Home | History | Annotate | Download | only in Sema
      1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides Sema routines for C++ overloading.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/Overload.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/Expr.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/AST/TypeOrdering.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "clang/Basic/DiagnosticOptions.h"
     24 #include "clang/Basic/PartialDiagnostic.h"
     25 #include "clang/Basic/TargetInfo.h"
     26 #include "clang/Sema/Initialization.h"
     27 #include "clang/Sema/Lookup.h"
     28 #include "clang/Sema/SemaInternal.h"
     29 #include "clang/Sema/Template.h"
     30 #include "clang/Sema/TemplateDeduction.h"
     31 #include "llvm/ADT/DenseSet.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/SmallPtrSet.h"
     34 #include "llvm/ADT/SmallString.h"
     35 #include <algorithm>
     36 #include <cstdlib>
     37 
     38 using namespace clang;
     39 using namespace sema;
     40 
     41 /// A convenience routine for creating a decayed reference to a function.
     42 static ExprResult
     43 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
     44                       bool HadMultipleCandidates,
     45                       SourceLocation Loc = SourceLocation(),
     46                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
     47   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
     48     return ExprError();
     49   // If FoundDecl is different from Fn (such as if one is a template
     50   // and the other a specialization), make sure DiagnoseUseOfDecl is
     51   // called on both.
     52   // FIXME: This would be more comprehensively addressed by modifying
     53   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
     54   // being used.
     55   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
     56     return ExprError();
     57   DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
     58                                                  VK_LValue, Loc, LocInfo);
     59   if (HadMultipleCandidates)
     60     DRE->setHadMultipleCandidates(true);
     61 
     62   S.MarkDeclRefReferenced(DRE);
     63 
     64   ExprResult E = DRE;
     65   E = S.DefaultFunctionArrayConversion(E.get());
     66   if (E.isInvalid())
     67     return ExprError();
     68   return E;
     69 }
     70 
     71 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
     72                                  bool InOverloadResolution,
     73                                  StandardConversionSequence &SCS,
     74                                  bool CStyle,
     75                                  bool AllowObjCWritebackConversion);
     76 
     77 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
     78                                                  QualType &ToType,
     79                                                  bool InOverloadResolution,
     80                                                  StandardConversionSequence &SCS,
     81                                                  bool CStyle);
     82 static OverloadingResult
     83 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
     84                         UserDefinedConversionSequence& User,
     85                         OverloadCandidateSet& Conversions,
     86                         bool AllowExplicit,
     87                         bool AllowObjCConversionOnExplicit);
     88 
     89 
     90 static ImplicitConversionSequence::CompareKind
     91 CompareStandardConversionSequences(Sema &S,
     92                                    const StandardConversionSequence& SCS1,
     93                                    const StandardConversionSequence& SCS2);
     94 
     95 static ImplicitConversionSequence::CompareKind
     96 CompareQualificationConversions(Sema &S,
     97                                 const StandardConversionSequence& SCS1,
     98                                 const StandardConversionSequence& SCS2);
     99 
    100 static ImplicitConversionSequence::CompareKind
    101 CompareDerivedToBaseConversions(Sema &S,
    102                                 const StandardConversionSequence& SCS1,
    103                                 const StandardConversionSequence& SCS2);
    104 
    105 /// GetConversionRank - Retrieve the implicit conversion rank
    106 /// corresponding to the given implicit conversion kind.
    107 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
    108   static const ImplicitConversionRank
    109     Rank[(int)ICK_Num_Conversion_Kinds] = {
    110     ICR_Exact_Match,
    111     ICR_Exact_Match,
    112     ICR_Exact_Match,
    113     ICR_Exact_Match,
    114     ICR_Exact_Match,
    115     ICR_Exact_Match,
    116     ICR_Promotion,
    117     ICR_Promotion,
    118     ICR_Promotion,
    119     ICR_Conversion,
    120     ICR_Conversion,
    121     ICR_Conversion,
    122     ICR_Conversion,
    123     ICR_Conversion,
    124     ICR_Conversion,
    125     ICR_Conversion,
    126     ICR_Conversion,
    127     ICR_Conversion,
    128     ICR_Conversion,
    129     ICR_Conversion,
    130     ICR_Complex_Real_Conversion,
    131     ICR_Conversion,
    132     ICR_Conversion,
    133     ICR_Writeback_Conversion
    134   };
    135   return Rank[(int)Kind];
    136 }
    137 
    138 /// GetImplicitConversionName - Return the name of this kind of
    139 /// implicit conversion.
    140 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
    141   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
    142     "No conversion",
    143     "Lvalue-to-rvalue",
    144     "Array-to-pointer",
    145     "Function-to-pointer",
    146     "Noreturn adjustment",
    147     "Qualification",
    148     "Integral promotion",
    149     "Floating point promotion",
    150     "Complex promotion",
    151     "Integral conversion",
    152     "Floating conversion",
    153     "Complex conversion",
    154     "Floating-integral conversion",
    155     "Pointer conversion",
    156     "Pointer-to-member conversion",
    157     "Boolean conversion",
    158     "Compatible-types conversion",
    159     "Derived-to-base conversion",
    160     "Vector conversion",
    161     "Vector splat",
    162     "Complex-real conversion",
    163     "Block Pointer conversion",
    164     "Transparent Union Conversion",
    165     "Writeback conversion"
    166   };
    167   return Name[Kind];
    168 }
    169 
    170 /// StandardConversionSequence - Set the standard conversion
    171 /// sequence to the identity conversion.
    172 void StandardConversionSequence::setAsIdentityConversion() {
    173   First = ICK_Identity;
    174   Second = ICK_Identity;
    175   Third = ICK_Identity;
    176   DeprecatedStringLiteralToCharPtr = false;
    177   QualificationIncludesObjCLifetime = false;
    178   ReferenceBinding = false;
    179   DirectBinding = false;
    180   IsLvalueReference = true;
    181   BindsToFunctionLvalue = false;
    182   BindsToRvalue = false;
    183   BindsImplicitObjectArgumentWithoutRefQualifier = false;
    184   ObjCLifetimeConversionBinding = false;
    185   CopyConstructor = nullptr;
    186 }
    187 
    188 /// getRank - Retrieve the rank of this standard conversion sequence
    189 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
    190 /// implicit conversions.
    191 ImplicitConversionRank StandardConversionSequence::getRank() const {
    192   ImplicitConversionRank Rank = ICR_Exact_Match;
    193   if  (GetConversionRank(First) > Rank)
    194     Rank = GetConversionRank(First);
    195   if  (GetConversionRank(Second) > Rank)
    196     Rank = GetConversionRank(Second);
    197   if  (GetConversionRank(Third) > Rank)
    198     Rank = GetConversionRank(Third);
    199   return Rank;
    200 }
    201 
    202 /// isPointerConversionToBool - Determines whether this conversion is
    203 /// a conversion of a pointer or pointer-to-member to bool. This is
    204 /// used as part of the ranking of standard conversion sequences
    205 /// (C++ 13.3.3.2p4).
    206 bool StandardConversionSequence::isPointerConversionToBool() const {
    207   // Note that FromType has not necessarily been transformed by the
    208   // array-to-pointer or function-to-pointer implicit conversions, so
    209   // check for their presence as well as checking whether FromType is
    210   // a pointer.
    211   if (getToType(1)->isBooleanType() &&
    212       (getFromType()->isPointerType() ||
    213        getFromType()->isObjCObjectPointerType() ||
    214        getFromType()->isBlockPointerType() ||
    215        getFromType()->isNullPtrType() ||
    216        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
    217     return true;
    218 
    219   return false;
    220 }
    221 
    222 /// isPointerConversionToVoidPointer - Determines whether this
    223 /// conversion is a conversion of a pointer to a void pointer. This is
    224 /// used as part of the ranking of standard conversion sequences (C++
    225 /// 13.3.3.2p4).
    226 bool
    227 StandardConversionSequence::
    228 isPointerConversionToVoidPointer(ASTContext& Context) const {
    229   QualType FromType = getFromType();
    230   QualType ToType = getToType(1);
    231 
    232   // Note that FromType has not necessarily been transformed by the
    233   // array-to-pointer implicit conversion, so check for its presence
    234   // and redo the conversion to get a pointer.
    235   if (First == ICK_Array_To_Pointer)
    236     FromType = Context.getArrayDecayedType(FromType);
    237 
    238   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
    239     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
    240       return ToPtrType->getPointeeType()->isVoidType();
    241 
    242   return false;
    243 }
    244 
    245 /// Skip any implicit casts which could be either part of a narrowing conversion
    246 /// or after one in an implicit conversion.
    247 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
    248   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
    249     switch (ICE->getCastKind()) {
    250     case CK_NoOp:
    251     case CK_IntegralCast:
    252     case CK_IntegralToBoolean:
    253     case CK_IntegralToFloating:
    254     case CK_FloatingToIntegral:
    255     case CK_FloatingToBoolean:
    256     case CK_FloatingCast:
    257       Converted = ICE->getSubExpr();
    258       continue;
    259 
    260     default:
    261       return Converted;
    262     }
    263   }
    264 
    265   return Converted;
    266 }
    267 
    268 /// Check if this standard conversion sequence represents a narrowing
    269 /// conversion, according to C++11 [dcl.init.list]p7.
    270 ///
    271 /// \param Ctx  The AST context.
    272 /// \param Converted  The result of applying this standard conversion sequence.
    273 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
    274 ///        value of the expression prior to the narrowing conversion.
    275 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
    276 ///        type of the expression prior to the narrowing conversion.
    277 NarrowingKind
    278 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
    279                                              const Expr *Converted,
    280                                              APValue &ConstantValue,
    281                                              QualType &ConstantType) const {
    282   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
    283 
    284   // C++11 [dcl.init.list]p7:
    285   //   A narrowing conversion is an implicit conversion ...
    286   QualType FromType = getToType(0);
    287   QualType ToType = getToType(1);
    288   switch (Second) {
    289   // 'bool' is an integral type; dispatch to the right place to handle it.
    290   case ICK_Boolean_Conversion:
    291     if (FromType->isRealFloatingType())
    292       goto FloatingIntegralConversion;
    293     if (FromType->isIntegralOrUnscopedEnumerationType())
    294       goto IntegralConversion;
    295     // Boolean conversions can be from pointers and pointers to members
    296     // [conv.bool], and those aren't considered narrowing conversions.
    297     return NK_Not_Narrowing;
    298 
    299   // -- from a floating-point type to an integer type, or
    300   //
    301   // -- from an integer type or unscoped enumeration type to a floating-point
    302   //    type, except where the source is a constant expression and the actual
    303   //    value after conversion will fit into the target type and will produce
    304   //    the original value when converted back to the original type, or
    305   case ICK_Floating_Integral:
    306   FloatingIntegralConversion:
    307     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
    308       return NK_Type_Narrowing;
    309     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
    310       llvm::APSInt IntConstantValue;
    311       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    312       if (Initializer &&
    313           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
    314         // Convert the integer to the floating type.
    315         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
    316         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
    317                                 llvm::APFloat::rmNearestTiesToEven);
    318         // And back.
    319         llvm::APSInt ConvertedValue = IntConstantValue;
    320         bool ignored;
    321         Result.convertToInteger(ConvertedValue,
    322                                 llvm::APFloat::rmTowardZero, &ignored);
    323         // If the resulting value is different, this was a narrowing conversion.
    324         if (IntConstantValue != ConvertedValue) {
    325           ConstantValue = APValue(IntConstantValue);
    326           ConstantType = Initializer->getType();
    327           return NK_Constant_Narrowing;
    328         }
    329       } else {
    330         // Variables are always narrowings.
    331         return NK_Variable_Narrowing;
    332       }
    333     }
    334     return NK_Not_Narrowing;
    335 
    336   // -- from long double to double or float, or from double to float, except
    337   //    where the source is a constant expression and the actual value after
    338   //    conversion is within the range of values that can be represented (even
    339   //    if it cannot be represented exactly), or
    340   case ICK_Floating_Conversion:
    341     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
    342         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
    343       // FromType is larger than ToType.
    344       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    345       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
    346         // Constant!
    347         assert(ConstantValue.isFloat());
    348         llvm::APFloat FloatVal = ConstantValue.getFloat();
    349         // Convert the source value into the target type.
    350         bool ignored;
    351         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
    352           Ctx.getFloatTypeSemantics(ToType),
    353           llvm::APFloat::rmNearestTiesToEven, &ignored);
    354         // If there was no overflow, the source value is within the range of
    355         // values that can be represented.
    356         if (ConvertStatus & llvm::APFloat::opOverflow) {
    357           ConstantType = Initializer->getType();
    358           return NK_Constant_Narrowing;
    359         }
    360       } else {
    361         return NK_Variable_Narrowing;
    362       }
    363     }
    364     return NK_Not_Narrowing;
    365 
    366   // -- from an integer type or unscoped enumeration type to an integer type
    367   //    that cannot represent all the values of the original type, except where
    368   //    the source is a constant expression and the actual value after
    369   //    conversion will fit into the target type and will produce the original
    370   //    value when converted back to the original type.
    371   case ICK_Integral_Conversion:
    372   IntegralConversion: {
    373     assert(FromType->isIntegralOrUnscopedEnumerationType());
    374     assert(ToType->isIntegralOrUnscopedEnumerationType());
    375     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
    376     const unsigned FromWidth = Ctx.getIntWidth(FromType);
    377     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
    378     const unsigned ToWidth = Ctx.getIntWidth(ToType);
    379 
    380     if (FromWidth > ToWidth ||
    381         (FromWidth == ToWidth && FromSigned != ToSigned) ||
    382         (FromSigned && !ToSigned)) {
    383       // Not all values of FromType can be represented in ToType.
    384       llvm::APSInt InitializerValue;
    385       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    386       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
    387         // Such conversions on variables are always narrowing.
    388         return NK_Variable_Narrowing;
    389       }
    390       bool Narrowing = false;
    391       if (FromWidth < ToWidth) {
    392         // Negative -> unsigned is narrowing. Otherwise, more bits is never
    393         // narrowing.
    394         if (InitializerValue.isSigned() && InitializerValue.isNegative())
    395           Narrowing = true;
    396       } else {
    397         // Add a bit to the InitializerValue so we don't have to worry about
    398         // signed vs. unsigned comparisons.
    399         InitializerValue = InitializerValue.extend(
    400           InitializerValue.getBitWidth() + 1);
    401         // Convert the initializer to and from the target width and signed-ness.
    402         llvm::APSInt ConvertedValue = InitializerValue;
    403         ConvertedValue = ConvertedValue.trunc(ToWidth);
    404         ConvertedValue.setIsSigned(ToSigned);
    405         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
    406         ConvertedValue.setIsSigned(InitializerValue.isSigned());
    407         // If the result is different, this was a narrowing conversion.
    408         if (ConvertedValue != InitializerValue)
    409           Narrowing = true;
    410       }
    411       if (Narrowing) {
    412         ConstantType = Initializer->getType();
    413         ConstantValue = APValue(InitializerValue);
    414         return NK_Constant_Narrowing;
    415       }
    416     }
    417     return NK_Not_Narrowing;
    418   }
    419 
    420   default:
    421     // Other kinds of conversions are not narrowings.
    422     return NK_Not_Narrowing;
    423   }
    424 }
    425 
    426 /// dump - Print this standard conversion sequence to standard
    427 /// error. Useful for debugging overloading issues.
    428 void StandardConversionSequence::dump() const {
    429   raw_ostream &OS = llvm::errs();
    430   bool PrintedSomething = false;
    431   if (First != ICK_Identity) {
    432     OS << GetImplicitConversionName(First);
    433     PrintedSomething = true;
    434   }
    435 
    436   if (Second != ICK_Identity) {
    437     if (PrintedSomething) {
    438       OS << " -> ";
    439     }
    440     OS << GetImplicitConversionName(Second);
    441 
    442     if (CopyConstructor) {
    443       OS << " (by copy constructor)";
    444     } else if (DirectBinding) {
    445       OS << " (direct reference binding)";
    446     } else if (ReferenceBinding) {
    447       OS << " (reference binding)";
    448     }
    449     PrintedSomething = true;
    450   }
    451 
    452   if (Third != ICK_Identity) {
    453     if (PrintedSomething) {
    454       OS << " -> ";
    455     }
    456     OS << GetImplicitConversionName(Third);
    457     PrintedSomething = true;
    458   }
    459 
    460   if (!PrintedSomething) {
    461     OS << "No conversions required";
    462   }
    463 }
    464 
    465 /// dump - Print this user-defined conversion sequence to standard
    466 /// error. Useful for debugging overloading issues.
