Home | History | Annotate | Download | only in X86
      1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements a TargetTransformInfo analysis pass specific to the
     11 /// X86 target machine. It uses the target's detailed information to provide
     12 /// more precise answers to certain TTI queries, while letting the target
     13 /// independent and default TTI implementations handle the rest.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86TargetTransformInfo.h"
     18 #include "llvm/Analysis/TargetTransformInfo.h"
     19 #include "llvm/CodeGen/BasicTTIImpl.h"
     20 #include "llvm/IR/IntrinsicInst.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Target/CostTable.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 using namespace llvm;
     25 
     26 #define DEBUG_TYPE "x86tti"
     27 
     28 //===----------------------------------------------------------------------===//
     29 //
     30 // X86 cost model.
     31 //
     32 //===----------------------------------------------------------------------===//
     33 
     34 TargetTransformInfo::PopcntSupportKind
     35 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
     36   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
     37   // TODO: Currently the __builtin_popcount() implementation using SSE3
     38   //   instructions is inefficient. Once the problem is fixed, we should
     39   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
     40   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
     41 }
     42 
     43 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
     44   if (Vector && !ST->hasSSE1())
     45     return 0;
     46 
     47   if (ST->is64Bit()) {
     48     if (Vector && ST->hasAVX512())
     49       return 32;
     50     return 16;
     51   }
     52   return 8;
     53 }
     54 
     55 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
     56   if (Vector) {
     57     if (ST->hasAVX512()) return 512;
     58     if (ST->hasAVX()) return 256;
     59     if (ST->hasSSE1()) return 128;
     60     return 0;
     61   }
     62 
     63   if (ST->is64Bit())
     64     return 64;
     65   return 32;
     66 
     67 }
     68 
     69 unsigned X86TTIImpl::getMaxInterleaveFactor() {
     70   if (ST->isAtom())
     71     return 1;
     72 
     73   // Sandybridge and Haswell have multiple execution ports and pipelined
     74   // vector units.
     75   if (ST->hasAVX())
     76     return 4;
     77 
     78   return 2;
     79 }
     80 
     81 unsigned X86TTIImpl::getArithmeticInstrCost(
     82     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
     83     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
     84     TTI::OperandValueProperties Opd2PropInfo) {
     85   // Legalize the type.
     86   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
     87 
     88   int ISD = TLI->InstructionOpcodeToISD(Opcode);
     89   assert(ISD && "Invalid opcode");
     90 
     91   if (ISD == ISD::SDIV &&
     92       Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
     93       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
     94     // On X86, vector signed division by constants power-of-two are
     95     // normally expanded to the sequence SRA + SRL + ADD + SRA.
     96     // The OperandValue properties many not be same as that of previous
     97     // operation;conservatively assume OP_None.
     98     unsigned Cost =
     99         2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
    100                                    TargetTransformInfo::OP_None,
    101                                    TargetTransformInfo::OP_None);
    102     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
    103                                    TargetTransformInfo::OP_None,
    104                                    TargetTransformInfo::OP_None);
    105     Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
    106                                    TargetTransformInfo::OP_None,
    107                                    TargetTransformInfo::OP_None);
    108 
    109     return Cost;
    110   }
    111 
    112   static const CostTblEntry<MVT::SimpleValueType>
    113   AVX2UniformConstCostTable[] = {
    114     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
    115     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
    116     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
    117     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
    118   };
    119 
    120   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    121       ST->hasAVX2()) {
    122     int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
    123     if (Idx != -1)
    124       return LT.first * AVX2UniformConstCostTable[Idx].Cost;
    125   }
    126 
    127   static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
    128     { ISD::SHL,     MVT::v16i32,    1 },
    129     { ISD::SRL,     MVT::v16i32,    1 },
    130     { ISD::SRA,     MVT::v16i32,    1 },
    131     { ISD::SHL,     MVT::v8i64,    1 },
    132     { ISD::SRL,     MVT::v8i64,    1 },
    133     { ISD::SRA,     MVT::v8i64,    1 },
    134   };
    135 
    136   static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
    137     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
    138     // customize them to detect the cases where shift amount is a scalar one.
