtError();
   9810 
   9811     // If we built a call to a trivial 'operator=' while copying an array,
   9812     // bail out. We'll replace the whole shebang with a memcpy.
   9813     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
   9814     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
   9815       return StmtResult((Stmt*)nullptr);
   9816 
   9817     // Convert to an expression-statement, and clean up any produced
   9818     // temporaries.
   9819     return S.ActOnExprStmt(Call);
   9820   }
   9821 
   9822   //     - if the subobject is of scalar type, the built-in assignment
   9823   //       operator is used.
   9824   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
   9825   if (!ArrayTy) {
   9826     ExprResult Assignment = S.CreateBuiltinBinOp(
   9827         Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
   9828     if (Assignment.isInvalid())
   9829       return StmtError();
   9830     return S.ActOnExprStmt(Assignment);
   9831   }
   9832 
   9833   //     - if the subobject is an array, each element is assigned, in the
   9834   //       manner appropriate to the element type;
   9835 
   9836   // Construct a loop over the array bounds, e.g.,
   9837   //
   9838   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
   9839   //
   9840   // that will copy each of the array elements.
   9841   QualType SizeType = S.Context.getSizeType();
   9842 
   9843   // Create the iteration variable.
   9844   IdentifierInfo *IterationVarName = nullptr;
   9845   {
   9846     SmallString<8> Str;
   9847     llvm::raw_svector_ostream OS(Str);
   9848     OS << "__i" << Depth;
   9849     IterationVarName = &S.Context.Idents.get(OS.str());
   9850   }
   9851   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
   9852                                           IterationVarName, SizeType,
   9853                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   9854                                           SC_None);
   9855 
   9856   // Initialize the iteration variable to zero.
   9857   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
   9858   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
   9859 
   9860   // Creates a reference to the iteration variable.
   9861   RefBuilder IterationVarRef(IterationVar, SizeType);
   9862   LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
   9863 
   9864   // Create the DeclStmt that holds the iteration variable.
   9865   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
   9866 
   9867   // Subscript the "from" and "to" expressions with the iteration variable.
   9868   SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
   9869   MoveCastBuilder FromIndexMove(FromIndexCopy);
   9870   const ExprBuilder *FromIndex;
   9871   if (Copying)
   9872     FromIndex = &FromIndexCopy;
   9873   else
   9874     FromIndex = &FromIndexMove;
   9875 
   9876   SubscriptBuilder ToIndex(To, IterationVarRefRVal);
   9877 
   9878   // Build the copy/move for an individual element of the array.
   9879   StmtResult Copy =
   9880     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
   9881                                      ToIndex, *FromIndex, CopyingBaseSubobject,
   9882                                      Copying, Depth + 1);
   9883   // Bail out if copying fails or if we determined that we should use memcpy.
   9884   if (Copy.isInvalid() || !Copy.get())
   9885     return Copy;
   9886 
   9887   // Create the comparison against the array bound.
   9888   llvm::APInt Upper
   9889     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
   9890   Expr *Comparison
   9891     = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
   9892                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
   9893                                      BO_NE, S.Context.BoolTy,
   9894                                      VK_RValue, OK_Ordinary, Loc, false);
   9895 
   9896   // Create the pre-increment of the iteration variable.
   9897   Expr *Increment
   9898     = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
   9899                                     SizeType, VK_LValue, OK_Ordinary, Loc);
   9900 
   9901   // Construct the loop that copies all elements of this array.
   9902   return S.ActOnForStmt(Loc, Loc, InitStmt,
   9903                         S.MakeFullExpr(Comparison),
   9904                         nullptr, S.MakeFullDiscardedValueExpr(Increment),
   9905                         Loc, Copy.get());
   9906 }
   9907 
   9908 static StmtResult
   9909 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
   9910                       const ExprBuilder &To, const ExprBuilder &From,
   9911                       bool CopyingBaseSubobject, bool Copying) {
   9912   // Maybe we should use a memcpy?
   9913   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
   9914       T.isTriviallyCopyableType(S.Context))
   9915     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
   9916 
   9917   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
   9918                                                      CopyingBaseSubobject,
   9919                                                      Copying, 0));
   9920 
   9921   // If we ended up picking a trivial assignment operator for an array of a
   9922   // non-trivially-copyable class type, just emit a memcpy.
   9923   if (!Result.isInvalid() && !Result.get())
   9924     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
   9925 
   9926   return Result;
   9927 }
   9928 
   9929 Sema::ImplicitExceptionSpecification
   9930 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
   9931   CXXRecordDecl *ClassDecl = MD->getParent();
   9932 
   9933   ImplicitExceptionSpecification ExceptSpec(*this);
   9934   if (ClassDecl->isInvalidDecl())
   9935     return ExceptSpec;
   9936 
   9937   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
   9938   assert(T->getNumParams() == 1 && "not a copy assignment op");
   9939   unsigned ArgQuals =
   9940       T->getParamType(0).getNonReferenceType().getCVRQualifiers();
   9941 
   9942   // C++ [except.spec]p14:
   9943   //   An implicitly declared special member function (Clause 12) shall have an
   9944   //   exception-specification. [...]
   9945 
   9946   // It is unspecified whether or not an implicit copy assignment operator
   9947   // attempts to deduplicate calls to assignment operators of virtual bases are
   9948   // made. As such, this exception specification is effectively unspecified.
   9949   // Based on a similar decision made for constness in C++0x, we're erring on
   9950   // the side of assuming such calls to be made regardless of whether they
   9951   // actually happen.
   9952   for (const auto &Base : ClassDecl->bases()) {
   9953     if (Base.isVirtual())
   9954       continue;
   9955 
   9956     CXXRecordDecl *BaseClassDecl
   9957       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   9958     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
   9959                                                             ArgQuals, false, 0))
   9960       ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
   9961   }
   9962 
   9963   for (const auto &Base : ClassDecl->vbases()) {
   9964     CXXRecordDecl *BaseClassDecl
   9965       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   9966     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
   9967                                                             ArgQuals, false, 0))
   9968       ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
   9969   }
   9970 
   9971   for (const auto *Field : ClassDecl->fields()) {
   9972     QualType FieldType = Context.getBaseElementType(Field->getType());
   9973     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   9974       if (CXXMethodDecl *CopyAssign =
   9975           LookupCopyingAssignment(FieldClassDecl,
   9976                                   ArgQuals | FieldType.getCVRQualifiers(),
   9977                                   false, 0))
   9978         ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
   9979     }
   9980   }
   9981 
   9982   return ExceptSpec;
   9983 }
   9984 
   9985 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
   9986   // Note: The following rules are largely analoguous to the copy
   9987   // constructor rules. Note that virtual bases are not taken into account
   9988   // for determining the argument type of the operator. Note also that
   9989   // operators taking an object instead of a reference are allowed.
   9990   assert(ClassDecl->needsImplicitCopyAssignment());
   9991 
   9992   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
   9993   if (DSM.isAlreadyBeingDeclared())
   9994     return nullptr;
   9995 
   9996   QualType ArgType = Context.getTypeDeclType(ClassDecl);
   9997   QualType RetType = Context.getLValueReferenceType(ArgType);
   9998   bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
   9999   if (Const)
   10000     ArgType = ArgType.withConst();
   10001   ArgType = Context.getLValueReferenceType(ArgType);
   10002 
   10003   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
   10004                                                      CXXCopyAssignment,
   10005                                                      Const);
   10006 
   10007   //   An implicitly-declared copy assignment operator is an inline public
   10008   //   member of its class.
   10009   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   10010   SourceLocation ClassLoc = ClassDecl->getLocation();
   10011   DeclarationNameInfo NameInfo(Name, ClassLoc);
   10012   CXXMethodDecl *CopyAssignment =
   10013       CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
   10014                             /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
   10015                             /*isInline=*/true, Constexpr, SourceLocation());
   10016   CopyAssignment->setAccess(AS_public);
   10017   CopyAssignment->setDefaulted();
   10018   CopyAssignment->setImplicit();
   10019 
   10020   if (getLangOpts().CUDA) {
   10021     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
   10022                                             CopyAssignment,
   10023                                             /* ConstRHS */ Const,
   10024                                             /* Diagnose */ false);
   10025   }
   10026 
   10027   // Build an exception specification pointing back at this member.
   10028   FunctionProtoType::ExtProtoInfo EPI =
   10029       getImplicitMethodEPI(*this, CopyAssignment);
   10030   CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
   10031 
   10032   // Add the parameter to the operator.
   10033   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
   10034                                                ClassLoc, ClassLoc,
   10035                                                /*Id=*/nullptr, ArgType,
   10036                                                /*TInfo=*/nullptr, SC_None,
   10037                                                nullptr);
   10038   CopyAssignment->setParams(FromParam);
   10039 
   10040   AddOverriddenMethods(ClassDecl, CopyAssignment);
   10041 
   10042   CopyAssignment->setTrivial(
   10043     ClassDecl->needsOverloadResolutionForCopyAssignment()
   10044       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
   10045       : ClassDecl->hasTrivialCopyAssignment());
   10046 
   10047   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
   10048     SetDeclDeleted(CopyAssignment, ClassLoc);
   10049 
   10050   // Note that we have added this copy-assignment operator.
   10051   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
   10052 
   10053   if (Scope *S = getScopeForContext(ClassDecl))
   10054     PushOnScopeChains(CopyAssignment, S, false);
   10055   ClassDecl->addDecl(CopyAssignment);
   10056 
   10057   return CopyAssignment;
   10058 }
   10059 
   10060 /// Diagnose an implicit copy operation for a class which is odr-used, but
   10061 /// which is deprecated because the class has a user-declared copy constructor,
   10062 /// copy assignment operator, or destructor.
   10063 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
   10064                                             SourceLocation UseLoc) {
   10065   assert(CopyOp->isImplicit());
   10066 
   10067   CXXRecordDecl *RD = CopyOp->getParent();
   10068   CXXMethodDecl *UserDeclaredOperation = nullptr;
   10069 
   10070   // In Microsoft mode, assignment operations don't affect constructors and
   10071   // vice versa.
   10072   if (RD->hasUserDeclaredDestructor()) {
   10073     UserDeclaredOperation = RD->getDestructor();
   10074   } else if (!isa<CXXConstructorDecl>(CopyOp) &&
   10075              RD->hasUserDeclaredCopyConstructor() &&
   10076              !S.getLangOpts().MSVCCompat) {
   10077     // Find any user-declared copy constructor.
   10078     for (auto *I : RD->ctors()) {
   10079       if (I->isCopyConstructor()) {
   10080         UserDeclaredOperation = I;
   10081         break;
   10082       }
   10083     }
   10084     assert(UserDeclaredOperation);
   10085   } else if (isa<CXXConstructorDecl>(CopyOp) &&
   10086              RD->hasUserDeclaredCopyAssignment() &&
   10087              !S.getLangOpts().MSVCCompat) {
   10088     // Find any user-declared move assignment operator.
   10089     for (auto *I : RD->methods()) {
   10090       if (I->isCopyAssignmentOperator()) {
   10091         UserDeclaredOperation = I;
   10092         break;
   10093       }
   10094     }
   10095     assert(UserDeclaredOperation);
   10096   }
   10097 
   10098   if (UserDeclaredOperation) {
   10099     S.Diag(UserDeclaredOperation->getLocation(),
   10100          diag::warn_deprecated_copy_operation)
   10101       << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
   10102       << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
   10103     S.Diag(UseLoc, diag::note_member_synthesized_at)
   10104       << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
   10105                                           : Sema::CXXCopyAssignment)
   10106       << RD;
   10107   }
   10108 }
   10109 
   10110 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
   10111                                         CXXMethodDecl *CopyAssignOperator) {
   10112   assert((CopyAssignOperator->isDefaulted() &&
   10113           CopyAssignOperator->isOverloadedOperator() &&
   10114           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
   10115           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
   10116           !CopyAssignOperator->isDeleted()) &&
   10117          "DefineImplicitCopyAssignment called for wrong function");
   10118 
   10119   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
   10120 
   10121   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
   10122     CopyAssignOperator->setInvalidDecl();
   10123     return;
   10124   }
   10125 
   10126   // C++11 [class.copy]p18:
   10127   //   The [definition of an implicitly declared copy assignment operator] is
   10128   //   deprecated if the class has a user-declared copy constructor or a
   10129   //   user-declared destructor.
   10130   if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
   10131     diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
   10132 
   10133   CopyAssignOperator->markUsed(Context);
   10134 
   10135   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
   10136   DiagnosticErrorTrap Trap(Diags);
   10137 
   10138   // C++0x [class.copy]p30:
   10139   //   The implicitly-defined or explicitly-defaulted copy assignment operator
   10140   //   for a non-union class X performs memberwise copy assignment of its
   10141   //   subobjects. The direct base classes of X are assigned first, in the
   10142   //   order of their declaration in the base-specifier-list, and then the
   10143   //   immediate non-static data members of X are assigned, in the order in
   10144   //   which they were declared in the class definition.
   10145 
   10146   // The statements that form the synthesized function body.
   10147   SmallVector<Stmt*, 8> Statements;
   10148 
   10149   // The parameter for the "other" object, which we are copying from.
   10150   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
   10151   Qualifiers OtherQuals = Other->getType().getQualifiers();
   10152   QualType OtherRefType = Other->getType();
   10153   if (const LValueReferenceType *OtherRef
   10154                                 = OtherRefType->getAs<LValueReferenceType>()) {
   10155     OtherRefType = OtherRef->getPointeeType();
   10156     OtherQuals = OtherRefType.getQualifiers();
   10157   }
   10158 
   10159   // Our location for everything implicitly-generated.
   10160   SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
   10161                            ? CopyAssignOperator->getLocEnd()
   10162                            : CopyAssignOperator->getLocation();
   10163 
   10164   // Builds a DeclRefExpr for the "other" object.
   10165   RefBuilder OtherRef(Other, OtherRefType);
   10166 
   10167   // Builds the "this" pointer.
   10168   ThisBuilder This;
   10169 
   10170   // Assign base classes.
   10171   bool Invalid = false;
   10172   for (auto &Base : ClassDecl->bases()) {
   10173     // Form the assignment:
   10174     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
   10175     QualType BaseType = Base.getType().getUnqualifiedType();
   10176     if (!BaseType->isRecordType()) {
   10177       Invalid = true;
   10178       continue;
   10179     }
   10180 
   10181     CXXCastPath BasePath;
   10182     BasePath.push_back(&Base);
   10183 
   10184     // Construct the "from" expression, which is an implicit cast to the
   10185     // appropriately-qualified base type.
   10186     CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
   10187                      VK_LValue, BasePath);
   10188 
   10189     // Dereference "this".
   10190     DerefBuilder DerefThis(This);
   10191     CastBuilder To(DerefThis,
   10192                    Context.getCVRQualifiedType(
   10193                        BaseType, CopyAssignOperator->getTypeQualifiers()),
   10194                    VK_LValue, BasePath);
   10195 
   10196     // Build the copy.
   10197     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
   10198                                             To, From,
   10199                                             /*CopyingBaseSubobject=*/true,
   10200                                             /*Copying=*/true);
   10201     if (Copy.isInvalid()) {
   10202       Diag(CurrentLocation, diag::note_member_synthesized_at)
   10203         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   10204       CopyAssignOperator->setInvalidDecl();
   10205       return;
   10206     }
   10207 
   10208     // Success! Record the copy.
   10209     Statements.push_back(Copy.getAs<Expr>());
   10210   }
   10211 
   10212   // Assign non-static members.
   10213   for (auto *Field : ClassDecl->fields()) {
   10214     if (Field->isUnnamedBitfield())
   10215       continue;
   10216 
   10217     if (Field->isInvalidDecl()) {
   10218       Invalid = true;
   10219       continue;
   10220     }
   10221 
   10222     // Check for members of reference type; we can't copy those.
   10223     if (Field->getType()->isReferenceType()) {
   10224       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   10225         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
   10226       Diag(Field->getLocation(), diag::note_declared_at);
   10227       Diag(CurrentLocation, diag::note_member_synthesized_at)
   10228         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   10229       Invalid = true;
   10230       continue;
   10231     }
   10232 
   10233     // Check for members of const-qualified, non-class type.
   10234     QualType BaseType = Context.getBaseElementType(Field->getType());
   10235     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
   10236       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   10237         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
   10238       Diag(Field->getLocation(), diag::note_declared_at);
   10239       Diag(CurrentLocation, diag::note_member_synthesized_at)
   10240         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   10241       Invalid = true;
   10242       continue;
   10243     }
   10244 
   10245     // Suppress assigning zero-width bitfields.
   10246     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
   10247       continue;
   10248 
   10249     QualType FieldType = Field->getType().getNonReferenceType();
   10250     if (FieldType->isIncompleteArrayType()) {
   10251       assert(ClassDecl->hasFlexibleArrayMember() &&
   10252              "Incomplete array type is not valid");
   10253       continue;
   10254     }
   10255 
   10256     // Build references to the field in the object we're copying from and to.
   10257     CXXScopeSpec SS; // Intentionally empty
   10258     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
   10259                               LookupMemberName);
   10260     MemberLookup.addDecl(Field);
   10261     MemberLookup.resolveKind();
   10262 
   10263     MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
   10264 
   10265     MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
   10266 
   10267     // Build the copy of this field.
   10268     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
   10269                                             To, From,
   10270                                             /*CopyingBaseSubobject=*/false,
   10271                                             /*Copying=*/true);
   10272     if (Copy.isInvalid()) {
   10273       Diag(CurrentLocation, diag::note_member_synthesized_at)
   10274         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   10275       CopyAssignOperator->setInvalidDecl();
   10276       return;
   10277     }
   10278 
   10279     // Success! Record the copy.
   10280     Statements.push_back(Copy.getAs<Stmt>());
   10281   }
   10282 
   10283   if (!Invalid) {
   10284     // Add a "return *this;"
   10285     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
   10286 
   10287     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
   10288     if (Return.isInvalid())
   10289       Invalid = true;
   10290     else {
   10291       Statements.push_back(Return.getAs<Stmt>());
   10292 
   10293       if (Trap.hasErrorOccurred()) {
   10294         Diag(CurrentLocation, diag::note_member_synthesized_at)
   10295           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   10296         Invalid = true;
   10297       }
   10298     }
   10299   }
   10300 
   10301   // The exception specification is needed because we are defining the
   10302   // function.