    467 void UserDefinedConversionSequence::dump() const {
    468   raw_ostream &OS = llvm::errs();
    469   if (Before.First || Before.Second || Before.Third) {
    470     Before.dump();
    471     OS << " -> ";
    472   }
    473   if (ConversionFunction)
    474     OS << '\'' << *ConversionFunction << '\'';
    475   else
    476     OS << "aggregate initialization";
    477   if (After.First || After.Second || After.Third) {
    478     OS << " -> ";
    479     After.dump();
    480   }
    481 }
    482 
    483 /// dump - Print this implicit conversion sequence to standard
    484 /// error. Useful for debugging overloading issues.
    485 void ImplicitConversionSequence::dump() const {
    486   raw_ostream &OS = llvm::errs();
    487   if (isStdInitializerListElement())
    488     OS << "Worst std::initializer_list element conversion: ";
    489   switch (ConversionKind) {
    490   case StandardConversion:
    491     OS << "Standard conversion: ";
    492     Standard.dump();
    493     break;
    494   case UserDefinedConversion:
    495     OS << "User-defined conversion: ";
    496     UserDefined.dump();
    497     break;
    498   case EllipsisConversion:
    499     OS << "Ellipsis conversion";
    500     break;
    501   case AmbiguousConversion:
    502     OS << "Ambiguous conversion";
    503     break;
    504   case BadConversion:
    505     OS << "Bad conversion";
    506     break;
    507   }
    508 
    509   OS << "\n";
    510 }
    511 
    512 void AmbiguousConversionSequence::construct() {
    513   new (&conversions()) ConversionSet();
    514 }
    515 
    516 void AmbiguousConversionSequence::destruct() {
    517   conversions().~ConversionSet();
    518 }
    519 
    520 void
    521 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
    522   FromTypePtr = O.FromTypePtr;
    523   ToTypePtr = O.ToTypePtr;
    524   new (&conversions()) ConversionSet(O.conversions());
    525 }
    526 
    527 namespace {
    528   // Structure used by DeductionFailureInfo to store
    529   // template argument information.
    530   struct DFIArguments {
    531     TemplateArgument FirstArg;
    532     TemplateArgument SecondArg;
    533   };
    534   // Structure used by DeductionFailureInfo to store
    535   // template parameter and template argument information.
    536   struct DFIParamWithArguments : DFIArguments {
    537     TemplateParameter Param;
    538   };
    539 }
    540 
    541 /// \brief Convert from Sema's representation of template deduction information
    542 /// to the form used in overload-candidate information.
    543 DeductionFailureInfo
    544 clang::MakeDeductionFailureInfo(ASTContext &Context,
    545                                 Sema::TemplateDeductionResult TDK,
    546                                 TemplateDeductionInfo &Info) {
    547   DeductionFailureInfo Result;
    548   Result.Result = static_cast<unsigned>(TDK);
    549   Result.HasDiagnostic = false;
    550   Result.Data = nullptr;
    551   switch (TDK) {
    552   case Sema::TDK_Success:
    553   case Sema::TDK_Invalid:
    554   case Sema::TDK_InstantiationDepth:
    555   case Sema::TDK_TooManyArguments:
    556   case Sema::TDK_TooFewArguments:
    557     break;
    558 
    559   case Sema::TDK_Incomplete:
    560   case Sema::TDK_InvalidExplicitArguments:
    561     Result.Data = Info.Param.getOpaqueValue();
    562     break;
    563 
    564   case Sema::TDK_NonDeducedMismatch: {
    565     // FIXME: Should allocate from normal heap so that we can free this later.
    566     DFIArguments *Saved = new (Context) DFIArguments;
    567     Saved->FirstArg = Info.FirstArg;
    568     Saved->SecondArg = Info.SecondArg;
    569     Result.Data = Saved;
    570     break;
    571   }
    572 
    573   case Sema::TDK_Inconsistent:
    574   case Sema::TDK_Underqualified: {
    575     // FIXME: Should allocate from normal heap so that we can free this later.
    576     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
    577     Saved->Param = Info.Param;
    578     Saved->FirstArg = Info.FirstArg;
    579     Saved->SecondArg = Info.SecondArg;
    580     Result.Data = Saved;
    581     break;
    582   }
    583 
    584   case Sema::TDK_SubstitutionFailure:
    585     Result.Data = Info.take();
    586     if (Info.hasSFINAEDiagnostic()) {
    587       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
    588           SourceLocation(), PartialDiagnostic::NullDiagnostic());
    589       Info.takeSFINAEDiagnostic(*Diag);
    590       Result.HasDiagnostic = true;
    591     }
    592     break;
    593 
    594   case Sema::TDK_FailedOverloadResolution:
    595     Result.Data = Info.Expression;
    596     break;
    597 
    598   case Sema::TDK_MiscellaneousDeductionFailure:
    599     break;
    600   }
    601 
    602   return Result;
    603 }
    604 
    605 void DeductionFailureInfo::Destroy() {
    606   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    607   case Sema::TDK_Success:
    608   case Sema::TDK_Invalid:
    609   case Sema::TDK_InstantiationDepth:
    610   case Sema::TDK_Incomplete:
    611   case Sema::TDK_TooManyArguments:
    612   case Sema::TDK_TooFewArguments:
    613   case Sema::TDK_InvalidExplicitArguments:
    614   case Sema::TDK_FailedOverloadResolution:
    615     break;
    616 
    617   case Sema::TDK_Inconsistent:
    618   case Sema::TDK_Underqualified:
    619   case Sema::TDK_NonDeducedMismatch:
    620     // FIXME: Destroy the data?
    621     Data = nullptr;
    622     break;
    623 
    624   case Sema::TDK_SubstitutionFailure:
    625     // FIXME: Destroy the template argument list?
    626     Data = nullptr;
    627     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
    628       Diag->~PartialDiagnosticAt();
    629       HasDiagnostic = false;
    630     }
    631     break;
    632 
    633   // Unhandled
    634   case Sema::TDK_MiscellaneousDeductionFailure:
    635     break;
    636   }
    637 }
    638 
    639 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
    640   if (HasDiagnostic)
    641     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
    642   return nullptr;
    643 }
    644 
    645 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
    646   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    647   case Sema::TDK_Success:
    648   case Sema::TDK_Invalid:
    649   case Sema::TDK_InstantiationDepth:
    650   case Sema::TDK_TooManyArguments:
    651   case Sema::TDK_TooFewArguments:
    652   case Sema::TDK_SubstitutionFailure:
    653   case Sema::TDK_NonDeducedMismatch:
    654   case Sema::TDK_FailedOverloadResolution:
    655     return TemplateParameter();
    656 
    657   case Sema::TDK_Incomplete:
    658   case Sema::TDK_InvalidExplicitArguments:
    659     return TemplateParameter::getFromOpaqueValue(Data);
    660 
    661   case Sema::TDK_Inconsistent:
    662   case Sema::TDK_Underqualified:
    663     return static_cast<DFIParamWithArguments*>(Data)->Param;
    664 
    665   // Unhandled
    666   case Sema::TDK_MiscellaneousDeductionFailure:
    667     break;
    668   }
    669 
    670   return TemplateParameter();
    671 }
    672 
    673 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
    674   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    675   case Sema::TDK_Success:
    676   case Sema::TDK_Invalid:
    677   case Sema::TDK_InstantiationDepth:
    678   case Sema::TDK_TooManyArguments:
    679   case Sema::TDK_TooFewArguments:
    680   case Sema::TDK_Incomplete:
    681   case Sema::TDK_InvalidExplicitArguments:
    682   case Sema::TDK_Inconsistent:
    683   case Sema::TDK_Underqualified:
    684   case Sema::TDK_NonDeducedMismatch:
    685   case Sema::TDK_FailedOverloadResolution:
    686     return nullptr;
    687 
    688   case Sema::TDK_SubstitutionFailure:
    689     return static_cast<TemplateArgumentList*>(Data);
    690 
    691   // Unhandled
    692   case Sema::TDK_MiscellaneousDeductionFailure:
    693     break;
    694   }
    695 
    696   return nullptr;
    697 }
    698 
    699 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
    700   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    701   case Sema::TDK_Success:
    702   case Sema::TDK_Invalid:
    703   case Sema::TDK_InstantiationDepth:
    704   case Sema::TDK_Incomplete:
    705   case Sema::TDK_TooManyArguments:
    706   case Sema::TDK_TooFewArguments:
    707   case Sema::TDK_InvalidExplicitArguments:
    708   case Sema::TDK_SubstitutionFailure:
    709   case Sema::TDK_FailedOverloadResolution:
    710     return nullptr;
    711 
    712   case Sema::TDK_Inconsistent:
    713   case Sema::TDK_Underqualified:
    714   case Sema::TDK_NonDeducedMismatch:
    715     return &static_cast<DFIArguments*>(Data)->FirstArg;
    716 
    717   // Unhandled
    718   case Sema::TDK_MiscellaneousDeductionFailure:
    719     break;
    720   }
    721 
    722   return nullptr;
    723 }
    724 
    725 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
    726   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    727   case Sema::TDK_Success:
    728   case Sema::TDK_Invalid:
    729   case Sema::TDK_InstantiationDepth:
    730   case Sema::TDK_Incomplete:
    731   case Sema::TDK_TooManyArguments:
    732   case Sema::TDK_TooFewArguments:
    733   case Sema::TDK_InvalidExplicitArguments:
    734   case Sema::TDK_SubstitutionFailure:
    735   case Sema::TDK_FailedOverloadResolution:
    736     return nullptr;
    737 
    738   case Sema::TDK_Inconsistent:
    739   case Sema::TDK_Underqualified:
    740   case Sema::TDK_NonDeducedMismatch:
    741     return &static_cast<DFIArguments*>(Data)->SecondArg;
    742 
    743   // Unhandled
    744   case Sema::TDK_MiscellaneousDeductionFailure:
    745     break;
    746   }
    747 
    748   return nullptr;
    749 }
    750 
    751 Expr *DeductionFailureInfo::getExpr() {
    752   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
    753         Sema::TDK_FailedOverloadResolution)
    754     return static_cast<Expr*>(Data);
    755 
    756   return nullptr;
    757 }
    758 
    759 void OverloadCandidateSet::destroyCandidates() {
    760   for (iterator i = begin(), e = end(); i != e; ++i) {
    761     for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
    762       i->Conversions[ii].~ImplicitConversionSequence();
    763     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
    764       i->DeductionFailure.Destroy();
    765   }
    766 }
    767 
    768 void OverloadCandidateSet::clear() {
    769   destroyCandidates();
    770   NumInlineSequences = 0;
    771   Candidates.clear();
    772   Functions.clear();
    773 }
    774 
    775 namespace {
    776   class UnbridgedCastsSet {
    777     struct Entry {
    778       Expr **Addr;
    779       Expr *Saved;
    780     };
    781     SmallVector<Entry, 2> Entries;
    782 
    783   public:
    784     void save(Sema &S, Expr *&E) {
    785       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
    786       Entry entry = { &E, E };
    787       Entries.push_back(entry);
    788       E = S.stripARCUnbridgedCast(E);
    789     }
    790 
    791     void restore() {
    792       for (SmallVectorImpl<Entry>::iterator
    793              i = Entries.begin(), e = Entries.end(); i != e; ++i)
    794         *i->Addr = i->Saved;
    795     }
    796   };
    797 }
    798 
    799 /// checkPlaceholderForOverload - Do any interesting placeholder-like
    800 /// preprocessing on the given expression.
    801 ///
    802 /// \param unbridgedCasts a collection to which to add unbridged casts;
    803 ///   without this, they will be immediately diagnosed as errors
    804 ///
    805 /// Return true on unrecoverable error.
    806 static bool
    807 checkPlaceholderForOverload(Sema &S, Expr *&E,
    808                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
    809   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
    810     // We can't handle overloaded expressions here because overload
    811     // resolution might reasonably tweak them.
    812     if (placeholder->getKind() == BuiltinType::Overload) return false;
    813 
    814     // If the context potentially accepts unbridged ARC casts, strip
    815     // the unbridged cast and add it to the collection for later restoration.
    816     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
    817         unbridgedCasts) {
    818       unbridgedCasts->save(S, E);
    819       return false;
    820     }
    821 
    822     // Go ahead and check everything else.
    823     ExprResult result = S.CheckPlaceholderExpr(E);
    824     if (result.isInvalid())
    825       return true;
    826 
    827     E = result.get();
    828     return false;
    829   }
    830 
    831   // Nothing to do.
    832   return false;
    833 }
    834 
    835 /// checkArgPlaceholdersForOverload - Check a set of call operands for
    836 /// placeholders.
    837 static bool checkArgPlaceholdersForOverload(Sema &S,
    838                                             MultiExprArg Args,
    839                                             UnbridgedCastsSet &unbridged) {
    840   for (unsigned i = 0, e = Args.size(); i != e; ++i)
    841     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
    842       return true;
    843 
    844   return false;
    845 }
    846 
    847 // IsOverload - Determine whether the given New declaration is an
    848 // overload of the declarations in Old. This routine returns false if
    849 // New and Old cannot be overloaded, e.g., if New has the same
    850 // signature as some function in Old (C++ 1.3.10) or if the Old
    851 // declarations aren't functions (or function templates) at all. When
    852 // it does return false, MatchedDecl will point to the decl that New
    853 // cannot be overloaded with.  This decl may be a UsingShadowDecl on
    854 // top of the underlying declaration.
    855 //
    856 // Example: Given the following input:
    857 //
    858 //   void f(int, float); // #1
    859 //   void f(int, int); // #2
    860 //   int f(int, int); // #3
    861 //
    862 // When we process #1, there is no previous declaration of "f",
    863 // so IsOverload will not be used.
    864 //
    865 // When we process #2, Old contains only the FunctionDecl for #1.  By
    866 // comparing the parameter types, we see that #1 and #2 are overloaded
    867 // (since they have different signatures), so this routine returns
    868 // false; MatchedDecl is unchanged.
    869 //
    870 // When we process #3, Old is an overload set containing #1 and #2. We
    871 // compare the signatures of #3 to #1 (they're overloaded, so we do
    872 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
    873 // identical (return types of functions are not part of the
    874 // signature), IsOverload returns false and MatchedDecl will be set to
    875 // point to the FunctionDecl for #2.
    876 //
    877 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
    878 // into a class by a using declaration.  The rules for whether to hide
    879 // shadow declarations ignore some properties which otherwise figure
    880 // into a function template's signature.
    881 Sema::OverloadKind
    882 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
    883                     NamedDecl *&Match, bool NewIsUsingDecl) {
    884   for (LookupResult::iterator I = Old.begin(), E = Old.end();
    885          I != E; ++I) {
    886     NamedDecl *OldD = *I;
    887 
    888     bool OldIsUsingDecl = false;
    889     if (isa<UsingShadowDecl>(OldD)) {
    890       OldIsUsingDecl = true;
    891 
    892       // We can always introduce two using declarations into the same
    893       // context, even if they have identical signatures.
    894       if (NewIsUsingDecl) continue;
    895 
    896       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
    897     }
    898 
    899     // If either declaration was introduced by a using declaration,
    900     // we'll need to use slightly different rules for matching.
    901     // Essentially, these rules are the normal rules, except that
    902     // function templates hide function templates with different
    903     // return types or template parameter lists.
    904     bool UseMemberUsingDeclRules =
    905       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
    906       !New->getFriendObjectKind();
    907 
    908     if (FunctionDecl *OldF = OldD->getAsFunction()) {
    909       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
    910         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
    911           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
    912           continue;
    913         }
    914 
    915         if (!isa<FunctionTemplateDecl>(OldD) &&
    916             !shouldLinkPossiblyHiddenDecl(*I, New))
    917           continue;
    918 
    919         Match = *I;
    920         return Ovl_Match;
    921       }
    922     } else if (isa<UsingDecl>(OldD)) {
    923       // We can overload with these, which can show up when doing
    924       // redeclaration checks for UsingDecls.
    925       assert(Old.getLookupKind() == LookupUsingDeclName);
    926     } else if (isa<TagDecl>(OldD)) {
    927       // We can always overload with tags by hiding them.
    928     } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
    929       // Optimistically assume that an unresolved using decl will
    930       // overload; if it doesn't, we'll have to diagnose during
    931       // template instantiation.
    932     } else {
    933       // (C++ 13p1):
    934       //   Only function declarations can be overloaded; object and type
    935       //   declarations cannot be overloaded.
    936       Match = *I;
    937       return Ovl_NonFunction;
    938     }
    939   }
    940 
    941   return Ovl_Overload;
    942 }
    943 
    944 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
    945                       bool UseUsingDeclRules) {
    946   // C++ [basic.start.main]p2: This function shall not be overloaded.
