Home | History | Annotate | Download | only in Analysis
      1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Shared implementation of BlockFrequency for IR and Machine Instructions.
     11 // See the documentation below for BlockFrequencyInfoImpl for details.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
     16 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/PostOrderIterator.h"
     20 #include "llvm/ADT/iterator_range.h"
     21 #include "llvm/IR/BasicBlock.h"
     22 #include "llvm/Support/BlockFrequency.h"
     23 #include "llvm/Support/BranchProbability.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/Support/ScaledNumber.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include <deque>
     28 #include <list>
     29 #include <string>
     30 #include <vector>
     31 
     32 #define DEBUG_TYPE "block-freq"
     33 
     34 namespace llvm {
     35 
     36 class BasicBlock;
     37 class BranchProbabilityInfo;
     38 class Function;
     39 class Loop;
     40 class LoopInfo;
     41 class MachineBasicBlock;
     42 class MachineBranchProbabilityInfo;
     43 class MachineFunction;
     44 class MachineLoop;
     45 class MachineLoopInfo;
     46 
     47 namespace bfi_detail {
     48 
     49 struct IrreducibleGraph;
     50 
     51 // This is part of a workaround for a GCC 4.7 crash on lambdas.
     52 template <class BT> struct BlockEdgesAdder;
     53 
     54 /// \brief Mass of a block.
     55 ///
     56 /// This class implements a sort of fixed-point fraction always between 0.0 and
     57 /// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
     58 ///
     59 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
     60 /// so arithmetic operations never overflow or underflow.
     61 ///
     62 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
     63 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
     64 /// quite, maximum precision).
     65 ///
     66 /// Masses can be scaled by \a BranchProbability at maximum precision.
     67 class BlockMass {
     68   uint64_t Mass;
     69 
     70 public:
     71   BlockMass() : Mass(0) {}
     72   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
     73 
     74   static BlockMass getEmpty() { return BlockMass(); }
     75   static BlockMass getFull() { return BlockMass(UINT64_MAX); }
     76 
     77   uint64_t getMass() const { return Mass; }
     78 
     79   bool isFull() const { return Mass == UINT64_MAX; }
     80   bool isEmpty() const { return !Mass; }
     81 
     82   bool operator!() const { return isEmpty(); }
     83 
     84   /// \brief Add another mass.
     85   ///
     86   /// Adds another mass, saturating at \a isFull() rather than overflowing.
     87   BlockMass &operator+=(const BlockMass &X) {
     88     uint64_t Sum = Mass + X.Mass;
     89     Mass = Sum < Mass ? UINT64_MAX : Sum;
     90     return *this;
     91   }
     92 
     93   /// \brief Subtract another mass.
     94   ///
     95   /// Subtracts another mass, saturating at \a isEmpty() rather than
     96   /// undeflowing.
     97   BlockMass &operator-=(const BlockMass &X) {
     98     uint64_t Diff = Mass - X.Mass;
     99     Mass = Diff > Mass ? 0 : Diff;
    100     return *this;
    101   }
    102 
    103   BlockMass &operator*=(const BranchProbability &P) {
    104     Mass = P.scale(Mass);
    105     return *this;
    106   }
    107 
    108   bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
    109   bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
    110   bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
    111   bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
    112   bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
    113   bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
    114 
    115   /// \brief Convert to scaled number.
    116   ///
    117   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
    118   /// gives slightly above 0.0.
    119   ScaledNumber<uint64_t> toScaled() const;
    120 
    121   void dump() const;
    122   raw_ostream &print(raw_ostream &OS) const;
    123 };
    124 
    125 inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
    126   return BlockMass(L) += R;
    127 }
    128 inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
    129   return BlockMass(L) -= R;
    130 }
    131 inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
    132   return BlockMass(L) *= R;
    133 }
    134 inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
    135   return BlockMass(R) *= L;
    136 }
    137 
    138 inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
    139   return X.print(OS);
    140 }
    141 
    142 } // end namespace bfi_detail
    143 
    144 template <> struct isPodLike<bfi_detail::BlockMass> {
    145   static const bool value = true;
    146 };
    147 
    148 /// \brief Base class for BlockFrequencyInfoImpl
    149 ///
    150 /// BlockFrequencyInfoImplBase has supporting data structures and some
    151 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
    152 /// the block type (or that call such algorithms) are skipped here.
    153 ///
    154 /// Nevertheless, the majority of the overall algorithm documention lives with
    155 /// BlockFrequencyInfoImpl.  See there for details.
    156 class BlockFrequencyInfoImplBase {
    157 public:
    158   typedef ScaledNumber<uint64_t> Scaled64;
    159   typedef bfi_detail::BlockMass BlockMass;
    160 
    161   /// \brief Representative of a block.
    162   ///
    163   /// This is a simple wrapper around an index into the reverse-post-order
    164   /// traversal of the blocks.
    165   ///
    166   /// Unlike a block pointer, its order has meaning (location in the
    167   /// topological sort) and it's class is the same regardless of block type.