   10303   ResolveExceptionSpec(CurrentLocation,
   10304                        CopyAssignOperator->getType()->castAs<FunctionProtoType>());
   10305 
   10306   if (Invalid) {
   10307     CopyAssignOperator->setInvalidDecl();
   10308     return;
   10309   }
   10310 
   10311   StmtResult Body;
   10312   {
   10313     CompoundScopeRAII CompoundScope(*this);
   10314     Body = ActOnCompoundStmt(Loc, Loc, Statements,
   10315                              /*isStmtExpr=*/false);
   10316     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
   10317   }
   10318   CopyAssignOperator->setBody(Body.getAs<Stmt>());
   10319 
   10320   if (ASTMutationListener *L = getASTMutationListener()) {
   10321     L->CompletedImplicitDefinition(CopyAssignOperator);
   10322   }
   10323 }
   10324 
   10325 Sema::ImplicitExceptionSpecification
   10326 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
   10327   CXXRecordDecl *ClassDecl = MD->getParent();
   10328 
   10329   ImplicitExceptionSpecification ExceptSpec(*this);
   10330   if (ClassDecl->isInvalidDecl())
   10331     return ExceptSpec;
   10332 
   10333   // C++0x [except.spec]p14:
   10334   //   An implicitly declared special member function (Clause 12) shall have an
   10335   //   exception-specification. [...]
   10336 
   10337   // It is unspecified whether or not an implicit move assignment operator
   10338   // attempts to deduplicate calls to assignment operators of virtual bases are
   10339   // made. As such, this exception specification is effectively unspecified.
   10340   // Based on a similar decision made for constness in C++0x, we're erring on
   10341   // the side of assuming such calls to be made regardless of whether they
   10342   // actually happen.
   10343   // Note that a move constructor is not implicitly declared when there are
   10344   // virtual bases, but it can still be user-declared and explicitly defaulted.
   10345   for (const auto &Base : ClassDecl->bases()) {
   10346     if (Base.isVirtual())
   10347       continue;
   10348 
   10349     CXXRecordDecl *BaseClassDecl
   10350       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   10351     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
   10352                                                            0, false, 0))
   10353       ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
   10354   }
   10355 
   10356   for (const auto &Base : ClassDecl->vbases()) {
   10357     CXXRecordDecl *BaseClassDecl
   10358       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   10359     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
   10360                                                            0, false, 0))
   10361       ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
   10362   }
   10363 
   10364   for (const auto *Field : ClassDecl->fields()) {
   10365     QualType FieldType = Context.getBaseElementType(Field->getType());
   10366     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   10367       if (CXXMethodDecl *MoveAssign =
   10368               LookupMovingAssignment(FieldClassDecl,
   10369                                      FieldType.getCVRQualifiers(),
   10370                                      false, 0))
   10371         ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
   10372     }
   10373   }
   10374 
   10375   return ExceptSpec;
   10376 }
   10377 
   10378 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
   10379   assert(ClassDecl->needsImplicitMoveAssignment());
   10380 
   10381   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
   10382   if (DSM.isAlreadyBeingDeclared())
   10383     return nullptr;
   10384 
   10385   // Note: The following rules are largely analoguous to the move
   10386   // constructor rules.
   10387 
   10388   QualType ArgType = Context.getTypeDeclType(ClassDecl);
   10389   QualType RetType = Context.getLValueReferenceType(ArgType);
   10390   ArgType = Context.getRValueReferenceType(ArgType);
   10391 
   10392   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
   10393                                                      CXXMoveAssignment,
   10394                                                      false);
   10395 
   10396   //   An implicitly-declared move assignment operator is an inline public
   10397   //   member of its class.
   10398   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   10399   SourceLocation ClassLoc = ClassDecl->getLocation();
   10400   DeclarationNameInfo NameInfo(Name, ClassLoc);
   10401   CXXMethodDecl *MoveAssignment =
   10402       CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
   10403                             /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
   10404                             /*isInline=*/true, Constexpr, SourceLocation());
   10405   MoveAssignment->setAccess(AS_public);
   10406   MoveAssignment->setDefaulted();
   10407   MoveAssignment->setImplicit();
   10408 
   10409   if (getLangOpts().CUDA) {
   10410     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
   10411                                             MoveAssignment,
   10412                                             /* ConstRHS */ false,
   10413                                             /* Diagnose */ false);
   10414   }
   10415 
   10416   // Build an exception specification pointing back at this member.
   10417   FunctionProtoType::ExtProtoInfo EPI =
   10418       getImplicitMethodEPI(*this, MoveAssignment);
   10419   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
   10420 
   10421   // Add the parameter to the operator.
   10422   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
   10423                                                ClassLoc, ClassLoc,
   10424                                                /*Id=*/nullptr, ArgType,
   10425                                                /*TInfo=*/nullptr, SC_None,
   10426                                                nullptr);
   10427   MoveAssignment->setParams(FromParam);
   10428 
   10429   AddOverriddenMethods(ClassDecl, MoveAssignment);
   10430 
   10431   MoveAssignment->setTrivial(
   10432     ClassDecl->needsOverloadResolutionForMoveAssignment()
   10433       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
   10434       : ClassDecl->hasTrivialMoveAssignment());
   10435 
   10436   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
   10437     ClassDecl->setImplicitMoveAssignmentIsDeleted();
   10438     SetDeclDeleted(MoveAssignment, ClassLoc);
   10439   }
   10440 
   10441   // Note that we have added this copy-assignment operator.
   10442   ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
   10443 
   10444   if (Scope *S = getScopeForContext(ClassDecl))
   10445     PushOnScopeChains(MoveAssignment, S, false);
   10446   ClassDecl->addDecl(MoveAssignment);
   10447 
   10448   return MoveAssignment;
   10449 }
   10450 
   10451 /// Check if we're implicitly defining a move assignment operator for a class
   10452 /// with virtual bases. Such a move assignment might move-assign the virtual
   10453 /// base multiple times.
   10454 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
   10455                                                SourceLocation CurrentLocation) {
   10456   assert(!Class->isDependentContext() && "should not define dependent move");
   10457 
   10458   // Only a virtual base could get implicitly move-assigned multiple times.
   10459   // Only a non-trivial move assignment can observe this. We only want to
   10460   // diagnose if we implicitly define an assignment operator that assigns
   10461   // two base classes, both of which move-assign the same virtual base.
   10462   if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
   10463       Class->getNumBases() < 2)
   10464     return;
   10465 
   10466   llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
   10467   typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
   10468   VBaseMap VBases;
   10469 
   10470   for (auto &BI : Class->bases()) {
   10471     Worklist.push_back(&BI);
   10472     while (!Worklist.empty()) {
   10473       CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
   10474       CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
   10475 
   10476       // If the base has no non-trivial move assignment operators,
   10477       // we don't care about moves from it.
   10478       if (!Base->hasNonTrivialMoveAssignment())
   10479         continue;
   10480 
   10481       // If there's nothing virtual here, skip it.
   10482       if (!BaseSpec->isVirtual() && !Base->getNumVBases())
   10483         continue;
   10484 
   10485       // If we're not actually going to call a move assignment for this base,
   10486       // or the selected move assignment is trivial, skip it.
   10487       Sema::SpecialMemberOverloadResult *SMOR =
   10488         S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
   10489                               /*ConstArg*/false, /*VolatileArg*/false,
   10490                               /*RValueThis*/true, /*ConstThis*/false,
   10491                               /*VolatileThis*/false);
   10492       if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
   10493           !SMOR->getMethod()->isMoveAssignmentOperator())
   10494         continue;
   10495 
   10496       if (BaseSpec->isVirtual()) {
   10497         // We're going to move-assign this virtual base, and its move
   10498         // assignment operator is not trivial. If this can happen for
   10499         // multiple distinct direct bases of Class, diagnose it. (If it
   10500         // only happens in one base, we'll diagnose it when synthesizing
   10501         // that base class's move assignment operator.)
   10502         CXXBaseSpecifier *&Existing =
   10503             VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
   10504                 .first->second;
   10505         if (Existing && Existing != &BI) {
   10506           S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
   10507             << Class << Base;
   10508           S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
   10509             << (Base->getCanonicalDecl() ==
   10510                 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
   10511             << Base << Existing->getType() << Existing->getSourceRange();
   10512           S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
   10513             << (Base->getCanonicalDecl() ==
   10514                 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
   10515             << Base << BI.getType() << BaseSpec->getSourceRange();
   10516 
   10517           // Only diagnose each vbase once.
   10518           Existing = nullptr;
   10519         }
   10520       } else {
   10521         // Only walk over bases that have defaulted move assignment operators.
   10522         // We assume that any user-provided move assignment operator handles
   10523         // the multiple-moves-of-vbase case itself somehow.
   10524         if (!SMOR->getMethod()->isDefaulted())
   10525           continue;
   10526 
   10527         // We're going to move the base classes of Base. Add them to the list.
   10528         for (auto &BI : Base->bases())
   10529           Worklist.push_back(&BI);
   10530       }
   10531     }
   10532   }
   10533 }
   10534 
   10535 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
   10536                                         CXXMethodDecl *MoveAssignOperator) {
   10537   assert((MoveAssignOperator->isDefaulted() &&
   10538           MoveAssignOperator->isOverloadedOperator() &&
   10539           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
   10540           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
   10541           !MoveAssignOperator->isDeleted()) &&
   10542          "DefineImplicitMoveAssignment called for wrong function");
   10543 
   10544   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
   10545 
   10546   if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
   10547     MoveAssignOperator->setInvalidDecl();
   10548     return;
   10549   }
   10550 
   10551   MoveAssignOperator->markUsed(Context);
   10552 
   10553   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
   10554   DiagnosticErrorTrap Trap(Diags);
   10555 
   10556   // C++0x [class.copy]p28:
   10557   //   The implicitly-defined or move assignment operator for a non-union class
   10558   //   X performs memberwise move assignment of its subobjects. The direct base
   10559   //   classes of X are assigned first, in the order of their declaration in the
   10560   //   base-specifier-list, and then the immediate non-static data members of X
   10561   //   are assigned, in the order in which they were declared in the class
   10562   //   definition.
   10563 
   10564   // Issue a warning if our implicit move assignment operator will move
   10565   // from a virtual base more than once.
   10566   checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
   10567 
   10568   // The statements that form the synthesized function body.
   10569   SmallVector<Stmt*, 8> Statements;
   10570 
   10571   // The parameter for the "other" object, which we are move from.
   10572   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
   10573   QualType OtherRefType = Other->getType()->
   10574       getAs<RValueReferenceType>()->getPointeeType();
   10575   assert(!OtherRefType.getQualifiers() &&
   10576          "Bad argument type of defaulted move assignment");
   10577 
   10578   // Our location for everything implicitly-generated.
   10579   SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
   10580                            ? MoveAssignOperator->getLocEnd()
   10581                            : MoveAssignOperator->getLocation();
   10582 
   10583   // Builds a reference to the "other" object.
   10584   RefBuilder OtherRef(Other, OtherRefType);
   10585   // Cast to rvalue.
   10586   MoveCastBuilder MoveOther(OtherRef);
   10587 
   10588   // Builds the "this" pointer.
   10589   ThisBuilder This;
   10590 
   10591   // Assign base classes.
   10592   bool Invalid = false;
   10593   for (auto &Base : ClassDecl->bases()) {
   10594     // C++11 [class.copy]p28:
   10595     //   It is unspecified whether subobjects representing virtual base classes
   10596     //   are assigned more than once by the implicitly-defined copy assignment
   10597     //   operator.
   10598     // FIXME: Do not assign to a vbase that will be assigned by some other base
   10599     // class. For a move-assignment, this can result in the vbase being moved
   10600     // multiple times.
   10601 
   10602     // Form the assignment:
   10603     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
   10604     QualType BaseType = Base.getType().getUnqualifiedType();
   10605     if (!BaseType->isRecordType()) {
   10606       Invalid = true;
   10607       continue;
   10608     }
   10609 
   10610     CXXCastPath BasePath;
   10611     BasePath.push_back(&Base);
   10612 
   10613     // Construct the "from" expression, which is an implicit cast to the
   10614     // appropriately-qualified base type.
   10615     CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
   10616 
   10617     // Dereference "this".
   10618     DerefBuilder DerefThis(This);
   10619 
   10620     // Implicitly cast "this" to the appropriately-qualified base type.
   10621     CastBuilder To(DerefThis,
   10622                    Context.getCVRQualifiedType(
   10623                        BaseType, MoveAssignOperator->getTypeQualifiers()),
   10624                    VK_LValue, BasePath);
   10625 
   10626     // Build the move.
   10627     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
   10628                                             To, From,
   10629                                             /*CopyingBaseSubobject=*/true,
   10630                                             /*Copying=*/false);
   10631     if (Move.isInvalid()) {
   10632       Diag(CurrentLocation, diag::note_member_synthesized_at)
   10633         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   10634       MoveAssignOperator->setInvalidDecl();
   10635       return;
   10636     }
   10637 
   10638     // Success! Record the move.
   10639     Statements.push_back(Move.getAs<Expr>());
   10640   }
   10641 
   10642   // Assign non-static members.
   10643   for (auto *Field : ClassDecl->fields()) {
   10644     if (Field->isUnnamedBitfield())
   10645       continue;
   10646 
   10647     if (Field->isInvalidDecl()) {
   10648       Invalid = true;
   10649       continue;
   10650     }
   10651 
   10652     // Check for members of reference type; we can't move those.
   10653     if (Field->getType()->isReferenceType()) {
   10654       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   10655         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
   10656       Diag(Field->getLocation(), diag::note_declared_at);
   10657       Diag(CurrentLocation, diag::note_member_synthesized_at)
   10658         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   10659       Invalid = true;
   10660       continue;
   10661     }
   10662 
   10663     // Check for members of const-qualified, non-class type.
   10664     QualType BaseType = Context.getBaseElementType(Field->getType());
   10665     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
   10666       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   10667         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
   10668       Diag(Field->getLocation(), diag::note_declared_at);
   10669       Diag(CurrentLocation, diag::note_member_synthesized_at)
   10670         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   10671       Invalid = true;
   10672       continue;
   10673     }
   10674 
   10675     // Suppress assigning zero-width bitfields.
   10676     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
   10677       continue;
   10678 
   10679     QualType FieldType = Field->getType().getNonReferenceType();
   10680     if (FieldType->isIncompleteArrayType()) {
   10681       assert(ClassDecl->hasFlexibleArrayMember() &&
   10682              "Incomplete array type is not valid");
   10683       continue;
   10684     }
   10685 
   10686     // Build references to the field in the object we're copying from and to.
   10687     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
   10688                               LookupMemberName);
   10689     MemberLookup.addDecl(Field);
   10690     MemberLookup.resolveKind();
   10691     MemberBuilder From(MoveOther, OtherRefType,
   10692                        /*IsArrow=*/false, MemberLookup);
   10693     MemberBuilder To(This, getCurrentThisType(),
   10694                      /*IsArrow=*/true, MemberLookup);
   10695 
   10696     assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
   10697         "Member reference with rvalue base must be rvalue except for reference "
   10698         "members, which aren't allowed for move assignment.");
   10699 
   10700     // Build the move of this field.
   10701     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
   10702                                             To, From,
   10703                                             /*CopyingBaseSubobject=*/false,
   10704                                             /*Copying=*/false);
   10705     if (Move.isInvalid()) {
   10706       Diag(CurrentLocation, diag::note_member_synthesized_at)
   10707         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   10708       MoveAssignOperator->setInvalidDecl();
   10709       return;
   10710     }
   10711 
   10712     // Success! Record the copy.
   10713     Statements.push_back(Move.getAs<Stmt>());
   10714   }
   10715 
   10716   if (!Invalid) {
   10717     // Add a "return *this;"
   10718     ExprResult ThisObj =
   10719         CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
   10720 
   10721     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
   10722     if (Return.isInvalid())
   10723       Invalid = true;
   10724     else {
   10725       Statements.push_back(Return.getAs<Stmt>());
   10726 
   10727       if (Trap.hasErrorOccurred()) {
   10728         Diag(CurrentLocation, diag::note_member_synthesized_at)
   10729           << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   10730         Invalid = true;
   10731       }
   10732     }
   10733   }
   10734 
   10735   // The exception specification is needed because we are defining the
   10736   // function.
   10737   ResolveExceptionSpec(CurrentLocation,
   10738                        MoveAssignOperator->getType()->castAs<FunctionProtoType>());
   10739 
   10740   if (Invalid) {
   10741     MoveAssignOperator->setInvalidDecl();
   10742     return;
   10743   }
   10744 
   10745   StmtResult Body;
   10746   {
   10747     CompoundScopeRAII CompoundScope(*this);
   10748     Body = ActOnCompoundStmt(Loc, Loc, Statements,
   10749                              /*isStmtExpr=*/false);
   10750     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
   10751   }
   10752   MoveAssignOperator->setBody(Body.getAs<Stmt>());
   10753 
   10754   if (ASTMutationListener *L = getASTMutationListener()) {
   10755     L->CompletedImplicitDefinition(MoveAssignOperator);
   10756   }
   10757 }
   10758 
   10759 Sema::ImplicitExceptionSpecification
   10760 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
   10761   CXXRecordDecl *ClassDecl = MD->getParent();
   10762 
   10763   ImplicitExceptionSpecification ExceptSpec(*this);
   10764   if (ClassDecl->isInvalidDecl())
   10765     return ExceptSpec;
   10766 
   10767   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
   10768   assert(T->getNumParams() >= 1 && "not a copy ctor");
   10769   unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers();
   10770 
   10771   // C++ [except.spec]p14:
   10772   //   An implicitly declared special member function (Clause 12) shall have an
   10773   //   exception-specification. [...]
   10774   for (const auto &Base : ClassDecl->bases()) {
   10775     // Virtual bases are handled below.
   10776     if (Base.isVirtual())
   10777       continue;
   10778 
   10779     CXXRecordDecl *BaseClassDecl
   10780       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   10781     if (CXXConstructorDecl *CopyConstructor =
   10782           LookupCopyingConstructor(BaseClassDecl, Quals))
   10783       ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
   10784   }
   10785   for (const auto &Base : ClassDecl->vbases()) {
   10786     CXXRecordDecl *BaseClassDecl
   10787       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   10788     if (CXXConstructorDecl *CopyConstructor =
   10789           LookupCopyingConstructor(BaseClassDecl, Quals))
   10790       ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
   10791   }
   10792   for (const auto *Field : ClassDecl->fields()) {
   10793     QualType FieldType = Context.getBaseElementType(Field->getType());
   10794     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   10795       if (CXXConstructorDecl *CopyConstructor =
   10796               LookupCopyingConstructor(FieldClassDecl,
   10797                                        Quals | FieldType.getCVRQualifiers()))
   10798       ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
   10799     }
   10800   }
   10801 
   10802   return ExceptSpec;
   10803 }
   10804 
   10805 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
   10806                                                     CXXRecordDecl *ClassDecl) {
   10807   // C++ [class.copy]p4:
   10808   //   If the class definition does not explicitly declare a copy
   10809   //   constructor, one is declared implicitly.