    947   if (New->isMain())
    948     return false;
    949 
    950   // MSVCRT user defined entry points cannot be overloaded.
    951   if (New->isMSVCRTEntryPoint())
    952     return false;
    953 
    954   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
    955   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
    956 
    957   // C++ [temp.fct]p2:
    958   //   A function template can be overloaded with other function templates
    959   //   and with normal (non-template) functions.
    960   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
    961     return true;
    962 
    963   // Is the function New an overload of the function Old?
    964   QualType OldQType = Context.getCanonicalType(Old->getType());
    965   QualType NewQType = Context.getCanonicalType(New->getType());
    966 
    967   // Compare the signatures (C++ 1.3.10) of the two functions to
    968   // determine whether they are overloads. If we find any mismatch
    969   // in the signature, they are overloads.
    970 
    971   // If either of these functions is a K&R-style function (no
    972   // prototype), then we consider them to have matching signatures.
    973   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
    974       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
    975     return false;
    976 
    977   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
    978   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
    979 
    980   // The signature of a function includes the types of its
    981   // parameters (C++ 1.3.10), which includes the presence or absence
    982   // of the ellipsis; see C++ DR 357).
    983   if (OldQType != NewQType &&
    984       (OldType->getNumParams() != NewType->getNumParams() ||
    985        OldType->isVariadic() != NewType->isVariadic() ||
    986        !FunctionParamTypesAreEqual(OldType, NewType)))
    987     return true;
    988 
    989   // C++ [temp.over.link]p4:
    990   //   The signature of a function template consists of its function
    991   //   signature, its return type and its template parameter list. The names
    992   //   of the template parameters are significant only for establishing the
    993   //   relationship between the template parameters and the rest of the
    994   //   signature.
    995   //
    996   // We check the return type and template parameter lists for function
    997   // templates first; the remaining checks follow.
    998   //
    999   // However, we don't consider either of these when deciding whether
   1000   // a member introduced by a shadow declaration is hidden.
   1001   if (!UseUsingDeclRules && NewTemplate &&
   1002       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
   1003                                        OldTemplate->getTemplateParameters(),
   1004                                        false, TPL_TemplateMatch) ||
   1005        OldType->getReturnType() != NewType->getReturnType()))
   1006     return true;
   1007 
   1008   // If the function is a class member, its signature includes the
   1009   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
   1010   //
   1011   // As part of this, also check whether one of the member functions
   1012   // is static, in which case they are not overloads (C++
   1013   // 13.1p2). While not part of the definition of the signature,
   1014   // this check is important to determine whether these functions
   1015   // can be overloaded.
   1016   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
   1017   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
   1018   if (OldMethod && NewMethod &&
   1019       !OldMethod->isStatic() && !NewMethod->isStatic()) {
   1020     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
   1021       if (!UseUsingDeclRules &&
   1022           (OldMethod->getRefQualifier() == RQ_None ||
   1023            NewMethod->getRefQualifier() == RQ_None)) {
   1024         // C++0x [over.load]p2:
   1025         //   - Member function declarations with the same name and the same
   1026         //     parameter-type-list as well as member function template
   1027         //     declarations with the same name, the same parameter-type-list, and
   1028         //     the same template parameter lists cannot be overloaded if any of
   1029         //     them, but not all, have a ref-qualifier (8.3.5).
   1030         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
   1031           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
   1032         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
   1033       }
   1034       return true;
   1035     }
   1036 
   1037     // We may not have applied the implicit const for a constexpr member
   1038     // function yet (because we haven't yet resolved whether this is a static
   1039     // or non-static member function). Add it now, on the assumption that this
   1040     // is a redeclaration of OldMethod.
   1041     unsigned OldQuals = OldMethod->getTypeQualifiers();
   1042     unsigned NewQuals = NewMethod->getTypeQualifiers();
   1043     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
   1044         !isa<CXXConstructorDecl>(NewMethod))
   1045       NewQuals |= Qualifiers::Const;
   1046 
   1047     // We do not allow overloading based off of '__restrict'.
   1048     OldQuals &= ~Qualifiers::Restrict;
   1049     NewQuals &= ~Qualifiers::Restrict;
   1050     if (OldQuals != NewQuals)
   1051       return true;
   1052   }
   1053 
   1054   // enable_if attributes are an order-sensitive part of the signature.
   1055   for (specific_attr_iterator<EnableIfAttr>
   1056          NewI = New->specific_attr_begin<EnableIfAttr>(),
   1057          NewE = New->specific_attr_end<EnableIfAttr>(),
   1058          OldI = Old->specific_attr_begin<EnableIfAttr>(),
   1059          OldE = Old->specific_attr_end<EnableIfAttr>();
   1060        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
   1061     if (NewI == NewE || OldI == OldE)
   1062       return true;
   1063     llvm::FoldingSetNodeID NewID, OldID;
   1064     NewI->getCond()->Profile(NewID, Context, true);
   1065     OldI->getCond()->Profile(OldID, Context, true);
   1066     if (NewID != OldID)
   1067       return true;
   1068   }
   1069 
   1070   // The signatures match; this is not an overload.
   1071   return false;
   1072 }
   1073 
   1074 /// \brief Checks availability of the function depending on the current
   1075 /// function context. Inside an unavailable function, unavailability is ignored.
   1076 ///
   1077 /// \returns true if \arg FD is unavailable and current context is inside
   1078 /// an available function, false otherwise.
   1079 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
   1080   return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
   1081 }
   1082 
   1083 /// \brief Tries a user-defined conversion from From to ToType.
   1084 ///
   1085 /// Produces an implicit conversion sequence for when a standard conversion
   1086 /// is not an option. See TryImplicitConversion for more information.
   1087 static ImplicitConversionSequence
   1088 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
   1089                          bool SuppressUserConversions,
   1090                          bool AllowExplicit,
   1091                          bool InOverloadResolution,
   1092                          bool CStyle,
   1093                          bool AllowObjCWritebackConversion,
   1094                          bool AllowObjCConversionOnExplicit) {
   1095   ImplicitConversionSequence ICS;
   1096 
   1097   if (SuppressUserConversions) {
   1098     // We're not in the case above, so there is no conversion that
   1099     // we can perform.
   1100     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1101     return ICS;
   1102   }
   1103 
   1104   // Attempt user-defined conversion.
   1105   OverloadCandidateSet Conversions(From->getExprLoc(),
   1106                                    OverloadCandidateSet::CSK_Normal);
   1107   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
   1108                                   Conversions, AllowExplicit,
   1109                                   AllowObjCConversionOnExplicit)) {
   1110   case OR_Success:
   1111   case OR_Deleted:
   1112     ICS.setUserDefined();
   1113     ICS.UserDefined.Before.setAsIdentityConversion();
   1114     // C++ [over.ics.user]p4:
   1115     //   A conversion of an expression of class type to the same class
   1116     //   type is given Exact Match rank, and a conversion of an
   1117     //   expression of class type to a base class of that type is
   1118     //   given Conversion rank, in spite of the fact that a copy
   1119     //   constructor (i.e., a user-defined conversion function) is
   1120     //   called for those cases.
   1121     if (CXXConstructorDecl *Constructor
   1122           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
   1123       QualType FromCanon
   1124         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
   1125       QualType ToCanon
   1126         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
   1127       if (Constructor->isCopyConstructor() &&
   1128           (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
   1129         // Turn this into a "standard" conversion sequence, so that it
   1130         // gets ranked with standard conversion sequences.
   1131         ICS.setStandard();
   1132         ICS.Standard.setAsIdentityConversion();
   1133         ICS.Standard.setFromType(From->getType());
   1134         ICS.Standard.setAllToTypes(ToType);
   1135         ICS.Standard.CopyConstructor = Constructor;
   1136         if (ToCanon != FromCanon)
   1137           ICS.Standard.Second = ICK_Derived_To_Base;
   1138       }
   1139     }
   1140     break;
   1141 
   1142   case OR_Ambiguous:
   1143     ICS.setAmbiguous();
   1144     ICS.Ambiguous.setFromType(From->getType());
   1145     ICS.Ambiguous.setToType(ToType);
   1146     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
   1147          Cand != Conversions.end(); ++Cand)
   1148       if (Cand->Viable)
   1149         ICS.Ambiguous.addConversion(Cand->Function);
   1150     break;
   1151 
   1152     // Fall through.
   1153   case OR_No_Viable_Function:
   1154     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1155     break;
   1156   }
   1157 
   1158   return ICS;
   1159 }
   1160 
   1161 /// TryImplicitConversion - Attempt to perform an implicit conversion
   1162 /// from the given expression (Expr) to the given type (ToType). This
   1163 /// function returns an implicit conversion sequence that can be used
   1164 /// to perform the initialization. Given
   1165 ///
   1166 ///   void f(float f);
   1167 ///   void g(int i) { f(i); }
   1168 ///
   1169 /// this routine would produce an implicit conversion sequence to
   1170 /// describe the initialization of f from i, which will be a standard
   1171 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
   1172 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
   1173 //
   1174 /// Note that this routine only determines how the conversion can be
   1175 /// performed; it does not actually perform the conversion. As such,
   1176 /// it will not produce any diagnostics if no conversion is available,
   1177 /// but will instead return an implicit conversion sequence of kind
   1178 /// "BadConversion".
   1179 ///
   1180 /// If @p SuppressUserConversions, then user-defined conversions are
   1181 /// not permitted.
   1182 /// If @p AllowExplicit, then explicit user-defined conversions are
   1183 /// permitted.
   1184 ///
   1185 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
   1186 /// writeback conversion, which allows __autoreleasing id* parameters to
   1187 /// be initialized with __strong id* or __weak id* arguments.
   1188 static ImplicitConversionSequence
   1189 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
   1190                       bool SuppressUserConversions,
   1191                       bool AllowExplicit,
   1192                       bool InOverloadResolution,
   1193                       bool CStyle,
   1194                       bool AllowObjCWritebackConversion,
   1195                       bool AllowObjCConversionOnExplicit) {
   1196   ImplicitConversionSequence ICS;
   1197   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
   1198                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
   1199     ICS.setStandard();
   1200     return ICS;
   1201   }
   1202 
   1203   if (!S.getLangOpts().CPlusPlus) {
   1204     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1205     return ICS;
   1206   }
   1207 
   1208   // C++ [over.ics.user]p4:
   1209   //   A conversion of an expression of class type to the same class
   1210   //   type is given Exact Match rank, and a conversion of an
   1211   //   expression of class type to a base class of that type is
   1212   //   given Conversion rank, in spite of the fact that a copy/move
   1213   //   constructor (i.e., a user-defined conversion function) is
   1214   //   called for those cases.
   1215   QualType FromType = From->getType();
   1216   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
   1217       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
   1218        S.IsDerivedFrom(FromType, ToType))) {
   1219     ICS.setStandard();
   1220     ICS.Standard.setAsIdentityConversion();
   1221     ICS.Standard.setFromType(FromType);
   1222     ICS.Standard.setAllToTypes(ToType);
   1223 
   1224     // We don't actually check at this point whether there is a valid
   1225     // copy/move constructor, since overloading just assumes that it
   1226     // exists. When we actually perform initialization, we'll find the
   1227     // appropriate constructor to copy the returned object, if needed.
   1228     ICS.Standard.CopyConstructor = nullptr;
   1229 
   1230     // Determine whether this is considered a derived-to-base conversion.
   1231     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
   1232       ICS.Standard.Second = ICK_Derived_To_Base;
   1233 
   1234     return ICS;
   1235   }
   1236 
   1237   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
   1238                                   AllowExplicit, InOverloadResolution, CStyle,
   1239                                   AllowObjCWritebackConversion,
   1240                                   AllowObjCConversionOnExplicit);
   1241 }
   1242 
   1243 ImplicitConversionSequence
   1244 Sema::TryImplicitConversion(Expr *From, QualType ToType,
   1245                             bool SuppressUserConversions,
   1246                             bool AllowExplicit,
   1247                             bool InOverloadResolution,
   1248                             bool CStyle,
   1249                             bool AllowObjCWritebackConversion) {
   1250   return ::TryImplicitConversion(*this, From, ToType,
   1251                                  SuppressUserConversions, AllowExplicit,
   1252                                  InOverloadResolution, CStyle,
   1253                                  AllowObjCWritebackConversion,
   1254                                  /*AllowObjCConversionOnExplicit=*/false);
   1255 }
   1256 
   1257 /// PerformImplicitConversion - Perform an implicit conversion of the
   1258 /// expression From to the type ToType. Returns the
   1259 /// converted expression. Flavor is the kind of conversion we're
   1260 /// performing, used in the error message. If @p AllowExplicit,
   1261 /// explicit user-defined conversions are permitted.
   1262 ExprResult
   1263 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   1264                                 AssignmentAction Action, bool AllowExplicit) {
   1265   ImplicitConversionSequence ICS;
   1266   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
   1267 }
   1268 
   1269 ExprResult
   1270 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   1271                                 AssignmentAction Action, bool AllowExplicit,
   1272                                 ImplicitConversionSequence& ICS) {
   1273   if (checkPlaceholderForOverload(*this, From))
   1274     return ExprError();
   1275 
   1276   // Objective-C ARC: Determine whether we will allow the writeback conversion.
   1277   bool AllowObjCWritebackConversion
   1278     = getLangOpts().ObjCAutoRefCount &&
   1279       (Action == AA_Passing || Action == AA_Sending);
   1280   if (getLangOpts().ObjC1)
   1281     CheckObjCBridgeRelatedConversions(From->getLocStart(),
   1282                                       ToType, From->getType(), From);
   1283   ICS = ::TryImplicitConversion(*this, From, ToType,
   1284                                 /*SuppressUserConversions=*/false,
   1285                                 AllowExplicit,
   1286                                 /*InOverloadResolution=*/false,
   1287                                 /*CStyle=*/false,
   1288                                 AllowObjCWritebackConversion,
   1289                                 /*AllowObjCConversionOnExplicit=*/false);
   1290   return PerformImplicitConversion(From, ToType, ICS, Action);
   1291 }
   1292 
   1293 /// \brief Determine whether the conversion from FromType to ToType is a valid
   1294 /// conversion that strips "noreturn" off the nested function type.
   1295 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
   1296                                 QualType &ResultTy) {
   1297   if (Context.hasSameUnqualifiedType(FromType, ToType))
   1298     return false;
   1299 
   1300   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
   1301   // where F adds one of the following at most once:
   1302   //   - a pointer
   1303   //   - a member pointer
   1304   //   - a block pointer
   1305   CanQualType CanTo = Context.getCanonicalType(ToType);
   1306   CanQualType CanFrom = Context.getCanonicalType(FromType);
   1307   Type::TypeClass TyClass = CanTo->getTypeClass();
   1308   if (TyClass != CanFrom->getTypeClass()) return false;
   1309   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
   1310     if (TyClass == Type::Pointer) {
   1311       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
   1312       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
   1313     } else if (TyClass == Type::BlockPointer) {
   1314       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
   1315       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
   1316     } else if (TyClass == Type::MemberPointer) {
   1317       CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
   1318       CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
   1319     } else {
   1320       return false;
   1321     }
   1322 
   1323     TyClass = CanTo->getTypeClass();
   1324     if (TyClass != CanFrom->getTypeClass()) return false;
   1325     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
   1326       return false;
   1327   }
   1328 
   1329   const FunctionType *FromFn = cast<FunctionType>(CanFrom);
   1330   FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
   1331   if (!EInfo.getNoReturn()) return false;
   1332 
   1333   FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
   1334   assert(QualType(FromFn, 0).isCanonical());
   1335   if (QualType(FromFn, 0) != CanTo) return false;
   1336 
   1337   ResultTy = ToType;
   1338   return true;
   1339 }
   1340 
   1341 /// \brief Determine whether the conversion from FromType to ToType is a valid
   1342 /// vector conversion.
   1343 ///
   1344 /// \param ICK Will be set to the vector conversion kind, if this is a vector
   1345 /// conversion.
   1346 static bool IsVectorConversion(Sema &S, QualType FromType,
   1347                                QualType ToType, ImplicitConversionKind &ICK) {
   1348   // We need at least one of these types to be a vector type to have a vector
   1349   // conversion.
   1350   if (!ToType->isVectorType() && !FromType->isVectorType())
   1351     return false;
   1352 
   1353   // Identical types require no conversions.
   1354   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
   1355     return false;
   1356 
   1357   // There are no conversions between extended vector types, only identity.
   1358   if (ToType->isExtVectorType()) {
   1359     // There are no conversions between extended vector types other than the
   1360     // identity conversion.
   1361     if (FromType->isExtVectorType())
   1362       return false;
   1363 
   1364     // Vector splat from any arithmetic type to a vector.