    168   struct BlockNode {
    169     typedef uint32_t IndexType;
    170     IndexType Index;
    171 
    172     bool operator==(const BlockNode &X) const { return Index == X.Index; }
    173     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
    174     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
    175     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
    176     bool operator<(const BlockNode &X) const { return Index < X.Index; }
    177     bool operator>(const BlockNode &X) const { return Index > X.Index; }
    178 
    179     BlockNode() : Index(UINT32_MAX) {}
    180     BlockNode(IndexType Index) : Index(Index) {}
    181 
    182     bool isValid() const { return Index <= getMaxIndex(); }
    183     static size_t getMaxIndex() { return UINT32_MAX - 1; }
    184   };
    185 
    186   /// \brief Stats about a block itself.
    187   struct FrequencyData {
    188     Scaled64 Scaled;
    189     uint64_t Integer;
    190   };
    191 
    192   /// \brief Data about a loop.
    193   ///
    194   /// Contains the data necessary to represent represent a loop as a
    195   /// pseudo-node once it's packaged.
    196   struct LoopData {
    197     typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
    198     typedef SmallVector<BlockNode, 4> NodeList;
    199     LoopData *Parent;       ///< The parent loop.
    200     bool IsPackaged;        ///< Whether this has been packaged.
    201     uint32_t NumHeaders;    ///< Number of headers.
    202     ExitMap Exits;          ///< Successor edges (and weights).
    203     NodeList Nodes;         ///< Header and the members of the loop.
    204     BlockMass BackedgeMass; ///< Mass returned to loop header.
    205     BlockMass Mass;
    206     Scaled64 Scale;
    207 
    208     LoopData(LoopData *Parent, const BlockNode &Header)
    209         : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header) {}
    210     template <class It1, class It2>
    211     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
    212              It2 LastOther)
    213         : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
    214       NumHeaders = Nodes.size();
    215       Nodes.insert(Nodes.end(), FirstOther, LastOther);
    216     }
    217     bool isHeader(const BlockNode &Node) const {
    218       if (isIrreducible())
    219         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
    220                                   Node);
    221       return Node == Nodes[0];
    222     }
    223     BlockNode getHeader() const { return Nodes[0]; }
    224     bool isIrreducible() const { return NumHeaders > 1; }
    225 
    226     NodeList::const_iterator members_begin() const {
    227       return Nodes.begin() + NumHeaders;
    228     }
    229     NodeList::const_iterator members_end() const { return Nodes.end(); }
    230     iterator_range<NodeList::const_iterator> members() const {
    231       return make_range(members_begin(), members_end());
    232     }
    233   };
    234 
    235   /// \brief Index of loop information.
    236   struct WorkingData {
    237     BlockNode Node; ///< This node.
    238     LoopData *Loop; ///< The loop this block is inside.
    239     BlockMass Mass; ///< Mass distribution from the entry block.
    240 
    241     WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
    242 
    243     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
    244     bool isDoubleLoopHeader() const {
    245       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
    246              Loop->Parent->isHeader(Node);
    247     }
    248 
    249     LoopData *getContainingLoop() const {
    250       if (!isLoopHeader())
    251         return Loop;
    252       if (!isDoubleLoopHeader())
    253         return Loop->Parent;
    254       return Loop->Parent->Parent;
    255     }
    256 
    257     /// \brief Resolve a node to its representative.
    258     ///
    259     /// Get the node currently representing Node, which could be a containing
    260     /// loop.
    261     ///
    262     /// This function should only be called when distributing mass.  As long as
    263     /// there are no irreducible edges to Node, then it will have complexity
    264     /// O(1) in this context.
    265     ///
    266     /// In general, the complexity is O(L), where L is the number of loop
    267     /// headers Node has been packaged into.  Since this method is called in
    268     /// the context of distributing mass, L will be the number of loop headers
    269     /// an early exit edge jumps out of.
    270     BlockNode getResolvedNode() const {
    271       auto L = getPackagedLoop();
    272       return L ? L->getHeader() : Node;
    273     }
    274     LoopData *getPackagedLoop() const {
    275       if (!Loop || !Loop->IsPackaged)
    276         return nullptr;
    277       auto L = Loop;
    278       while (L->Parent && L->Parent->IsPackaged)
    279         L = L->Parent;
    280       return L;
    281     }
    282 
    283     /// \brief Get the appropriate mass for a node.
    284     ///
    285     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
    286     /// has been packaged), returns the mass of its pseudo-node.  If it's a
    287     /// node inside a packaged loop, it returns the loop's mass.
    288     BlockMass &getMass() {
    289       if (!isAPackage())
    290         return Mass;
    291       if (!isADoublePackage())
    292         return Loop->Mass;
    293       return Loop->Parent->Mass;
    294     }
    295 
    296     /// \brief Has ContainingLoop been packaged up?
    297     bool isPackaged() const { return getResolvedNode() != Node; }
    298     /// \brief Has Loop been packaged up?
    299     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
    300     /// \brief Has Loop been packaged up twice?
    301     bool isADoublePackage() const {
    302       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
    303     }
    304   };
    305 
    306   /// \brief Unscaled probability weight.
    307   ///
    308   /// Probability weight for an edge in the graph (including the
    309   /// successor/target node).
    310   ///
    311   /// All edges in the original function are 32-bit.  However, exit edges from
    312   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
    313   /// space in general.
    314   ///
    315   /// In addition to the raw weight amount, Weight stores the type of the edge
    316   /// in the current context (i.e., the context of the loop being processed).
    317   /// Is this a local edge within the loop, an exit from the loop, or a
    318   /// backedge to the loop header?