   10810   assert(ClassDecl->needsImplicitCopyConstructor());
   10811 
   10812   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
   10813   if (DSM.isAlreadyBeingDeclared())
   10814     return nullptr;
   10815 
   10816   QualType ClassType = Context.getTypeDeclType(ClassDecl);
   10817   QualType ArgType = ClassType;
   10818   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
   10819   if (Const)
   10820     ArgType = ArgType.withConst();
   10821   ArgType = Context.getLValueReferenceType(ArgType);
   10822 
   10823   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
   10824                                                      CXXCopyConstructor,
   10825                                                      Const);
   10826 
   10827   DeclarationName Name
   10828     = Context.DeclarationNames.getCXXConstructorName(
   10829                                            Context.getCanonicalType(ClassType));
   10830   SourceLocation ClassLoc = ClassDecl->getLocation();
   10831   DeclarationNameInfo NameInfo(Name, ClassLoc);
   10832 
   10833   //   An implicitly-declared copy constructor is an inline public
   10834   //   member of its class.
   10835   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
   10836       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
   10837       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
   10838       Constexpr);
   10839   CopyConstructor->setAccess(AS_public);
   10840   CopyConstructor->setDefaulted();
   10841 
   10842   if (getLangOpts().CUDA) {
   10843     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
   10844                                             CopyConstructor,
   10845                                             /* ConstRHS */ Const,
   10846                                             /* Diagnose */ false);
   10847   }
   10848 
   10849   // Build an exception specification pointing back at this member.
   10850   FunctionProtoType::ExtProtoInfo EPI =
   10851       getImplicitMethodEPI(*this, CopyConstructor);
   10852   CopyConstructor->setType(
   10853       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
   10854 
   10855   // Add the parameter to the constructor.
   10856   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
   10857                                                ClassLoc, ClassLoc,
   10858                                                /*IdentifierInfo=*/nullptr,
   10859                                                ArgType, /*TInfo=*/nullptr,
   10860                                                SC_None, nullptr);
   10861   CopyConstructor->setParams(FromParam);
   10862 
   10863   CopyConstructor->setTrivial(
   10864     ClassDecl->needsOverloadResolutionForCopyConstructor()
   10865       ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
   10866       : ClassDecl->hasTrivialCopyConstructor());
   10867 
   10868   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
   10869     SetDeclDeleted(CopyConstructor, ClassLoc);
   10870 
   10871   // Note that we have declared this constructor.
   10872   ++ASTContext::NumImplicitCopyConstructorsDeclared;
   10873 
   10874   if (Scope *S = getScopeForContext(ClassDecl))
   10875     PushOnScopeChains(CopyConstructor, S, false);
   10876   ClassDecl->addDecl(CopyConstructor);
   10877 
   10878   return CopyConstructor;
   10879 }
   10880 
   10881 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
   10882                                    CXXConstructorDecl *CopyConstructor) {
   10883   assert((CopyConstructor->isDefaulted() &&
   10884           CopyConstructor->isCopyConstructor() &&
   10885           !CopyConstructor->doesThisDeclarationHaveABody() &&
   10886           !CopyConstructor->isDeleted()) &&
   10887          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
   10888 
   10889   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
   10890   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
   10891 
   10892   // C++11 [class.copy]p7:
   10893   //   The [definition of an implicitly declared copy constructor] is
   10894   //   deprecated if the class has a user-declared copy assignment operator
   10895   //   or a user-declared destructor.
   10896   if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
   10897     diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
   10898 
   10899   SynthesizedFunctionScope Scope(*this, CopyConstructor);
   10900   DiagnosticErrorTrap Trap(Diags);
   10901 
   10902   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
   10903       Trap.hasErrorOccurred()) {
   10904     Diag(CurrentLocation, diag::note_member_synthesized_at)
   10905       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
   10906     CopyConstructor->setInvalidDecl();
   10907   }  else {
   10908     SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
   10909                              ? CopyConstructor->getLocEnd()
   10910                              : CopyConstructor->getLocation();
   10911     Sema::CompoundScopeRAII CompoundScope(*this);
   10912     CopyConstructor->setBody(
   10913         ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
   10914   }
   10915 
   10916   // The exception specification is needed because we are defining the
   10917   // function.
   10918   ResolveExceptionSpec(CurrentLocation,
   10919                        CopyConstructor->getType()->castAs<FunctionProtoType>());
   10920 
   10921   CopyConstructor->markUsed(Context);
   10922   MarkVTableUsed(CurrentLocation, ClassDecl);
   10923 
   10924   if (ASTMutationListener *L = getASTMutationListener()) {
   10925     L->CompletedImplicitDefinition(CopyConstructor);
   10926   }
   10927 }
   10928 
   10929 Sema::ImplicitExceptionSpecification
   10930 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
   10931   CXXRecordDecl *ClassDecl = MD->getParent();
   10932 
   10933   // C++ [except.spec]p14:
   10934   //   An implicitly declared special member function (Clause 12) shall have an
   10935   //   exception-specification. [...]
   10936   ImplicitExceptionSpecification ExceptSpec(*this);
   10937   if (ClassDecl->isInvalidDecl())
   10938     return ExceptSpec;
   10939 
   10940   // Direct base-class constructors.
   10941   for (const auto &B : ClassDecl->bases()) {
   10942     if (B.isVirtual()) // Handled below.
   10943       continue;
   10944 
   10945     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
   10946       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   10947       CXXConstructorDecl *Constructor =
   10948           LookupMovingConstructor(BaseClassDecl, 0);
   10949       // If this is a deleted function, add it anyway. This might be conformant
   10950       // with the standard. This might not. I'm not sure. It might not matter.
   10951       if (Constructor)
   10952         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
   10953     }
   10954   }
   10955 
   10956   // Virtual base-class constructors.
   10957   for (const auto &B : ClassDecl->vbases()) {
   10958     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
   10959       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   10960       CXXConstructorDecl *Constructor =
   10961           LookupMovingConstructor(BaseClassDecl, 0);
   10962       // If this is a deleted function, add it anyway. This might be conformant
   10963       // with the standard. This might not. I'm not sure. It might not matter.
   10964       if (Constructor)
   10965         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
   10966     }
   10967   }
   10968 
   10969   // Field constructors.
   10970   for (const auto *F : ClassDecl->fields()) {
   10971     QualType FieldType = Context.getBaseElementType(F->getType());
   10972     if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
   10973       CXXConstructorDecl *Constructor =
   10974           LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
   10975       // If this is a deleted function, add it anyway. This might be conformant
   10976       // with the standard. This might not. I'm not sure. It might not matter.
   10977       // In particular, the problem is that this function never gets called. It
   10978       // might just be ill-formed because this function attempts to refer to
   10979       // a deleted function here.
   10980       if (Constructor)
   10981         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
   10982     }
   10983   }
   10984 
   10985   return ExceptSpec;
   10986 }
   10987 
   10988 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
   10989                                                     CXXRecordDecl *ClassDecl) {
   10990   assert(ClassDecl->needsImplicitMoveConstructor());
   10991 
   10992   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
   10993   if (DSM.isAlreadyBeingDeclared())
   10994     return nullptr;
   10995 
   10996   QualType ClassType = Context.getTypeDeclType(ClassDecl);
   10997   QualType ArgType = Context.getRValueReferenceType(ClassType);
   10998 
   10999   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
   11000                                                      CXXMoveConstructor,
   11001                                                      false);
   11002 
   11003   DeclarationName Name
   11004     = Context.DeclarationNames.getCXXConstructorName(
   11005                                            Context.getCanonicalType(ClassType));
   11006   SourceLocation ClassLoc = ClassDecl->getLocation();
   11007   DeclarationNameInfo NameInfo(Name, ClassLoc);
   11008 
   11009   // C++11 [class.copy]p11:
   11010   //   An implicitly-declared copy/move constructor is an inline public
   11011   //   member of its class.
   11012   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
   11013       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
   11014       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
   11015       Constexpr);
   11016   MoveConstructor->setAccess(AS_public);
   11017   MoveConstructor->setDefaulted();
   11018 
   11019   if (getLangOpts().CUDA) {
   11020     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
   11021                                             MoveConstructor,
   11022                                             /* ConstRHS */ false,
   11023                                             /* Diagnose */ false);
   11024   }
   11025 
   11026   // Build an exception specification pointing back at this member.
   11027   FunctionProtoType::ExtProtoInfo EPI =
   11028       getImplicitMethodEPI(*this, MoveConstructor);
   11029   MoveConstructor->setType(
   11030       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
   11031 
   11032   // Add the parameter to the constructor.
   11033   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
   11034                                                ClassLoc, ClassLoc,
   11035                                                /*IdentifierInfo=*/nullptr,
   11036                                                ArgType, /*TInfo=*/nullptr,
   11037                                                SC_None, nullptr);
   11038   MoveConstructor->setParams(FromParam);
   11039 
   11040   MoveConstructor->setTrivial(
   11041     ClassDecl->needsOverloadResolutionForMoveConstructor()
   11042       ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
   11043       : ClassDecl->hasTrivialMoveConstructor());
   11044 
   11045   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
   11046     ClassDecl->setImplicitMoveConstructorIsDeleted();
   11047     SetDeclDeleted(MoveConstructor, ClassLoc);
   11048   }
   11049 
   11050   // Note that we have declared this constructor.
   11051   ++ASTContext::NumImplicitMoveConstructorsDeclared;
   11052 
   11053   if (Scope *S = getScopeForContext(ClassDecl))
   11054     PushOnScopeChains(MoveConstructor, S, false);
   11055   ClassDecl->addDecl(MoveConstructor);
   11056 
   11057   return MoveConstructor;
   11058 }
   11059 
   11060 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
   11061                                    CXXConstructorDecl *MoveConstructor) {
   11062   assert((MoveConstructor->isDefaulted() &&
   11063           MoveConstructor->isMoveConstructor() &&
   11064           !MoveConstructor->doesThisDeclarationHaveABody() &&
   11065           !MoveConstructor->isDeleted()) &&
   11066          "DefineImplicitMoveConstructor - call it for implicit move ctor");
   11067 
   11068   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
   11069   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
   11070 
   11071   SynthesizedFunctionScope Scope(*this, MoveConstructor);
   11072   DiagnosticErrorTrap Trap(Diags);
   11073 
   11074   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
   11075       Trap.hasErrorOccurred()) {
   11076     Diag(CurrentLocation, diag::note_member_synthesized_at)
   11077       << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
   11078     MoveConstructor->setInvalidDecl();
   11079   }  else {
   11080     SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
   11081                              ? MoveConstructor->getLocEnd()
   11082                              : MoveConstructor->getLocation();
   11083     Sema::CompoundScopeRAII CompoundScope(*this);
   11084     MoveConstructor->setBody(ActOnCompoundStmt(
   11085         Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
   11086   }
   11087 
   11088   // The exception specification is needed because we are defining the
   11089   // function.
   11090   ResolveExceptionSpec(CurrentLocation,
   11091                        MoveConstructor->getType()->castAs<FunctionProtoType>());
   11092 
   11093   MoveConstructor->markUsed(Context);
   11094   MarkVTableUsed(CurrentLocation, ClassDecl);
   11095 
   11096   if (ASTMutationListener *L = getASTMutationListener()) {
   11097     L->CompletedImplicitDefinition(MoveConstructor);
   11098   }
   11099 }
   11100 
   11101 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
   11102   return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
   11103 }
   11104 
   11105 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
   11106                             SourceLocation CurrentLocation,
   11107                             CXXConversionDecl *Conv) {
   11108   CXXRecordDecl *Lambda = Conv->getParent();
   11109   CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
   11110   // If we are defining a specialization of a conversion to function-ptr
   11111   // cache the deduced template arguments for this specialization
   11112   // so that we can use them to retrieve the corresponding call-operator
   11113   // and static-invoker.
   11114   const TemplateArgumentList *DeducedTemplateArgs = nullptr;
   11115 
   11116   // Retrieve the corresponding call-operator specialization.
   11117   if (Lambda->isGenericLambda()) {
   11118     assert(Conv->isFunctionTemplateSpecialization());
   11119     FunctionTemplateDecl *CallOpTemplate =
   11120         CallOp->getDescribedFunctionTemplate();
   11121     DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
   11122     void *InsertPos = nullptr;
   11123     FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
   11124                                                 DeducedTemplateArgs->asArray(),
   11125                                                 InsertPos);
   11126     assert(CallOpSpec &&
   11127           "Conversion operator must have a corresponding call operator");
   11128     CallOp = cast<CXXMethodDecl>(CallOpSpec);
   11129   }
   11130   // Mark the call operator referenced (and add to pending instantiations
   11131   // if necessary).
   11132   // For both the conversion and static-invoker template specializations
   11133   // we construct their body's in this function, so no need to add them
   11134   // to the PendingInstantiations.
   11135   MarkFunctionReferenced(CurrentLocation, CallOp);
   11136 
   11137   SynthesizedFunctionScope Scope(*this, Conv);
   11138   DiagnosticErrorTrap Trap(Diags);
   11139 
   11140   // Retrieve the static invoker...
   11141   CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
   11142   // ... and get the corresponding specialization for a generic lambda.
   11143   if (Lambda->isGenericLambda()) {
   11144     assert(DeducedTemplateArgs &&
   11145       "Must have deduced template arguments from Conversion Operator");
   11146     FunctionTemplateDecl *InvokeTemplate =
   11147                           Invoker->getDescribedFunctionTemplate();
   11148     void *InsertPos = nullptr;
   11149     FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
   11150                                                 DeducedTemplateArgs->asArray(),
   11151                                                 InsertPos);
   11152     assert(InvokeSpec &&
   11153       "Must have a corresponding static invoker specialization");
   11154     Invoker = cast<CXXMethodDecl>(InvokeSpec);
   11155   }
   11156   // Construct the body of the conversion function { return __invoke; }.
   11157   Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
   11158                                         VK_LValue, Conv->getLocation()).get();
   11159    assert(FunctionRef && "Can't refer to __invoke function?");
   11160    Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
   11161    Conv->setBody(new (Context) CompoundStmt(Context, Return,
   11162                                             Conv->getLocation(),
   11163                                             Conv->getLocation()));
   11164 
   11165   Conv->markUsed(Context);
   11166   Conv->setReferenced();
   11167 
   11168   // Fill in the __invoke function with a dummy implementation. IR generation
   11169   // will fill in the actual details.
   11170   Invoker->markUsed(Context);
   11171   Invoker->setReferenced();
   11172   Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
   11173 
   11174   if (ASTMutationListener *L = getASTMutationListener()) {
   11175     L->CompletedImplicitDefinition(Conv);
   11176     L->CompletedImplicitDefinition(Invoker);
   11177    }
   11178 }
   11179 
   11180 
   11181 
   11182 void Sema::DefineImplicitLambdaToBlockPointerConversion(
   11183        SourceLocation CurrentLocation,
   11184        CXXConversionDecl *Conv)
   11185 {
   11186   assert(!Conv->getParent()->isGenericLambda());
   11187 
   11188   Conv->markUsed(Context);
   11189 
   11190   SynthesizedFunctionScope Scope(*this, Conv);
   11191   DiagnosticErrorTrap Trap(Diags);
   11192 
   11193   // Copy-initialize the lambda object as needed to capture it.
   11194   Expr *This = ActOnCXXThis(CurrentLocation).get();
   11195   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
   11196 
   11197   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
   11198                                                         Conv->getLocation(),
   11199                                                         Conv, DerefThis);
   11200 
   11201   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
   11202   // behavior.  Note that only the general conversion function does this
   11203   // (since it's unusable otherwise); in the case where we inline the
   11204   // block literal, it has block literal lifetime semantics.
   11205   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
   11206     BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
   11207                                           CK_CopyAndAutoreleaseBlockObject,
   11208                                           BuildBlock.get(), nullptr, VK_RValue);
   11209 
   11210   if (BuildBlock.isInvalid()) {
   11211     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
   11212     Conv->setInvalidDecl();
   11213     return;
   11214   }
   11215 
   11216   // Create the return statement that returns the block from the conversion
   11217   // function.
   11218   StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
   11219   if (Return.isInvalid()) {
   11220     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
   11221     Conv->setInvalidDecl();
   11222     return;
   11223   }
   11224 
   11225   // Set the body of the conversion function.
   11226   Stmt *ReturnS = Return.get();
   11227   Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
   11228                                            Conv->getLocation(),
   11229                                            Conv->getLocation()));
   11230 
   11231   // We're done; notify the mutation listener, if any.
   11232   if (ASTMutationListener *L = getASTMutationListener()) {
   11233     L->CompletedImplicitDefinition(Conv);
   11234   }
   11235 }
   11236 
   11237 /// \brief Determine whether the given list arguments contains exactly one
   11238 /// "real" (non-default) argument.
   11239 static bool hasOneRealArgument(MultiExprArg Args) {
   11240   switch (Args.size()) {
   11241   case 0:
   11242     return false;
   11243 
   11244   default:
   11245     if (!Args[1]->isDefaultArgument())
   11246       return false;
   11247 
   11248     // fall through
   11249   case 1:
   11250     return !Args[0]->isDefaultArgument();
   11251   }
   11252 
   11253   return false;
   11254 }
   11255 
   11256 ExprResult
   11257 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
   11258                             CXXConstructorDecl *Constructor,
   11259                             MultiExprArg ExprArgs,
   11260                             bool HadMultipleCandidates,
   11261                             bool IsListInitialization,
   11262                             bool IsStdInitListInitialization,
   11263                             bool RequiresZeroInit,
   11264                             unsigned ConstructKind,
   11265                             SourceRange ParenRange) {
   11266   bool Elidable = false;
   11267 
   11268   // C++0x [class.copy]p34:
   11269   //   When certain criteria are met, an implementation is allowed to
   11270   //   omit the copy/move construction of a class object, even if the
   11271   //   copy/move constructor and/or destructor for the object have
   11272   //   side effects. [...]