   1365     if (FromType->isArithmeticType()) {
   1366       ICK = ICK_Vector_Splat;
   1367       return true;
   1368     }
   1369   }
   1370 
   1371   // We can perform the conversion between vector types in the following cases:
   1372   // 1)vector types are equivalent AltiVec and GCC vector types
   1373   // 2)lax vector conversions are permitted and the vector types are of the
   1374   //   same size
   1375   if (ToType->isVectorType() && FromType->isVectorType()) {
   1376     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
   1377         S.isLaxVectorConversion(FromType, ToType)) {
   1378       ICK = ICK_Vector_Conversion;
   1379       return true;
   1380     }
   1381   }
   1382 
   1383   return false;
   1384 }
   1385 
   1386 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
   1387                                 bool InOverloadResolution,
   1388                                 StandardConversionSequence &SCS,
   1389                                 bool CStyle);
   1390 
   1391 /// IsStandardConversion - Determines whether there is a standard
   1392 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
   1393 /// expression From to the type ToType. Standard conversion sequences
   1394 /// only consider non-class types; for conversions that involve class
   1395 /// types, use TryImplicitConversion. If a conversion exists, SCS will
   1396 /// contain the standard conversion sequence required to perform this
   1397 /// conversion and this routine will return true. Otherwise, this
   1398 /// routine will return false and the value of SCS is unspecified.
   1399 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
   1400                                  bool InOverloadResolution,
   1401                                  StandardConversionSequence &SCS,
   1402                                  bool CStyle,
   1403                                  bool AllowObjCWritebackConversion) {
   1404   QualType FromType = From->getType();
   1405 
   1406   // Standard conversions (C++ [conv])
   1407   SCS.setAsIdentityConversion();
   1408   SCS.IncompatibleObjC = false;
   1409   SCS.setFromType(FromType);
   1410   SCS.CopyConstructor = nullptr;
   1411 
   1412   // There are no standard conversions for class types in C++, so
   1413   // abort early. When overloading in C, however, we do permit
   1414   if (FromType->isRecordType() || ToType->isRecordType()) {
   1415     if (S.getLangOpts().CPlusPlus)
   1416       return false;
   1417 
   1418     // When we're overloading in C, we allow, as standard conversions,
   1419   }
   1420 
   1421   // The first conversion can be an lvalue-to-rvalue conversion,
   1422   // array-to-pointer conversion, or function-to-pointer conversion
   1423   // (C++ 4p1).
   1424 
   1425   if (FromType == S.Context.OverloadTy) {
   1426     DeclAccessPair AccessPair;
   1427     if (FunctionDecl *Fn
   1428           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
   1429                                                  AccessPair)) {
   1430       // We were able to resolve the address of the overloaded function,
   1431       // so we can convert to the type of that function.
   1432       FromType = Fn->getType();
   1433       SCS.setFromType(FromType);
   1434 
   1435       // we can sometimes resolve &foo<int> regardless of ToType, so check
   1436       // if the type matches (identity) or we are converting to bool
   1437       if (!S.Context.hasSameUnqualifiedType(
   1438                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
   1439         QualType resultTy;
   1440         // if the function type matches except for [[noreturn]], it's ok
   1441         if (!S.IsNoReturnConversion(FromType,
   1442               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
   1443           // otherwise, only a boolean conversion is standard
   1444           if (!ToType->isBooleanType())
   1445             return false;
   1446       }
   1447 
   1448       // Check if the "from" expression is taking the address of an overloaded
   1449       // function and recompute the FromType accordingly. Take advantage of the
   1450       // fact that non-static member functions *must* have such an address-of
   1451       // expression.
   1452       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
   1453       if (Method && !Method->isStatic()) {
   1454         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
   1455                "Non-unary operator on non-static member address");
   1456         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
   1457                == UO_AddrOf &&
   1458                "Non-address-of operator on non-static member address");
   1459         const Type *ClassType
   1460           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
   1461         FromType = S.Context.getMemberPointerType(FromType, ClassType);
   1462       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
   1463         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
   1464                UO_AddrOf &&
   1465                "Non-address-of operator for overloaded function expression");
   1466         FromType = S.Context.getPointerType(FromType);
   1467       }
   1468 
   1469       // Check that we've computed the proper type after overload resolution.
   1470       assert(S.Context.hasSameType(
   1471         FromType,
   1472         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
   1473     } else {
   1474       return false;
   1475     }
   1476   }
   1477   // Lvalue-to-rvalue conversion (C++11 4.1):
   1478   //   A glvalue (3.10) of a non-function, non-array type T can
   1479   //   be converted to a prvalue.
   1480   bool argIsLValue = From->isGLValue();
   1481   if (argIsLValue &&
   1482       !FromType->isFunctionType() && !FromType->isArrayType() &&
   1483       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
   1484     SCS.First = ICK_Lvalue_To_Rvalue;
   1485 
   1486     // C11 6.3.2.1p2:
   1487     //   ... if the lvalue has atomic type, the value has the non-atomic version
   1488     //   of the type of the lvalue ...
   1489     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
   1490       FromType = Atomic->getValueType();
   1491 
   1492     // If T is a non-class type, the type of the rvalue is the
   1493     // cv-unqualified version of T. Otherwise, the type of the rvalue
   1494     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
   1495     // just strip the qualifiers because they don't matter.
   1496     FromType = FromType.getUnqualifiedType();
   1497   } else if (FromType->isArrayType()) {
   1498     // Array-to-pointer conversion (C++ 4.2)
   1499     SCS.First = ICK_Array_To_Pointer;
   1500 
   1501     // An lvalue or rvalue of type "array of N T" or "array of unknown
   1502     // bound of T" can be converted to an rvalue of type "pointer to
   1503     // T" (C++ 4.2p1).
   1504     FromType = S.Context.getArrayDecayedType(FromType);
   1505 
   1506     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
   1507       // This conversion is deprecated in C++03 (D.4)
   1508       SCS.DeprecatedStringLiteralToCharPtr = true;
   1509 
   1510       // For the purpose of ranking in overload resolution
   1511       // (13.3.3.1.1), this conversion is considered an
   1512       // array-to-pointer conversion followed by a qualification
   1513       // conversion (4.4). (C++ 4.2p2)
   1514       SCS.Second = ICK_Identity;
   1515       SCS.Third = ICK_Qualification;
   1516       SCS.QualificationIncludesObjCLifetime = false;
   1517       SCS.setAllToTypes(FromType);
   1518       return true;
   1519     }
   1520   } else if (FromType->isFunctionType() && argIsLValue) {
   1521     // Function-to-pointer conversion (C++ 4.3).
   1522     SCS.First = ICK_Function_To_Pointer;
   1523 
   1524     // An lvalue of function type T can be converted to an rvalue of
   1525     // type "pointer to T." The result is a pointer to the
   1526     // function. (C++ 4.3p1).
   1527     FromType = S.Context.getPointerType(FromType);
   1528   } else {
   1529     // We don't require any conversions for the first step.
   1530     SCS.First = ICK_Identity;
   1531   }
   1532   SCS.setToType(0, FromType);
   1533 
   1534   // The second conversion can be an integral promotion, floating
   1535   // point promotion, integral conversion, floating point conversion,
   1536   // floating-integral conversion, pointer conversion,
   1537   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
   1538   // For overloading in C, this can also be a "compatible-type"
   1539   // conversion.
   1540   bool IncompatibleObjC = false;
   1541   ImplicitConversionKind SecondICK = ICK_Identity;
   1542   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
   1543     // The unqualified versions of the types are the same: there's no
   1544     // conversion to do.
   1545     SCS.Second = ICK_Identity;
   1546   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
   1547     // Integral promotion (C++ 4.5).
   1548     SCS.Second = ICK_Integral_Promotion;
   1549     FromType = ToType.getUnqualifiedType();
   1550   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
   1551     // Floating point promotion (C++ 4.6).
   1552     SCS.Second = ICK_Floating_Promotion;
   1553     FromType = ToType.getUnqualifiedType();
   1554   } else if (S.IsComplexPromotion(FromType, ToType)) {
   1555     // Complex promotion (Clang extension)
   1556     SCS.Second = ICK_Complex_Promotion;
   1557     FromType = ToType.getUnqualifiedType();
   1558   } else if (ToType->isBooleanType() &&
   1559              (FromType->isArithmeticType() ||
   1560               FromType->isAnyPointerType() ||
   1561               FromType->isBlockPointerType() ||
   1562               FromType->isMemberPointerType() ||
   1563               FromType->isNullPtrType())) {
   1564     // Boolean conversions (C++ 4.12).
   1565     SCS.Second = ICK_Boolean_Conversion;
   1566     FromType = S.Context.BoolTy;
   1567   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
   1568              ToType->isIntegralType(S.Context)) {
   1569     // Integral conversions (C++ 4.7).
   1570     SCS.Second = ICK_Integral_Conversion;
   1571     FromType = ToType.getUnqualifiedType();
   1572   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
   1573     // Complex conversions (C99 6.3.1.6)
   1574     SCS.Second = ICK_Complex_Conversion;
   1575     FromType = ToType.getUnqualifiedType();
   1576   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
   1577              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
   1578     // Complex-real conversions (C99 6.3.1.7)
   1579     SCS.Second = ICK_Complex_Real;
   1580     FromType = ToType.getUnqualifiedType();
   1581   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
   1582     // Floating point conversions (C++ 4.8).
   1583     SCS.Second = ICK_Floating_Conversion;
   1584     FromType = ToType.getUnqualifiedType();
   1585   } else if ((FromType->isRealFloatingType() &&
   1586               ToType->isIntegralType(S.Context)) ||
   1587              (FromType->isIntegralOrUnscopedEnumerationType() &&
   1588               ToType->isRealFloatingType())) {
   1589     // Floating-integral conversions (C++ 4.9).
   1590     SCS.Second = ICK_Floating_Integral;
   1591     FromType = ToType.getUnqualifiedType();
   1592   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
   1593     SCS.Second = ICK_Block_Pointer_Conversion;
   1594   } else if (AllowObjCWritebackConversion &&
   1595              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
   1596     SCS.Second = ICK_Writeback_Conversion;
   1597   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
   1598                                    FromType, IncompatibleObjC)) {
   1599     // Pointer conversions (C++ 4.10).
   1600     SCS.Second = ICK_Pointer_Conversion;
   1601     SCS.IncompatibleObjC = IncompatibleObjC;
   1602     FromType = FromType.getUnqualifiedType();
   1603   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
   1604                                          InOverloadResolution, FromType)) {
   1605     // Pointer to member conversions (4.11).
   1606     SCS.Second = ICK_Pointer_Member;
   1607   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
   1608     SCS.Second = SecondICK;
   1609     FromType = ToType.getUnqualifiedType();
   1610   } else if (!S.getLangOpts().CPlusPlus &&
   1611              S.Context.typesAreCompatible(ToType, FromType)) {
   1612     // Compatible conversions (Clang extension for C function overloading)
   1613     SCS.Second = ICK_Compatible_Conversion;
   1614     FromType = ToType.getUnqualifiedType();
   1615   } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
   1616     // Treat a conversion that strips "noreturn" as an identity conversion.
   1617     SCS.Second = ICK_NoReturn_Adjustment;
   1618   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
   1619                                              InOverloadResolution,
   1620                                              SCS, CStyle)) {
   1621     SCS.Second = ICK_TransparentUnionConversion;
   1622     FromType = ToType;
   1623   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
   1624                                  CStyle)) {
   1625     // tryAtomicConversion has updated the standard conversion sequence
   1626     // appropriately.
   1627     return true;
   1628   } else if (ToType->isEventT() &&
   1629              From->isIntegerConstantExpr(S.getASTContext()) &&
   1630              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
   1631     SCS.Second = ICK_Zero_Event_Conversion;
   1632     FromType = ToType;
   1633   } else {
   1634     // No second conversion required.
   1635     SCS.Second = ICK_Identity;
   1636   }
   1637   SCS.setToType(1, FromType);
   1638 
   1639   QualType CanonFrom;
   1640   QualType CanonTo;
   1641   // The third conversion can be a qualification conversion (C++ 4p1).
   1642   bool ObjCLifetimeConversion;
   1643   if (S.IsQualificationConversion(FromType, ToType, CStyle,
   1644                                   ObjCLifetimeConversion)) {
   1645     SCS.Third = ICK_Qualification;
   1646     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
   1647     FromType = ToType;
   1648     CanonFrom = S.Context.getCanonicalType(FromType);
   1649     CanonTo = S.Context.getCanonicalType(ToType);
   1650   } else {
   1651     // No conversion required
   1652     SCS.Third = ICK_Identity;
   1653 
   1654     // C++ [over.best.ics]p6:
   1655     //   [...] Any difference in top-level cv-qualification is
   1656     //   subsumed by the initialization itself and does not constitute
   1657     //   a conversion. [...]
   1658     CanonFrom = S.Context.getCanonicalType(FromType);
   1659     CanonTo = S.Context.getCanonicalType(ToType);
   1660     if (CanonFrom.getLocalUnqualifiedType()
   1661                                        == CanonTo.getLocalUnqualifiedType() &&
   1662         CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
   1663       FromType = ToType;
   1664       CanonFrom = CanonTo;
   1665     }
   1666   }
   1667   SCS.setToType(2, FromType);
   1668 
   1669   // If we have not converted the argument type to the parameter type,
   1670   // this is a bad conversion sequence.
   1671   if (CanonFrom != CanonTo)
   1672     return false;
   1673 
   1674   return true;
   1675 }
   1676 
   1677 static bool
   1678 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
   1679                                      QualType &ToType,
   1680                                      bool InOverloadResolution,
   1681                                      StandardConversionSequence &SCS,
   1682                                      bool CStyle) {
   1683 
   1684   const RecordType *UT = ToType->getAsUnionType();
   1685   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   1686     return false;
   1687   // The field to initialize within the transparent union.
   1688   RecordDecl *UD = UT->getDecl();
   1689   // It's compatible if the expression matches any of the fields.
   1690   for (const auto *it : UD->fields()) {
   1691     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
   1692                              CStyle, /*ObjCWritebackConversion=*/false)) {
   1693       ToType = it->getType();
   1694       return true;
   1695     }
   1696   }
   1697   return false;
   1698 }
   1699 
   1700 /// IsIntegralPromotion - Determines whether the conversion from the
   1701 /// expression From (whose potentially-adjusted type is FromType) to
   1702 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
   1703 /// sets PromotedType to the promoted type.
   1704 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
   1705   const BuiltinType *To = ToType->getAs<BuiltinType>();
   1706   // All integers are built-in.
   1707   if (!To) {
   1708     return false;
   1709   }
   1710 
   1711   // An rvalue of type char, signed char, unsigned char, short int, or
   1712   // unsigned short int can be converted to an rvalue of type int if
   1713   // int can represent all the values of the source type; otherwise,
   1714   // the source rvalue can be converted to an rvalue of type unsigned
   1715   // int (C++ 4.5p1).
   1716   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
   1717       !FromType->isEnumeralType()) {
   1718     if (// We can promote any signed, promotable integer type to an int
   1719         (FromType->isSignedIntegerType() ||
   1720          // We can promote any unsigned integer type whose size is
   1721          // less than int to an int.
   1722          (!FromType->isSignedIntegerType() &&
   1723           Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
   1724       return To->getKind() == BuiltinType::Int;
   1725     }
   1726 
   1727     return To->getKind() == BuiltinType::UInt;
   1728   }
   1729 
   1730   // C++11 [conv.prom]p3:
   1731   //   A prvalue of an unscoped enumeration type whose underlying type is not
   1732   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
   1733   //   following types that can represent all the values of the enumeration
   1734   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
   1735   //   unsigned int, long int, unsigned long int, long long int, or unsigned
   1736   //   long long int. If none of the types in that list can represent all the
   1737   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
   1738   //   type can be converted to an rvalue a prvalue of the extended integer type
   1739   //   with lowest integer conversion rank (4.13) greater than the rank of long
   1740   //   long in which all the values of the enumeration can be represented. If
   1741   //   there are two such extended types, the signed one is chosen.
   1742   // C++11 [conv.prom]p4:
   1743   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
   1744   //   can be converted to a prvalue of its underlying type. Moreover, if
   1745   //   integral promotion can be applied to its underlying type, a prvalue of an
   1746   //   unscoped enumeration type whose underlying type is fixed can also be
   1747   //   converted to a prvalue of the promoted underlying type.
   1748   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
   1749     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
   1750     // provided for a scoped enumeration.
   1751     if (FromEnumType->getDecl()->isScoped())
   1752       return false;
   1753 
   1754     // We can perform an integral promotion to the underlying type of the enum,
   1755     // even if that's not the promoted type. Note that the check for promoting
   1756     // the underlying type is based on the type alone, and does not consider
   1757     // the bitfield-ness of the actual source expression.