    319   struct Weight {
    320     enum DistType { Local, Exit, Backedge };
    321     DistType Type;
    322     BlockNode TargetNode;
    323     uint64_t Amount;
    324     Weight() : Type(Local), Amount(0) {}
    325     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
    326         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
    327   };
    328 
    329   /// \brief Distribution of unscaled probability weight.
    330   ///
    331   /// Distribution of unscaled probability weight to a set of successors.
    332   ///
    333   /// This class collates the successor edge weights for later processing.
    334   ///
    335   /// \a DidOverflow indicates whether \a Total did overflow while adding to
    336   /// the distribution.  It should never overflow twice.
    337   struct Distribution {
    338     typedef SmallVector<Weight, 4> WeightList;
    339     WeightList Weights;    ///< Individual successor weights.
    340     uint64_t Total;        ///< Sum of all weights.
    341     bool DidOverflow;      ///< Whether \a Total did overflow.
    342 
    343     Distribution() : Total(0), DidOverflow(false) {}
    344     void addLocal(const BlockNode &Node, uint64_t Amount) {
    345       add(Node, Amount, Weight::Local);
    346     }
    347     void addExit(const BlockNode &Node, uint64_t Amount) {
    348       add(Node, Amount, Weight::Exit);
    349     }
    350     void addBackedge(const BlockNode &Node, uint64_t Amount) {
    351       add(Node, Amount, Weight::Backedge);
    352     }
    353 
    354     /// \brief Normalize the distribution.
    355     ///
    356     /// Combines multiple edges to the same \a Weight::TargetNode and scales
    357     /// down so that \a Total fits into 32-bits.
    358     ///
    359     /// This is linear in the size of \a Weights.  For the vast majority of
    360     /// cases, adjacent edge weights are combined by sorting WeightList and
    361     /// combining adjacent weights.  However, for very large edge lists an
    362     /// auxiliary hash table is used.
    363     void normalize();
    364 
    365   private:
    366     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
    367   };
    368 
    369   /// \brief Data about each block.  This is used downstream.
    370   std::vector<FrequencyData> Freqs;
    371 
    372   /// \brief Loop data: see initializeLoops().
    373   std::vector<WorkingData> Working;
    374 
    375   /// \brief Indexed information about loops.
    376   std::list<LoopData> Loops;
    377 
    378   /// \brief Add all edges out of a packaged loop to the distribution.
    379   ///
    380   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
    381   /// successor edge.
    382   ///
    383   /// \return \c true unless there's an irreducible backedge.
    384   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
    385                                Distribution &Dist);
    386 
    387   /// \brief Add an edge to the distribution.
    388   ///
    389   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
    390   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
    391   /// every edge should be a local edge (since all the loops are packaged up).
    392   ///
    393   /// \return \c true unless aborted due to an irreducible backedge.
    394   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
    395                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
    396 
    397   LoopData &getLoopPackage(const BlockNode &Head) {
    398     assert(Head.Index < Working.size());
    399     assert(Working[Head.Index].isLoopHeader());
    400     return *Working[Head.Index].Loop;
    401   }
    402 
    403   /// \brief Analyze irreducible SCCs.
    404   ///
    405   /// Separate irreducible SCCs from \c G, which is an explict graph of \c
    406   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
    407   /// Insert them into \a Loops before \c Insert.
    408   ///
    409   /// \return the \c LoopData nodes representing the irreducible SCCs.
    410   iterator_range<std::list<LoopData>::iterator>
    411   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
    412                      std::list<LoopData>::iterator Insert);
    413 
    414   /// \brief Update a loop after packaging irreducible SCCs inside of it.
    415   ///
    416   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
    417   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
    418   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
    419   /// up need to be removed from \a OuterLoop::Nodes.
    420   void updateLoopWithIrreducible(LoopData &OuterLoop);
    421 
    422   /// \brief Distribute mass according to a distribution.
    423   ///
    424   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
    425   /// backedges and exits are stored in its entry in Loops.
    426   ///
    427   /// Mass is distributed in parallel from two copies of the source mass.
    428   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
    429                       Distribution &Dist);
    430 
    431   /// \brief Compute the loop scale for a loop.
    432   void computeLoopScale(LoopData &Loop);
    433 
    434   /// \brief Package up a loop.
    435   void packageLoop(LoopData &Loop);
    436 
    437   /// \brief Unwrap loops.
    438   void unwrapLoops();
    439 
    440   /// \brief Finalize frequency metrics.
    441   ///
    442   /// Calculates final frequencies and cleans up no-longer-needed data
    443   /// structures.
    444   void finalizeMetrics();
    445 
    446   /// \brief Clear all memory.
    447   void clear();
    448 
    449   virtual std::string getBlockName(const BlockNode &Node) const;
    450   std::string getLoopName(const LoopData &Loop) const;
    451 
    452   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
    453   void dump() const { print(dbgs()); }
    454 
    455   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
    456 
    457   BlockFrequency getBlockFreq(const BlockNode &Node) const;
    458 
    459   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
    460   raw_ostream &printBlockFreq(raw_ostream &OS,
    461                               const BlockFrequency &Freq) const;
    462 
    463   uint64_t getEntryFreq() const {
    464     assert(!Freqs.empty());
    465     return Freqs[0].Integer;
    466   }
    467   /// \brief Virtual destructor.
