Home | History | Annotate | Download | only in IR
      1 //===-- llvm/InlineAsm.h - Class to represent inline asm strings-*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class represents the inline asm strings, which are Value*'s that are
     11 // used as the callee operand of call instructions.  InlineAsm's are uniqued
     12 // like constants, and created via InlineAsm::get(...).
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_IR_INLINEASM_H
     17 #define LLVM_IR_INLINEASM_H
     18 
     19 #include "llvm/ADT/StringRef.h"
     20 #include "llvm/IR/Value.h"
     21 #include <vector>
     22 
     23 namespace llvm {
     24 
     25 class PointerType;
     26 class FunctionType;
     27 class Module;
     28 
     29 struct InlineAsmKeyType;
     30 template <class ConstantClass> class ConstantUniqueMap;
     31 
     32 class InlineAsm : public Value {
     33 public:
     34   enum AsmDialect {
     35     AD_ATT,
     36     AD_Intel
     37   };
     38 
     39 private:
     40   friend struct InlineAsmKeyType;
     41   friend class ConstantUniqueMap<InlineAsm>;
     42 
     43   InlineAsm(const InlineAsm &) = delete;
     44   void operator=(const InlineAsm&) = delete;
     45 
     46   std::string AsmString, Constraints;
     47   bool HasSideEffects;
     48   bool IsAlignStack;
     49   AsmDialect Dialect;
     50 
     51   InlineAsm(PointerType *Ty, const std::string &AsmString,
     52             const std::string &Constraints, bool hasSideEffects,
     53             bool isAlignStack, AsmDialect asmDialect);
     54   ~InlineAsm() override;
     55 
     56   /// When the ConstantUniqueMap merges two types and makes two InlineAsms
     57   /// identical, it destroys one of them with this method.
     58   void destroyConstant();
     59 public:
     60 
     61   /// InlineAsm::get - Return the specified uniqued inline asm string.
     62   ///
     63   static InlineAsm *get(FunctionType *Ty, StringRef AsmString,
     64                         StringRef Constraints, bool hasSideEffects,
     65                         bool isAlignStack = false,
     66                         AsmDialect asmDialect = AD_ATT);
     67 
     68   bool hasSideEffects() const { return HasSideEffects; }
     69   bool isAlignStack() const { return IsAlignStack; }
     70   AsmDialect getDialect() const { return Dialect; }
     71 
     72   /// getType - InlineAsm's are always pointers.
     73   ///
     74   PointerType *getType() const {
     75     return reinterpret_cast<PointerType*>(Value::getType());
     76   }
     77 
     78   /// getFunctionType - InlineAsm's are always pointers to functions.
     79   ///
     80   FunctionType *getFunctionType() const;
     81 
     82   const std::string &getAsmString() const { return AsmString; }
     83   const std::string &getConstraintString() const { return Constraints; }
     84 
     85   /// Verify - This static method can be used by the parser to check to see if
     86   /// the specified constraint string is legal for the type.  This returns true
     87   /// if legal, false if not.
     88   ///
     89   static bool Verify(FunctionType *Ty, StringRef Constraints);
     90 
     91   // Constraint String Parsing
     92   enum ConstraintPrefix {
     93     isInput,            // 'x'
     94     isOutput,           // '=x'
     95     isClobber           // '~x'
     96   };
     97 
     98   typedef std::vector<std::string> ConstraintCodeVector;
     99 
    100   struct SubConstraintInfo {
    101     /// MatchingInput - If this is not -1, this is an output constraint where an
    102     /// input constraint is required to match it (e.g. "0").  The value is the
    103     /// constraint number that matches this one (for example, if this is
    104     /// constraint #0 and constraint #4 has the value "0", this will be 4).
    105     signed char MatchingInput;
    106     /// Code - The constraint code, either the register name (in braces) or the
    107     /// constraint letter/number.
    108     ConstraintCodeVector Codes;
    109     /// Default constructor.
    110     SubConstraintInfo() : MatchingInput(-1) {}
    111   };
    112 
    113   typedef std::vector<SubConstraintInfo> SubConstraintInfoVector;
    114   struct ConstraintInfo;
    115   typedef std::vector<ConstraintInfo> ConstraintInfoVector;
    116 
    117   struct ConstraintInfo {
    118     /// Type - The basic type of the constraint: input/output/clobber
    119     ///
    120     ConstraintPrefix Type;
    121 
    122     /// isEarlyClobber - "&": output operand writes result before inputs are all
    123     /// read.  This is only ever set for an output operand.
    124     bool isEarlyClobber;
    125 
    126     /// MatchingInput - If this is not -1, this is an output constraint where an
    127     /// input constraint is required to match it (e.g. "0").  The value is the
    128     /// constraint number that matches this one (for example, if this is
    129     /// constraint #0 and constraint #4 has the value "0", this will be 4).