    139     { ISD::SHL,     MVT::v4i32,    1 },
    140     { ISD::SRL,     MVT::v4i32,    1 },
    141     { ISD::SRA,     MVT::v4i32,    1 },
    142     { ISD::SHL,     MVT::v8i32,    1 },
    143     { ISD::SRL,     MVT::v8i32,    1 },
    144     { ISD::SRA,     MVT::v8i32,    1 },
    145     { ISD::SHL,     MVT::v2i64,    1 },
    146     { ISD::SRL,     MVT::v2i64,    1 },
    147     { ISD::SHL,     MVT::v4i64,    1 },
    148     { ISD::SRL,     MVT::v4i64,    1 },
    149 
    150     { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
    151     { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
    152 
    153     { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
    154     { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
    155 
    156     { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
    157     { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
    158     { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
    159 
    160     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
    161     { ISD::SDIV,  MVT::v32i8,  32*20 },
    162     { ISD::SDIV,  MVT::v16i16, 16*20 },
    163     { ISD::SDIV,  MVT::v8i32,  8*20 },
    164     { ISD::SDIV,  MVT::v4i64,  4*20 },
    165     { ISD::UDIV,  MVT::v32i8,  32*20 },
    166     { ISD::UDIV,  MVT::v16i16, 16*20 },
    167     { ISD::UDIV,  MVT::v8i32,  8*20 },
    168     { ISD::UDIV,  MVT::v4i64,  4*20 },
    169   };
    170 
    171   if (ST->hasAVX512()) {
    172     int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
    173     if (Idx != -1)
    174       return LT.first * AVX512CostTable[Idx].Cost;
    175   }
    176   // Look for AVX2 lowering tricks.
    177   if (ST->hasAVX2()) {
    178     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
    179         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
    180          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
    181       // On AVX2, a packed v16i16 shift left by a constant build_vector
    182       // is lowered into a vector multiply (vpmullw).
    183       return LT.first;
    184 
    185     int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
    186     if (Idx != -1)
    187       return LT.first * AVX2CostTable[Idx].Cost;
    188   }
    189 
    190   static const CostTblEntry<MVT::SimpleValueType>
    191   SSE2UniformConstCostTable[] = {
    192     // We don't correctly identify costs of casts because they are marked as
    193     // custom.
    194     // Constant splats are cheaper for the following instructions.
    195     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
    196     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
    197     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
    198     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
    199 
    200     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
    201     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
    202     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
    203     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
    204 
    205     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
    206     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
    207     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
    208 
    209     { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
    210     { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
    211     { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
    212     { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
    213   };
    214 
    215   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    216       ST->hasSSE2()) {
    217     // pmuldq sequence.
    218     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
    219       return LT.first * 15;
    220 
    221     int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
    222     if (Idx != -1)
    223       return LT.first * SSE2UniformConstCostTable[Idx].Cost;
    224   }
    225 
    226   if (ISD == ISD::SHL &&
    227       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
    228     EVT VT = LT.second;
    229     if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
    230         (VT == MVT::v4i32 && ST->hasSSE41()))
    231       // Vector shift left by non uniform constant can be lowered
    232       // into vector multiply (pmullw/pmulld).
    233       return LT.first;
    234     if (VT == MVT::v4i32 && ST->hasSSE2())
    235       // A vector shift left by non uniform constant is converted
    236       // into a vector multiply; the new multiply is eventually
    237       // lowered into a sequence of shuffles and 2 x pmuludq.
    238       ISD = ISD::MUL;
    239   }
    240 
    241   static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
    242     // We don't correctly identify costs of casts because they are marked as
    243     // custom.
    244     // For some cases, where the shift amount is a scalar we would be able
    245     // to generate better code. Unfortunately, when this is the case the value
    246     // (the splat) will get hoisted out of the loop, thereby making it invisible
    247     // to ISel. The cost model must return worst case assumptions because it is
    248     // used for vectorization and we don't want to make vectorized code worse
    249     // than scalar code.
    250     { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
    251     { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
    252     { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
    253     { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
    254     { ISD::SHL,  MVT::v4i64,  4*10 }, // Scalarized.
    255 
    256     { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
    257     { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
    258     { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
    259     { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
    260 
    261     { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
    262     { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
    263     { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
    264     { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
    265 
    266     // It is not a good idea to vectorize division. We have to scalarize it and
    267     // in the process we will often end up having to spilling regular
    268     // registers. The overhead of division is going to dominate most kernels
    269     // anyways so try hard to prevent vectorization of division - it is
    270     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
    271     // to hide "20 cycles" for each lane.