    468   ///
    469   /// Need a virtual destructor to mask the compiler warning about
    470   /// getBlockName().
    471   virtual ~BlockFrequencyInfoImplBase() {}
    472 };
    473 
    474 namespace bfi_detail {
    475 template <class BlockT> struct TypeMap {};
    476 template <> struct TypeMap<BasicBlock> {
    477   typedef BasicBlock BlockT;
    478   typedef Function FunctionT;
    479   typedef BranchProbabilityInfo BranchProbabilityInfoT;
    480   typedef Loop LoopT;
    481   typedef LoopInfo LoopInfoT;
    482 };
    483 template <> struct TypeMap<MachineBasicBlock> {
    484   typedef MachineBasicBlock BlockT;
    485   typedef MachineFunction FunctionT;
    486   typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
    487   typedef MachineLoop LoopT;
    488   typedef MachineLoopInfo LoopInfoT;
    489 };
    490 
    491 /// \brief Get the name of a MachineBasicBlock.
    492 ///
    493 /// Get the name of a MachineBasicBlock.  It's templated so that including from
    494 /// CodeGen is unnecessary (that would be a layering issue).
    495 ///
    496 /// This is used mainly for debug output.  The name is similar to
    497 /// MachineBasicBlock::getFullName(), but skips the name of the function.
    498 template <class BlockT> std::string getBlockName(const BlockT *BB) {
    499   assert(BB && "Unexpected nullptr");
    500   auto MachineName = "BB" + Twine(BB->getNumber());
    501   if (BB->getBasicBlock())
    502     return (MachineName + "[" + BB->getName() + "]").str();
    503   return MachineName.str();
    504 }
    505 /// \brief Get the name of a BasicBlock.
    506 template <> inline std::string getBlockName(const BasicBlock *BB) {
    507   assert(BB && "Unexpected nullptr");
    508   return BB->getName().str();
    509 }
    510 
    511 /// \brief Graph of irreducible control flow.
    512 ///
    513 /// This graph is used for determining the SCCs in a loop (or top-level
    514 /// function) that has irreducible control flow.
    515 ///
    516 /// During the block frequency algorithm, the local graphs are defined in a
    517 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
    518 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
    519 /// latter only has successor information.
    520 ///
    521 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
    522 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
    523 /// and it explicitly lists predecessors and successors.  The initialization
    524 /// that relies on \c MachineBasicBlock is defined in the header.
    525 struct IrreducibleGraph {
    526   typedef BlockFrequencyInfoImplBase BFIBase;
    527 
    528   BFIBase &BFI;
    529 
    530   typedef BFIBase::BlockNode BlockNode;
    531   struct IrrNode {
    532     BlockNode Node;
    533     unsigned NumIn;
    534     std::deque<const IrrNode *> Edges;
    535     IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
    536 
    537     typedef std::deque<const IrrNode *>::const_iterator iterator;
    538     iterator pred_begin() const { return Edges.begin(); }
    539     iterator succ_begin() const { return Edges.begin() + NumIn; }
    540     iterator pred_end() const { return succ_begin(); }
    541     iterator succ_end() const { return Edges.end(); }
    542   };
    543   BlockNode Start;
    544   const IrrNode *StartIrr;
    545   std::vector<IrrNode> Nodes;
    546   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
    547 
    548   /// \brief Construct an explicit graph containing irreducible control flow.
    549   ///
    550   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
    551   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
    552   /// addBlockEdges to add block successors that have not been packaged into
    553   /// loops.
    554   ///
    555   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
    556   /// user of this.
    557   template <class BlockEdgesAdder>
    558   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
    559                    BlockEdgesAdder addBlockEdges)
    560       : BFI(BFI), StartIrr(nullptr) {
    561     initialize(OuterLoop, addBlockEdges);
    562   }
    563 
    564   template <class BlockEdgesAdder>
    565   void initialize(const BFIBase::LoopData *OuterLoop,
    566                   BlockEdgesAdder addBlockEdges);
    567   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
    568   void addNodesInFunction();
    569   void addNode(const BlockNode &Node) {
    570     Nodes.emplace_back(Node);
    571     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
    572   }
    573   void indexNodes();
    574   template <class BlockEdgesAdder>
    575   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
    576                 BlockEdgesAdder addBlockEdges);
    577   void addEdge(IrrNode &Irr, const BlockNode &Succ,
    578                const BFIBase::LoopData *OuterLoop);
    579 };
    580 template <class BlockEdgesAdder>
    581 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
    582                                   BlockEdgesAdder addBlockEdges) {
    583   if (OuterLoop) {
    584     addNodesInLoop(*OuterLoop);
    585     for (auto N : OuterLoop->Nodes)
    586       addEdges(N, OuterLoop, addBlockEdges);
    587   } else {
    588     addNodesInFunction();
    589     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
    590       addEdges(Index, OuterLoop, addBlockEdges);
    591   }
    592   StartIrr = Lookup[Start.Index];
    593 }
    594 template <class BlockEdgesAdder>
    595 void IrreducibleGraph::addEdges(const BlockNode &Node,
    596                                 const BFIBase::LoopData *OuterLoop,
    597                                 BlockEdgesAdder addBlockEdges) {
    598   auto L = Lookup.find(Node.Index);
    599   if (L == Lookup.end())
    600     return;
    601   IrrNode &Irr = *L->second;
    602   const auto &Working = BFI.Working[Node.Index];
    603 
    604   if (Working.isAPackage())
    605     for (const auto &I : Working.Loop->Exits)
    606       addEdge(Irr, I.first, OuterLoop);
    607   else
    608     addBlockEdges(*this, Irr, OuterLoop);
    609 }
    610 }
    611 
    612 /// \brief Shared implementation for block frequency analysis.