   11273   //     - when a temporary class object that has not been bound to a
   11274   //       reference (12.2) would be copied/moved to a class object
   11275   //       with the same cv-unqualified type, the copy/move operation
   11276   //       can be omitted by constructing the temporary object
   11277   //       directly into the target of the omitted copy/move
   11278   if (ConstructKind == CXXConstructExpr::CK_Complete &&
   11279       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
   11280     Expr *SubExpr = ExprArgs[0];
   11281     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
   11282   }
   11283 
   11284   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
   11285                                Elidable, ExprArgs, HadMultipleCandidates,
   11286                                IsListInitialization,
   11287                                IsStdInitListInitialization, RequiresZeroInit,
   11288                                ConstructKind, ParenRange);
   11289 }
   11290 
   11291 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
   11292 /// including handling of its default argument expressions.
   11293 ExprResult
   11294 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
   11295                             CXXConstructorDecl *Constructor, bool Elidable,
   11296                             MultiExprArg ExprArgs,
   11297                             bool HadMultipleCandidates,
   11298                             bool IsListInitialization,
   11299                             bool IsStdInitListInitialization,
   11300                             bool RequiresZeroInit,
   11301                             unsigned ConstructKind,
   11302                             SourceRange ParenRange) {
   11303   MarkFunctionReferenced(ConstructLoc, Constructor);
   11304   return CXXConstructExpr::Create(
   11305       Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
   11306       HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
   11307       RequiresZeroInit,
   11308       static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
   11309       ParenRange);
   11310 }
   11311 
   11312 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
   11313   assert(Field->hasInClassInitializer());
   11314 
   11315   // If we already have the in-class initializer nothing needs to be done.
   11316   if (Field->getInClassInitializer())
   11317     return CXXDefaultInitExpr::Create(Context, Loc, Field);
   11318 
   11319   // Maybe we haven't instantiated the in-class initializer. Go check the
   11320   // pattern FieldDecl to see if it has one.
   11321   CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
   11322 
   11323   if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
   11324     CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
   11325     DeclContext::lookup_result Lookup =
   11326         ClassPattern->lookup(Field->getDeclName());
   11327     assert(Lookup.size() == 1);
   11328     FieldDecl *Pattern = cast<FieldDecl>(Lookup[0]);
   11329     if (InstantiateInClassInitializer(Loc, Field, Pattern,
   11330                                       getTemplateInstantiationArgs(Field)))
   11331       return ExprError();
   11332     return CXXDefaultInitExpr::Create(Context, Loc, Field);
   11333   }
   11334 
   11335   // DR1351:
   11336   //   If the brace-or-equal-initializer of a non-static data member
   11337   //   invokes a defaulted default constructor of its class or of an
   11338   //   enclosing class in a potentially evaluated subexpression, the
   11339   //   program is ill-formed.
   11340   //
   11341   // This resolution is unworkable: the exception specification of the
   11342   // default constructor can be needed in an unevaluated context, in
   11343   // particular, in the operand of a noexcept-expression, and we can be
   11344   // unable to compute an exception specification for an enclosed class.
   11345   //
   11346   // Any attempt to resolve the exception specification of a defaulted default
   11347   // constructor before the initializer is lexically complete will ultimately
   11348   // come here at which point we can diagnose it.
   11349   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
   11350   if (OutermostClass == ParentRD) {
   11351     Diag(Field->getLocEnd(), diag::err_in_class_initializer_not_yet_parsed)
   11352         << ParentRD << Field;
   11353   } else {
   11354     Diag(Field->getLocEnd(),
   11355          diag::err_in_class_initializer_not_yet_parsed_outer_class)
   11356         << ParentRD << OutermostClass << Field;
   11357   }
   11358 
   11359   return ExprError();
   11360 }
   11361 
   11362 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
   11363   if (VD->isInvalidDecl()) return;
   11364 
   11365   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
   11366   if (ClassDecl->isInvalidDecl()) return;
   11367   if (ClassDecl->hasIrrelevantDestructor()) return;
   11368   if (ClassDecl->isDependentContext()) return;
   11369 
   11370   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
   11371   MarkFunctionReferenced(VD->getLocation(), Destructor);
   11372   CheckDestructorAccess(VD->getLocation(), Destructor,
   11373                         PDiag(diag::err_access_dtor_var)
   11374                         << VD->getDeclName()
   11375                         << VD->getType());
   11376   DiagnoseUseOfDecl(Destructor, VD->getLocation());
   11377 
   11378   if (Destructor->isTrivial()) return;
   11379   if (!VD->hasGlobalStorage()) return;
   11380 
   11381   // Emit warning for non-trivial dtor in global scope (a real global,
   11382   // class-static, function-static).
   11383   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
   11384 
   11385   // TODO: this should be re-enabled for static locals by !CXAAtExit
   11386   if (!VD->isStaticLocal())
   11387     Diag(VD->getLocation(), diag::warn_global_destructor);
   11388 }
   11389 
   11390 /// \brief Given a constructor and the set of arguments provided for the
   11391 /// constructor, convert the arguments and add any required default arguments
   11392 /// to form a proper call to this constructor.
   11393 ///
   11394 /// \returns true if an error occurred, false otherwise.
   11395 bool
   11396 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
   11397                               MultiExprArg ArgsPtr,
   11398                               SourceLocation Loc,
   11399                               SmallVectorImpl<Expr*> &ConvertedArgs,
   11400                               bool AllowExplicit,
   11401                               bool IsListInitialization) {
   11402   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
   11403   unsigned NumArgs = ArgsPtr.size();
   11404   Expr **Args = ArgsPtr.data();
   11405 
   11406   const FunctionProtoType *Proto
   11407     = Constructor->getType()->getAs<FunctionProtoType>();
   11408   assert(Proto && "Constructor without a prototype?");
   11409   unsigned NumParams = Proto->getNumParams();
   11410 
   11411   // If too few arguments are available, we'll fill in the rest with defaults.
   11412   if (NumArgs < NumParams)
   11413     ConvertedArgs.reserve(NumParams);
   11414   else
   11415     ConvertedArgs.reserve(NumArgs);
   11416 
   11417   VariadicCallType CallType =
   11418     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
   11419   SmallVector<Expr *, 8> AllArgs;
   11420   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
   11421                                         Proto, 0,
   11422                                         llvm::makeArrayRef(Args, NumArgs),
   11423                                         AllArgs,
   11424                                         CallType, AllowExplicit,
   11425                                         IsListInitialization);
   11426   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
   11427 
   11428   DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
   11429 
   11430   CheckConstructorCall(Constructor,
   11431                        llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
   11432                        Proto, Loc);
   11433 
   11434   return Invalid;
   11435 }
   11436 
   11437 static inline bool
   11438 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
   11439                                        const FunctionDecl *FnDecl) {
   11440   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
   11441   if (isa<NamespaceDecl>(DC)) {
   11442     return SemaRef.Diag(FnDecl->getLocation(),
   11443                         diag::err_operator_new_delete_declared_in_namespace)
   11444       << FnDecl->getDeclName();
   11445   }
   11446 
   11447   if (isa<TranslationUnitDecl>(DC) &&
   11448       FnDecl->getStorageClass() == SC_Static) {
   11449     return SemaRef.Diag(FnDecl->getLocation(),
   11450                         diag::err_operator_new_delete_declared_static)
   11451       << FnDecl->getDeclName();
   11452   }
   11453 
   11454   return false;
   11455 }
   11456 
   11457 static inline bool
   11458 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
   11459                             CanQualType ExpectedResultType,
   11460                             CanQualType ExpectedFirstParamType,
   11461                             unsigned DependentParamTypeDiag,
   11462                             unsigned InvalidParamTypeDiag) {
   11463   QualType ResultType =
   11464       FnDecl->getType()->getAs<FunctionType>()->getReturnType();
   11465 
   11466   // Check that the result type is not dependent.
   11467   if (ResultType->isDependentType())
   11468     return SemaRef.Diag(FnDecl->getLocation(),
   11469                         diag::err_operator_new_delete_dependent_result_type)
   11470     << FnDecl->getDeclName() << ExpectedResultType;
   11471 
   11472   // Check that the result type is what we expect.
   11473   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
   11474     return SemaRef.Diag(FnDecl->getLocation(),
   11475                         diag::err_operator_new_delete_invalid_result_type)
   11476     << FnDecl->getDeclName() << ExpectedResultType;
   11477 
   11478   // A function template must have at least 2 parameters.
   11479   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
   11480     return SemaRef.Diag(FnDecl->getLocation(),
   11481                       diag::err_operator_new_delete_template_too_few_parameters)
   11482         << FnDecl->getDeclName();
   11483 
   11484   // The function decl must have at least 1 parameter.
   11485   if (FnDecl->getNumParams() == 0)
   11486     return SemaRef.Diag(FnDecl->getLocation(),
   11487                         diag::err_operator_new_delete_too_few_parameters)
   11488       << FnDecl->getDeclName();
   11489 
   11490   // Check the first parameter type is not dependent.
   11491   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
   11492   if (FirstParamType->isDependentType())
   11493     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
   11494       << FnDecl->getDeclName() << ExpectedFirstParamType;
   11495 
   11496   // Check that the first parameter type is what we expect.
   11497   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
   11498       ExpectedFirstParamType)
   11499     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
   11500     << FnDecl->getDeclName() << ExpectedFirstParamType;
   11501 
   11502   return false;
   11503 }
   11504 
   11505 static bool
   11506 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
   11507   // C++ [basic.stc.dynamic.allocation]p1:
   11508   //   A program is ill-formed if an allocation function is declared in a
   11509   //   namespace scope other than global scope or declared static in global
   11510   //   scope.
   11511   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
   11512     return true;
   11513 
   11514   CanQualType SizeTy =
   11515     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
   11516 
   11517   // C++ [basic.stc.dynamic.allocation]p1:
   11518   //  The return type shall be void*. The first parameter shall have type
   11519   //  std::size_t.
   11520   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
   11521                                   SizeTy,
   11522                                   diag::err_operator_new_dependent_param_type,
   11523                                   diag::err_operator_new_param_type))
   11524     return true;
   11525 
   11526   // C++ [basic.stc.dynamic.allocation]p1:
   11527   //  The first parameter shall not have an associated default argument.
   11528   if (FnDecl->getParamDecl(0)->hasDefaultArg())
   11529     return SemaRef.Diag(FnDecl->getLocation(),
   11530                         diag::err_operator_new_default_arg)
   11531       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
   11532 
   11533   return false;
   11534 }
   11535 
   11536 static bool
   11537 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
   11538   // C++ [basic.stc.dynamic.deallocation]p1:
   11539   //   A program is ill-formed if deallocation functions are declared in a
   11540   //   namespace scope other than global scope or declared static in global
   11541   //   scope.
   11542   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
   11543     return true;
   11544 
   11545   // C++ [basic.stc.dynamic.deallocation]p2:
   11546   //   Each deallocation function shall return void and its first parameter
   11547   //   shall be void*.
   11548   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
   11549                                   SemaRef.Context.VoidPtrTy,
   11550                                  diag::err_operator_delete_dependent_param_type,
   11551                                  diag::err_operator_delete_param_type))
   11552     return true;
   11553 
   11554   return false;
   11555 }
   11556 
   11557 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
   11558 /// of this overloaded operator is well-formed. If so, returns false;
   11559 /// otherwise, emits appropriate diagnostics and returns true.
   11560 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
   11561   assert(FnDecl && FnDecl->isOverloadedOperator() &&
   11562          "Expected an overloaded operator declaration");
   11563 
   11564   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
   11565 
   11566   // C++ [over.oper]p5:
   11567   //   The allocation and deallocation functions, operator new,
   11568   //   operator new[], operator delete and operator delete[], are
   11569   //   described completely in 3.7.3. The attributes and restrictions
   11570   //   found in the rest of this subclause do not apply to them unless
   11571   //   explicitly stated in 3.7.3.
   11572   if (Op == OO_Delete || Op == OO_Array_Delete)
   11573     return CheckOperatorDeleteDeclaration(*this, FnDecl);
   11574 
   11575   if (Op == OO_New || Op == OO_Array_New)
   11576     return CheckOperatorNewDeclaration(*this, FnDecl);
   11577 
   11578   // C++ [over.oper]p6:
   11579   //   An operator function shall either be a non-static member
   11580   //   function or be a non-member function and have at least one
   11581   //   parameter whose type is a class, a reference to a class, an
   11582   //   enumeration, or a reference to an enumeration.
   11583   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
   11584     if (MethodDecl->isStatic())
   11585       return Diag(FnDecl->getLocation(),
   11586                   diag::err_operator_overload_static) << FnDecl->getDeclName();
   11587   } else {
   11588     bool ClassOrEnumParam = false;
   11589     for (auto Param : FnDecl->params()) {
   11590       QualType ParamType = Param->getType().getNonReferenceType();
   11591       if (ParamType->isDependentType() || ParamType->isRecordType() ||
   11592           ParamType->isEnumeralType()) {
   11593         ClassOrEnumParam = true;
   11594         break;
   11595       }
   11596     }
   11597 
   11598     if (!ClassOrEnumParam)
   11599       return Diag(FnDecl->getLocation(),
   11600                   diag::err_operator_overload_needs_class_or_enum)
   11601         << FnDecl->getDeclName();
   11602   }
   11603 
   11604   // C++ [over.oper]p8:
   11605   //   An operator function cannot have default arguments (8.3.6),
   11606   //   except where explicitly stated below.
   11607   //
   11608   // Only the function-call operator allows default arguments
   11609   // (C++ [over.call]p1).
   11610   if (Op != OO_Call) {
   11611     for (auto Param : FnDecl->params()) {
   11612       if (Param->hasDefaultArg())
   11613         return Diag(Param->getLocation(),
   11614                     diag::err_operator_overload_default_arg)
   11615           << FnDecl->getDeclName() << Param->getDefaultArgRange();
   11616     }
   11617   }
   11618 
   11619   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
   11620     { false, false, false }
   11621 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
   11622     , { Unary, Binary, MemberOnly }
   11623 #include "clang/Basic/OperatorKinds.def"
   11624   };
   11625 
   11626   bool CanBeUnaryOperator = OperatorUses[Op][0];
   11627   bool CanBeBinaryOperator = OperatorUses[Op][1];
   11628   bool MustBeMemberOperator = OperatorUses[Op][2];
   11629 
   11630   // C++ [over.oper]p8:
   11631   //   [...] Operator functions cannot have more or fewer parameters
   11632   //   than the number required for the corresponding operator, as
   11633   //   described in the rest of this subclause.
   11634   unsigned NumParams = FnDecl->getNumParams()
   11635                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
   11636   if (Op != OO_Call &&
   11637       ((NumParams == 1 && !CanBeUnaryOperator) ||
   11638        (NumParams == 2 && !CanBeBinaryOperator) ||
   11639        (NumParams < 1) || (NumParams > 2))) {
   11640     // We have the wrong number of parameters.
   11641     unsigned ErrorKind;
   11642     if (CanBeUnaryOperator && CanBeBinaryOperator) {
   11643       ErrorKind = 2;  // 2 -> unary or binary.
   11644     } else if (CanBeUnaryOperator) {
   11645       ErrorKind = 0;  // 0 -> unary
   11646     } else {
   11647       assert(CanBeBinaryOperator &&
   11648              "All non-call overloaded operators are unary or binary!");
   11649       ErrorKind = 1;  // 1 -> binary
   11650     }
   11651 
   11652     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
   11653       << FnDecl->getDeclName() << NumParams << ErrorKind;
   11654   }
   11655 
   11656   // Overloaded operators other than operator() cannot be variadic.
   11657   if (Op != OO_Call &&
   11658       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
   11659     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
   11660       << FnDecl->getDeclName();
   11661   }
   11662 
   11663   // Some operators must be non-static member functions.
   11664   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
   11665     return Diag(FnDecl->getLocation(),
   11666                 diag::err_operator_overload_must_be_member)
   11667       << FnDecl->getDeclName();
   11668   }
   11669 
   11670   // C++ [over.inc]p1:
   11671   //   The user-defined function called operator++ implements the
   11672   //   prefix and postfix ++ operator. If this function is a member
   11673   //   function with no parameters, or a non-member function with one
   11674   //   parameter of class or enumeration type, it defines the prefix
   11675   //   increment operator ++ for objects of that type. If the function
   11676   //   is a member function with one parameter (which shall be of type
   11677   //   int) or a non-member function with two parameters (the second
   11678   //   of which shall be of type int), it defines the postfix
   11679   //   increment operator ++ for objects of that type.
   11680   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
   11681     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
   11682     QualType ParamType = LastParam->getType();
   11683 
   11684     if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
   11685         !ParamType->isDependentType())
   11686       return Diag(LastParam->getLocation(),
   11687                   diag::err_operator_overload_post_incdec_must_be_int)
   11688         << LastParam->getType() << (Op == OO_MinusMinus);
   11689   }
   11690 
   11691   return false;
   11692 }
   11693 
   11694 /// CheckLiteralOperatorDeclaration - Check whether the declaration
   11695 /// of this literal operator function is well-formed. If so, returns
   11696 /// false; otherwise, emits appropriate diagnostics and returns true.
   11697 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
   11698   if (isa<CXXMethodDecl>(FnDecl)) {
   11699     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
   11700       << FnDecl->getDeclName();
   11701     return true;
   11702   }
   11703 
   11704   if (FnDecl->isExternC()) {
   11705     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
   11706     return true;
   11707   }
   11708 
   11709   bool Valid = false;
   11710 
   11711   // This might be the definition of a literal operator template.
   11712   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
   11713   // This might be a specialization of a literal operator template.
   11714   if (!TpDecl)
   11715     TpDecl = FnDecl->getPrimaryTemplate();
   11716 
   11717   // template <char...> type operator "" name() and
   11718   // template <class T, T...> type operator "" name() are the only valid
   11719   // template signatures, and the only valid signatures with no parameters.
   11720   if (TpDecl) {
   11721     if (FnDecl->param_size() == 0) {
   11722       // Must have one or two template parameters
   11723       TemplateParameterList *Params = TpDecl->getTemplateParameters();
   11724       if (Params->size() == 1) {
   11725         NonTypeTemplateParmDecl *PmDecl =
   11726           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
   11727 
   11728         // The template parameter must be a char parameter pack.