    272     { ISD::SDIV,  MVT::v16i8,  16*20 },
    273     { ISD::SDIV,  MVT::v8i16,  8*20 },
    274     { ISD::SDIV,  MVT::v4i32,  4*20 },
    275     { ISD::SDIV,  MVT::v2i64,  2*20 },
    276     { ISD::UDIV,  MVT::v16i8,  16*20 },
    277     { ISD::UDIV,  MVT::v8i16,  8*20 },
    278     { ISD::UDIV,  MVT::v4i32,  4*20 },
    279     { ISD::UDIV,  MVT::v2i64,  2*20 },
    280   };
    281 
    282   if (ST->hasSSE2()) {
    283     int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
    284     if (Idx != -1)
    285       return LT.first * SSE2CostTable[Idx].Cost;
    286   }
    287 
    288   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
    289     // We don't have to scalarize unsupported ops. We can issue two half-sized
    290     // operations and we only need to extract the upper YMM half.
    291     // Two ops + 1 extract + 1 insert = 4.
    292     { ISD::MUL,     MVT::v16i16,   4 },
    293     { ISD::MUL,     MVT::v8i32,    4 },
    294     { ISD::SUB,     MVT::v8i32,    4 },
    295     { ISD::ADD,     MVT::v8i32,    4 },
    296     { ISD::SUB,     MVT::v4i64,    4 },
    297     { ISD::ADD,     MVT::v4i64,    4 },
    298     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
    299     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
    300     // Because we believe v4i64 to be a legal type, we must also include the
    301     // split factor of two in the cost table. Therefore, the cost here is 18
    302     // instead of 9.
    303     { ISD::MUL,     MVT::v4i64,    18 },
    304   };
    305 
    306   // Look for AVX1 lowering tricks.
    307   if (ST->hasAVX() && !ST->hasAVX2()) {
    308     EVT VT = LT.second;
    309 
    310     // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
    311     // sequence of extract + two vector multiply + insert.
    312     if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
    313         Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
    314       ISD = ISD::MUL;
    315 
    316     int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
    317     if (Idx != -1)
    318       return LT.first * AVX1CostTable[Idx].Cost;
    319   }
    320 
    321   // Custom lowering of vectors.
    322   static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
    323     // A v2i64/v4i64 and multiply is custom lowered as a series of long
    324     // multiplies(3), shifts(4) and adds(2).
    325     { ISD::MUL,     MVT::v2i64,    9 },
    326     { ISD::MUL,     MVT::v4i64,    9 },
    327   };
    328   int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
    329   if (Idx != -1)
    330     return LT.first * CustomLowered[Idx].Cost;
    331 
    332   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
    333   // 2x pmuludq, 2x shuffle.
    334   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
    335       !ST->hasSSE41())
    336     return LT.first * 6;
    337 
    338   // Fallback to the default implementation.
    339   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
    340 }
    341 
    342 unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
    343                                     Type *SubTp) {
    344   // We only estimate the cost of reverse and alternate shuffles.
    345   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
    346     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    347 
    348   if (Kind == TTI::SK_Reverse) {
    349     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
    350     unsigned Cost = 1;
    351     if (LT.second.getSizeInBits() > 128)
    352       Cost = 3; // Extract + insert + copy.
    353 
    354     // Multiple by the number of parts.
    355     return Cost * LT.first;
    356   }
    357 
    358   if (Kind == TTI::SK_Alternate) {
    359     // 64-bit packed float vectors (v2f32) are widened to type v4f32.
    360     // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
    361     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
    362 
    363     // The backend knows how to generate a single VEX.256 version of
    364     // instruction VPBLENDW if the target supports AVX2.
    365     if (ST->hasAVX2() && LT.second == MVT::v16i16)
    366       return LT.first;
    367 
    368     static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
    369       {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
    370       {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
    371 
    372       {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
    373       {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
    374 
    375       // This shuffle is custom lowered into a sequence of:
    376       //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
    377       {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
    378 
    379       // This shuffle is custom lowered into a long sequence of:
    380       //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
    381       {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
    382     };
    383 
    384     if (ST->hasAVX()) {
    385       int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
    386       if (Idx != -1)
    387         return LT.first * AVXAltShuffleTbl[Idx].Cost;
    388     }
    389 
    390     static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
    391       // These are lowered into movsd.
    392       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
    393       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
    394 
    395       // packed float vectors with four elements are lowered into BLENDI dag
    396       // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
    397       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
    398       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
    399 
    400       // This shuffle generates a single pshufw.