   1758     if (FromEnumType->getDecl()->isFixed()) {
   1759       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
   1760       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
   1761              IsIntegralPromotion(nullptr, Underlying, ToType);
   1762     }
   1763 
   1764     // We have already pre-calculated the promotion type, so this is trivial.
   1765     if (ToType->isIntegerType() &&
   1766         !RequireCompleteType(From->getLocStart(), FromType, 0))
   1767       return Context.hasSameUnqualifiedType(
   1768           ToType, FromEnumType->getDecl()->getPromotionType());
   1769   }
   1770 
   1771   // C++0x [conv.prom]p2:
   1772   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
   1773   //   to an rvalue a prvalue of the first of the following types that can
   1774   //   represent all the values of its underlying type: int, unsigned int,
   1775   //   long int, unsigned long int, long long int, or unsigned long long int.
   1776   //   If none of the types in that list can represent all the values of its
   1777   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
   1778   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
   1779   //   type.
   1780   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
   1781       ToType->isIntegerType()) {
   1782     // Determine whether the type we're converting from is signed or
   1783     // unsigned.
   1784     bool FromIsSigned = FromType->isSignedIntegerType();
   1785     uint64_t FromSize = Context.getTypeSize(FromType);
   1786 
   1787     // The types we'll try to promote to, in the appropriate
   1788     // order. Try each of these types.
   1789     QualType PromoteTypes[6] = {
   1790       Context.IntTy, Context.UnsignedIntTy,
   1791       Context.LongTy, Context.UnsignedLongTy ,
   1792       Context.LongLongTy, Context.UnsignedLongLongTy
   1793     };
   1794     for (int Idx = 0; Idx < 6; ++Idx) {
   1795       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
   1796       if (FromSize < ToSize ||
   1797           (FromSize == ToSize &&
   1798            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
   1799         // We found the type that we can promote to. If this is the
   1800         // type we wanted, we have a promotion. Otherwise, no
   1801         // promotion.
   1802         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
   1803       }
   1804     }
   1805   }
   1806 
   1807   // An rvalue for an integral bit-field (9.6) can be converted to an
   1808   // rvalue of type int if int can represent all the values of the
   1809   // bit-field; otherwise, it can be converted to unsigned int if
   1810   // unsigned int can represent all the values of the bit-field. If
   1811   // the bit-field is larger yet, no integral promotion applies to
   1812   // it. If the bit-field has an enumerated type, it is treated as any
   1813   // other value of that type for promotion purposes (C++ 4.5p3).
   1814   // FIXME: We should delay checking of bit-fields until we actually perform the
   1815   // conversion.
   1816   if (From) {
   1817     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
   1818       llvm::APSInt BitWidth;
   1819       if (FromType->isIntegralType(Context) &&
   1820           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
   1821         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
   1822         ToSize = Context.getTypeSize(ToType);
   1823 
   1824         // Are we promoting to an int from a bitfield that fits in an int?
   1825         if (BitWidth < ToSize ||
   1826             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
   1827           return To->getKind() == BuiltinType::Int;
   1828         }
   1829 
   1830         // Are we promoting to an unsigned int from an unsigned bitfield
   1831         // that fits into an unsigned int?
   1832         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
   1833           return To->getKind() == BuiltinType::UInt;
   1834         }
   1835 
   1836         return false;
   1837       }
   1838     }
   1839   }
   1840 
   1841   // An rvalue of type bool can be converted to an rvalue of type int,
   1842   // with false becoming zero and true becoming one (C++ 4.5p4).
   1843   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
   1844     return true;
   1845   }
   1846 
   1847   return false;
   1848 }
   1849 
   1850 /// IsFloatingPointPromotion - Determines whether the conversion from
   1851 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
   1852 /// returns true and sets PromotedType to the promoted type.
   1853 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
   1854   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
   1855     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
   1856       /// An rvalue of type float can be converted to an rvalue of type
   1857       /// double. (C++ 4.6p1).
   1858       if (FromBuiltin->getKind() == BuiltinType::Float &&
   1859           ToBuiltin->getKind() == BuiltinType::Double)
   1860         return true;
   1861 
   1862       // C99 6.3.1.5p1:
   1863       //   When a float is promoted to double or long double, or a
   1864       //   double is promoted to long double [...].
   1865       if (!getLangOpts().CPlusPlus &&
   1866           (FromBuiltin->getKind() == BuiltinType::Float ||
   1867            FromBuiltin->getKind() == BuiltinType::Double) &&
   1868           (ToBuiltin->getKind() == BuiltinType::LongDouble))
   1869         return true;
   1870 
   1871       // Half can be promoted to float.
   1872       if (!getLangOpts().NativeHalfType &&
   1873            FromBuiltin->getKind() == BuiltinType::Half &&
   1874           ToBuiltin->getKind() == BuiltinType::Float)
   1875         return true;
   1876     }
   1877 
   1878   return false;
   1879 }
   1880 
   1881 /// \brief Determine if a conversion is a complex promotion.
   1882 ///
   1883 /// A complex promotion is defined as a complex -> complex conversion
   1884 /// where the conversion between the underlying real types is a
   1885 /// floating-point or integral promotion.
   1886 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
   1887   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
   1888   if (!FromComplex)
   1889     return false;
   1890 
   1891   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
   1892   if (!ToComplex)
   1893     return false;
   1894 
   1895   return IsFloatingPointPromotion(FromComplex->getElementType(),
   1896                                   ToComplex->getElementType()) ||
   1897     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
   1898                         ToComplex->getElementType());
   1899 }
   1900 
   1901 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
   1902 /// the pointer type FromPtr to a pointer to type ToPointee, with the
   1903 /// same type qualifiers as FromPtr has on its pointee type. ToType,
   1904 /// if non-empty, will be a pointer to ToType that may or may not have
   1905 /// the right set of qualifiers on its pointee.
   1906 ///
   1907 static QualType
   1908 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
   1909                                    QualType ToPointee, QualType ToType,
   1910                                    ASTContext &Context,
   1911                                    bool StripObjCLifetime = false) {
   1912   assert((FromPtr->getTypeClass() == Type::Pointer ||
   1913           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
   1914          "Invalid similarly-qualified pointer type");
   1915 
   1916   /// Conversions to 'id' subsume cv-qualifier conversions.
   1917   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
   1918     return ToType.getUnqualifiedType();
   1919 
   1920   QualType CanonFromPointee
   1921     = Context.getCanonicalType(FromPtr->getPointeeType());
   1922   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
   1923   Qualifiers Quals = CanonFromPointee.getQualifiers();
   1924 
   1925   if (StripObjCLifetime)
   1926     Quals.removeObjCLifetime();
   1927 
   1928   // Exact qualifier match -> return the pointer type we're converting to.
   1929   if (CanonToPointee.getLocalQualifiers() == Quals) {
   1930     // ToType is exactly what we need. Return it.
   1931     if (!ToType.isNull())
   1932       return ToType.getUnqualifiedType();
   1933 
   1934     // Build a pointer to ToPointee. It has the right qualifiers
   1935     // already.
   1936     if (isa<ObjCObjectPointerType>(ToType))
   1937       return Context.getObjCObjectPointerType(ToPointee);
   1938     return Context.getPointerType(ToPointee);
   1939   }
   1940 
   1941   // Just build a canonical type that has the right qualifiers.
   1942   QualType QualifiedCanonToPointee
   1943     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
   1944 
   1945   if (isa<ObjCObjectPointerType>(ToType))
   1946     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
   1947   return Context.getPointerType(QualifiedCanonToPointee);
   1948 }
   1949 
   1950 static bool isNullPointerConstantForConversion(Expr *Expr,
   1951                                                bool InOverloadResolution,
   1952                                                ASTContext &Context) {
   1953   // Handle value-dependent integral null pointer constants correctly.
   1954   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
   1955   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
   1956       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
   1957     return !InOverloadResolution;
   1958 
   1959   return Expr->isNullPointerConstant(Context,
   1960                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
   1961                                         : Expr::NPC_ValueDependentIsNull);
   1962 }
   1963 
   1964 /// IsPointerConversion - Determines whether the conversion of the
   1965 /// expression From, which has the (possibly adjusted) type FromType,
   1966 /// can be converted to the type ToType via a pointer conversion (C++
   1967 /// 4.10). If so, returns true and places the converted type (that
   1968 /// might differ from ToType in its cv-qualifiers at some level) into
   1969 /// ConvertedType.
   1970 ///
   1971 /// This routine also supports conversions to and from block pointers
   1972 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
   1973 /// pointers to interfaces. FIXME: Once we've determined the
   1974 /// appropriate overloading rules for Objective-C, we may want to
   1975 /// split the Objective-C checks into a different routine; however,
   1976 /// GCC seems to consider all of these conversions to be pointer
   1977 /// conversions, so for now they live here. IncompatibleObjC will be
   1978 /// set if the conversion is an allowed Objective-C conversion that
   1979 /// should result in a warning.
   1980 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
   1981                                bool InOverloadResolution,
   1982                                QualType& ConvertedType,
   1983                                bool &IncompatibleObjC) {
   1984   IncompatibleObjC = false;
   1985   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
   1986                               IncompatibleObjC))
   1987     return true;
   1988 
   1989   // Conversion from a null pointer constant to any Objective-C pointer type.
   1990   if (ToType->isObjCObjectPointerType() &&
   1991       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   1992     ConvertedType = ToType;
   1993     return true;
   1994   }
   1995 
   1996   // Blocks: Block pointers can be converted to void*.
   1997   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
   1998       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
   1999     ConvertedType = ToType;
   2000     return true;
   2001   }
   2002   // Blocks: A null pointer constant can be converted to a block
   2003   // pointer type.
   2004   if (ToType->isBlockPointerType() &&
   2005       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2006     ConvertedType = ToType;
   2007     return true;
   2008   }
   2009 
   2010   // If the left-hand-side is nullptr_t, the right side can be a null
   2011   // pointer constant.
   2012   if (ToType->isNullPtrType() &&
   2013       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2014     ConvertedType = ToType;
   2015     return true;
   2016   }
   2017 
   2018   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
   2019   if (!ToTypePtr)
   2020     return false;
   2021 
   2022   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
   2023   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2024     ConvertedType = ToType;
   2025     return true;
   2026   }
   2027 
   2028   // Beyond this point, both types need to be pointers
   2029   // , including objective-c pointers.
   2030   QualType ToPointeeType = ToTypePtr->getPointeeType();
   2031   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
   2032       !getLangOpts().ObjCAutoRefCount) {
   2033     ConvertedType = BuildSimilarlyQualifiedPointerType(
   2034                                       FromType->getAs<ObjCObjectPointerType>(),
   2035                                                        ToPointeeType,
   2036                                                        ToType, Context);
   2037     return true;
   2038   }
   2039   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
   2040   if (!FromTypePtr)
   2041     return false;
   2042 
   2043   QualType FromPointeeType = FromTypePtr->getPointeeType();
   2044 
   2045   // If the unqualified pointee types are the same, this can't be a
   2046   // pointer conversion, so don't do all of the work below.
   2047   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
   2048     return false;
   2049 
   2050   // An rvalue of type "pointer to cv T," where T is an object type,
   2051   // can be converted to an rvalue of type "pointer to cv void" (C++
   2052   // 4.10p2).
   2053   if (FromPointeeType->isIncompleteOrObjectType() &&
   2054       ToPointeeType->isVoidType()) {
   2055     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2056                                                        ToPointeeType,
   2057                                                        ToType, Context,
   2058                                                    /*StripObjCLifetime=*/true);
   2059     return true;
   2060   }
   2061 
   2062   // MSVC allows implicit function to void* type conversion.
   2063   if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
   2064       ToPointeeType->isVoidType()) {
   2065     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2066                                                        ToPointeeType,
   2067                                                        ToType, Context);
   2068     return true;
   2069   }
   2070 
   2071   // When we're overloading in C, we allow a special kind of pointer
   2072   // conversion for compatible-but-not-identical pointee types.
   2073   if (!getLangOpts().CPlusPlus &&
   2074       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
   2075     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2076                                                        ToPointeeType,
   2077                                                        ToType, Context);
   2078     return true;
   2079   }
   2080 
   2081   // C++ [conv.ptr]p3:
   2082   //
   2083   //   An rvalue of type "pointer to cv D," where D is a class type,
   2084   //   can be converted to an rvalue of type "pointer to cv B," where
   2085   //   B is a base class (clause 10) of D. If B is an inaccessible
   2086   //   (clause 11) or ambiguous (10.2) base class of D, a program that
   2087   //   necessitates this conversion is ill-formed. The result of the
   2088   //   conversion is a pointer to the base class sub-object of the
   2089   //   derived class object. The null pointer value is converted to
   2090   //   the null pointer value of the destination type.
   2091   //
   2092   // Note that we do not check for ambiguity or inaccessibility
   2093   // here. That is handled by CheckPointerConversion.
   2094   if (getLangOpts().CPlusPlus &&
   2095       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
   2096       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
   2097       !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
   2098       IsDerivedFrom(FromPointeeType, ToPointeeType)) {
   2099     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2100                                                        ToPointeeType,
   2101                                                        ToType, Context);
   2102     return true;
   2103   }
   2104 
   2105   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
   2106       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
   2107     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2108                                                        ToPointeeType,
   2109                                                        ToType, Context);
   2110     return true;
   2111   }
   2112 
   2113   return false;
   2114 }
   2115 
   2116 /// \brief Adopt the given qualifiers for the given type.
   2117 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
   2118   Qualifiers TQs = T.getQualifiers();
   2119 
   2120   // Check whether qualifiers already match.
   2121   if (TQs == Qs)
   2122     return T;
   2123 
   2124   if (Qs.compatiblyIncludes(TQs))
   2125     return Context.getQualifiedType(T, Qs);
   2126 
   2127   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
   2128 }
   2129 
   2130 /// isObjCPointerConversion - Determines whether this is an
   2131 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
   2132 /// with the same arguments and return values.
   2133 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
   2134                                    QualType& ConvertedType,
   2135                                    bool &IncompatibleObjC) {
   2136   if (!getLangOpts().ObjC1)
   2137     return false;
   2138 
   2139   // The set of qualifiers on the type we're converting from.
   2140   Qualifiers FromQualifiers = FromType.getQualifiers();
   2141 
   2142   // First, we handle all conversions on ObjC object pointer types.
   2143   const ObjCObjectPointerType* ToObjCPtr =
   2144     ToType->getAs<ObjCObjectPointerType>();
   2145   const ObjCObjectPointerType *FromObjCPtr =
   2146     FromType->getAs<ObjCObjectPointerType>();
   2147 
   2148   if (ToObjCPtr && FromObjCPtr) {
   2149     // If the pointee types are the same (ignoring qualifications),
   2150     // then this is not a pointer conversion.
   2151     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
   2152                                        FromObjCPtr->getPointeeType()))
   2153       return false;
   2154 
   2155     // Check for compatible
   2156     // Objective C++: We're able to convert between "id" or "Class" and a
   2157     // pointer to any interface (in both directions).
   2158     if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
   2159       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2160       return true;
   2161     }
   2162     // Conversions with Objective-C's id<...>.
   2163     if ((FromObjCPtr->isObjCQualifiedIdType() ||
   2164          ToObjCPtr->isObjCQualifiedIdType()) &&
   2165         Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
   2166                                                   /*compare=*/false)) {
   2167       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2168       return true;
   2169     }
   2170     // Objective C++: We're able to convert from a pointer to an
   2171     // interface to a pointer to a different interface.
   2172     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
   2173       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
   2174       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
   2175       if (getLangOpts().CPlusPlus && LHS && RHS &&
   2176           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
   2177                                                 FromObjCPtr->getPointeeType()))
   2178         return false;
   2179       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
   2180                                                    ToObjCPtr->getPointeeType(),
   2181                                                          ToType, Context);
   2182       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2183       return true;
   2184     }
   2185 
   2186     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
   2187       // Okay: this is some kind of implicit downcast of Objective-C
   2188       // interfaces, which is permitted. However, we're going to
   2189       // complain about it.
   2190       IncompatibleObjC = true;
   2191       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
   2192                                                    ToObjCPtr->getPointeeType(),
   2193                                                          ToType, Context);
   2194       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2195       return true;
   2196     }
   2197   }
   2198   // Beyond this point, both types need to be C pointers or block pointers.
   2199   QualType ToPointeeType;
   2200   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
   2201     ToPointeeType = ToCPtr->getPointeeType();
   2202   else if (const BlockPointerType *ToBlockPtr =
   2203             ToType->getAs<BlockPointerType>()) {
   2204     // Objective C++: We're able to convert from a pointer to any object
   2205     // to a block pointer type.