   11729         if (PmDecl && PmDecl->isTemplateParameterPack() &&
   11730             Context.hasSameType(PmDecl->getType(), Context.CharTy))
   11731           Valid = true;
   11732       } else if (Params->size() == 2) {
   11733         TemplateTypeParmDecl *PmType =
   11734           dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
   11735         NonTypeTemplateParmDecl *PmArgs =
   11736           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
   11737 
   11738         // The second template parameter must be a parameter pack with the
   11739         // first template parameter as its type.
   11740         if (PmType && PmArgs &&
   11741             !PmType->isTemplateParameterPack() &&
   11742             PmArgs->isTemplateParameterPack()) {
   11743           const TemplateTypeParmType *TArgs =
   11744             PmArgs->getType()->getAs<TemplateTypeParmType>();
   11745           if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
   11746               TArgs->getIndex() == PmType->getIndex()) {
   11747             Valid = true;
   11748             if (ActiveTemplateInstantiations.empty())
   11749               Diag(FnDecl->getLocation(),
   11750                    diag::ext_string_literal_operator_template);
   11751           }
   11752         }
   11753       }
   11754     }
   11755   } else if (FnDecl->param_size()) {
   11756     // Check the first parameter
   11757     FunctionDecl::param_iterator Param = FnDecl->param_begin();
   11758 
   11759     QualType T = (*Param)->getType().getUnqualifiedType();
   11760 
   11761     // unsigned long long int, long double, and any character type are allowed
   11762     // as the only parameters.
   11763     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
   11764         Context.hasSameType(T, Context.LongDoubleTy) ||
   11765         Context.hasSameType(T, Context.CharTy) ||
   11766         Context.hasSameType(T, Context.WideCharTy) ||
   11767         Context.hasSameType(T, Context.Char16Ty) ||
   11768         Context.hasSameType(T, Context.Char32Ty)) {
   11769       if (++Param == FnDecl->param_end())
   11770         Valid = true;
   11771       goto FinishedParams;
   11772     }
   11773 
   11774     // Otherwise it must be a pointer to const; let's strip those qualifiers.
   11775     const PointerType *PT = T->getAs<PointerType>();
   11776     if (!PT)
   11777       goto FinishedParams;
   11778     T = PT->getPointeeType();
   11779     if (!T.isConstQualified() || T.isVolatileQualified())
   11780       goto FinishedParams;
   11781     T = T.getUnqualifiedType();
   11782 
   11783     // Move on to the second parameter;
   11784     ++Param;
   11785 
   11786     // If there is no second parameter, the first must be a const char *
   11787     if (Param == FnDecl->param_end()) {
   11788       if (Context.hasSameType(T, Context.CharTy))
   11789         Valid = true;
   11790       goto FinishedParams;
   11791     }
   11792 
   11793     // const char *, const wchar_t*, const char16_t*, and const char32_t*
   11794     // are allowed as the first parameter to a two-parameter function
   11795     if (!(Context.hasSameType(T, Context.CharTy) ||
   11796           Context.hasSameType(T, Context.WideCharTy) ||
   11797           Context.hasSameType(T, Context.Char16Ty) ||
   11798           Context.hasSameType(T, Context.Char32Ty)))
   11799       goto FinishedParams;
   11800 
   11801     // The second and final parameter must be an std::size_t
   11802     T = (*Param)->getType().getUnqualifiedType();
   11803     if (Context.hasSameType(T, Context.getSizeType()) &&
   11804         ++Param == FnDecl->param_end())
   11805       Valid = true;
   11806   }
   11807 
   11808   // FIXME: This diagnostic is absolutely terrible.
   11809 FinishedParams:
   11810   if (!Valid) {
   11811     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
   11812       << FnDecl->getDeclName();
   11813     return true;
   11814   }
   11815 
   11816   // A parameter-declaration-clause containing a default argument is not
   11817   // equivalent to any of the permitted forms.
   11818   for (auto Param : FnDecl->params()) {
   11819     if (Param->hasDefaultArg()) {
   11820       Diag(Param->getDefaultArgRange().getBegin(),
   11821            diag::err_literal_operator_default_argument)
   11822         << Param->getDefaultArgRange();
   11823       break;
   11824     }
   11825   }
   11826 
   11827   StringRef LiteralName
   11828     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
   11829   if (LiteralName[0] != '_') {
   11830     // C++11 [usrlit.suffix]p1:
   11831     //   Literal suffix identifiers that do not start with an underscore
   11832     //   are reserved for future standardization.
   11833     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
   11834       << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
   11835   }
   11836 
   11837   return false;
   11838 }
   11839 
   11840 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
   11841 /// linkage specification, including the language and (if present)
   11842 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
   11843 /// language string literal. LBraceLoc, if valid, provides the location of
   11844 /// the '{' brace. Otherwise, this linkage specification does not
   11845 /// have any braces.
   11846 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
   11847                                            Expr *LangStr,
   11848                                            SourceLocation LBraceLoc) {
   11849   StringLiteral *Lit = cast<StringLiteral>(LangStr);
   11850   if (!Lit->isAscii()) {
   11851     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
   11852       << LangStr->getSourceRange();
   11853     return nullptr;
   11854   }
   11855 
   11856   StringRef Lang = Lit->getString();
   11857   LinkageSpecDecl::LanguageIDs Language;
   11858   if (Lang == "C")
   11859     Language = LinkageSpecDecl::lang_c;
   11860   else if (Lang == "C++")
   11861     Language = LinkageSpecDecl::lang_cxx;
   11862   else {
   11863     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
   11864       << LangStr->getSourceRange();
   11865     return nullptr;
   11866   }
   11867 
   11868   // FIXME: Add all the various semantics of linkage specifications
   11869 
   11870   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
   11871                                                LangStr->getExprLoc(), Language,
   11872                                                LBraceLoc.isValid());
   11873   CurContext->addDecl(D);
   11874   PushDeclContext(S, D);
   11875   return D;
   11876 }
   11877 
   11878 /// ActOnFinishLinkageSpecification - Complete the definition of
   11879 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
   11880 /// valid, it's the position of the closing '}' brace in a linkage
   11881 /// specification that uses braces.
   11882 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
   11883                                             Decl *LinkageSpec,
   11884                                             SourceLocation RBraceLoc) {
   11885   if (RBraceLoc.isValid()) {
   11886     LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
   11887     LSDecl->setRBraceLoc(RBraceLoc);
   11888   }
   11889   PopDeclContext();
   11890   return LinkageSpec;
   11891 }
   11892 
   11893 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
   11894                                   AttributeList *AttrList,
   11895                                   SourceLocation SemiLoc) {
   11896   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
   11897   // Attribute declarations appertain to empty declaration so we handle
   11898   // them here.
   11899   if (AttrList)
   11900     ProcessDeclAttributeList(S, ED, AttrList);
   11901 
   11902   CurContext->addDecl(ED);
   11903   return ED;
   11904 }
   11905 
   11906 /// \brief Perform semantic analysis for the variable declaration that
   11907 /// occurs within a C++ catch clause, returning the newly-created
   11908 /// variable.
   11909 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
   11910                                          TypeSourceInfo *TInfo,
   11911                                          SourceLocation StartLoc,
   11912                                          SourceLocation Loc,
   11913                                          IdentifierInfo *Name) {
   11914   bool Invalid = false;
   11915   QualType ExDeclType = TInfo->getType();
   11916 
   11917   // Arrays and functions decay.
   11918   if (ExDeclType->isArrayType())
   11919     ExDeclType = Context.getArrayDecayedType(ExDeclType);
   11920   else if (ExDeclType->isFunctionType())
   11921     ExDeclType = Context.getPointerType(ExDeclType);
   11922 
   11923   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
   11924   // The exception-declaration shall not denote a pointer or reference to an
   11925   // incomplete type, other than [cv] void*.
   11926   // N2844 forbids rvalue references.
   11927   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
   11928     Diag(Loc, diag::err_catch_rvalue_ref);
   11929     Invalid = true;
   11930   }
   11931 
   11932   QualType BaseType = ExDeclType;
   11933   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
   11934   unsigned DK = diag::err_catch_incomplete;
   11935   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
   11936     BaseType = Ptr->getPointeeType();
   11937     Mode = 1;
   11938     DK = diag::err_catch_incomplete_ptr;
   11939   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
   11940     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
   11941     BaseType = Ref->getPointeeType();
   11942     Mode = 2;
   11943     DK = diag::err_catch_incomplete_ref;
   11944   }
   11945   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
   11946       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
   11947     Invalid = true;
   11948 
   11949   if (!Invalid && !ExDeclType->isDependentType() &&
   11950       RequireNonAbstractType(Loc, ExDeclType,
   11951                              diag::err_abstract_type_in_decl,
   11952                              AbstractVariableType))
   11953     Invalid = true;
   11954 
   11955   // Only the non-fragile NeXT runtime currently supports C++ catches
   11956   // of ObjC types, and no runtime supports catching ObjC types by value.
   11957   if (!Invalid && getLangOpts().ObjC1) {
   11958     QualType T = ExDeclType;
   11959     if (const ReferenceType *RT = T->getAs<ReferenceType>())
   11960       T = RT->getPointeeType();
   11961 
   11962     if (T->isObjCObjectType()) {
   11963       Diag(Loc, diag::err_objc_object_catch);
   11964       Invalid = true;
   11965     } else if (T->isObjCObjectPointerType()) {
   11966       // FIXME: should this be a test for macosx-fragile specifically?
   11967       if (getLangOpts().ObjCRuntime.isFragile())
   11968         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
   11969     }
   11970   }
   11971 
   11972   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
   11973                                     ExDeclType, TInfo, SC_None);
   11974   ExDecl->setExceptionVariable(true);
   11975 
   11976   // In ARC, infer 'retaining' for variables of retainable type.
   11977   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
   11978     Invalid = true;
   11979 
   11980   if (!Invalid && !ExDeclType->isDependentType()) {
   11981     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
   11982       // Insulate this from anything else we might currently be parsing.
   11983       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
   11984 
   11985       // C++ [except.handle]p16:
   11986       //   The object declared in an exception-declaration or, if the
   11987       //   exception-declaration does not specify a name, a temporary (12.2) is
   11988       //   copy-initialized (8.5) from the exception object. [...]
   11989       //   The object is destroyed when the handler exits, after the destruction
   11990       //   of any automatic objects initialized within the handler.
   11991       //
   11992       // We just pretend to initialize the object with itself, then make sure
   11993       // it can be destroyed later.
   11994       QualType initType = Context.getExceptionObjectType(ExDeclType);
   11995 
   11996       InitializedEntity entity =
   11997         InitializedEntity::InitializeVariable(ExDecl);
   11998       InitializationKind initKind =
   11999         InitializationKind::CreateCopy(Loc, SourceLocation());
   12000 
   12001       Expr *opaqueValue =
   12002         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
   12003       InitializationSequence sequence(*this, entity, initKind, opaqueValue);
   12004       ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
   12005       if (result.isInvalid())
   12006         Invalid = true;
   12007       else {
   12008         // If the constructor used was non-trivial, set this as the
   12009         // "initializer".
   12010         CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
   12011         if (!construct->getConstructor()->isTrivial()) {
   12012           Expr *init = MaybeCreateExprWithCleanups(construct);
   12013           ExDecl->setInit(init);
   12014         }
   12015 
   12016         // And make sure it's destructable.
   12017         FinalizeVarWithDestructor(ExDecl, recordType);
   12018       }
   12019     }
   12020   }
   12021 
   12022   if (Invalid)
   12023     ExDecl->setInvalidDecl();
   12024 
   12025   return ExDecl;
   12026 }
   12027 
   12028 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
   12029 /// handler.
   12030 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
   12031   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   12032   bool Invalid = D.isInvalidType();
   12033 
   12034   // Check for unexpanded parameter packs.
   12035   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   12036                                       UPPC_ExceptionType)) {
   12037     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
   12038                                              D.getIdentifierLoc());
   12039     Invalid = true;
   12040   }
   12041 
   12042   IdentifierInfo *II = D.getIdentifier();
   12043   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
   12044                                              LookupOrdinaryName,
   12045                                              ForRedeclaration)) {
   12046     // The scope should be freshly made just for us. There is just no way
   12047     // it contains any previous declaration, except for function parameters in
   12048     // a function-try-block's catch statement.
   12049     assert(!S->isDeclScope(PrevDecl));
   12050     if (isDeclInScope(PrevDecl, CurContext, S)) {
   12051       Diag(D.getIdentifierLoc(), diag::err_redefinition)
   12052         << D.getIdentifier();
   12053       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   12054       Invalid = true;
   12055     } else if (PrevDecl->isTemplateParameter())
   12056       // Maybe we will complain about the shadowed template parameter.
   12057       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   12058   }
   12059 
   12060   if (D.getCXXScopeSpec().isSet() && !Invalid) {
   12061     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
   12062       << D.getCXXScopeSpec().getRange();
   12063     Invalid = true;
   12064   }
   12065 
   12066   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
   12067                                               D.getLocStart(),
   12068                                               D.getIdentifierLoc(),
   12069                                               D.getIdentifier());
   12070   if (Invalid)
   12071     ExDecl->setInvalidDecl();
   12072 
   12073   // Add the exception declaration into this scope.
   12074   if (II)
   12075     PushOnScopeChains(ExDecl, S);
   12076   else
   12077     CurContext->addDecl(ExDecl);
   12078 
   12079   ProcessDeclAttributes(S, ExDecl, D);
   12080   return ExDecl;
   12081 }
   12082 
   12083 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
   12084                                          Expr *AssertExpr,
   12085                                          Expr *AssertMessageExpr,
   12086                                          SourceLocation RParenLoc) {
   12087   StringLiteral *AssertMessage =
   12088       AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
   12089 
   12090   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
   12091     return nullptr;
   12092 
   12093   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
   12094                                       AssertMessage, RParenLoc, false);
   12095 }
   12096 
   12097 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
   12098                                          Expr *AssertExpr,
   12099                                          StringLiteral *AssertMessage,
   12100                                          SourceLocation RParenLoc,
   12101                                          bool Failed) {
   12102   assert(AssertExpr != nullptr && "Expected non-null condition");
   12103   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
   12104       !Failed) {
   12105     // In a static_assert-declaration, the constant-expression shall be a
   12106     // constant expression that can be contextually converted to bool.
   12107     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
   12108     if (Converted.isInvalid())
   12109       Failed = true;
   12110 
   12111     llvm::APSInt Cond;
   12112     if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
   12113           diag::err_static_assert_expression_is_not_constant,
   12114           /*AllowFold=*/false).isInvalid())
   12115       Failed = true;
   12116 
   12117     if (!Failed && !Cond) {
   12118       SmallString<256> MsgBuffer;
   12119       llvm::raw_svector_ostream Msg(MsgBuffer);
   12120       if (AssertMessage)
   12121         AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
   12122       Diag(StaticAssertLoc, diag::err_static_assert_failed)
   12123         << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
   12124       Failed = true;
   12125     }
   12126   }
   12127 
   12128   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
   12129                                         AssertExpr, AssertMessage, RParenLoc,
   12130                                         Failed);
   12131 
   12132   CurContext->addDecl(Decl);
   12133   return Decl;
   12134 }
   12135 
   12136 /// \brief Perform semantic analysis of the given friend type declaration.
   12137 ///
   12138 /// \returns A friend declaration that.
   12139 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
   12140                                       SourceLocation FriendLoc,
   12141                                       TypeSourceInfo *TSInfo) {
   12142   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
   12143 
   12144   QualType T = TSInfo->getType();
   12145   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
   12146 
   12147   // C++03 [class.friend]p2:
   12148   //   An elaborated-type-specifier shall be used in a friend declaration
   12149   //   for a class.*
   12150   //
   12151   //   * The class-key of the elaborated-type-specifier is required.
   12152   if (!ActiveTemplateInstantiations.empty()) {
   12153     // Do not complain about the form of friend template types during
   12154     // template instantiation; we will already have complained when the
   12155     // template was declared.
   12156   } else {
   12157     if (!T->isElaboratedTypeSpecifier()) {
   12158       // If we evaluated the type to a record type, suggest putting
   12159       // a tag in front.
   12160       if (const RecordType *RT = T->getAs<RecordType>()) {
   12161         RecordDecl *RD = RT->getDecl();
   12162 
   12163         SmallString<16> InsertionText(" ");
   12164         InsertionText += RD->getKindName();
   12165 
   12166         Diag(TypeRange.getBegin(),
   12167              getLangOpts().CPlusPlus11 ?
   12168                diag::warn_cxx98_compat_unelaborated_friend_type :
   12169                diag::ext_unelaborated_friend_type)
   12170           << (unsigned) RD->getTagKind()
   12171           << T
   12172           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
   12173                                         InsertionText);
   12174       } else {
   12175         Diag(FriendLoc,
   12176              getLangOpts().CPlusPlus11 ?
   12177                diag::warn_cxx98_compat_nonclass_type_friend :
   12178                diag::ext_nonclass_type_friend)
   12179           << T
   12180           << TypeRange;
   12181       }
   12182     } else if (T->getAs<EnumType>()) {
   12183       Diag(FriendLoc,
   12184            getLangOpts().CPlusPlus11 ?
   12185              diag::warn_cxx98_compat_enum_friend :
   12186              diag::ext_enum_friend)
   12187         << T
   12188         << TypeRange;
   12189     }
   12190 
   12191     // C++11 [class.friend]p3:
   12192     //   A friend declaration that does not declare a function shall have one
   12193     //   of the following forms:
   12194     //     friend elaborated-type-specifier ;
   12195     //     friend simple-type-specifier ;
   12196     //     friend typename-specifier ;
   12197     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
   12198       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
   12199   }
   12200 
   12201   //   If the type specifier in a friend declaration designates a (possibly
   12202   //   cv-qualified) class type, that class is declared as a friend; otherwise,
   12203   //   the friend declaration is ignored.
   12204   return FriendDecl::Create(Context, CurContext,
   12205                             TSInfo->getTypeLoc().getLocStart(), TSInfo,
   12206                             FriendLoc);
   12207 }
   12208 
   12209 /// Handle a friend tag declaration where the scope specifier was
   12210 /// templated.
   12211 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
   12212                                     unsigned TagSpec, SourceLocation TagLoc,
   12213                                     CXXScopeSpec &SS,
   12214                                     IdentifierInfo *Name,
   12215                                     SourceLocation NameLoc,
   12216                                     AttributeList *Attr,
   12217                                     MultiTemplateParamsArg TempParamLists) {
   12218   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   12219 
   12220   bool isExplicitSpecialization = false;
   12221   bool Invalid = false;
   12222 
   12223   if (TemplateParameterList *TemplateParams =
   12224           MatchTemplateParametersToScopeSpecifier(
   12225               TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
   12226               isExplicitSpecialization, Invalid)) {
   12227     if (TemplateParams->size() > 0) {
   12228       // This is a declaration of a class template.