    401       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
    402 
    403       // There is no instruction that matches a v16i8 alternate shuffle.
    404       // The backend will expand it into the sequence 'pshufb + pshufb + or'.
    405       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
    406     };
    407 
    408     if (ST->hasSSE41()) {
    409       int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
    410       if (Idx != -1)
    411         return LT.first * SSE41AltShuffleTbl[Idx].Cost;
    412     }
    413 
    414     static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
    415       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
    416       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
    417 
    418       // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
    419       // the sequence 'shufps + pshufd'
    420       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
    421       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
    422 
    423       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
    424       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
    425     };
    426 
    427     if (ST->hasSSSE3()) {
    428       int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
    429       if (Idx != -1)
    430         return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
    431     }
    432 
    433     static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
    434       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
    435       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
    436 
    437       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
    438       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
    439 
    440       // This is expanded into a long sequence of four extract + four insert.
    441       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
    442 
    443       // 8 x (pinsrw + pextrw + and + movb + movzb + or)
    444       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
    445     };
    446 
    447     // Fall-back (SSE3 and SSE2).
    448     int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
    449     if (Idx != -1)
    450       return LT.first * SSEAltShuffleTbl[Idx].Cost;
    451     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    452   }
    453 
    454   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    455 }
    456 
    457 unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
    458   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    459   assert(ISD && "Invalid opcode");
    460 
    461   std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
    462   std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
    463 
    464   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
    465   SSE2ConvTbl[] = {
    466     // These are somewhat magic numbers justified by looking at the output of
    467     // Intel's IACA, running some kernels and making sure when we take
    468     // legalization into account the throughput will be overestimated.
    469     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    470     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    471     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    472     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    473     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    474     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    475     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    476     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    477     // There are faster sequences for float conversions.
    478     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    479     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
    480     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    481     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    482     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    483     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
    484     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    485     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    486   };
    487 
    488   if (ST->hasSSE2() && !ST->hasAVX()) {
    489     int Idx =
    490         ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
    491     if (Idx != -1)
    492       return LTSrc.first * SSE2ConvTbl[Idx].Cost;
    493   }
    494 
    495   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
    496   AVX512ConversionTbl[] = {
    497     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
    498     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
    499     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
    500     { ISD::FP_ROUND,  MVT::v16f32,  MVT::v8f64,  3 },
    501 
    502     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
    503     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
    504     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
    505     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
    506     { ISD::TRUNCATE,  MVT::v16i32,  MVT::v8i64,  4 },
    507 
    508     // v16i1 -> v16i32 - load + broadcast
    509     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
    510     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
    511 
    512     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
    513     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
    514     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
    515     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
    516     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v16i32, 3 },
    517     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v16i32, 3 },
    518 
    519     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
    520     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
    521     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
    522     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
    523     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
    524     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
    525     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
    526   };
    527 
    528   if (ST->hasAVX512()) {
    529     int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
    530                                      LTSrc.second);
    531     if (Idx != -1)
    532       return AVX512ConversionTbl[Idx].Cost;
    533   }
    534   EVT SrcTy = TLI->getValueType(Src);
    535   EVT DstTy = TLI->getValueType(Dst);
    536 
    537   // The function getSimpleVT only handles simple value types.
    538   if (!SrcTy.isSimple() || !DstTy.isSimple())
    539     return BaseT::getCastInstrCost(Opcode, Dst, Src);
    540 
    541   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
    542   AVX2ConversionTbl[] = {
    543     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
    544     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
    545     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
    546     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
    547     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
    548     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
    549     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
    550     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
    551     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
    552     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
    553     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
    554     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
    555     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    556     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    557     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
    558     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
    559 
    560     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
    561     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
    562     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
    563     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
    564     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
    565     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
    566 
    567     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
    568     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
    569 
    570     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
    571   };
    572 
    573   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
    574   AVXConversionTbl[] = {
    575     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
    576     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
    577     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
    578     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
    579     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
    580     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
    581     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
    582     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
    583     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
    584     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
    585     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
    586     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
    587     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
    588     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    589     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
    590     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
    591 
    592     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
    593     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
    594     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
    595     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
    596     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
    597     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
    598     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
    599 
    600     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
    601     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
    602     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    603     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
    604     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
    605     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
    606     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
    607     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    608     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
    609     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
    610     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
    611     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
    612 
    613     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
    614     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
    615     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    616     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
    617     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
    618     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
    619     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    620     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
    621     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
    622     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
    623     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
    624     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
    625     // The generic code to compute the scalar overhead is currently broken.