   2206     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
   2207       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2208       return true;
   2209     }
   2210     ToPointeeType = ToBlockPtr->getPointeeType();
   2211   }
   2212   else if (FromType->getAs<BlockPointerType>() &&
   2213            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
   2214     // Objective C++: We're able to convert from a block pointer type to a
   2215     // pointer to any object.
   2216     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2217     return true;
   2218   }
   2219   else
   2220     return false;
   2221 
   2222   QualType FromPointeeType;
   2223   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
   2224     FromPointeeType = FromCPtr->getPointeeType();
   2225   else if (const BlockPointerType *FromBlockPtr =
   2226            FromType->getAs<BlockPointerType>())
   2227     FromPointeeType = FromBlockPtr->getPointeeType();
   2228   else
   2229     return false;
   2230 
   2231   // If we have pointers to pointers, recursively check whether this
   2232   // is an Objective-C conversion.
   2233   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
   2234       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
   2235                               IncompatibleObjC)) {
   2236     // We always complain about this conversion.
   2237     IncompatibleObjC = true;
   2238     ConvertedType = Context.getPointerType(ConvertedType);
   2239     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2240     return true;
   2241   }
   2242   // Allow conversion of pointee being objective-c pointer to another one;
   2243   // as in I* to id.
   2244   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
   2245       ToPointeeType->getAs<ObjCObjectPointerType>() &&
   2246       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
   2247                               IncompatibleObjC)) {
   2248 
   2249     ConvertedType = Context.getPointerType(ConvertedType);
   2250     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2251     return true;
   2252   }
   2253 
   2254   // If we have pointers to functions or blocks, check whether the only
   2255   // differences in the argument and result types are in Objective-C
   2256   // pointer conversions. If so, we permit the conversion (but
   2257   // complain about it).
   2258   const FunctionProtoType *FromFunctionType
   2259     = FromPointeeType->getAs<FunctionProtoType>();
   2260   const FunctionProtoType *ToFunctionType
   2261     = ToPointeeType->getAs<FunctionProtoType>();
   2262   if (FromFunctionType && ToFunctionType) {
   2263     // If the function types are exactly the same, this isn't an
   2264     // Objective-C pointer conversion.
   2265     if (Context.getCanonicalType(FromPointeeType)
   2266           == Context.getCanonicalType(ToPointeeType))
   2267       return false;
   2268 
   2269     // Perform the quick checks that will tell us whether these
   2270     // function types are obviously different.
   2271     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
   2272         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
   2273         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
   2274       return false;
   2275 
   2276     bool HasObjCConversion = false;
   2277     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
   2278         Context.getCanonicalType(ToFunctionType->getReturnType())) {
   2279       // Okay, the types match exactly. Nothing to do.
   2280     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
   2281                                        ToFunctionType->getReturnType(),
   2282                                        ConvertedType, IncompatibleObjC)) {
   2283       // Okay, we have an Objective-C pointer conversion.
   2284       HasObjCConversion = true;
   2285     } else {
   2286       // Function types are too different. Abort.
   2287       return false;
   2288     }
   2289 
   2290     // Check argument types.
   2291     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
   2292          ArgIdx != NumArgs; ++ArgIdx) {
   2293       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
   2294       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
   2295       if (Context.getCanonicalType(FromArgType)
   2296             == Context.getCanonicalType(ToArgType)) {
   2297         // Okay, the types match exactly. Nothing to do.
   2298       } else if (isObjCPointerConversion(FromArgType, ToArgType,
   2299                                          ConvertedType, IncompatibleObjC)) {
   2300         // Okay, we have an Objective-C pointer conversion.
   2301         HasObjCConversion = true;
   2302       } else {
   2303         // Argument types are too different. Abort.
   2304         return false;
   2305       }
   2306     }
   2307 
   2308     if (HasObjCConversion) {
   2309       // We had an Objective-C conversion. Allow this pointer
   2310       // conversion, but complain about it.
   2311       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2312       IncompatibleObjC = true;
   2313       return true;
   2314     }
   2315   }
   2316 
   2317   return false;
   2318 }
   2319 
   2320 /// \brief Determine whether this is an Objective-C writeback conversion,
   2321 /// used for parameter passing when performing automatic reference counting.
   2322 ///
   2323 /// \param FromType The type we're converting form.
   2324 ///
   2325 /// \param ToType The type we're converting to.
   2326 ///
   2327 /// \param ConvertedType The type that will be produced after applying
   2328 /// this conversion.
   2329 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
   2330                                      QualType &ConvertedType) {
   2331   if (!getLangOpts().ObjCAutoRefCount ||
   2332       Context.hasSameUnqualifiedType(FromType, ToType))
   2333     return false;
   2334 
   2335   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
   2336   QualType ToPointee;
   2337   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
   2338     ToPointee = ToPointer->getPointeeType();
   2339   else
   2340     return false;
   2341 
   2342   Qualifiers ToQuals = ToPointee.getQualifiers();
   2343   if (!ToPointee->isObjCLifetimeType() ||
   2344       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
   2345       !ToQuals.withoutObjCLifetime().empty())
   2346     return false;
   2347 
   2348   // Argument must be a pointer to __strong to __weak.
   2349   QualType FromPointee;
   2350   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
   2351     FromPointee = FromPointer->getPointeeType();
   2352   else
   2353     return false;
   2354 
   2355   Qualifiers FromQuals = FromPointee.getQualifiers();
   2356   if (!FromPointee->isObjCLifetimeType() ||
   2357       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
   2358        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
   2359     return false;
   2360 
   2361   // Make sure that we have compatible qualifiers.
   2362   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
   2363   if (!ToQuals.compatiblyIncludes(FromQuals))
   2364     return false;
   2365 
   2366   // Remove qualifiers from the pointee type we're converting from; they
   2367   // aren't used in the compatibility check belong, and we'll be adding back
   2368   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
   2369   FromPointee = FromPointee.getUnqualifiedType();
   2370 
   2371   // The unqualified form of the pointee types must be compatible.
   2372   ToPointee = ToPointee.getUnqualifiedType();
   2373   bool IncompatibleObjC;
   2374   if (Context.typesAreCompatible(FromPointee, ToPointee))
   2375     FromPointee = ToPointee;
   2376   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
   2377                                     IncompatibleObjC))
   2378     return false;
   2379 
   2380   /// \brief Construct the type we're converting to, which is a pointer to
   2381   /// __autoreleasing pointee.
   2382   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
   2383   ConvertedType = Context.getPointerType(FromPointee);
   2384   return true;
   2385 }
   2386 
   2387 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
   2388                                     QualType& ConvertedType) {
   2389   QualType ToPointeeType;
   2390   if (const BlockPointerType *ToBlockPtr =
   2391         ToType->getAs<BlockPointerType>())
   2392     ToPointeeType = ToBlockPtr->getPointeeType();
   2393   else
   2394     return false;
   2395 
   2396   QualType FromPointeeType;
   2397   if (const BlockPointerType *FromBlockPtr =
   2398       FromType->getAs<BlockPointerType>())
   2399     FromPointeeType = FromBlockPtr->getPointeeType();
   2400   else
   2401     return false;
   2402   // We have pointer to blocks, check whether the only
   2403   // differences in the argument and result types are in Objective-C
   2404   // pointer conversions. If so, we permit the conversion.
   2405 
   2406   const FunctionProtoType *FromFunctionType
   2407     = FromPointeeType->getAs<FunctionProtoType>();
   2408   const FunctionProtoType *ToFunctionType
   2409     = ToPointeeType->getAs<FunctionProtoType>();
   2410 
   2411   if (!FromFunctionType || !ToFunctionType)
   2412     return false;
   2413 
   2414   if (Context.hasSameType(FromPointeeType, ToPointeeType))
   2415     return true;
   2416 
   2417   // Perform the quick checks that will tell us whether these
   2418   // function types are obviously different.
   2419   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
   2420       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
   2421     return false;
   2422 
   2423   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
   2424   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
   2425   if (FromEInfo != ToEInfo)
   2426     return false;
   2427 
   2428   bool IncompatibleObjC = false;
   2429   if (Context.hasSameType(FromFunctionType->getReturnType(),
   2430                           ToFunctionType->getReturnType())) {
   2431     // Okay, the types match exactly. Nothing to do.
   2432   } else {
   2433     QualType RHS = FromFunctionType->getReturnType();
   2434     QualType LHS = ToFunctionType->getReturnType();
   2435     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
   2436         !RHS.hasQualifiers() && LHS.hasQualifiers())
   2437        LHS = LHS.getUnqualifiedType();
   2438 
   2439      if (Context.hasSameType(RHS,LHS)) {
   2440        // OK exact match.
   2441      } else if (isObjCPointerConversion(RHS, LHS,
   2442                                         ConvertedType, IncompatibleObjC)) {
   2443      if (IncompatibleObjC)
   2444        return false;
   2445      // Okay, we have an Objective-C pointer conversion.
   2446      }
   2447      else
   2448        return false;
   2449    }
   2450 
   2451    // Check argument types.
   2452    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
   2453         ArgIdx != NumArgs; ++ArgIdx) {
   2454      IncompatibleObjC = false;
   2455      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
   2456      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
   2457      if (Context.hasSameType(FromArgType, ToArgType)) {
   2458        // Okay, the types match exactly. Nothing to do.
   2459      } else if (isObjCPointerConversion(ToArgType, FromArgType,
   2460                                         ConvertedType, IncompatibleObjC)) {
   2461        if (IncompatibleObjC)
   2462          return false;
   2463        // Okay, we have an Objective-C pointer conversion.
   2464      } else
   2465        // Argument types are too different. Abort.
   2466        return false;
   2467    }
   2468    if (LangOpts.ObjCAutoRefCount &&
   2469        !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
   2470                                                     ToFunctionType))
   2471      return false;
   2472 
   2473    ConvertedType = ToType;
   2474    return true;
   2475 }
   2476 
   2477 enum {
   2478   ft_default,
   2479   ft_different_class,
   2480   ft_parameter_arity,
   2481   ft_parameter_mismatch,
   2482   ft_return_type,
   2483   ft_qualifer_mismatch
   2484 };
   2485 
   2486 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
   2487 /// function types.  Catches different number of parameter, mismatch in
   2488 /// parameter types, and different return types.
   2489 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
   2490                                       QualType FromType, QualType ToType) {
   2491   // If either type is not valid, include no extra info.
   2492   if (FromType.isNull() || ToType.isNull()) {
   2493     PDiag << ft_default;
   2494     return;
   2495   }
   2496 
   2497   // Get the function type from the pointers.
   2498   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
   2499     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
   2500                             *ToMember = ToType->getAs<MemberPointerType>();
   2501     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
   2502       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
   2503             << QualType(FromMember->getClass(), 0);
   2504       return;
   2505     }
   2506     FromType = FromMember->getPointeeType();
   2507     ToType = ToMember->getPointeeType();
   2508   }
   2509 
   2510   if (FromType->isPointerType())
   2511     FromType = FromType->getPointeeType();
   2512   if (ToType->isPointerType())
   2513     ToType = ToType->getPointeeType();
   2514 
   2515   // Remove references.
   2516   FromType = FromType.getNonReferenceType();
   2517   ToType = ToType.getNonReferenceType();
   2518 
   2519   // Don't print extra info for non-specialized template functions.
   2520   if (FromType->isInstantiationDependentType() &&
   2521       !FromType->getAs<TemplateSpecializationType>()) {
   2522     PDiag << ft_default;
   2523     return;
   2524   }
   2525 
   2526   // No extra info for same types.
   2527   if (Context.hasSameType(FromType, ToType)) {
   2528     PDiag << ft_default;
   2529     return;
   2530   }
   2531 
   2532   const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
   2533                           *ToFunction = ToType->getAs<FunctionProtoType>();
   2534 
   2535   // Both types need to be function types.
   2536   if (!FromFunction || !ToFunction) {
   2537     PDiag << ft_default;
   2538     return;
   2539   }
   2540 
   2541   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
   2542     PDiag << ft_parameter_arity << ToFunction->getNumParams()
   2543           << FromFunction->getNumParams();
   2544     return;
   2545   }
   2546 
   2547   // Handle different parameter types.
   2548   unsigned ArgPos;
   2549   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
   2550     PDiag << ft_parameter_mismatch << ArgPos + 1
   2551           << ToFunction->getParamType(ArgPos)
   2552           << FromFunction->getParamType(ArgPos);
   2553     return;
   2554   }
   2555 
   2556   // Handle different return type.
   2557   if (!Context.hasSameType(FromFunction->getReturnType(),
   2558                            ToFunction->getReturnType())) {
   2559     PDiag << ft_return_type << ToFunction->getReturnType()
   2560           << FromFunction->getReturnType();
   2561     return;
   2562   }
   2563 
   2564   unsigned FromQuals = FromFunction->getTypeQuals(),
   2565            ToQuals = ToFunction->getTypeQuals();
   2566   if (FromQuals != ToQuals) {
   2567     PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
   2568     return;
   2569   }
   2570 
   2571   // Unable to find a difference, so add no extra info.
   2572   PDiag << ft_default;
   2573 }
   2574 
   2575 /// FunctionParamTypesAreEqual - This routine checks two function proto types
   2576 /// for equality of their argument types. Caller has already checked that
   2577 /// they have same number of arguments.  If the parameters are different,
   2578 /// ArgPos will have the parameter index of the first different parameter.
   2579 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
   2580                                       const FunctionProtoType *NewType,
   2581                                       unsigned *ArgPos) {
   2582   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
   2583                                               N = NewType->param_type_begin(),
   2584                                               E = OldType->param_type_end();
   2585        O && (O != E); ++O, ++N) {
   2586     if (!Context.hasSameType(O->getUnqualifiedType(),
   2587                              N->getUnqualifiedType())) {
   2588       if (ArgPos)
   2589         *ArgPos = O - OldType->param_type_begin();
   2590       return false;
   2591     }
   2592   }
   2593   return true;
   2594 }
   2595 
   2596 /// CheckPointerConversion - Check the pointer conversion from the
   2597 /// expression From to the type ToType. This routine checks for
   2598 /// ambiguous or inaccessible derived-to-base pointer
   2599 /// conversions for which IsPointerConversion has already returned
   2600 /// true. It returns true and produces a diagnostic if there was an
   2601 /// error, or returns false otherwise.
   2602 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
   2603                                   CastKind &Kind,
   2604                                   CXXCastPath& BasePath,
   2605                                   bool IgnoreBaseAccess) {
   2606   QualType FromType = From->getType();
   2607   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
   2608 
   2609   Kind = CK_BitCast;
   2610 
   2611   if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
   2612       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
   2613       Expr::NPCK_ZeroExpression) {
   2614     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
   2615       DiagRuntimeBehavior(From->getExprLoc(), From,
   2616                           PDiag(diag::warn_impcast_bool_to_null_pointer)
   2617                             << ToType << From->getSourceRange());
   2618     else if (!isUnevaluatedContext())
   2619       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
   2620         << ToType << From->getSourceRange();
   2621   }
   2622   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
   2623     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
   2624       QualType FromPointeeType = FromPtrType->getPointeeType(),
   2625                ToPointeeType   = ToPtrType->getPointeeType();
   2626 
   2627       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
   2628           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
   2629         // We must have a derived-to-base conversion. Check an
   2630         // ambiguous or inaccessible conversion.
   2631         if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
   2632                                          From->getExprLoc(),
   2633                                          From->getSourceRange(), &BasePath,
   2634                                          IgnoreBaseAccess))
   2635           return true;
   2636 
   2637         // The conversion was successful.
   2638         Kind = CK_DerivedToBase;
   2639       }
   2640     }
   2641   } else if (const ObjCObjectPointerType *ToPtrType =
   2642                ToType->getAs<ObjCObjectPointerType>()) {
   2643     if (const ObjCObjectPointerType *FromPtrType =
   2644           FromType->getAs<ObjCObjectPointerType>()) {
   2645       // Objective-C++ conversions are always okay.
   2646       // FIXME: We should have a different class of conversions for the
   2647       // Objective-C++ implicit conversions.
   2648       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
   2649         return false;
   2650     } else if (FromType->isBlockPointerType()) {
   2651       Kind = CK_BlockPointerToObjCPointerCast;
   2652     } else {
   2653       Kind = CK_CPointerToObjCPointerCast;
   2654     }
   2655   } else if (ToType->isBlockPointerType()) {
   2656     if (!FromType->isBlockPointerType())
   2657       Kind = CK_AnyPointerToBlockPointerCast;
   2658   }
   2659 
   2660   // We shouldn't fall into this case unless it's valid for other
   2661   // reasons.