   12229       if (Invalid)
   12230         return nullptr;
   12231 
   12232       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
   12233                                 NameLoc, Attr, TemplateParams, AS_public,
   12234                                 /*ModulePrivateLoc=*/SourceLocation(),
   12235                                 FriendLoc, TempParamLists.size() - 1,
   12236                                 TempParamLists.data()).get();
   12237     } else {
   12238       // The "template<>" header is extraneous.
   12239       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   12240         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   12241       isExplicitSpecialization = true;
   12242     }
   12243   }
   12244 
   12245   if (Invalid) return nullptr;
   12246 
   12247   bool isAllExplicitSpecializations = true;
   12248   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
   12249     if (TempParamLists[I]->size()) {
   12250       isAllExplicitSpecializations = false;
   12251       break;
   12252     }
   12253   }
   12254 
   12255   // FIXME: don't ignore attributes.
   12256 
   12257   // If it's explicit specializations all the way down, just forget
   12258   // about the template header and build an appropriate non-templated
   12259   // friend.  TODO: for source fidelity, remember the headers.
   12260   if (isAllExplicitSpecializations) {
   12261     if (SS.isEmpty()) {
   12262       bool Owned = false;
   12263       bool IsDependent = false;
   12264       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
   12265                       Attr, AS_public,
   12266                       /*ModulePrivateLoc=*/SourceLocation(),
   12267                       MultiTemplateParamsArg(), Owned, IsDependent,
   12268                       /*ScopedEnumKWLoc=*/SourceLocation(),
   12269                       /*ScopedEnumUsesClassTag=*/false,
   12270                       /*UnderlyingType=*/TypeResult(),
   12271                       /*IsTypeSpecifier=*/false);
   12272     }
   12273 
   12274     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   12275     ElaboratedTypeKeyword Keyword
   12276       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   12277     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
   12278                                    *Name, NameLoc);
   12279     if (T.isNull())
   12280       return nullptr;
   12281 
   12282     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   12283     if (isa<DependentNameType>(T)) {
   12284       DependentNameTypeLoc TL =
   12285           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
   12286       TL.setElaboratedKeywordLoc(TagLoc);
   12287       TL.setQualifierLoc(QualifierLoc);
   12288       TL.setNameLoc(NameLoc);
   12289     } else {
   12290       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
   12291       TL.setElaboratedKeywordLoc(TagLoc);
   12292       TL.setQualifierLoc(QualifierLoc);
   12293       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
   12294     }
   12295 
   12296     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
   12297                                             TSI, FriendLoc, TempParamLists);
   12298     Friend->setAccess(AS_public);
   12299     CurContext->addDecl(Friend);
   12300     return Friend;
   12301   }
   12302 
   12303   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
   12304 
   12305 
   12306 
   12307   // Handle the case of a templated-scope friend class.  e.g.
   12308   //   template <class T> class A<T>::B;
   12309   // FIXME: we don't support these right now.
   12310   Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
   12311     << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
   12312   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   12313   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
   12314   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   12315   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
   12316   TL.setElaboratedKeywordLoc(TagLoc);
   12317   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   12318   TL.setNameLoc(NameLoc);
   12319 
   12320   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
   12321                                           TSI, FriendLoc, TempParamLists);
   12322   Friend->setAccess(AS_public);
   12323   Friend->setUnsupportedFriend(true);
   12324   CurContext->addDecl(Friend);
   12325   return Friend;
   12326 }
   12327 
   12328 
   12329 /// Handle a friend type declaration.  This works in tandem with
   12330 /// ActOnTag.
   12331 ///
   12332 /// Notes on friend class templates:
   12333 ///
   12334 /// We generally treat friend class declarations as if they were
   12335 /// declaring a class.  So, for example, the elaborated type specifier
   12336 /// in a friend declaration is required to obey the restrictions of a
   12337 /// class-head (i.e. no typedefs in the scope chain), template
   12338 /// parameters are required to match up with simple template-ids, &c.
   12339 /// However, unlike when declaring a template specialization, it's
   12340 /// okay to refer to a template specialization without an empty
   12341 /// template parameter declaration, e.g.
   12342 ///   friend class A<T>::B<unsigned>;
   12343 /// We permit this as a special case; if there are any template
   12344 /// parameters present at all, require proper matching, i.e.
   12345 ///   template <> template \<class T> friend class A<int>::B;
   12346 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
   12347                                 MultiTemplateParamsArg TempParams) {
   12348   SourceLocation Loc = DS.getLocStart();
   12349 
   12350   assert(DS.isFriendSpecified());
   12351   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
   12352 
   12353   // Try to convert the decl specifier to a type.  This works for
   12354   // friend templates because ActOnTag never produces a ClassTemplateDecl
   12355   // for a TUK_Friend.
   12356   Declarator TheDeclarator(DS, Declarator::MemberContext);
   12357   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
   12358   QualType T = TSI->getType();
   12359   if (TheDeclarator.isInvalidType())
   12360     return nullptr;
   12361 
   12362   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
   12363     return nullptr;
   12364 
   12365   // This is definitely an error in C++98.  It's probably meant to
   12366   // be forbidden in C++0x, too, but the specification is just
   12367   // poorly written.
   12368   //
   12369   // The problem is with declarations like the following:
   12370   //   template <T> friend A<T>::foo;
   12371   // where deciding whether a class C is a friend or not now hinges
   12372   // on whether there exists an instantiation of A that causes
   12373   // 'foo' to equal C.  There are restrictions on class-heads
   12374   // (which we declare (by fiat) elaborated friend declarations to
   12375   // be) that makes this tractable.
   12376   //
   12377   // FIXME: handle "template <> friend class A<T>;", which
   12378   // is possibly well-formed?  Who even knows?
   12379   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
   12380     Diag(Loc, diag::err_tagless_friend_type_template)
   12381       << DS.getSourceRange();
   12382     return nullptr;
   12383   }
   12384 
   12385   // C++98 [class.friend]p1: A friend of a class is a function
   12386   //   or class that is not a member of the class . . .
   12387   // This is fixed in DR77, which just barely didn't make the C++03
   12388   // deadline.  It's also a very silly restriction that seriously
   12389   // affects inner classes and which nobody else seems to implement;
   12390   // thus we never diagnose it, not even in -pedantic.
   12391   //
   12392   // But note that we could warn about it: it's always useless to
   12393   // friend one of your own members (it's not, however, worthless to
   12394   // friend a member of an arbitrary specialization of your template).
   12395 
   12396   Decl *D;
   12397   if (unsigned NumTempParamLists = TempParams.size())
   12398     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
   12399                                    NumTempParamLists,
   12400                                    TempParams.data(),
   12401                                    TSI,
   12402                                    DS.getFriendSpecLoc());
   12403   else
   12404     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
   12405 
   12406   if (!D)
   12407     return nullptr;
   12408 
   12409   D->setAccess(AS_public);
   12410   CurContext->addDecl(D);
   12411 
   12412   return D;
   12413 }
   12414 
   12415 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
   12416                                         MultiTemplateParamsArg TemplateParams) {
   12417   const DeclSpec &DS = D.getDeclSpec();
   12418 
   12419   assert(DS.isFriendSpecified());
   12420   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
   12421 
   12422   SourceLocation Loc = D.getIdentifierLoc();
   12423   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   12424 
   12425   // C++ [class.friend]p1
   12426   //   A friend of a class is a function or class....
   12427   // Note that this sees through typedefs, which is intended.
   12428   // It *doesn't* see through dependent types, which is correct
   12429   // according to [temp.arg.type]p3:
   12430   //   If a declaration acquires a function type through a
   12431   //   type dependent on a template-parameter and this causes
   12432   //   a declaration that does not use the syntactic form of a
   12433   //   function declarator to have a function type, the program
   12434   //   is ill-formed.
   12435   if (!TInfo->getType()->isFunctionType()) {
   12436     Diag(Loc, diag::err_unexpected_friend);
   12437 
   12438     // It might be worthwhile to try to recover by creating an
   12439     // appropriate declaration.
   12440     return nullptr;
   12441   }
   12442 
   12443   // C++ [namespace.memdef]p3
   12444   //  - If a friend declaration in a non-local class first declares a
   12445   //    class or function, the friend class or function is a member
   12446   //    of the innermost enclosing namespace.
   12447   //  - The name of the friend is not found by simple name lookup
   12448   //    until a matching declaration is provided in that namespace
   12449   //    scope (either before or after the class declaration granting
   12450   //    friendship).
   12451   //  - If a friend function is called, its name may be found by the
   12452   //    name lookup that considers functions from namespaces and
   12453   //    classes associated with the types of the function arguments.
   12454   //  - When looking for a prior declaration of a class or a function
   12455   //    declared as a friend, scopes outside the innermost enclosing
   12456   //    namespace scope are not considered.
   12457 
   12458   CXXScopeSpec &SS = D.getCXXScopeSpec();
   12459   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   12460   DeclarationName Name = NameInfo.getName();
   12461   assert(Name);
   12462 
   12463   // Check for unexpanded parameter packs.
   12464   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
   12465       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
   12466       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
   12467     return nullptr;
   12468 
   12469   // The context we found the declaration in, or in which we should
   12470   // create the declaration.
   12471   DeclContext *DC;
   12472   Scope *DCScope = S;
   12473   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   12474                         ForRedeclaration);
   12475 
   12476   // There are five cases here.
   12477   //   - There's no scope specifier and we're in a local class. Only look
   12478   //     for functions declared in the immediately-enclosing block scope.
   12479   // We recover from invalid scope qualifiers as if they just weren't there.
   12480   FunctionDecl *FunctionContainingLocalClass = nullptr;
   12481   if ((SS.isInvalid() || !SS.isSet()) &&
   12482       (FunctionContainingLocalClass =
   12483            cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
   12484     // C++11 [class.friend]p11:
   12485     //   If a friend declaration appears in a local class and the name
   12486     //   specified is an unqualified name, a prior declaration is
   12487     //   looked up without considering scopes that are outside the
   12488     //   innermost enclosing non-class scope. For a friend function
   12489     //   declaration, if there is no prior declaration, the program is
   12490     //   ill-formed.
   12491 
   12492     // Find the innermost enclosing non-class scope. This is the block
   12493     // scope containing the local class definition (or for a nested class,
   12494     // the outer local class).
   12495     DCScope = S->getFnParent();
   12496 
   12497     // Look up the function name in the scope.
   12498     Previous.clear(LookupLocalFriendName);
   12499     LookupName(Previous, S, /*AllowBuiltinCreation*/false);
   12500 
   12501     if (!Previous.empty()) {
   12502       // All possible previous declarations must have the same context:
   12503       // either they were declared at block scope or they are members of
   12504       // one of the enclosing local classes.
   12505       DC = Previous.getRepresentativeDecl()->getDeclContext();
   12506     } else {
   12507       // This is ill-formed, but provide the context that we would have
   12508       // declared the function in, if we were permitted to, for error recovery.
   12509       DC = FunctionContainingLocalClass;
   12510     }
   12511     adjustContextForLocalExternDecl(DC);
   12512 
   12513     // C++ [class.friend]p6:
   12514     //   A function can be defined in a friend declaration of a class if and
   12515     //   only if the class is a non-local class (9.8), the function name is
   12516     //   unqualified, and the function has namespace scope.
   12517     if (D.isFunctionDefinition()) {
   12518       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
   12519     }
   12520 
   12521   //   - There's no scope specifier, in which case we just go to the
   12522   //     appropriate scope and look for a function or function template
   12523   //     there as appropriate.
   12524   } else if (SS.isInvalid() || !SS.isSet()) {
   12525     // C++11 [namespace.memdef]p3:
   12526     //   If the name in a friend declaration is neither qualified nor
   12527     //   a template-id and the declaration is a function or an
   12528     //   elaborated-type-specifier, the lookup to determine whether
   12529     //   the entity has been previously declared shall not consider
   12530     //   any scopes outside the innermost enclosing namespace.
   12531     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
   12532 
   12533     // Find the appropriate context according to the above.
   12534     DC = CurContext;
   12535 
   12536     // Skip class contexts.  If someone can cite chapter and verse
   12537     // for this behavior, that would be nice --- it's what GCC and
   12538     // EDG do, and it seems like a reasonable intent, but the spec
   12539     // really only says that checks for unqualified existing
   12540     // declarations should stop at the nearest enclosing namespace,
   12541     // not that they should only consider the nearest enclosing
   12542     // namespace.
   12543     while (DC->isRecord())
   12544       DC = DC->getParent();
   12545 
   12546     DeclContext *LookupDC = DC;
   12547     while (LookupDC->isTransparentContext())
   12548       LookupDC = LookupDC->getParent();
   12549 
   12550     while (true) {
   12551       LookupQualifiedName(Previous, LookupDC);
   12552 
   12553       if (!Previous.empty()) {
   12554         DC = LookupDC;
   12555         break;
   12556       }
   12557 
   12558       if (isTemplateId) {
   12559         if (isa<TranslationUnitDecl>(LookupDC)) break;
   12560       } else {
   12561         if (LookupDC->isFileContext()) break;
   12562       }
   12563       LookupDC = LookupDC->getParent();
   12564     }
   12565 
   12566     DCScope = getScopeForDeclContext(S, DC);
   12567 
   12568   //   - There's a non-dependent scope specifier, in which case we
   12569   //     compute it and do a previous lookup there for a function
   12570   //     or function template.
   12571   } else if (!SS.getScopeRep()->isDependent()) {
   12572     DC = computeDeclContext(SS);
   12573     if (!DC) return nullptr;
   12574 
   12575     if (RequireCompleteDeclContext(SS, DC)) return nullptr;
   12576 
   12577     LookupQualifiedName(Previous, DC);
   12578 
   12579     // Ignore things found implicitly in the wrong scope.
   12580     // TODO: better diagnostics for this case.  Suggesting the right
   12581     // qualified scope would be nice...
   12582     LookupResult::Filter F = Previous.makeFilter();
   12583     while (F.hasNext()) {
   12584       NamedDecl *D = F.next();
   12585       if (!DC->InEnclosingNamespaceSetOf(
   12586               D->getDeclContext()->getRedeclContext()))
   12587         F.erase();
   12588     }
   12589     F.done();
   12590 
   12591     if (Previous.empty()) {
   12592       D.setInvalidType();
   12593       Diag(Loc, diag::err_qualified_friend_not_found)
   12594           << Name << TInfo->getType();
   12595       return nullptr;
   12596     }
   12597 
   12598     // C++ [class.friend]p1: A friend of a class is a function or
   12599     //   class that is not a member of the class . . .
   12600     if (DC->Equals(CurContext))
   12601       Diag(DS.getFriendSpecLoc(),
   12602            getLangOpts().CPlusPlus11 ?
   12603              diag::warn_cxx98_compat_friend_is_member :
   12604              diag::err_friend_is_member);
   12605 
   12606     if (D.isFunctionDefinition()) {
   12607       // C++ [class.friend]p6:
   12608       //   A function can be defined in a friend declaration of a class if and
   12609       //   only if the class is a non-local class (9.8), the function name is
   12610       //   unqualified, and the function has namespace scope.
   12611       SemaDiagnosticBuilder DB
   12612         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
   12613 
   12614       DB << SS.getScopeRep();
   12615       if (DC->isFileContext())
   12616         DB << FixItHint::CreateRemoval(SS.getRange());
   12617       SS.clear();
   12618     }
   12619 
   12620   //   - There's a scope specifier that does not match any template
   12621   //     parameter lists, in which case we use some arbitrary context,
   12622   //     create a method or method template, and wait for instantiation.
   12623   //   - There's a scope specifier that does match some template
   12624   //     parameter lists, which we don't handle right now.
   12625   } else {
   12626     if (D.isFunctionDefinition()) {
   12627       // C++ [class.friend]p6:
   12628       //   A function can be defined in a friend declaration of a class if and
   12629       //   only if the class is a non-local class (9.8), the function name is
   12630       //   unqualified, and the function has namespace scope.
   12631       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
   12632         << SS.getScopeRep();
   12633     }
   12634 
   12635     DC = CurContext;
   12636     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
   12637   }
   12638 
   12639   if (!DC->isRecord()) {
   12640     // This implies that it has to be an operator or function.
   12641     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
   12642         D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
   12643         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
   12644       Diag(Loc, diag::err_introducing_special_friend) <<
   12645         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
   12646          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
   12647       return nullptr;
   12648     }
   12649   }
   12650 
   12651   // FIXME: This is an egregious hack to cope with cases where the scope stack
   12652   // does not contain the declaration context, i.e., in an out-of-line
   12653   // definition of a class.
   12654   Scope FakeDCScope(S, Scope::DeclScope, Diags);
   12655   if (!DCScope) {
   12656     FakeDCScope.setEntity(DC);
   12657     DCScope = &FakeDCScope;
   12658   }
   12659 
   12660   bool AddToScope = true;
   12661   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
   12662                                           TemplateParams, AddToScope);
   12663   if (!ND) return nullptr;
   12664 
   12665   assert(ND->getLexicalDeclContext() == CurContext);
   12666 
   12667   // If we performed typo correction, we might have added a scope specifier
   12668   // and changed the decl context.
   12669   DC = ND->getDeclContext();
   12670 
   12671   // Add the function declaration to the appropriate lookup tables,
   12672   // adjusting the redeclarations list as necessary.  We don't
   12673   // want to do this yet if the friending class is dependent.
   12674   //
   12675   // Also update the scope-based lookup if the target context's
   12676   // lookup context is in lexical scope.
   12677   if (!CurContext->isDependentContext()) {
   12678     DC = DC->getRedeclContext();
   12679     DC->makeDeclVisibleInContext(ND);
   12680     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   12681       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
   12682   }
   12683 
   12684   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
   12685                                        D.getIdentifierLoc(), ND,
   12686                                        DS.getFriendSpecLoc());
   12687   FrD->setAccess(AS_public);
   12688   CurContext->addDecl(FrD);
   12689 
   12690   if (ND->isInvalidDecl()) {
   12691     FrD->setInvalidDecl();
   12692   } else {
   12693     if (DC->isRecord()) CheckFriendAccess(ND);
   12694 
   12695     FunctionDecl *FD;
   12696     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
   12697       FD = FTD->getTemplatedDecl();
   12698     else
   12699       FD = cast<FunctionDecl>(ND);
   12700 
   12701     // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
   12702     // default argument expression, that declaration shall be a definition
   12703     // and shall be the only declaration of the function or function
   12704     // template in the translation unit.