    626     // Workaround this limitation by estimating the scalarization overhead
    627     // here. We have roughly 10 instructions per scalar element.
    628     // Multiply that by the vector width.
    629     // FIXME: remove that when PR19268 is fixed.
    630     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 2*10 },
    631     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 4*10 },
    632 
    633     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
    634     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
    635     // This node is expanded into scalarized operations but BasicTTI is overly
    636     // optimistic estimating its cost.  It computes 3 per element (one
    637     // vector-extract, one scalar conversion and one vector-insert).  The
    638     // problem is that the inserts form a read-modify-write chain so latency
    639     // should be factored in too.  Inflating the cost per element by 1.
    640     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
    641     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
    642   };
    643 
    644   if (ST->hasAVX2()) {
    645     int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
    646                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT());
    647     if (Idx != -1)
    648       return AVX2ConversionTbl[Idx].Cost;
    649   }
    650 
    651   if (ST->hasAVX()) {
    652     int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
    653                                      SrcTy.getSimpleVT());
    654     if (Idx != -1)
    655       return AVXConversionTbl[Idx].Cost;
    656   }
    657 
    658   return BaseT::getCastInstrCost(Opcode, Dst, Src);
    659 }
    660 
    661 unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    662                                         Type *CondTy) {
    663   // Legalize the type.
    664   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
    665 
    666   MVT MTy = LT.second;
    667 
    668   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    669   assert(ISD && "Invalid opcode");
    670 
    671   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
    672     { ISD::SETCC,   MVT::v2f64,   1 },
    673     { ISD::SETCC,   MVT::v4f32,   1 },
    674     { ISD::SETCC,   MVT::v2i64,   1 },
    675     { ISD::SETCC,   MVT::v4i32,   1 },
    676     { ISD::SETCC,   MVT::v8i16,   1 },
    677     { ISD::SETCC,   MVT::v16i8,   1 },
    678   };
    679 
    680   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
    681     { ISD::SETCC,   MVT::v4f64,   1 },
    682     { ISD::SETCC,   MVT::v8f32,   1 },
    683     // AVX1 does not support 8-wide integer compare.
    684     { ISD::SETCC,   MVT::v4i64,   4 },
    685     { ISD::SETCC,   MVT::v8i32,   4 },
    686     { ISD::SETCC,   MVT::v16i16,  4 },
    687     { ISD::SETCC,   MVT::v32i8,   4 },
    688   };
    689 
    690   static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
    691     { ISD::SETCC,   MVT::v4i64,   1 },
    692     { ISD::SETCC,   MVT::v8i32,   1 },
    693     { ISD::SETCC,   MVT::v16i16,  1 },
    694     { ISD::SETCC,   MVT::v32i8,   1 },
    695   };
    696 
    697   static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
    698     { ISD::SETCC,   MVT::v8i64,   1 },
    699     { ISD::SETCC,   MVT::v16i32,  1 },
    700     { ISD::SETCC,   MVT::v8f64,   1 },
    701     { ISD::SETCC,   MVT::v16f32,  1 },
    702   };
    703 
    704   if (ST->hasAVX512()) {
    705     int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
    706     if (Idx != -1)
    707       return LT.first * AVX512CostTbl[Idx].Cost;
    708   }
    709 
    710   if (ST->hasAVX2()) {
    711     int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
    712     if (Idx != -1)
    713       return LT.first * AVX2CostTbl[Idx].Cost;
    714   }
    715 
    716   if (ST->hasAVX()) {
    717     int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
    718     if (Idx != -1)
    719       return LT.first * AVX1CostTbl[Idx].Cost;
    720   }
    721 
    722   if (ST->hasSSE42()) {
    723     int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
    724     if (Idx != -1)
    725       return LT.first * SSE42CostTbl[Idx].Cost;
    726   }
    727 
    728   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
    729 }
    730 
    731 unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
    732                                         unsigned Index) {
    733   assert(Val->isVectorTy() && "This must be a vector type");
    734 
    735   if (Index != -1U) {
    736     // Legalize the type.
    737     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
    738 
    739     // This type is legalized to a scalar type.
    740     if (!LT.second.isVector())
    741       return 0;
    742 
    743     // The type may be split. Normalize the index to the new type.