    130     signed char MatchingInput;
    131 
    132     /// hasMatchingInput - Return true if this is an output constraint that has
    133     /// a matching input constraint.
    134     bool hasMatchingInput() const { return MatchingInput != -1; }
    135 
    136     /// isCommutative - This is set to true for a constraint that is commutative
    137     /// with the next operand.
    138     bool isCommutative;
    139 
    140     /// isIndirect - True if this operand is an indirect operand.  This means
    141     /// that the address of the source or destination is present in the call
    142     /// instruction, instead of it being returned or passed in explicitly.  This
    143     /// is represented with a '*' in the asm string.
    144     bool isIndirect;
    145 
    146     /// Code - The constraint code, either the register name (in braces) or the
    147     /// constraint letter/number.
    148     ConstraintCodeVector Codes;
    149 
    150     /// isMultipleAlternative - '|': has multiple-alternative constraints.
    151     bool isMultipleAlternative;
    152 
    153     /// multipleAlternatives - If there are multiple alternative constraints,
    154     /// this array will contain them.  Otherwise it will be empty.
    155     SubConstraintInfoVector multipleAlternatives;
    156 
    157     /// The currently selected alternative constraint index.
    158     unsigned currentAlternativeIndex;
    159 
    160     ///Default constructor.
    161     ConstraintInfo();
    162 
    163     /// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
    164     /// fields in this structure.  If the constraint string is not understood,
    165     /// return true, otherwise return false.
    166     bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar);
    167 
    168     /// selectAlternative - Point this constraint to the alternative constraint
    169     /// indicated by the index.
    170     void selectAlternative(unsigned index);
    171   };
    172 
    173   /// ParseConstraints - Split up the constraint string into the specific
    174   /// constraints and their prefixes.  If this returns an empty vector, and if
    175   /// the constraint string itself isn't empty, there was an error parsing.
    176   static ConstraintInfoVector ParseConstraints(StringRef ConstraintString);
    177 
    178   /// ParseConstraints - Parse the constraints of this inlineasm object,
    179   /// returning them the same way that ParseConstraints(str) does.
    180   ConstraintInfoVector ParseConstraints() const {
    181     return ParseConstraints(Constraints);
    182   }
    183 
    184   // Methods for support type inquiry through isa, cast, and dyn_cast:
    185   static inline bool classof(const Value *V) {
    186     return V->getValueID() == Value::InlineAsmVal;
    187   }
    188 
    189 
    190   // These are helper methods for dealing with flags in the INLINEASM SDNode
    191   // in the backend.
    192   //
    193   // The encoding of the flag word is currently:
    194   //   Bits 2-0 - A Kind_* value indicating the kind of the operand.
    195   //   Bits 15-3 - The number of SDNode operands associated with this inline
    196   //               assembly operand.
    197   //   If bit 31 is set:
    198   //     Bit 30-16 - The operand number that this operand must match.
    199   //                 When bits 2-0 are Kind_Mem, the Constraint_* value must be
    200   //                 obtained from the flags for this operand number.
    201   //   Else if bits 2-0 are Kind_Mem:
    202   //     Bit 30-16 - A Constraint_* value indicating the original constraint
    203   //                 code.
    204   //   Else:
    205   //     Bit 30-16 - The register class ID to use for the operand.
    206 
    207   enum : uint32_t {
    208     // Fixed operands on an INLINEASM SDNode.
    209     Op_InputChain = 0,
    210     Op_AsmString = 1,
    211     Op_MDNode = 2,
    212     Op_ExtraInfo = 3,    // HasSideEffects, IsAlignStack, AsmDialect.
    213     Op_FirstOperand = 4,
    214 
    215     // Fixed operands on an INLINEASM MachineInstr.
    216     MIOp_AsmString = 0,
    217     MIOp_ExtraInfo = 1,    // HasSideEffects, IsAlignStack, AsmDialect.
    218     MIOp_FirstOperand = 2,
    219 
    220     // Interpretation of the MIOp_ExtraInfo bit field.
    221     Extra_HasSideEffects = 1,
    222     Extra_IsAlignStack = 2,
    223     Extra_AsmDialect = 4,
    224     Extra_MayLoad = 8,
    225     Extra_MayStore = 16,
    226 
    227     // Inline asm operands map to multiple SDNode / MachineInstr operands.
    228     // The first operand is an immediate describing the asm operand, the low
    229     // bits is the kind:
    230     Kind_RegUse = 1,             // Input register, "r".
    231     Kind_RegDef = 2,             // Output register, "=r".
    232     Kind_RegDefEarlyClobber = 3, // Early-clobber output register, "=&r".
    233     Kind_Clobber = 4,            // Clobbered register, "~r".
    234     Kind_Imm = 5,                // Immediate.
    235     Kind_Mem = 6,                // Memory operand, "m".
    236 
    237     // Memory constraint codes.