   12705     if (functionDeclHasDefaultArgument(FD)) {
   12706       if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
   12707         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
   12708         Diag(OldFD->getLocation(), diag::note_previous_declaration);
   12709       } else if (!D.isFunctionDefinition())
   12710         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
   12711     }
   12712 
   12713     // Mark templated-scope function declarations as unsupported.
   12714     if (FD->getNumTemplateParameterLists() && SS.isValid()) {
   12715       Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
   12716         << SS.getScopeRep() << SS.getRange()
   12717         << cast<CXXRecordDecl>(CurContext);
   12718       FrD->setUnsupportedFriend(true);
   12719     }
   12720   }
   12721 
   12722   return ND;
   12723 }
   12724 
   12725 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
   12726   AdjustDeclIfTemplate(Dcl);
   12727 
   12728   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
   12729   if (!Fn) {
   12730     Diag(DelLoc, diag::err_deleted_non_function);
   12731     return;
   12732   }
   12733 
   12734   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
   12735     // Don't consider the implicit declaration we generate for explicit
   12736     // specializations. FIXME: Do not generate these implicit declarations.
   12737     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
   12738          Prev->getPreviousDecl()) &&
   12739         !Prev->isDefined()) {
   12740       Diag(DelLoc, diag::err_deleted_decl_not_first);
   12741       Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
   12742            Prev->isImplicit() ? diag::note_previous_implicit_declaration
   12743                               : diag::note_previous_declaration);
   12744     }
   12745     // If the declaration wasn't the first, we delete the function anyway for
   12746     // recovery.
   12747     Fn = Fn->getCanonicalDecl();
   12748   }
   12749 
   12750   // dllimport/dllexport cannot be deleted.
   12751   if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
   12752     Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
   12753     Fn->setInvalidDecl();
   12754   }
   12755 
   12756   if (Fn->isDeleted())
   12757     return;
   12758 
   12759   // See if we're deleting a function which is already known to override a
   12760   // non-deleted virtual function.
   12761   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
   12762     bool IssuedDiagnostic = false;
   12763     for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   12764                                         E = MD->end_overridden_methods();
   12765          I != E; ++I) {
   12766       if (!(*MD->begin_overridden_methods())->isDeleted()) {
   12767         if (!IssuedDiagnostic) {
   12768           Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
   12769           IssuedDiagnostic = true;
   12770         }
   12771         Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
   12772       }
   12773     }
   12774   }
   12775 
   12776   // C++11 [basic.start.main]p3:
   12777   //   A program that defines main as deleted [...] is ill-formed.
   12778   if (Fn->isMain())
   12779     Diag(DelLoc, diag::err_deleted_main);
   12780 
   12781   Fn->setDeletedAsWritten();
   12782 }
   12783 
   12784 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
   12785   CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
   12786 
   12787   if (MD) {
   12788     if (MD->getParent()->isDependentType()) {
   12789       MD->setDefaulted();
   12790       MD->setExplicitlyDefaulted();
   12791       return;
   12792     }
   12793 
   12794     CXXSpecialMember Member = getSpecialMember(MD);
   12795     if (Member == CXXInvalid) {
   12796       if (!MD->isInvalidDecl())
   12797         Diag(DefaultLoc, diag::err_default_special_members);
   12798       return;
   12799     }
   12800 
   12801     MD->setDefaulted();
   12802     MD->setExplicitlyDefaulted();
   12803 
   12804     // If this definition appears within the record, do the checking when
   12805     // the record is complete.
   12806     const FunctionDecl *Primary = MD;
   12807     if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
   12808       // Find the uninstantiated declaration that actually had the '= default'
   12809       // on it.
   12810       Pattern->isDefined(Primary);
   12811 
   12812     // If the method was defaulted on its first declaration, we will have
   12813     // already performed the checking in CheckCompletedCXXClass. Such a
   12814     // declaration doesn't trigger an implicit definition.
   12815     if (Primary == Primary->getCanonicalDecl())
   12816       return;
   12817 
   12818     CheckExplicitlyDefaultedSpecialMember(MD);
   12819 
   12820     if (MD->isInvalidDecl())
   12821       return;
   12822 
   12823     switch (Member) {
   12824     case CXXDefaultConstructor:
   12825       DefineImplicitDefaultConstructor(DefaultLoc,
   12826                                        cast<CXXConstructorDecl>(MD));
   12827       break;
   12828     case CXXCopyConstructor:
   12829       DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
   12830       break;
   12831     case CXXCopyAssignment:
   12832       DefineImplicitCopyAssignment(DefaultLoc, MD);
   12833       break;
   12834     case CXXDestructor:
   12835       DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
   12836       break;
   12837     case CXXMoveConstructor:
   12838       DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
   12839       break;
   12840     case CXXMoveAssignment:
   12841       DefineImplicitMoveAssignment(DefaultLoc, MD);
   12842       break;
   12843     case CXXInvalid:
   12844       llvm_unreachable("Invalid special member.");
   12845     }
   12846   } else {
   12847     Diag(DefaultLoc, diag::err_default_special_members);
   12848   }
   12849 }
   12850 
   12851 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
   12852   for (Stmt::child_range CI = S->children(); CI; ++CI) {
   12853     Stmt *SubStmt = *CI;
   12854     if (!SubStmt)
   12855       continue;
   12856     if (isa<ReturnStmt>(SubStmt))
   12857       Self.Diag(SubStmt->getLocStart(),
   12858            diag::err_return_in_constructor_handler);
   12859     if (!isa<Expr>(SubStmt))
   12860       SearchForReturnInStmt(Self, SubStmt);
   12861   }
   12862 }
   12863 
   12864 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
   12865   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
   12866     CXXCatchStmt *Handler = TryBlock->getHandler(I);
   12867     SearchForReturnInStmt(*this, Handler);
   12868   }
   12869 }
   12870 
   12871 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
   12872                                              const CXXMethodDecl *Old) {
   12873   const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
   12874   const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
   12875 
   12876   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
   12877 
   12878   // If the calling conventions match, everything is fine
   12879   if (NewCC == OldCC)
   12880     return false;
   12881 
   12882   // If the calling conventions mismatch because the new function is static,
   12883   // suppress the calling convention mismatch error; the error about static
   12884   // function override (err_static_overrides_virtual from
   12885   // Sema::CheckFunctionDeclaration) is more clear.
   12886   if (New->getStorageClass() == SC_Static)
   12887     return false;
   12888 
   12889   Diag(New->getLocation(),
   12890        diag::err_conflicting_overriding_cc_attributes)
   12891     << New->getDeclName() << New->getType() << Old->getType();
   12892   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   12893   return true;
   12894 }
   12895 
   12896 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
   12897                                              const CXXMethodDecl *Old) {
   12898   QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
   12899   QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
   12900 
   12901   if (Context.hasSameType(NewTy, OldTy) ||
   12902       NewTy->isDependentType() || OldTy->isDependentType())
   12903     return false;
   12904 
   12905   // Check if the return types are covariant
   12906   QualType NewClassTy, OldClassTy;
   12907 
   12908   /// Both types must be pointers or references to classes.
   12909   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
   12910     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
   12911       NewClassTy = NewPT->getPointeeType();
   12912       OldClassTy = OldPT->getPointeeType();
   12913     }
   12914   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
   12915     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
   12916       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
   12917         NewClassTy = NewRT->getPointeeType();
   12918         OldClassTy = OldRT->getPointeeType();
   12919       }
   12920     }
   12921   }
   12922 
   12923   // The return types aren't either both pointers or references to a class type.
   12924   if (NewClassTy.isNull()) {
   12925     Diag(New->getLocation(),
   12926          diag::err_different_return_type_for_overriding_virtual_function)
   12927         << New->getDeclName() << NewTy << OldTy
   12928         << New->getReturnTypeSourceRange();
   12929     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
   12930         << Old->getReturnTypeSourceRange();
   12931 
   12932     return true;
   12933   }
   12934 
   12935   // C++ [class.virtual]p6:
   12936   //   If the return type of D::f differs from the return type of B::f, the
   12937   //   class type in the return type of D::f shall be complete at the point of
   12938   //   declaration of D::f or shall be the class type D.
   12939   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
   12940     if (!RT->isBeingDefined() &&
   12941         RequireCompleteType(New->getLocation(), NewClassTy,
   12942                             diag::err_covariant_return_incomplete,
   12943                             New->getDeclName()))
   12944     return true;
   12945   }
   12946 
   12947   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
   12948     // Check if the new class derives from the old class.
   12949     if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
   12950       Diag(New->getLocation(), diag::err_covariant_return_not_derived)
   12951           << New->getDeclName() << NewTy << OldTy
   12952           << New->getReturnTypeSourceRange();
   12953       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
   12954           << Old->getReturnTypeSourceRange();
   12955       return true;
   12956     }
   12957 
   12958     // Check if we the conversion from derived to base is valid.
   12959     if (CheckDerivedToBaseConversion(
   12960             NewClassTy, OldClassTy,
   12961             diag::err_covariant_return_inaccessible_base,
   12962             diag::err_covariant_return_ambiguous_derived_to_base_conv,
   12963             New->getLocation(), New->getReturnTypeSourceRange(),
   12964             New->getDeclName(), nullptr)) {
   12965       // FIXME: this note won't trigger for delayed access control
   12966       // diagnostics, and it's impossible to get an undelayed error
   12967       // here from access control during the original parse because
   12968       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
   12969       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
   12970           << Old->getReturnTypeSourceRange();
   12971       return true;
   12972     }
   12973   }
   12974 
   12975   // The qualifiers of the return types must be the same.
   12976   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
   12977     Diag(New->getLocation(),
   12978          diag::err_covariant_return_type_different_qualifications)
   12979         << New->getDeclName() << NewTy << OldTy
   12980         << New->getReturnTypeSourceRange();
   12981     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
   12982         << Old->getReturnTypeSourceRange();
   12983     return true;
   12984   };
   12985 
   12986 
   12987   // The new class type must have the same or less qualifiers as the old type.
   12988   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
   12989     Diag(New->getLocation(),
   12990          diag::err_covariant_return_type_class_type_more_qualified)
   12991         << New->getDeclName() << NewTy << OldTy
   12992         << New->getReturnTypeSourceRange();
   12993     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
   12994         << Old->getReturnTypeSourceRange();
   12995     return true;
   12996   };
   12997 
   12998   return false;
   12999 }
   13000 
   13001 /// \brief Mark the given method pure.
   13002 ///
   13003 /// \param Method the method to be marked pure.
   13004 ///
   13005 /// \param InitRange the source range that covers the "0" initializer.
   13006 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
   13007   SourceLocation EndLoc = InitRange.getEnd();
   13008   if (EndLoc.isValid())
   13009     Method->setRangeEnd(EndLoc);
   13010 
   13011   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
   13012     Method->setPure();
   13013     return false;
   13014   }
   13015 
   13016   if (!Method->isInvalidDecl())
   13017     Diag(Method->getLocation(), diag::err_non_virtual_pure)
   13018       << Method->getDeclName() << InitRange;
   13019   return true;
   13020 }
   13021 
   13022 /// \brief Determine whether the given declaration is a static data member.
   13023 static bool isStaticDataMember(const Decl *D) {
   13024   if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
   13025     return Var->isStaticDataMember();
   13026 
   13027   return false;
   13028 }
   13029 
   13030 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
   13031 /// an initializer for the out-of-line declaration 'Dcl'.  The scope
   13032 /// is a fresh scope pushed for just this purpose.
   13033 ///
   13034 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
   13035 /// static data member of class X, names should be looked up in the scope of
   13036 /// class X.
   13037 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
   13038   // If there is no declaration, there was an error parsing it.
   13039   if (!D || D->isInvalidDecl())
   13040     return;
   13041 
   13042   // We will always have a nested name specifier here, but this declaration
   13043   // might not be out of line if the specifier names the current namespace:
   13044   //   extern int n;
   13045   //   int ::n = 0;
   13046   if (D->isOutOfLine())
   13047     EnterDeclaratorContext(S, D->getDeclContext());
   13048 
   13049   // If we are parsing the initializer for a static data member, push a
   13050   // new expression evaluation context that is associated with this static
   13051   // data member.
   13052   if (isStaticDataMember(D))
   13053     PushExpressionEvaluationContext(PotentiallyEvaluated, D);
   13054 }
   13055 
   13056 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
   13057 /// initializer for the out-of-line declaration 'D'.
   13058 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
   13059   // If there is no declaration, there was an error parsing it.
   13060   if (!D || D->isInvalidDecl())
   13061     return;
   13062 
   13063   if (isStaticDataMember(D))
   13064     PopExpressionEvaluationContext();
   13065 
   13066   if (D->isOutOfLine())
   13067     ExitDeclaratorContext(S);
   13068 }
   13069 
   13070 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
   13071 /// C++ if/switch/while/for statement.
   13072 /// e.g: "if (int x = f()) {...}"
   13073 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
   13074   // C++ 6.4p2:
   13075   // The declarator shall not specify a function or an array.
   13076   // The type-specifier-seq shall not contain typedef and shall not declare a
   13077   // new class or enumeration.
   13078   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
   13079          "Parser allowed 'typedef' as storage class of condition decl.");
   13080 
   13081   Decl *Dcl = ActOnDeclarator(S, D);
   13082   if (!Dcl)
   13083     return true;
   13084 
   13085   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
   13086     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
   13087       << D.getSourceRange();
   13088     return true;
   13089   }
   13090 
   13091   return Dcl;
   13092 }
   13093 
   13094 void Sema::LoadExternalVTableUses() {
   13095   if (!ExternalSource)
   13096     return;
   13097 
   13098   SmallVector<ExternalVTableUse, 4> VTables;
   13099   ExternalSource->ReadUsedVTables(VTables);
   13100   SmallVector<VTableUse, 4> NewUses;
   13101   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
   13102     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
   13103       = VTablesUsed.find(VTables[I].Record);
   13104     // Even if a definition wasn't required before, it may be required now.
   13105     if (Pos != VTablesUsed.end()) {
   13106       if (!Pos->second && VTables[I].DefinitionRequired)
   13107         Pos->second = true;
   13108       continue;
   13109     }
   13110 
   13111     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
   13112     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
   13113   }
   13114 
   13115   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
   13116 }
   13117 
   13118 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
   13119                           bool DefinitionRequired) {
   13120   // Ignore any vtable uses in unevaluated operands or for classes that do
   13121   // not have a vtable.
   13122   if (!Class->isDynamicClass() || Class->isDependentContext() ||
   13123       CurContext->isDependentContext() || isUnevaluatedContext())
   13124     return;
   13125 
   13126   // Try to insert this class into the map.
   13127   LoadExternalVTableUses();
   13128   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
   13129   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
   13130     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
   13131   if (!Pos.second) {
   13132     // If we already had an entry, check to see if we are promoting this vtable
   13133     // to require a definition. If so, we need to reappend to the VTableUses
   13134     // list, since we may have already processed the first entry.
   13135     if (DefinitionRequired && !Pos.first->second) {
   13136       Pos.first->second = true;
   13137     } else {
   13138       // Otherwise, we can early exit.
   13139       return;
   13140     }
   13141   } else {
   13142     // The Microsoft ABI requires that we perform the destructor body
   13143     // checks (i.e. operator delete() lookup) when the vtable is marked used, as
   13144     // the deleting destructor is emitted with the vtable, not with the
   13145     // destructor definition as in the Itanium ABI.
   13146     // If it has a definition, we do the check at that point instead.
   13147     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
   13148         Class->hasUserDeclaredDestructor() &&
   13149         !Class->getDestructor()->isDefined() &&
   13150         !Class->getDestructor()->isDeleted()) {
   13151       CXXDestructorDecl *DD = Class->getDestructor();
   13152       ContextRAII SavedContext(*this, DD);
   13153       CheckDestructor(DD);
   13154     }
   13155   }
   13156 
   13157   // Local classes need to have their virtual members marked
   13158   // immediately. For all other classes, we mark their virtual members
   13159   // at the end of the translation unit.
   13160   if (Class->isLocalClass())
   13161     MarkVirtualMembersReferenced(Loc, Class);
   13162   else
   13163     VTableUses.push_back(std::make_pair(Class, Loc));
   13164 }
   13165 
   13166 bool Sema::DefineUsedVTables() {
   13167   LoadExternalVTableUses();
   13168   if (VTableUses.empty())
   13169     return false;
   13170 
   13171   // Note: The VTableUses vector could grow as a result of marking
   13172   // the members of a class as "used", so we check the size each
   13173   // time through the loop and prefer indices (which are stable) to
   13174   // iterators (which are not).
   13175   bool DefinedAnything = false;
   13176   for (unsigned I = 0; I != VTableUses.size(); ++I) {
   13177     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
   13178     if (!Class)
   13179       continue;
   13180 
   13181     SourceLocation Loc = VTableUses[I].second;
   13182 
   13183     bool DefineVTable = true;
   13184 
   13185     // If this class has a key function, but that key function is
   13186     // defined in another translation unit, we don't need to emit the
   13187     // vtable even though we're using it.
   13188     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
   13189     if (KeyFunction && !KeyFunction->hasBody()) {
   13190       // The key function is in another translation unit.
   13191       DefineVTable = false;
   13192       TemplateSpecializationKind TSK =
   13193           KeyFunction->getTemplateSpecializationKind();
   13194       assert(TSK != TSK_ExplicitInstantiationDefinition &&
   13195              TSK != TSK_ImplicitInstantiation &&
   13196              "Instantiations don't have key functions");
   13197       (void)TSK;
   13198     } else if (!KeyFunction) {
   13199       // If we have a class with no key function that is the subject
   13200       // of an explicit instantiation declaration, suppress the
   13201       // vtable; it will live with the explicit instantiation
   13202       // definition.
   13203       bool IsExplicitInstantiationDeclaration
   13204         = Class->getTemplateSpecializationKind()
   13205                                       == TSK_ExplicitInstantiationDeclaration;
   13206       for (auto R : Class->redecls()) {
   13207         TemplateSpecializationKind TSK
   13208           = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
   13209         if (TSK == TSK_ExplicitInstantiationDeclaration)
   13210           IsExplicitInstantiationDeclaration = true;
   13211         else if (TSK == TSK_ExplicitInstantiationDefinition) {
   13212           IsExplicitInstantiationDeclaration = false;
   13213           break;
   13214         }
   13215       }
   13216 
   13217       if (IsExplicitInstantiationDeclaration)
   13218         DefineVTable = false;
   13219     }
   13220 
   13221     // The exception specifications for all virtual members may be needed even
   13222     // if we are not providing an authoritative form of the vtable in this TU.