    744     unsigned Width = LT.second.getVectorNumElements();
    745     Index = Index % Width;
    746 
    747     // Floating point scalars are already located in index #0.
    748     if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
    749       return 0;
    750   }
    751 
    752   return BaseT::getVectorInstrCost(Opcode, Val, Index);
    753 }
    754 
    755 unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
    756                                               bool Extract) {
    757   assert (Ty->isVectorTy() && "Can only scalarize vectors");
    758   unsigned Cost = 0;
    759 
    760   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
    761     if (Insert)
    762       Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
    763     if (Extract)
    764       Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    765   }
    766 
    767   return Cost;
    768 }
    769 
    770 unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
    771                                      unsigned Alignment,
    772                                      unsigned AddressSpace) {
    773   // Handle non-power-of-two vectors such as <3 x float>
    774   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
    775     unsigned NumElem = VTy->getVectorNumElements();
    776 
    777     // Handle a few common cases:
    778     // <3 x float>
    779     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
    780       // Cost = 64 bit store + extract + 32 bit store.
    781       return 3;
    782 
    783     // <3 x double>
    784     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
    785       // Cost = 128 bit store + unpack + 64 bit store.
    786       return 3;
    787 
    788     // Assume that all other non-power-of-two numbers are scalarized.
    789     if (!isPowerOf2_32(NumElem)) {
    790       unsigned Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(),
    791                                              Alignment, AddressSpace);
    792       unsigned SplitCost = getScalarizationOverhead(Src,
    793                                                     Opcode == Instruction::Load,
    794                                                     Opcode==Instruction::Store);
    795       return NumElem * Cost + SplitCost;
    796     }
    797   }
    798 
    799   // Legalize the type.
    800   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
    801   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
    802          "Invalid Opcode");
    803 
    804   // Each load/store unit costs 1.
    805   unsigned Cost = LT.first * 1;
    806 
    807   // On Sandybridge 256bit load/stores are double pumped
    808   // (but not on Haswell).
    809   if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
    810     Cost*=2;
    811 
    812   return Cost;
    813 }
    814 
    815 unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
    816                                            unsigned Alignment,
    817                                            unsigned AddressSpace) {
    818   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
    819   if (!SrcVTy)
    820     // To calculate scalar take the regular cost, without mask
    821     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
    822 
    823   unsigned NumElem = SrcVTy->getVectorNumElements();
    824   VectorType *MaskTy =
    825     VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
    826   if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) ||
    827       (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) ||
    828       !isPowerOf2_32(NumElem)) {
    829     // Scalarization
    830     unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
    831     unsigned ScalarCompareCost =
    832       getCmpSelInstrCost(Instruction::ICmp,
    833                          Type::getInt8Ty(getGlobalContext()), NULL);
    834     unsigned BranchCost = getCFInstrCost(Instruction::Br);
    835     unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
    836 
    837     unsigned ValueSplitCost =
    838       getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load,
    839                                Opcode == Instruction::Store);
    840     unsigned MemopCost =
    841         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
    842                                          Alignment, AddressSpace);
    843     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
    844   }
    845 
    846   // Legalize the type.
    847   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(SrcVTy);
    848   unsigned Cost = 0;
    849   if (LT.second != TLI->getValueType(SrcVTy).getSimpleVT() &&
    850       LT.second.getVectorNumElements() == NumElem)
    851     // Promotion requires expand/truncate for data and a shuffle for mask.
    852     Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, 0) +
    853             getShuffleCost(TTI::SK_Alternate, MaskTy, 0, 0);
    854 
    855   else if (LT.second.getVectorNumElements() > NumElem) {
    856     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
    857                                             LT.second.getVectorNumElements());
    858     // Expanding requires fill mask with zeroes
    859     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
    860   }
    861   if (!ST->hasAVX512())
    862     return Cost + LT.first*4; // Each maskmov costs 4
    863 
    864   // AVX-512 masked load/store is cheapper
    865   return Cost+LT.first;
    866 }
    867 
    868 unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
    869   // Address computations in vectorized code with non-consecutive addresses will
    870   // likely result in more instructions compared to scalar code where the
    871   // computation can more often be merged into the index mode. The resulting
    872   // extra micro-ops can significantly decrease throughput.