    613 ///
    614 /// This is a shared implementation of BlockFrequencyInfo and
    615 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
    616 /// blocks.
    617 ///
    618 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
    619 /// which is called the header.  A given loop, L, can have sub-loops, which are
    620 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
    621 /// consists of a single block that does not have a self-edge.)
    622 ///
    623 /// In addition to loops, this algorithm has limited support for irreducible
    624 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
    625 /// discovered on they fly, and modelled as loops with multiple headers.
    626 ///
    627 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
    628 /// nodes that are targets of a backedge within it (excluding backedges within
    629 /// true sub-loops).  Block frequency calculations act as if a block is
    630 /// inserted that intercepts all the edges to the headers.  All backedges and
    631 /// entries point to this block.  Its successors are the headers, which split
    632 /// the frequency evenly.
    633 ///
    634 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
    635 /// separates mass distribution from loop scaling, and dithers to eliminate
    636 /// probability mass loss.
    637 ///
    638 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
    639 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
    640 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
    641 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
    642 /// reverse-post order.  This gives two advantages:  it's easy to compare the
    643 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
    644 /// by vectors.
    645 ///
    646 /// This algorithm is O(V+E), unless there is irreducible control flow, in
    647 /// which case it's O(V*E) in the worst case.
    648 ///
    649 /// These are the main stages:
    650 ///
    651 ///  0. Reverse post-order traversal (\a initializeRPOT()).
    652 ///
    653 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
    654 ///     All other stages make use of this ordering.  Save a lookup from BlockT
    655 ///     to BlockNode (the index into RPOT) in Nodes.
    656 ///
    657 ///  1. Loop initialization (\a initializeLoops()).
    658 ///
    659 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
    660 ///     the algorithm.  In particular, store the immediate members of each loop
    661 ///     in reverse post-order.
    662 ///
    663 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
    664 ///
    665 ///     For each loop (bottom-up), distribute mass through the DAG resulting
    666 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
    667 ///     Track the backedge mass distributed to the loop header, and use it to
    668 ///     calculate the loop scale (number of loop iterations).  Immediate
    669 ///     members that represent sub-loops will already have been visited and
    670 ///     packaged into a pseudo-node.
    671 ///
    672 ///     Distributing mass in a loop is a reverse-post-order traversal through
    673 ///     the loop.  Start by assigning full mass to the Loop header.  For each
    674 ///     node in the loop:
    675 ///
    676 ///         - Fetch and categorize the weight distribution for its successors.
    677 ///           If this is a packaged-subloop, the weight distribution is stored
    678 ///           in \a LoopData::Exits.  Otherwise, fetch it from
    679 ///           BranchProbabilityInfo.
    680 ///
    681 ///         - Each successor is categorized as \a Weight::Local, a local edge
    682 ///           within the current loop, \a Weight::Backedge, a backedge to the
    683 ///           loop header, or \a Weight::Exit, any successor outside the loop.
    684 ///           The weight, the successor, and its category are stored in \a
    685 ///           Distribution.  There can be multiple edges to each successor.
    686 ///
    687 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
    688 ///           The usual flow is temporarily aborted.  \a
    689 ///           computeIrreducibleMass() finds the irreducible SCCs within the
    690 ///           loop, packages them up, and restarts the flow.
    691 ///
    692 ///         - Normalize the distribution:  scale weights down so that their sum
    693 ///           is 32-bits, and coalesce multiple edges to the same node.
    694 ///
    695 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
    696 ///           as described in \a distributeMass().
    697 ///
    698 ///     Finally, calculate the loop scale from the accumulated backedge mass.
    699 ///
    700 ///  3. Distribute mass in the function (\a computeMassInFunction()).
    701 ///
    702 ///     Finally, distribute mass through the DAG resulting from packaging all
    703 ///     loops in the function.  This uses the same algorithm as distributing
    704 ///     mass in a loop, except that there are no exit or backedge edges.
    705 ///
    706 ///  4. Unpackage loops (\a unwrapLoops()).
    707 ///
    708 ///     Initialize each block's frequency to a floating point representation of
    709 ///     its mass.
    710 ///
    711 ///     Visit loops top-down, scaling the frequencies of its immediate members
    712 ///     by the loop's pseudo-node's frequency.
    713 ///
    714 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
    715 ///
    716 ///     Using the min and max frequencies as a guide, translate floating point
    717 ///     frequencies to an appropriate range in uint64_t.
    718 ///
    719 /// It has some known flaws.
    720 ///
    721 ///   - The model of irreducible control flow is a rough approximation.
    722 ///
    723 ///     Modelling irreducible control flow exactly involves setting up and
    724 ///     solving a group of infinite geometric series.  Such precision is
    725 ///     unlikely to be worthwhile, since most of our algorithms give up on
    726 ///     irreducible control flow anyway.
    727 ///
    728 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
    729 ///     of TODO list for the model with diminishing returns, to be completed as
    730 ///     necessary.