   13223     // We may choose to emit it available_externally anyway.
   13224     if (!DefineVTable) {
   13225       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
   13226       continue;
   13227     }
   13228 
   13229     // Mark all of the virtual members of this class as referenced, so
   13230     // that we can build a vtable. Then, tell the AST consumer that a
   13231     // vtable for this class is required.
   13232     DefinedAnything = true;
   13233     MarkVirtualMembersReferenced(Loc, Class);
   13234     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
   13235     if (VTablesUsed[Canonical])
   13236       Consumer.HandleVTable(Class);
   13237 
   13238     // Optionally warn if we're emitting a weak vtable.
   13239     if (Class->isExternallyVisible() &&
   13240         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
   13241       const FunctionDecl *KeyFunctionDef = nullptr;
   13242       if (!KeyFunction ||
   13243           (KeyFunction->hasBody(KeyFunctionDef) &&
   13244            KeyFunctionDef->isInlined()))
   13245         Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
   13246              TSK_ExplicitInstantiationDefinition
   13247              ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
   13248           << Class;
   13249     }
   13250   }
   13251   VTableUses.clear();
   13252 
   13253   return DefinedAnything;
   13254 }
   13255 
   13256 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
   13257                                                  const CXXRecordDecl *RD) {
   13258   for (const auto *I : RD->methods())
   13259     if (I->isVirtual() && !I->isPure())
   13260       ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
   13261 }
   13262 
   13263 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
   13264                                         const CXXRecordDecl *RD) {
   13265   // Mark all functions which will appear in RD's vtable as used.
   13266   CXXFinalOverriderMap FinalOverriders;
   13267   RD->getFinalOverriders(FinalOverriders);
   13268   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
   13269                                             E = FinalOverriders.end();
   13270        I != E; ++I) {
   13271     for (OverridingMethods::const_iterator OI = I->second.begin(),
   13272                                            OE = I->second.end();
   13273          OI != OE; ++OI) {
   13274       assert(OI->second.size() > 0 && "no final overrider");
   13275       CXXMethodDecl *Overrider = OI->second.front().Method;
   13276 
   13277       // C++ [basic.def.odr]p2:
   13278       //   [...] A virtual member function is used if it is not pure. [...]
   13279       if (!Overrider->isPure())
   13280         MarkFunctionReferenced(Loc, Overrider);
   13281     }
   13282   }
   13283 
   13284   // Only classes that have virtual bases need a VTT.
   13285   if (RD->getNumVBases() == 0)
   13286     return;
   13287 
   13288   for (const auto &I : RD->bases()) {
   13289     const CXXRecordDecl *Base =
   13290         cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   13291     if (Base->getNumVBases() == 0)
   13292       continue;
   13293     MarkVirtualMembersReferenced(Loc, Base);
   13294   }
   13295 }
   13296 
   13297 /// SetIvarInitializers - This routine builds initialization ASTs for the
   13298 /// Objective-C implementation whose ivars need be initialized.
   13299 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
   13300   if (!getLangOpts().CPlusPlus)
   13301     return;
   13302   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
   13303     SmallVector<ObjCIvarDecl*, 8> ivars;
   13304     CollectIvarsToConstructOrDestruct(OID, ivars);
   13305     if (ivars.empty())
   13306       return;
   13307     SmallVector<CXXCtorInitializer*, 32> AllToInit;
   13308     for (unsigned i = 0; i < ivars.size(); i++) {
   13309       FieldDecl *Field = ivars[i];
   13310       if (Field->isInvalidDecl())
   13311         continue;
   13312 
   13313       CXXCtorInitializer *Member;
   13314       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
   13315       InitializationKind InitKind =
   13316         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
   13317 
   13318       InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
   13319       ExprResult MemberInit =
   13320         InitSeq.Perform(*this, InitEntity, InitKind, None);
   13321       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
   13322       // Note, MemberInit could actually come back empty if no initialization
   13323       // is required (e.g., because it would call a trivial default constructor)
   13324       if (!MemberInit.get() || MemberInit.isInvalid())
   13325         continue;
   13326 
   13327       Member =
   13328         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
   13329                                          SourceLocation(),
   13330                                          MemberInit.getAs<Expr>(),
   13331                                          SourceLocation());
   13332       AllToInit.push_back(Member);
   13333 
   13334       // Be sure that the destructor is accessible and is marked as referenced.
   13335       if (const RecordType *RecordTy =
   13336               Context.getBaseElementType(Field->getType())
   13337                   ->getAs<RecordType>()) {
   13338         CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
   13339         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
   13340           MarkFunctionReferenced(Field->getLocation(), Destructor);
   13341           CheckDestructorAccess(Field->getLocation(), Destructor,
   13342                             PDiag(diag::err_access_dtor_ivar)
   13343                               << Context.getBaseElementType(Field->getType()));
   13344         }
   13345       }
   13346     }
   13347     ObjCImplementation->setIvarInitializers(Context,
   13348                                             AllToInit.data(), AllToInit.size());
   13349   }
   13350 }
   13351 
   13352 static
   13353 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
   13354                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
   13355                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
   13356                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
   13357                            Sema &S) {
   13358   if (Ctor->isInvalidDecl())
   13359     return;
   13360 
   13361   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
   13362 
   13363   // Target may not be determinable yet, for instance if this is a dependent
   13364   // call in an uninstantiated template.
   13365   if (Target) {
   13366     const FunctionDecl *FNTarget = nullptr;
   13367     (void)Target->hasBody(FNTarget);
   13368     Target = const_cast<CXXConstructorDecl*>(
   13369       cast_or_null<CXXConstructorDecl>(FNTarget));
   13370   }
   13371 
   13372   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
   13373                      // Avoid dereferencing a null pointer here.
   13374                      *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
   13375 
   13376   if (!Current.insert(Canonical).second)
   13377     return;
   13378 
   13379   // We know that beyond here, we aren't chaining into a cycle.
   13380   if (!Target || !Target->isDelegatingConstructor() ||
   13381       Target->isInvalidDecl() || Valid.count(TCanonical)) {
   13382     Valid.insert(Current.begin(), Current.end());
   13383     Current.clear();
   13384   // We've hit a cycle.
   13385   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
   13386              Current.count(TCanonical)) {
   13387     // If we haven't diagnosed this cycle yet, do so now.
   13388     if (!Invalid.count(TCanonical)) {
   13389       S.Diag((*Ctor->init_begin())->getSourceLocation(),
   13390              diag::warn_delegating_ctor_cycle)
   13391         << Ctor;
   13392 
   13393       // Don't add a note for a function delegating directly to itself.
   13394       if (TCanonical != Canonical)
   13395         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
   13396 
   13397       CXXConstructorDecl *C = Target;
   13398       while (C->getCanonicalDecl() != Canonical) {
   13399         const FunctionDecl *FNTarget = nullptr;
   13400         (void)C->getTargetConstructor()->hasBody(FNTarget);
   13401         assert(FNTarget && "Ctor cycle through bodiless function");
   13402 
   13403         C = const_cast<CXXConstructorDecl*>(
   13404           cast<CXXConstructorDecl>(FNTarget));
   13405         S.Diag(C->getLocation(), diag::note_which_delegates_to);
   13406       }
   13407     }
   13408 
   13409     Invalid.insert(Current.begin(), Current.end());
   13410     Current.clear();
   13411   } else {
   13412     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
   13413   }
   13414 }
   13415 
   13416 
   13417 void Sema::CheckDelegatingCtorCycles() {
   13418   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
   13419 
   13420   for (DelegatingCtorDeclsType::iterator
   13421          I = DelegatingCtorDecls.begin(ExternalSource),
   13422          E = DelegatingCtorDecls.end();
   13423        I != E; ++I)
   13424     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
   13425 
   13426   for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
   13427                                                          CE = Invalid.end();
   13428        CI != CE; ++CI)
   13429     (*CI)->setInvalidDecl();
   13430 }
   13431 
   13432 namespace {
   13433   /// \brief AST visitor that finds references to the 'this' expression.
   13434   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
   13435     Sema &S;
   13436 
   13437   public:
   13438     explicit FindCXXThisExpr(Sema &S) : S(S) { }
   13439 
   13440     bool VisitCXXThisExpr(CXXThisExpr *E) {
   13441       S.Diag(E->getLocation(), diag::err_this_static_member_func)
   13442         << E->isImplicit();
   13443       return false;
   13444     }
   13445   };
   13446 }
   13447 
   13448 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
   13449   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
   13450   if (!TSInfo)
   13451     return false;
   13452 
   13453   TypeLoc TL = TSInfo->getTypeLoc();
   13454   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
   13455   if (!ProtoTL)
   13456     return false;
   13457 
   13458   // C++11 [expr.prim.general]p3:
   13459   //   [The expression this] shall not appear before the optional
   13460   //   cv-qualifier-seq and it shall not appear within the declaration of a
   13461   //   static member function (although its type and value category are defined
   13462   //   within a static member function as they are within a non-static member
   13463   //   function). [ Note: this is because declaration matching does not occur
   13464   //  until the complete declarator is known. - end note ]
   13465   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
   13466   FindCXXThisExpr Finder(*this);
   13467 
   13468   // If the return type came after the cv-qualifier-seq, check it now.
   13469   if (Proto->hasTrailingReturn() &&
   13470       !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
   13471     return true;
   13472 
   13473   // Check the exception specification.
   13474   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
   13475     return true;
   13476 
   13477   return checkThisInStaticMemberFunctionAttributes(Method);
   13478 }
   13479 
   13480 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
   13481   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
   13482   if (!TSInfo)
   13483     return false;
   13484 
   13485   TypeLoc TL = TSInfo->getTypeLoc();
   13486   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
   13487   if (!ProtoTL)
   13488     return false;
   13489 
   13490   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
   13491   FindCXXThisExpr Finder(*this);
   13492 
   13493   switch (Proto->getExceptionSpecType()) {
   13494   case EST_Unparsed:
   13495   case EST_Uninstantiated:
   13496   case EST_Unevaluated:
   13497   case EST_BasicNoexcept:
   13498   case EST_DynamicNone:
   13499   case EST_MSAny:
   13500   case EST_None:
   13501     break;
   13502 
   13503   case EST_ComputedNoexcept:
   13504     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
   13505       return true;
   13506 
   13507   case EST_Dynamic:
   13508     for (const auto &E : Proto->exceptions()) {
   13509       if (!Finder.TraverseType(E))
   13510         return true;
   13511     }
   13512     break;
   13513   }
   13514 
   13515   return false;
   13516 }
   13517 
   13518 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
   13519   FindCXXThisExpr Finder(*this);
   13520 
   13521   // Check attributes.
   13522   for (const auto *A : Method->attrs()) {
   13523     // FIXME: This should be emitted by tblgen.
   13524     Expr *Arg = nullptr;
   13525     ArrayRef<Expr *> Args;
   13526     if (const auto *G = dyn_cast<GuardedByAttr>(A))
   13527       Arg = G->getArg();
   13528     else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
   13529       Arg = G->getArg();
   13530     else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
   13531       Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
   13532     else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
   13533       Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
   13534     else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
   13535       Arg = ETLF->getSuccessValue();
   13536       Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
   13537     } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
   13538       Arg = STLF->getSuccessValue();
   13539       Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
   13540     } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
   13541       Arg = LR->getArg();
   13542     else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
   13543       Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
   13544     else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
   13545       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
   13546     else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
   13547       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
   13548     else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
   13549       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
   13550     else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
   13551       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
   13552 
   13553     if (Arg && !Finder.TraverseStmt(Arg))
   13554       return true;
   13555 
   13556     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   13557       if (!Finder.TraverseStmt(Args[I]))
   13558         return true;
   13559     }
   13560   }
   13561 
   13562   return false;
   13563 }
   13564 
   13565 void Sema::checkExceptionSpecification(
   13566     bool IsTopLevel, ExceptionSpecificationType EST,
   13567     ArrayRef<ParsedType> DynamicExceptions,
   13568     ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
   13569     SmallVectorImpl<QualType> &Exceptions,
   13570     FunctionProtoType::ExceptionSpecInfo &ESI) {
   13571   Exceptions.clear();
   13572   ESI.Type = EST;
   13573   if (EST == EST_Dynamic) {
   13574     Exceptions.reserve(DynamicExceptions.size());
   13575     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
   13576       // FIXME: Preserve type source info.
   13577       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
   13578 
   13579       if (IsTopLevel) {
   13580         SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   13581         collectUnexpandedParameterPacks(ET, Unexpanded);
   13582         if (!Unexpanded.empty()) {
   13583           DiagnoseUnexpandedParameterPacks(
   13584               DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
   13585               Unexpanded);
   13586           continue;
   13587         }
   13588       }
   13589 
   13590       // Check that the type is valid for an exception spec, and
   13591       // drop it if not.
   13592       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
   13593         Exceptions.push_back(ET);
   13594     }
   13595     ESI.Exceptions = Exceptions;
   13596     return;
   13597   }
   13598 
   13599   if (EST == EST_ComputedNoexcept) {
   13600     // If an error occurred, there's no expression here.
   13601     if (NoexceptExpr) {
   13602       assert((NoexceptExpr->isTypeDependent() ||
   13603               NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
   13604               Context.BoolTy) &&
   13605              "Parser should have made sure that the expression is boolean");
   13606       if (IsTopLevel && NoexceptExpr &&
   13607           DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
   13608         ESI.Type = EST_BasicNoexcept;
   13609         return;
   13610       }
   13611 
   13612       if (!NoexceptExpr->isValueDependent())
   13613         NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr,
   13614                          diag::err_noexcept_needs_constant_expression,
   13615                          /*AllowFold*/ false).get();
   13616       ESI.NoexceptExpr = NoexceptExpr;
   13617     }
   13618     return;
   13619   }
   13620 }
   13621 
   13622 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
   13623              ExceptionSpecificationType EST,
   13624              SourceRange SpecificationRange,
   13625              ArrayRef<ParsedType> DynamicExceptions,
   13626              ArrayRef<SourceRange> DynamicExceptionRanges,
   13627              Expr *NoexceptExpr) {
   13628   if (!MethodD)
   13629     return;
   13630 
   13631   // Dig out the method we're referring to.
   13632   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
   13633     MethodD = FunTmpl->getTemplatedDecl();
   13634 
   13635   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
   13636   if (!Method)
   13637     return;
   13638 
   13639   // Check the exception specification.
   13640   llvm::SmallVector<QualType, 4> Exceptions;
   13641   FunctionProtoType::ExceptionSpecInfo ESI;
   13642   checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
   13643                               DynamicExceptionRanges, NoexceptExpr, Exceptions,
   13644                               ESI);
   13645 
   13646   // Update the exception specification on the function type.
   13647   Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
   13648 
   13649   if (Method->isStatic())
   13650     checkThisInStaticMemberFunctionExceptionSpec(Method);
   13651 
   13652   if (Method->isVirtual()) {
   13653     // Check overrides, which we previously had to delay.
   13654     for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
   13655                                      OEnd = Method->end_overridden_methods();
   13656          O != OEnd; ++O)
   13657       CheckOverridingFunctionExceptionSpec(Method, *O);
   13658   }
   13659 }
   13660 
   13661 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
   13662 ///
   13663 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
   13664                                        SourceLocation DeclStart,
   13665                                        Declarator &D, Expr *BitWidth,
   13666                                        InClassInitStyle InitStyle,
   13667                                        AccessSpecifier AS,
   13668                                        AttributeList *MSPropertyAttr) {
   13669   IdentifierInfo *II = D.getIdentifier();
   13670   if (!II) {
   13671     Diag(DeclStart, diag::err_anonymous_property);
   13672     return nullptr;
   13673   }
   13674   SourceLocation Loc = D.getIdentifierLoc();
   13675 
   13676   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   13677   QualType T = TInfo->getType();
   13678   if (getLangOpts().CPlusPlus) {
   13679     CheckExtraCXXDefaultArguments(D);
   13680 
   13681     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   13682                                         UPPC_DataMemberType)) {
   13683       D.setInvalidType();
   13684       T = Context.IntTy;
   13685       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   13686     }
   13687   }
   13688 
   13689   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   13690 
   13691   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   13692     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   13693          diag::err_invalid_thread)
   13694       << DeclSpec::getSpecifierName(TSCS);
   13695 
   13696   // Check to see if this name was declared as a member previously
   13697   NamedDecl *PrevDecl = nullptr;
   13698   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   13699   LookupName(Previous, S);
   13700   switch (Previous.getResultKind()) {
   13701   case LookupResult::Found:
   13702   case LookupResult::FoundUnresolvedValue:
   13703     PrevDecl = Previous.getAsSingle<NamedDecl>();
   13704     break;
   13705 
   13706   case LookupResult::FoundOverloaded:
   13707     PrevDecl = Previous.getRepresentativeDecl();
   13708     break;
   13709 
   13710   case LookupResult::NotFound:
   13711   case LookupResult::NotFoundInCurrentInstantiation:
   13712   case LookupResult::Ambiguous:
   13713     break;
   13714   }
   13715 
   13716   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   13717     // Maybe we will complain about the shadowed template parameter.
   13718     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   13719     // Just pretend that we didn't see the previous declaration.
   13720     PrevDecl = nullptr;
   13721   }
   13722 
   13723   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   13724     PrevDecl = nullptr;
   13725 
   13726   SourceLocation TSSL = D.getLocStart();
   13727   const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
   13728   MSPropertyDecl *NewPD = MSPropertyDecl::Create(
   13729       Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
   13730   ProcessDeclAttributes(TUScope, NewPD, D);
   13731   NewPD->setAccess(AS);
   13732 
   13733   if (NewPD->isInvalidDecl())
   13734     Record->setInvalidDecl();
   13735 
   13736   if (D.getDeclSpec().isModulePrivateSpecified())
   13737     NewPD->setModulePrivate();
   13738 
   13739   if (NewPD->isInvalidDecl() && PrevDecl) {
   13740     // Don't introduce NewFD into scope; there's already something
   13741     // with the same name in the same scope.
   13742   } else if (II) {
   13743     PushOnScopeChains(NewPD, S);
   13744   } else
   13745     Record->addDecl(NewPD);
   13746 
   13747   return NewPD;
   13748 }
   13749