    873   unsigned NumVectorInstToHideOverhead = 10;
    874 
    875   if (Ty->isVectorTy() && IsComplex)
    876     return NumVectorInstToHideOverhead;
    877 
    878   return BaseT::getAddressComputationCost(Ty, IsComplex);
    879 }
    880 
    881 unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
    882                                       bool IsPairwise) {
    883 
    884   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
    885 
    886   MVT MTy = LT.second;
    887 
    888   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    889   assert(ISD && "Invalid opcode");
    890 
    891   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
    892   // and make it as the cost.
    893 
    894   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
    895     { ISD::FADD,  MVT::v2f64,   2 },
    896     { ISD::FADD,  MVT::v4f32,   4 },
    897     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
    898     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
    899     { ISD::ADD,   MVT::v8i16,   5 },
    900   };
    901 
    902   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
    903     { ISD::FADD,  MVT::v4f32,   4 },
    904     { ISD::FADD,  MVT::v4f64,   5 },
    905     { ISD::FADD,  MVT::v8f32,   7 },
    906     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
    907     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
    908     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
    909     { ISD::ADD,   MVT::v8i16,   5 },
    910     { ISD::ADD,   MVT::v8i32,   5 },
    911   };
    912 
    913   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
    914     { ISD::FADD,  MVT::v2f64,   2 },
    915     { ISD::FADD,  MVT::v4f32,   4 },
    916     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
    917     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
    918     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
    919   };
    920 
    921   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
    922     { ISD::FADD,  MVT::v4f32,   3 },
    923     { ISD::FADD,  MVT::v4f64,   3 },
    924     { ISD::FADD,  MVT::v8f32,   4 },
    925     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
    926     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
    927     { ISD::ADD,   MVT::v4i64,   3 },
    928     { ISD::ADD,   MVT::v8i16,   4 },
    929     { ISD::ADD,   MVT::v8i32,   5 },
    930   };
    931 
    932   if (IsPairwise) {
    933     if (ST->hasAVX()) {
    934       int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
    935       if (Idx != -1)
    936         return LT.first * AVX1CostTblPairWise[Idx].Cost;
    937     }
    938 
    939     if (ST->hasSSE42()) {
    940       int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
    941       if (Idx != -1)
    942         return LT.first * SSE42CostTblPairWise[Idx].Cost;
    943     }
    944   } else {
    945     if (ST->hasAVX()) {
    946       int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
    947       if (Idx != -1)
    948         return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
    949     }
    950 
    951     if (ST->hasSSE42()) {
    952       int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
    953       if (Idx != -1)
    954         return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
    955     }
    956   }
    957 
    958   return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
    959 }
    960 
    961 /// \brief Calculate the cost of materializing a 64-bit value. This helper
    962 /// method might only calculate a fraction of a larger immediate. Therefore it
    963 /// is valid to return a cost of ZERO.
    964 unsigned X86TTIImpl::getIntImmCost(int64_t Val) {
    965   if (Val == 0)
    966     return TTI::TCC_Free;
    967 
    968   if (isInt<32>(Val))
    969     return TTI::TCC_Basic;
    970 
    971   return 2 * TTI::TCC_Basic;
    972 }
    973 
    974 unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
    975   assert(Ty->isIntegerTy());
    976 
    977   unsigned BitSize = Ty->getPrimitiveSizeInBits();
    978   if (BitSize == 0)
    979     return ~0U;
    980 
    981   // Never hoist constants larger than 128bit, because this might lead to
    982   // incorrect code generation or assertions in codegen.
    983   // Fixme: Create a cost model for types larger than i128 once the codegen
    984   // issues have been fixed.
    985   if (BitSize > 128)
    986     return TTI::TCC_Free;
    987 
    988   if (Imm == 0)
    989     return TTI::TCC_Free;
    990 
    991   // Sign-extend all constants to a multiple of 64-bit.
    992   APInt ImmVal = Imm;
    993   if (BitSize & 0x3f)
    994     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
    995 
    996   // Split the constant into 64-bit chunks and calculate the cost for each
    997   // chunk.
    998   unsigned Cost = 0;
    999   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
   1000     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
   1001     int64_t Val = Tmp.getSExtValue();
   1002     Cost += getIntImmCost(Val);
   1003   }
   1004   // We need at least one instruction to materialze the constant.
   1005   return std::max(1U, Cost);
   1006 }
   1007 
   1008 unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
   1009                                    const APInt &Imm, Type *Ty) {
   1010   assert(Ty->isIntegerTy());
   1011 
   1012   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1013   // There is no cost model for constants with a bit size of 0. Return TCC_Free
   1014   // here, so that constant hoisting will ignore this constant.