   2662   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
   2663     Kind = CK_NullToPointer;
   2664 
   2665   return false;
   2666 }
   2667 
   2668 /// IsMemberPointerConversion - Determines whether the conversion of the
   2669 /// expression From, which has the (possibly adjusted) type FromType, can be
   2670 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
   2671 /// If so, returns true and places the converted type (that might differ from
   2672 /// ToType in its cv-qualifiers at some level) into ConvertedType.
   2673 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
   2674                                      QualType ToType,
   2675                                      bool InOverloadResolution,
   2676                                      QualType &ConvertedType) {
   2677   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
   2678   if (!ToTypePtr)
   2679     return false;
   2680 
   2681   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
   2682   if (From->isNullPointerConstant(Context,
   2683                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
   2684                                         : Expr::NPC_ValueDependentIsNull)) {
   2685     ConvertedType = ToType;
   2686     return true;
   2687   }
   2688 
   2689   // Otherwise, both types have to be member pointers.
   2690   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
   2691   if (!FromTypePtr)
   2692     return false;
   2693 
   2694   // A pointer to member of B can be converted to a pointer to member of D,
   2695   // where D is derived from B (C++ 4.11p2).
   2696   QualType FromClass(FromTypePtr->getClass(), 0);
   2697   QualType ToClass(ToTypePtr->getClass(), 0);
   2698 
   2699   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
   2700       !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
   2701       IsDerivedFrom(ToClass, FromClass)) {
   2702     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
   2703                                                  ToClass.getTypePtr());
   2704     return true;
   2705   }
   2706 
   2707   return false;
   2708 }
   2709 
   2710 /// CheckMemberPointerConversion - Check the member pointer conversion from the
   2711 /// expression From to the type ToType. This routine checks for ambiguous or
   2712 /// virtual or inaccessible base-to-derived member pointer conversions
   2713 /// for which IsMemberPointerConversion has already returned true. It returns
   2714 /// true and produces a diagnostic if there was an error, or returns false
   2715 /// otherwise.
   2716 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
   2717                                         CastKind &Kind,
   2718                                         CXXCastPath &BasePath,
   2719                                         bool IgnoreBaseAccess) {
   2720   QualType FromType = From->getType();
   2721   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
   2722   if (!FromPtrType) {
   2723     // This must be a null pointer to member pointer conversion
   2724     assert(From->isNullPointerConstant(Context,
   2725                                        Expr::NPC_ValueDependentIsNull) &&
   2726            "Expr must be null pointer constant!");
   2727     Kind = CK_NullToMemberPointer;
   2728     return false;
   2729   }
   2730 
   2731   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
   2732   assert(ToPtrType && "No member pointer cast has a target type "
   2733                       "that is not a member pointer.");
   2734 
   2735   QualType FromClass = QualType(FromPtrType->getClass(), 0);
   2736   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
   2737 
   2738   // FIXME: What about dependent types?
   2739   assert(FromClass->isRecordType() && "Pointer into non-class.");
   2740   assert(ToClass->isRecordType() && "Pointer into non-class.");
   2741 
   2742   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   2743                      /*DetectVirtual=*/true);
   2744   bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
   2745   assert(DerivationOkay &&
   2746          "Should not have been called if derivation isn't OK.");
   2747   (void)DerivationOkay;
   2748 
   2749   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
   2750                                   getUnqualifiedType())) {
   2751     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
   2752     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
   2753       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
   2754     return true;
   2755   }
   2756 
   2757   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
   2758     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
   2759       << FromClass << ToClass << QualType(VBase, 0)
   2760       << From->getSourceRange();
   2761     return true;
   2762   }
   2763 
   2764   if (!IgnoreBaseAccess)
   2765     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
   2766                          Paths.front(),
   2767                          diag::err_downcast_from_inaccessible_base);
   2768 
   2769   // Must be a base to derived member conversion.
   2770   BuildBasePathArray(Paths, BasePath);
   2771   Kind = CK_BaseToDerivedMemberPointer;
   2772   return false;
   2773 }
   2774 
   2775 /// Determine whether the lifetime conversion between the two given
   2776 /// qualifiers sets is nontrivial.
   2777 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
   2778                                                Qualifiers ToQuals) {
   2779   // Converting anything to const __unsafe_unretained is trivial.
   2780   if (ToQuals.hasConst() &&
   2781       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
   2782     return false;
   2783 
   2784   return true;
   2785 }
   2786 
   2787 /// IsQualificationConversion - Determines whether the conversion from
   2788 /// an rvalue of type FromType to ToType is a qualification conversion
   2789 /// (C++ 4.4).
   2790 ///
   2791 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
   2792 /// when the qualification conversion involves a change in the Objective-C
   2793 /// object lifetime.
   2794 bool
   2795 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
   2796                                 bool CStyle, bool &ObjCLifetimeConversion) {
   2797   FromType = Context.getCanonicalType(FromType);
   2798   ToType = Context.getCanonicalType(ToType);
   2799   ObjCLifetimeConversion = false;
   2800 
   2801   // If FromType and ToType are the same type, this is not a
   2802   // qualification conversion.
   2803   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
   2804     return false;
   2805 
   2806   // (C++ 4.4p4):
   2807   //   A conversion can add cv-qualifiers at levels other than the first
   2808   //   in multi-level pointers, subject to the following rules: [...]
   2809   bool PreviousToQualsIncludeConst = true;
   2810   bool UnwrappedAnyPointer = false;
   2811   while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
   2812     // Within each iteration of the loop, we check the qualifiers to
   2813     // determine if this still looks like a qualification
   2814     // conversion. Then, if all is well, we unwrap one more level of
   2815     // pointers or pointers-to-members and do it all again
   2816     // until there are no more pointers or pointers-to-members left to
   2817     // unwrap.
   2818     UnwrappedAnyPointer = true;
   2819 
   2820     Qualifiers FromQuals = FromType.getQualifiers();
   2821     Qualifiers ToQuals = ToType.getQualifiers();
   2822 
   2823     // Objective-C ARC:
   2824     //   Check Objective-C lifetime conversions.
   2825     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
   2826         UnwrappedAnyPointer) {
   2827       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
   2828         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
   2829           ObjCLifetimeConversion = true;
   2830         FromQuals.removeObjCLifetime();
   2831         ToQuals.removeObjCLifetime();
   2832       } else {
   2833         // Qualification conversions cannot cast between different
   2834         // Objective-C lifetime qualifiers.
   2835         return false;
   2836       }
   2837     }
   2838 
   2839     // Allow addition/removal of GC attributes but not changing GC attributes.
   2840     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
   2841         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
   2842       FromQuals.removeObjCGCAttr();
   2843       ToQuals.removeObjCGCAttr();
   2844     }
   2845 
   2846     //   -- for every j > 0, if const is in cv 1,j then const is in cv
   2847     //      2,j, and similarly for volatile.
   2848     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
   2849       return false;
   2850 
   2851     //   -- if the cv 1,j and cv 2,j are different, then const is in
   2852     //      every cv for 0 < k < j.
   2853     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
   2854         && !PreviousToQualsIncludeConst)
   2855       return false;
   2856 
   2857     // Keep track of whether all prior cv-qualifiers in the "to" type
   2858     // include const.
   2859     PreviousToQualsIncludeConst
   2860       = PreviousToQualsIncludeConst && ToQuals.hasConst();
   2861   }
   2862 
   2863   // We are left with FromType and ToType being the pointee types
   2864   // after unwrapping the original FromType and ToType the same number
   2865   // of types. If we unwrapped any pointers, and if FromType and
   2866   // ToType have the same unqualified type (since we checked
   2867   // qualifiers above), then this is a qualification conversion.
   2868   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
   2869 }
   2870 
   2871 /// \brief - Determine whether this is a conversion from a scalar type to an
   2872 /// atomic type.
   2873 ///
   2874 /// If successful, updates \c SCS's second and third steps in the conversion
   2875 /// sequence to finish the conversion.
   2876 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
   2877                                 bool InOverloadResolution,
   2878                                 StandardConversionSequence &SCS,
   2879                                 bool CStyle) {
   2880   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
   2881   if (!ToAtomic)
   2882     return false;
   2883 
   2884   StandardConversionSequence InnerSCS;
   2885   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
   2886                             InOverloadResolution, InnerSCS,
   2887                             CStyle, /*AllowObjCWritebackConversion=*/false))
   2888     return false;
   2889 
   2890   SCS.Second = InnerSCS.Second;
   2891   SCS.setToType(1, InnerSCS.getToType(1));
   2892   SCS.Third = InnerSCS.Third;
   2893   SCS.QualificationIncludesObjCLifetime
   2894     = InnerSCS.QualificationIncludesObjCLifetime;
   2895   SCS.setToType(2, InnerSCS.getToType(2));
   2896   return true;
   2897 }
   2898 
   2899 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
   2900                                               CXXConstructorDecl *Constructor,
   2901                                               QualType Type) {
   2902   const FunctionProtoType *CtorType =
   2903       Constructor->getType()->getAs<FunctionProtoType>();
   2904   if (CtorType->getNumParams() > 0) {
   2905     QualType FirstArg = CtorType->getParamType(0);
   2906     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
   2907       return true;
   2908   }
   2909   return false;
   2910 }
   2911 
   2912 static OverloadingResult
   2913 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
   2914                                        CXXRecordDecl *To,
   2915                                        UserDefinedConversionSequence &User,
   2916                                        OverloadCandidateSet &CandidateSet,
   2917                                        bool AllowExplicit) {
   2918   DeclContext::lookup_result R = S.LookupConstructors(To);
   2919   for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
   2920        Con != ConEnd; ++Con) {
   2921     NamedDecl *D = *Con;
   2922     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   2923 
   2924     // Find the constructor (which may be a template).
   2925     CXXConstructorDecl *Constructor = nullptr;
   2926     FunctionTemplateDecl *ConstructorTmpl
   2927       = dyn_cast<FunctionTemplateDecl>(D);
   2928     if (ConstructorTmpl)
   2929       Constructor
   2930         = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
   2931     else
   2932       Constructor = cast<CXXConstructorDecl>(D);
   2933 
   2934     bool Usable = !Constructor->isInvalidDecl() &&
   2935                   S.isInitListConstructor(Constructor) &&
   2936                   (AllowExplicit || !Constructor->isExplicit());
   2937     if (Usable) {
   2938       // If the first argument is (a reference to) the target type,
   2939       // suppress conversions.
   2940       bool SuppressUserConversions =
   2941           isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
   2942       if (ConstructorTmpl)
   2943         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   2944                                        /*ExplicitArgs*/ nullptr,
   2945                                        From, CandidateSet,
   2946                                        SuppressUserConversions);
   2947       else
   2948         S.AddOverloadCandidate(Constructor, FoundDecl,
   2949                                From, CandidateSet,
   2950                                SuppressUserConversions);
   2951     }
   2952   }
   2953 
   2954   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   2955 
   2956   OverloadCandidateSet::iterator Best;
   2957   switch (auto Result =
   2958             CandidateSet.BestViableFunction(S, From->getLocStart(),
   2959                                             Best, true)) {
   2960   case OR_Deleted:
   2961   case OR_Success: {
   2962     // Record the standard conversion we used and the conversion function.
   2963     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
   2964     QualType ThisType = Constructor->getThisType(S.Context);
   2965     // Initializer lists don't have conversions as such.
   2966     User.Before.setAsIdentityConversion();
   2967     User.HadMultipleCandidates = HadMultipleCandidates;
   2968     User.ConversionFunction = Constructor;
   2969     User.FoundConversionFunction = Best->FoundDecl;
   2970     User.After.setAsIdentityConversion();
   2971     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
   2972     User.After.setAllToTypes(ToType);
   2973     return Result;
   2974   }
   2975 
   2976   case OR_No_Viable_Function:
   2977     return OR_No_Viable_Function;
   2978   case OR_Ambiguous:
   2979     return OR_Ambiguous;
   2980   }
   2981 
   2982   llvm_unreachable("Invalid OverloadResult!");
   2983 }
   2984 
   2985 /// Determines whether there is a user-defined conversion sequence
   2986 /// (C++ [over.ics.user]) that converts expression From to the type
   2987 /// ToType. If such a conversion exists, User will contain the
   2988 /// user-defined conversion sequence that performs such a conversion
   2989 /// and this routine will return true. Otherwise, this routine returns
   2990 /// false and User is unspecified.
   2991 ///
   2992 /// \param AllowExplicit  true if the conversion should consider C++0x
   2993 /// "explicit" conversion functions as well as non-explicit conversion
   2994 /// functions (C++0x [class.conv.fct]p2).
   2995 ///
   2996 /// \param AllowObjCConversionOnExplicit true if the conversion should
   2997 /// allow an extra Objective-C pointer conversion on uses of explicit
   2998 /// constructors. Requires \c AllowExplicit to also be set.
   2999 static OverloadingResult
   3000 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
   3001                         UserDefinedConversionSequence &User,
   3002                         OverloadCandidateSet &CandidateSet,
   3003                         bool AllowExplicit,
   3004                         bool AllowObjCConversionOnExplicit) {
   3005   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
   3006 
   3007   // Whether we will only visit constructors.
   3008   bool ConstructorsOnly = false;
   3009 
   3010   // If the type we are conversion to is a class type, enumerate its
   3011   // constructors.
   3012   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
   3013     // C++ [over.match.ctor]p1:
   3014     //   When objects of class type are direct-initialized (8.5), or
   3015     //   copy-initialized from an expression of the same or a
   3016     //   derived class type (8.5), overload resolution selects the
   3017     //   constructor. [...] For copy-initialization, the candidate
   3018     //   functions are all the converting constructors (12.3.1) of
   3019     //   that class. The argument list is the expression-list within
   3020     //   the parentheses of the initializer.
   3021     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
   3022         (From->getType()->getAs<RecordType>() &&
   3023          S.IsDerivedFrom(From->getType(), ToType)))
   3024       ConstructorsOnly = true;
   3025 
   3026     S.RequireCompleteType(From->getExprLoc(), ToType, 0);
   3027     // RequireCompleteType may have returned true due to some invalid decl
   3028     // during template instantiation, but ToType may be complete enough now
   3029     // to try to recover.
   3030     if (ToType->isIncompleteType()) {
   3031       // We're not going to find any constructors.
   3032     } else if (CXXRecordDecl *ToRecordDecl
   3033                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
   3034 
   3035       Expr **Args = &From;
   3036       unsigned NumArgs = 1;
   3037       bool ListInitializing = false;
   3038       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
   3039         // But first, see if there is an init-list-constructor that will work.
   3040         OverloadingResult Result = IsInitializerListConstructorConversion(
   3041             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
   3042         if (Result != OR_No_Viable_Function)
   3043           return Result;
   3044         // Never mind.
   3045         CandidateSet.clear();
   3046 
   3047         // If we're list-initializing, we pass the individual elements as
   3048         // arguments, not the entire list.
   3049         Args = InitList->getInits();
   3050         NumArgs = InitList->getNumInits();
   3051         ListInitializing = true;
   3052       }
   3053 
   3054       DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
   3055       for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
   3056            Con != ConEnd; ++Con) {
   3057         NamedDecl *D = *Con;
   3058         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   3059 
   3060         // Find the constructor (which may be a template).
   3061         CXXConstructorDecl *Constructor = nullptr;
   3062         FunctionTemplateDecl *ConstructorTmpl
   3063           = dyn_cast<FunctionTemplateDecl>(D);
   3064         if (ConstructorTmpl)
   3065           Constructor
   3066             = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
   3067         else
   3068           Constructor = cast<CXXConstructorDecl>(D);
   3069 
   3070         bool Usable = !Constructor->isInvalidDecl();
   3071         if (ListInitializing)
   3072           Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
   3073         else
   3074           Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
   3075         if (Usable) {
   3076           bool SuppressUserConversions = !ConstructorsOnly;
   3077           if (SuppressUserConversions && ListInitializing) {
   3078             SuppressUserConversions = false;
   3079             if (NumArgs == 1) {
   3080               // If the first argument is (a reference to) the target type,
   3081               // suppress conversions.
   3082               SuppressUserConversions = isFirstArgumentCompatibleWithType(
   3083                                                 S.Context, Constructor, ToType);
   3084             }
   3085           }
   3086           if (ConstructorTmpl)
   3087             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   3088                                            /*ExplicitArgs*/ nullptr,
   3089                                            llvm::makeArrayRef(Args, NumArgs),
   3090                                            CandidateSet, SuppressUserConversions);
   3091           else
   3092             // Allow one user-defined conversion when user specifies a
   3093             // From->ToType conversion via an static cast (c-style, etc).