    731 ///
    732 ///       - The headers for the \a LoopData representing an irreducible SCC
    733 ///         include non-entry blocks.  When these extra blocks exist, they
    734 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
    735 ///         as sub-loops, rather than arbitrarily shoving the problematic
    736 ///         blocks into the headers of the main irreducible SCC.
    737 ///
    738 ///       - Backedge frequencies are assumed to be evenly split between the
    739 ///         headers of a given irreducible SCC.  Instead, we could track the
    740 ///         backedge mass separately for each header, and adjust their relative
    741 ///         frequencies.
    742 ///
    743 ///       - Entry frequencies are assumed to be evenly split between the
    744 ///         headers of a given irreducible SCC, which is the only option if we
    745 ///         need to compute mass in the SCC before its parent loop.  Instead,
    746 ///         we could partially compute mass in the parent loop, and stop when
    747 ///         we get to the SCC.  Here, we have the correct ratio of entry
    748 ///         masses, which we can use to adjust their relative frequencies.
    749 ///         Compute mass in the SCC, and then continue propagation in the
    750 ///         parent.
    751 ///
    752 ///       - We can propagate mass iteratively through the SCC, for some fixed
    753 ///         number of iterations.  Each iteration starts by assigning the entry
    754 ///         blocks their backedge mass from the prior iteration.  The final
    755 ///         mass for each block (and each exit, and the total backedge mass
    756 ///         used for computing loop scale) is the sum of all iterations.
    757 ///         (Running this until fixed point would "solve" the geometric
    758 ///         series by simulation.)
    759 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
    760   typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
    761   typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
    762   typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
    763   BranchProbabilityInfoT;
    764   typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
    765   typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
    766 
    767   // This is part of a workaround for a GCC 4.7 crash on lambdas.
    768   friend struct bfi_detail::BlockEdgesAdder<BT>;
    769 
    770   typedef GraphTraits<const BlockT *> Successor;
    771   typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
    772 
    773   const BranchProbabilityInfoT *BPI;
    774   const LoopInfoT *LI;
    775   const FunctionT *F;
    776 
    777   // All blocks in reverse postorder.
    778   std::vector<const BlockT *> RPOT;
    779   DenseMap<const BlockT *, BlockNode> Nodes;
    780 
    781   typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
    782 
    783   rpot_iterator rpot_begin() const { return RPOT.begin(); }
    784   rpot_iterator rpot_end() const { return RPOT.end(); }
    785 
    786   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
    787 
    788   BlockNode getNode(const rpot_iterator &I) const {
    789     return BlockNode(getIndex(I));
    790   }
    791   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
    792 
    793   const BlockT *getBlock(const BlockNode &Node) const {
    794     assert(Node.Index < RPOT.size());
    795     return RPOT[Node.Index];
    796   }
    797 
    798   /// \brief Run (and save) a post-order traversal.
    799   ///
    800   /// Saves a reverse post-order traversal of all the nodes in \a F.
    801   void initializeRPOT();
    802 
    803   /// \brief Initialize loop data.
    804   ///
    805   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
    806   /// each block to the deepest loop it's in, but we need the inverse.  For each
    807   /// loop, we store in reverse post-order its "immediate" members, defined as
    808   /// the header, the headers of immediate sub-loops, and all other blocks in
    809   /// the loop that are not in sub-loops.
    810   void initializeLoops();
    811 
    812   /// \brief Propagate to a block's successors.
    813   ///
    814   /// In the context of distributing mass through \c OuterLoop, divide the mass
    815   /// currently assigned to \c Node between its successors.
    816   ///
    817   /// \return \c true unless there's an irreducible backedge.
    818   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
    819 
    820   /// \brief Compute mass in a particular loop.
    821   ///
    822   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
    823   /// reverse post-order, distribute mass to its successors.  Only visits nodes
    824   /// that have not been packaged into sub-loops.
    825   ///
    826   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
    827   /// \return \c true unless there's an irreducible backedge.
    828   bool computeMassInLoop(LoopData &Loop);
    829 
    830   /// \brief Try to compute mass in the top-level function.
    831   ///
    832   /// Assign mass to the entry block, and then for each block in reverse
    833   /// post-order, distribute mass to its successors.  Skips nodes that have
    834   /// been packaged into loops.
    835   ///
    836   /// \pre \a computeMassInLoops() has been called.
    837   /// \return \c true unless there's an irreducible backedge.
    838   bool tryToComputeMassInFunction();
    839 
    840   /// \brief Compute mass in (and package up) irreducible SCCs.
    841   ///
    842   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
    843   /// of \c Insert), and call \a computeMassInLoop() on each of them.
    844   ///
    845   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
    846   ///
    847   /// \pre \a computeMassInLoop() has been called for each subloop of \c
    848   /// OuterLoop.
    849   /// \pre \c Insert points at the the last loop successfully processed by \a
    850   /// computeMassInLoop().
    851   /// \pre \c OuterLoop has irreducible SCCs.
    852   void computeIrreducibleMass(LoopData *OuterLoop,
    853                               std::list<LoopData>::iterator Insert);
    854 
    855   /// \brief Compute mass in all loops.
    856   ///
    857   /// For each loop bottom-up, call \a computeMassInLoop().
    858   ///
    859   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
    860   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
    861   /// re-enter \a computeMassInLoop().