   1015   if (BitSize == 0)
   1016     return TTI::TCC_Free;
   1017 
   1018   unsigned ImmIdx = ~0U;
   1019   switch (Opcode) {
   1020   default:
   1021     return TTI::TCC_Free;
   1022   case Instruction::GetElementPtr:
   1023     // Always hoist the base address of a GetElementPtr. This prevents the
   1024     // creation of new constants for every base constant that gets constant
   1025     // folded with the offset.
   1026     if (Idx == 0)
   1027       return 2 * TTI::TCC_Basic;
   1028     return TTI::TCC_Free;
   1029   case Instruction::Store:
   1030     ImmIdx = 0;
   1031     break;
   1032   case Instruction::Add:
   1033   case Instruction::Sub:
   1034   case Instruction::Mul:
   1035   case Instruction::UDiv:
   1036   case Instruction::SDiv:
   1037   case Instruction::URem:
   1038   case Instruction::SRem:
   1039   case Instruction::And:
   1040   case Instruction::Or:
   1041   case Instruction::Xor:
   1042   case Instruction::ICmp:
   1043     ImmIdx = 1;
   1044     break;
   1045   // Always return TCC_Free for the shift value of a shift instruction.
   1046   case Instruction::Shl:
   1047   case Instruction::LShr:
   1048   case Instruction::AShr:
   1049     if (Idx == 1)
   1050       return TTI::TCC_Free;
   1051     break;
   1052   case Instruction::Trunc:
   1053   case Instruction::ZExt:
   1054   case Instruction::SExt:
   1055   case Instruction::IntToPtr:
   1056   case Instruction::PtrToInt:
   1057   case Instruction::BitCast:
   1058   case Instruction::PHI:
   1059   case Instruction::Call:
   1060   case Instruction::Select:
   1061   case Instruction::Ret:
   1062   case Instruction::Load:
   1063     break;
   1064   }
   1065 
   1066   if (Idx == ImmIdx) {
   1067     unsigned NumConstants = (BitSize + 63) / 64;
   1068     unsigned Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
   1069     return (Cost <= NumConstants * TTI::TCC_Basic)
   1070                ? static_cast<unsigned>(TTI::TCC_Free)
   1071                : Cost;
   1072   }
   1073 
   1074   return X86TTIImpl::getIntImmCost(Imm, Ty);
   1075 }
   1076 
   1077 unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
   1078                                    const APInt &Imm, Type *Ty) {
   1079   assert(Ty->isIntegerTy());
   1080 
   1081   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1082   // There is no cost model for constants with a bit size of 0. Return TCC_Free
   1083   // here, so that constant hoisting will ignore this constant.
   1084   if (BitSize == 0)
   1085     return TTI::TCC_Free;
   1086 
   1087   switch (IID) {
   1088   default:
   1089     return TTI::TCC_Free;
   1090   case Intrinsic::sadd_with_overflow:
   1091   case Intrinsic::uadd_with_overflow:
   1092   case Intrinsic::ssub_with_overflow:
   1093   case Intrinsic::usub_with_overflow:
   1094   case Intrinsic::smul_with_overflow:
   1095   case Intrinsic::umul_with_overflow:
   1096     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
   1097       return TTI::TCC_Free;
   1098     break;
   1099   case Intrinsic::experimental_stackmap:
   1100     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
   1101       return TTI::TCC_Free;
   1102     break;
   1103   case Intrinsic::experimental_patchpoint_void:
   1104   case Intrinsic::experimental_patchpoint_i64:
   1105     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
   1106       return TTI::TCC_Free;
   1107     break;
   1108   }
   1109   return X86TTIImpl::getIntImmCost(Imm, Ty);
   1110 }
   1111 
   1112 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, int Consecutive) {
   1113   int DataWidth = DataTy->getPrimitiveSizeInBits();
   1114 
   1115   // Todo: AVX512 allows gather/scatter, works with strided and random as well
   1116   if ((DataWidth < 32) || (Consecutive == 0))
   1117     return false;
   1118   if (ST->hasAVX512() || ST->hasAVX2())
   1119     return true;
   1120   return false;
   1121 }
   1122 
   1123 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, int Consecutive) {
   1124   return isLegalMaskedLoad(DataType, Consecutive);
   1125 }
   1126 
   1127