    238     // These could be tablegenerated but there's little need to do that since
    239     // there's plenty of space in the encoding to support the union of all
    240     // constraint codes for all targets.
    241     Constraint_Unknown = 0,
    242     Constraint_es,
    243     Constraint_i,
    244     Constraint_m,
    245     Constraint_o,
    246     Constraint_v,
    247     Constraint_Q,
    248     Constraint_R,
    249     Constraint_S,
    250     Constraint_T,
    251     Constraint_Z,
    252     Constraint_ZC,
    253     Constraint_Zy,
    254     Constraints_Max = Constraint_Zy,
    255     Constraints_ShiftAmount = 16,
    256 
    257     Flag_MatchingOperand = 0x80000000
    258   };
    259 
    260   static unsigned getFlagWord(unsigned Kind, unsigned NumOps) {
    261     assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!");
    262     assert(Kind >= Kind_RegUse && Kind <= Kind_Mem && "Invalid Kind");
    263     return Kind | (NumOps << 3);
    264   }
    265 
    266   /// getFlagWordForMatchingOp - Augment an existing flag word returned by
    267   /// getFlagWord with information indicating that this input operand is tied
    268   /// to a previous output operand.
    269   static unsigned getFlagWordForMatchingOp(unsigned InputFlag,
    270                                            unsigned MatchedOperandNo) {
    271     assert(MatchedOperandNo <= 0x7fff && "Too big matched operand");
    272     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    273     return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16);
    274   }
    275 
    276   /// getFlagWordForRegClass - Augment an existing flag word returned by
    277   /// getFlagWord with the required register class for the following register
    278   /// operands.
    279   /// A tied use operand cannot have a register class, use the register class
    280   /// from the def operand instead.
    281   static unsigned getFlagWordForRegClass(unsigned InputFlag, unsigned RC) {
    282     // Store RC + 1, reserve the value 0 to mean 'no register class'.
    283     ++RC;
    284     assert(RC <= 0x7fff && "Too large register class ID");
    285     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    286     return InputFlag | (RC << 16);
    287   }
    288 
    289   /// Augment an existing flag word returned by getFlagWord with the constraint
    290   /// code for a memory constraint.
    291   static unsigned getFlagWordForMem(unsigned InputFlag, unsigned Constraint) {
    292     assert(Constraint <= 0x7fff && "Too large a memory constraint ID");
    293     assert(Constraint <= Constraints_Max && "Unknown constraint ID");
    294     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    295     return InputFlag | (Constraint << Constraints_ShiftAmount);
    296   }
    297 
    298   static unsigned convertMemFlagWordToMatchingFlagWord(unsigned InputFlag) {
    299     assert(isMemKind(InputFlag));
    300     return InputFlag & ~(0x7fff << Constraints_ShiftAmount);
    301   }
    302 
    303   static unsigned getKind(unsigned Flags) {
    304     return Flags & 7;
    305   }
    306 
    307   static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;}
    308   static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; }
    309   static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; }
    310   static bool isRegDefEarlyClobberKind(unsigned Flag) {
    311     return getKind(Flag) == Kind_RegDefEarlyClobber;
    312   }
    313   static bool isClobberKind(unsigned Flag) {
    314     return getKind(Flag) == Kind_Clobber;
    315   }
    316 
    317   static unsigned getMemoryConstraintID(unsigned Flag) {
    318     assert(isMemKind(Flag));
    319     return (Flag >> Constraints_ShiftAmount) & 0x7fff;
    320   }
    321 
    322   /// getNumOperandRegisters - Extract the number of registers field from the
    323   /// inline asm operand flag.
    324   static unsigned getNumOperandRegisters(unsigned Flag) {
    325     return (Flag & 0xffff) >> 3;
    326   }
    327 
    328   /// isUseOperandTiedToDef - Return true if the flag of the inline asm
    329   /// operand indicates it is an use operand that's matched to a def operand.
    330   static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) {
    331     if ((Flag & Flag_MatchingOperand) == 0)
    332       return false;
    333     Idx = (Flag & ~Flag_MatchingOperand) >> 16;
    334     return true;
    335   }
    336 
    337   /// hasRegClassConstraint - Returns true if the flag contains a register
    338   /// class constraint.  Sets RC to the register class ID.
    339   static bool hasRegClassConstraint(unsigned Flag, unsigned &RC) {
    340     if (Flag & Flag_MatchingOperand)
    341       return false;
    342     unsigned High = Flag >> 16;
    343     // getFlagWordForRegClass() uses 0 to mean no register class, and otherwise
    344     // stores RC + 1.
    345     if (!High)
    346       return false;
    347     RC = High - 1;
    348     return true;
    349   }
    350 
    351 };
    352 
    353 } // End llvm namespace
    354 
    355 #endif
    356