    862   ///
    863   /// \post \a computeMassInLoop() has returned \c true for every loop.
    864   void computeMassInLoops();
    865 
    866   /// \brief Compute mass in the top-level function.
    867   ///
    868   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
    869   /// compute mass in the top-level function.
    870   ///
    871   /// \post \a tryToComputeMassInFunction() has returned \c true.
    872   void computeMassInFunction();
    873 
    874   std::string getBlockName(const BlockNode &Node) const override {
    875     return bfi_detail::getBlockName(getBlock(Node));
    876   }
    877 
    878 public:
    879   const FunctionT *getFunction() const { return F; }
    880 
    881   void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
    882                   const LoopInfoT *LI);
    883   BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}
    884 
    885   using BlockFrequencyInfoImplBase::getEntryFreq;
    886   BlockFrequency getBlockFreq(const BlockT *BB) const {
    887     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
    888   }
    889   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
    890     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
    891   }
    892 
    893   /// \brief Print the frequencies for the current function.
    894   ///
    895   /// Prints the frequencies for the blocks in the current function.
    896   ///
    897   /// Blocks are printed in the natural iteration order of the function, rather
    898   /// than reverse post-order.  This provides two advantages:  writing -analyze
    899   /// tests is easier (since blocks come out in source order), and even
    900   /// unreachable blocks are printed.
    901   ///
    902   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
    903   /// we need to override it here.
    904   raw_ostream &print(raw_ostream &OS) const override;
    905   using BlockFrequencyInfoImplBase::dump;
    906 
    907   using BlockFrequencyInfoImplBase::printBlockFreq;
    908   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
    909     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
    910   }
    911 };
    912 
    913 template <class BT>
    914 void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
    915                                             const BranchProbabilityInfoT *BPI,
    916                                             const LoopInfoT *LI) {
    917   // Save the parameters.
    918   this->BPI = BPI;
    919   this->LI = LI;
    920   this->F = F;
    921 
    922   // Clean up left-over data structures.
    923   BlockFrequencyInfoImplBase::clear();
    924   RPOT.clear();
    925   Nodes.clear();
    926 
    927   // Initialize.
    928   DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
    929                << std::string(F->getName().size(), '=') << "\n");
    930   initializeRPOT();
    931   initializeLoops();
    932 
    933   // Visit loops in post-order to find thelocal mass distribution, and then do
    934   // the full function.
    935   computeMassInLoops();
    936   computeMassInFunction();
    937   unwrapLoops();
    938   finalizeMetrics();
    939 }
    940 
    941 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
    942   const BlockT *Entry = F->begin();
    943   RPOT.reserve(F->size());
    944   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
    945   std::reverse(RPOT.begin(), RPOT.end());
    946 
    947   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
    948          "More nodes in function than Block Frequency Info supports");
    949 
    950   DEBUG(dbgs() << "reverse-post-order-traversal\n");
    951   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
    952     BlockNode Node = getNode(I);
    953     DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
    954     Nodes[*I] = Node;
    955   }
    956 
    957   Working.reserve(RPOT.size());
    958   for (size_t Index = 0; Index < RPOT.size(); ++Index)
    959     Working.emplace_back(Index);
    960   Freqs.resize(RPOT.size());
    961 }
    962 
    963 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
    964   DEBUG(dbgs() << "loop-detection\n");
    965   if (LI->empty())
    966     return;
    967 
    968   // Visit loops top down and assign them an index.
    969   std::deque<std::pair<const LoopT *, LoopData *>> Q;
    970   for (const LoopT *L : *LI)
    971     Q.emplace_back(L, nullptr);
    972   while (!Q.empty()) {
    973     const LoopT *Loop = Q.front().first;
    974     LoopData *Parent = Q.front().second;
    975     Q.pop_front();
    976 
    977     BlockNode Header = getNode(Loop->getHeader());
    978     assert(Header.isValid());
    979 
    980     Loops.emplace_back(Parent, Header);
    981     Working[Header.Index].Loop = &Loops.back();
    982     DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
    983 
    984     for (const LoopT *L : *Loop)
    985       Q.emplace_back(L, &Loops.back());
    986   }
    987 
    988   // Visit nodes in reverse post-order and add them to their deepest containing
    989   // loop.
    990   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
    991     // Loop headers have already been mostly mapped.
    992     if (Working[Index].isLoopHeader()) {
    993       LoopData *ContainingLoop = Working[Index].getContainingLoop();
    994       if (ContainingLoop)
    995         ContainingLoop->Nodes.push_back(Index);
    996       continue;
    997     }
    998 
    999     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
   1000     if (!Loop)
   1001       continue;
   1002 
   1003     // Add this node to its containing loop's member list.
   1004     BlockNode Header = getNode(Loop->getHeader());
   1005     assert(Header.isValid());
   1006     const auto &HeaderData = Working[Header.Index];
   1007     assert(HeaderData.isLoopHeader());
   1008 
   1009     Working[Index].Loop = HeaderData.Loop;
   1010     HeaderData.Loop->Nodes.push_back(Index);
   1011     DEBUG(dbgs() << " - loop = " << getBlockName(Header)
   1012                  << ": member = " << getBlockName(Index) << "\n");
   1013   }
   1014 }
   1015 
   1016 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
   1017   // Visit loops with the deepest first, and the top-level loops last.
   1018   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
   1019     if (computeMassInLoop(*L))
   1020       continue;
   1021     auto Next = std::next(L);
   1022     computeIrreducibleMass(&*L, L.base());
   1023     L = std::prev(Next);
   1024     if (computeMassInLoop(*L))
   1025       continue;
   1026     llvm_unreachable("unhandled irreducible control flow");
   1027   }
   1028 }
   1029 
   1030 template <class BT>
   1031 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
   1032   // Compute mass in loop.
   1033   DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
   1034 
   1035   if (Loop.isIrreducible()) {
   1036     BlockMass Remaining = BlockMass::getFull();
   1037     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
   1038       auto &Mass = Working[Loop.Nodes[H].Index].getMass();
   1039       Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
   1040       Remaining -= Mass;
   1041     }
   1042     for (const BlockNode &M : Loop.Nodes)
   1043       if (!propagateMassToSuccessors(&Loop, M))
   1044         llvm_unreachable("unhandled irreducible control flow");
   1045   } else {
   1046     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
   1047     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
   1048       llvm_unreachable("irreducible control flow to loop header!?");
   1049     for (const BlockNode &M : Loop.members())
   1050       if (!propagateMassToSuccessors(&Loop, M))
   1051         // Irreducible backedge.
   1052         return false;
   1053   }
   1054 
   1055   computeLoopScale(Loop);
   1056   packageLoop(Loop);
   1057   return true;
   1058 }
   1059 
   1060 template <class BT>
   1061 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
   1062   // Compute mass in function.
   1063   DEBUG(dbgs() << "compute-mass-in-function\n");
   1064   assert(!Working.empty() && "no blocks in function");
   1065   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
   1066 
   1067   Working[0].getMass() = BlockMass::getFull();
   1068   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
   1069     // Check for nodes that have been packaged.
   1070     BlockNode Node = getNode(I);
   1071     if (Working[Node.Index].isPackaged())
   1072       continue;
   1073 
   1074     if (!propagateMassToSuccessors(nullptr, Node))
   1075       return false;
   1076   }
   1077   return true;
   1078 }
   1079 
   1080 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
   1081   if (tryToComputeMassInFunction())
   1082     return;
   1083   computeIrreducibleMass(nullptr, Loops.begin());
   1084   if (tryToComputeMassInFunction())
   1085     return;
   1086   llvm_unreachable("unhandled irreducible control flow");
   1087 }
   1088 
   1089 /// \note This should be a lambda, but that crashes GCC 4.7.
   1090 namespace bfi_detail {
   1091 template <class BT> struct BlockEdgesAdder {
   1092   typedef BT BlockT;
   1093   typedef BlockFrequencyInfoImplBase::LoopData LoopData;
   1094   typedef GraphTraits<const BlockT *> Successor;
   1095 
   1096   const BlockFrequencyInfoImpl<BT> &BFI;
   1097   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
   1098       : BFI(BFI) {}
   1099   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
   1100                   const LoopData *OuterLoop) {
   1101     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
   1102     for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
   1103          I != E; ++I)
   1104       G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
   1105   }
   1106 };
   1107 }
   1108 template <class BT>
   1109 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
   1110     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
   1111   DEBUG(dbgs() << "analyze-irreducible-in-";
   1112         if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
   1113         else dbgs() << "function\n");
   1114 
   1115   using namespace bfi_detail;
   1116   // Ideally, addBlockEdges() would be declared here as a lambda, but that
   1117   // crashes GCC 4.7.
   1118   BlockEdgesAdder<BT> addBlockEdges(*this);
   1119   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
   1120 
   1121   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
   1122     computeMassInLoop(L);
   1123 
   1124   if (!OuterLoop)
   1125     return;
   1126   updateLoopWithIrreducible(*OuterLoop);
   1127 }
   1128 
   1129 template <class BT>
   1130 bool
   1131 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
   1132                                                       const BlockNode &Node) {
   1133   DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
   1134   // Calculate probability for successors.
   1135   Distribution Dist;
   1136   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
   1137     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
   1138     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
   1139       // Irreducible backedge.
   1140       return false;
   1141   } else {
   1142     const BlockT *BB = getBlock(Node);
   1143     for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
   1144          SI != SE; ++SI)
   1145       // Do not dereference SI, or getEdgeWeight() is linear in the number of
   1146       // successors.
   1147       if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
   1148                      BPI->getEdgeWeight(BB, SI)))
   1149         // Irreducible backedge.
   1150         return false;
   1151   }
   1152 
   1153   // Distribute mass to successors, saving exit and backedge data in the
   1154   // loop header.
   1155   distributeMass(Node, OuterLoop, Dist);
   1156   return true;
   1157 }
   1158 
   1159 template <class BT>
   1160 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
   1161   if (!F)
   1162     return OS;
   1163   OS << "block-frequency-info: " << F->getName() << "\n";
   1164   for (const BlockT &BB : *F)
   1165     OS << " - " << bfi_detail::getBlockName(&BB)
   1166        << ": float = " << getFloatingBlockFreq(&BB)
   1167        << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
   1168 
   1169   // Add an extra newline for readability.
   1170   OS << "\n";
   1171   return OS;
   1172 }
   1173 
   1174 } // end namespace llvm
   1175 
   1176 #undef DEBUG_TYPE
   1177 
   1178 #endif
   1179