   3094             S.AddOverloadCandidate(Constructor, FoundDecl,
   3095                                    llvm::makeArrayRef(Args, NumArgs),
   3096                                    CandidateSet, SuppressUserConversions);
   3097         }
   3098       }
   3099     }
   3100   }
   3101 
   3102   // Enumerate conversion functions, if we're allowed to.
   3103   if (ConstructorsOnly || isa<InitListExpr>(From)) {
   3104   } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
   3105     // No conversion functions from incomplete types.
   3106   } else if (const RecordType *FromRecordType
   3107                                    = From->getType()->getAs<RecordType>()) {
   3108     if (CXXRecordDecl *FromRecordDecl
   3109          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
   3110       // Add all of the conversion functions as candidates.
   3111       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
   3112       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   3113         DeclAccessPair FoundDecl = I.getPair();
   3114         NamedDecl *D = FoundDecl.getDecl();
   3115         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   3116         if (isa<UsingShadowDecl>(D))
   3117           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   3118 
   3119         CXXConversionDecl *Conv;
   3120         FunctionTemplateDecl *ConvTemplate;
   3121         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
   3122           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   3123         else
   3124           Conv = cast<CXXConversionDecl>(D);
   3125 
   3126         if (AllowExplicit || !Conv->isExplicit()) {
   3127           if (ConvTemplate)
   3128             S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
   3129                                              ActingContext, From, ToType,
   3130                                              CandidateSet,
   3131                                              AllowObjCConversionOnExplicit);
   3132           else
   3133             S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
   3134                                      From, ToType, CandidateSet,
   3135                                      AllowObjCConversionOnExplicit);
   3136         }
   3137       }
   3138     }
   3139   }
   3140 
   3141   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   3142 
   3143   OverloadCandidateSet::iterator Best;
   3144   switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
   3145                                                         Best, true)) {
   3146   case OR_Success:
   3147   case OR_Deleted:
   3148     // Record the standard conversion we used and the conversion function.
   3149     if (CXXConstructorDecl *Constructor
   3150           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
   3151       // C++ [over.ics.user]p1:
   3152       //   If the user-defined conversion is specified by a
   3153       //   constructor (12.3.1), the initial standard conversion
   3154       //   sequence converts the source type to the type required by
   3155       //   the argument of the constructor.
   3156       //
   3157       QualType ThisType = Constructor->getThisType(S.Context);
   3158       if (isa<InitListExpr>(From)) {
   3159         // Initializer lists don't have conversions as such.
   3160         User.Before.setAsIdentityConversion();
   3161       } else {
   3162         if (Best->Conversions[0].isEllipsis())
   3163           User.EllipsisConversion = true;
   3164         else {
   3165           User.Before = Best->Conversions[0].Standard;
   3166           User.EllipsisConversion = false;
   3167         }
   3168       }
   3169       User.HadMultipleCandidates = HadMultipleCandidates;
   3170       User.ConversionFunction = Constructor;
   3171       User.FoundConversionFunction = Best->FoundDecl;
   3172       User.After.setAsIdentityConversion();
   3173       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
   3174       User.After.setAllToTypes(ToType);
   3175       return Result;
   3176     }
   3177     if (CXXConversionDecl *Conversion
   3178                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
   3179       // C++ [over.ics.user]p1:
   3180       //
   3181       //   [...] If the user-defined conversion is specified by a
   3182       //   conversion function (12.3.2), the initial standard
   3183       //   conversion sequence converts the source type to the
   3184       //   implicit object parameter of the conversion function.
   3185       User.Before = Best->Conversions[0].Standard;
   3186       User.HadMultipleCandidates = HadMultipleCandidates;
   3187       User.ConversionFunction = Conversion;
   3188       User.FoundConversionFunction = Best->FoundDecl;
   3189       User.EllipsisConversion = false;
   3190 
   3191       // C++ [over.ics.user]p2:
   3192       //   The second standard conversion sequence converts the
   3193       //   result of the user-defined conversion to the target type
   3194       //   for the sequence. Since an implicit conversion sequence
   3195       //   is an initialization, the special rules for
   3196       //   initialization by user-defined conversion apply when
   3197       //   selecting the best user-defined conversion for a
   3198       //   user-defined conversion sequence (see 13.3.3 and
   3199       //   13.3.3.1).
   3200       User.After = Best->FinalConversion;
   3201       return Result;
   3202     }
   3203     llvm_unreachable("Not a constructor or conversion function?");
   3204 
   3205   case OR_No_Viable_Function:
   3206     return OR_No_Viable_Function;
   3207 
   3208   case OR_Ambiguous:
   3209     return OR_Ambiguous;
   3210   }
   3211 
   3212   llvm_unreachable("Invalid OverloadResult!");
   3213 }
   3214 
   3215 bool
   3216 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
   3217   ImplicitConversionSequence ICS;
   3218   OverloadCandidateSet CandidateSet(From->getExprLoc(),
   3219                                     OverloadCandidateSet::CSK_Normal);
   3220   OverloadingResult OvResult =
   3221     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
   3222                             CandidateSet, false, false);
   3223   if (OvResult == OR_Ambiguous)
   3224     Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
   3225         << From->getType() << ToType << From->getSourceRange();
   3226   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
   3227     if (!RequireCompleteType(From->getLocStart(), ToType,
   3228                              diag::err_typecheck_nonviable_condition_incomplete,
   3229                              From->getType(), From->getSourceRange()))
   3230       Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
   3231           << From->getType() << From->getSourceRange() << ToType;
   3232   } else
   3233     return false;
   3234   CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
   3235   return true;
   3236 }
   3237 
   3238 /// \brief Compare the user-defined conversion functions or constructors
   3239 /// of two user-defined conversion sequences to determine whether any ordering
   3240 /// is possible.
   3241 static ImplicitConversionSequence::CompareKind
   3242 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
   3243                            FunctionDecl *Function2) {
   3244   if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
   3245     return ImplicitConversionSequence::Indistinguishable;
   3246 
   3247   // Objective-C++:
   3248   //   If both conversion functions are implicitly-declared conversions from
   3249   //   a lambda closure type to a function pointer and a block pointer,
   3250   //   respectively, always prefer the conversion to a function pointer,
   3251   //   because the function pointer is more lightweight and is more likely
   3252   //   to keep code working.
   3253   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
   3254   if (!Conv1)
   3255     return ImplicitConversionSequence::Indistinguishable;
   3256 
   3257   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
   3258   if (!Conv2)
   3259     return ImplicitConversionSequence::Indistinguishable;
   3260 
   3261   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
   3262     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
   3263     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
   3264     if (Block1 != Block2)
   3265       return Block1 ? ImplicitConversionSequence::Worse
   3266                     : ImplicitConversionSequence::Better;
   3267   }
   3268 
   3269   return ImplicitConversionSequence::Indistinguishable;
   3270 }
   3271 
   3272 static bool hasDeprecatedStringLiteralToCharPtrConversion(
   3273     const ImplicitConversionSequence &ICS) {
   3274   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
   3275          (ICS.isUserDefined() &&
   3276           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
   3277 }
   3278 
   3279 /// CompareImplicitConversionSequences - Compare two implicit
   3280 /// conversion sequences to determine whether one is better than the
   3281 /// other or if they are indistinguishable (C++ 13.3.3.2).
   3282 static ImplicitConversionSequence::CompareKind
   3283 CompareImplicitConversionSequences(Sema &S,
   3284                                    const ImplicitConversionSequence& ICS1,
   3285                                    const ImplicitConversionSequence& ICS2)
   3286 {
   3287   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
   3288   // conversion sequences (as defined in 13.3.3.1)
   3289   //   -- a standard conversion sequence (13.3.3.1.1) is a better
   3290   //      conversion sequence than a user-defined conversion sequence or
   3291   //      an ellipsis conversion sequence, and
   3292   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
   3293   //      conversion sequence than an ellipsis conversion sequence
   3294   //      (13.3.3.1.3).
   3295   //
   3296   // C++0x [over.best.ics]p10:
   3297   //   For the purpose of ranking implicit conversion sequences as
   3298   //   described in 13.3.3.2, the ambiguous conversion sequence is
   3299   //   treated as a user-defined sequence that is indistinguishable
   3300   //   from any other user-defined conversion sequence.
   3301 
   3302   // String literal to 'char *' conversion has been deprecated in C++03. It has
   3303   // been removed from C++11. We still accept this conversion, if it happens at
   3304   // the best viable function. Otherwise, this conversion is considered worse
   3305   // than ellipsis conversion. Consider this as an extension; this is not in the
   3306   // standard. For example:
   3307   //
   3308   // int &f(...);    // #1
   3309   // void f(char*);  // #2
   3310   // void g() { int &r = f("foo"); }
   3311   //
   3312   // In C++03, we pick #2 as the best viable function.
   3313   // In C++11, we pick #1 as the best viable function, because ellipsis
   3314   // conversion is better than string-literal to char* conversion (since there
   3315   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
   3316   // convert arguments, #2 would be the best viable function in C++11.
   3317   // If the best viable function has this conversion, a warning will be issued
   3318   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
   3319 
   3320   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
   3321       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
   3322       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
   3323     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
   3324                ? ImplicitConversionSequence::Worse
   3325                : ImplicitConversionSequence::Better;
   3326 
   3327   if (ICS1.getKindRank() < ICS2.getKindRank())
   3328     return ImplicitConversionSequence::Better;
   3329   if (ICS2.getKindRank() < ICS1.getKindRank())
   3330     return ImplicitConversionSequence::Worse;
   3331 
   3332   // The following checks require both conversion sequences to be of
   3333   // the same kind.
   3334   if (ICS1.getKind() != ICS2.getKind())
   3335     return ImplicitConversionSequence::Indistinguishable;
   3336 
   3337   ImplicitConversionSequence::CompareKind Result =
   3338       ImplicitConversionSequence::Indistinguishable;
   3339 
   3340   // Two implicit conversion sequences of the same form are
   3341   // indistinguishable conversion sequences unless one of the
   3342   // following rules apply: (C++ 13.3.3.2p3):
   3343 
   3344   // List-initialization sequence L1 is a better conversion sequence than
   3345   // list-initialization sequence L2 if:
   3346   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
   3347   //   if not that,
   3348   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
   3349   //   and N1 is smaller than N2.,
   3350   // even if one of the other rules in this paragraph would otherwise apply.
   3351   if (!ICS1.isBad()) {
   3352     if (ICS1.isStdInitializerListElement() &&
   3353         !ICS2.isStdInitializerListElement())
   3354       return ImplicitConversionSequence::Better;
   3355     if (!ICS1.isStdInitializerListElement() &&
   3356         ICS2.isStdInitializerListElement())
   3357       return ImplicitConversionSequence::Worse;
   3358   }
   3359 
   3360   if (ICS1.isStandard())
   3361     // Standard conversion sequence S1 is a better conversion sequence than
   3362     // standard conversion sequence S2 if [...]
   3363     Result = CompareStandardConversionSequences(S,
   3364                                                 ICS1.Standard, ICS2.Standard);
   3365   else if (ICS1.isUserDefined()) {
   3366     // User-defined conversion sequence U1 is a better conversion
   3367     // sequence than another user-defined conversion sequence U2 if
   3368     // they contain the same user-defined conversion function or
   3369     // constructor and if the second standard conversion sequence of
   3370     // U1 is better than the second standard conversion sequence of
   3371     // U2 (C++ 13.3.3.2p3).
   3372     if (ICS1.UserDefined.ConversionFunction ==
   3373           ICS2.UserDefined.ConversionFunction)
   3374       Result = CompareStandardConversionSequences(S,
   3375                                                   ICS1.UserDefined.After,
   3376                                                   ICS2.UserDefined.After);
   3377     else
   3378       Result = compareConversionFunctions(S,
   3379                                           ICS1.UserDefined.ConversionFunction,
   3380                                           ICS2.UserDefined.ConversionFunction);
   3381   }
   3382 
   3383   return Result;
   3384 }
   3385 
   3386 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
   3387   while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
   3388     Qualifiers Quals;
   3389     T1 = Context.getUnqualifiedArrayType(T1, Quals);
   3390     T2 = Context.getUnqualifiedArrayType(T2, Quals);
   3391   }
   3392 
   3393   return Context.hasSameUnqualifiedType(T1, T2);
   3394 }
   3395 
   3396 // Per 13.3.3.2p3, compare the given standard conversion sequences to
   3397 // determine if one is a proper subset of the other.
   3398 static ImplicitConversionSequence::CompareKind
   3399 compareStandardConversionSubsets(ASTContext &Context,
   3400                                  const StandardConversionSequence& SCS1,
   3401                                  const StandardConversionSequence& SCS2) {
   3402   ImplicitConversionSequence::CompareKind Result
   3403     = ImplicitConversionSequence::Indistinguishable;
   3404 
   3405   // the identity conversion sequence is considered to be a subsequence of
   3406   // any non-identity conversion sequence
   3407   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
   3408     return ImplicitConversionSequence::Better;
   3409   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
   3410     return ImplicitConversionSequence::Worse;
   3411 
   3412   if (SCS1.Second != SCS2.Second) {
   3413     if (SCS1.Second == ICK_Identity)
   3414       Result = ImplicitConversionSequence::Better;
   3415     else if (SCS2.Second == ICK_Identity)
   3416       Result = ImplicitConversionSequence::Worse;
   3417     else
   3418       return ImplicitConversionSequence::Indistinguishable;
   3419   } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
   3420     return ImplicitConversionSequence::Indistinguishable;
   3421 
   3422   if (SCS1.Third == SCS2.Third) {
   3423     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
   3424                              : ImplicitConversionSequence::Indistinguishable;
   3425   }
   3426 
   3427   if (SCS1.Third == ICK_Identity)
   3428     return Result == ImplicitConversionSequence::Worse
   3429              ? ImplicitConversionSequence::Indistinguishable
   3430              : ImplicitConversionSequence::Better;
   3431 
   3432   if (SCS2.Third == ICK_Identity)
   3433     return Result == ImplicitConversionSequence::Better
   3434              ? ImplicitConversionSequence::Indistinguishable
   3435              : ImplicitConversionSequence::Worse;
   3436 
   3437   return ImplicitConversionSequence::Indistinguishable;
   3438 }
   3439 
   3440 /// \brief Determine whether one of the given reference bindings is better
   3441 /// than the other based on what kind of bindings they are.
   3442 static bool
   3443 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
   3444                              const StandardConversionSequence &SCS2) {
   3445   // C++0x [over.ics.rank]p3b4:
   3446   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
   3447   //      implicit object parameter of a non-static member function declared
   3448   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
   3449   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
   3450   //      lvalue reference to a function lvalue and S2 binds an rvalue
   3451   //      reference*.
   3452   //
   3453   // FIXME: Rvalue references. We're going rogue with the above edits,
   3454   // because the semantics in the current C++0x working paper (N3225 at the
   3455   // time of this writing) break the standard definition of std::forward
   3456   // and std::reference_wrapper when dealing with references to functions.
   3457   // Proposed wording changes submitted to CWG for consideration.
   3458   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
   3459       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
   3460     return false;
   3461 
   3462   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
   3463           SCS2.IsLvalueReference) ||
   3464          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
   3465           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
   3466 }
   3467 
   3468 /// CompareStandardConversionSequences - Compare two standard
   3469 /// conversion sequences to determine whether one is better than the
   3470 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
   3471 static ImplicitConversionSequence::CompareKind
   3472 CompareStandardConversionSequences(Sema &S,
   3473                                    const StandardConversionSequence& SCS1,
   3474                                    const StandardConversionSequence& SCS2)
   3475 {
   3476   // Standard conversion sequence S1 is a better conversion sequence
   3477   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
   3478 
   3479   //  -- S1 is a proper subsequence of S2 (comparing the conversion
   3480   //     sequences in the canonical form defined by 13.3.3.1.1,
   3481   //     excluding any Lvalue Transformation; the identity conversion
   3482   //     sequence is considered to be a subsequence of any
   3483   //     non-identity conversion sequence) or, if not that,
   3484   if (ImplicitConversionSequence::CompareKind CK
   3485         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
   3486     return CK;
   3487 
   3488   //  -- the rank of S1 is better than the rank of S2 (by the rules
   3489   //     defined below), or, if not that,
   3490   ImplicitConversionRank Rank1 = SCS1.getRank();
   3491   ImplicitConversionRank Rank2 = SCS2.getRank();
   3492   if (Rank1 < Rank2)
   3493     return ImplicitConversionSequence::Better;
   3494   else if (Rank2 < Rank1)
   3495     return ImplicitConversionSequence::Worse;
   3496 
   3497   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
   3498   // are indistinguishable unless one of the following rules
   3499   // applies:
   3500 
   3501   //   A conversion that is not a conversion of a pointer, or
   3502   //   pointer to member, to bool is better than another conversion
   3503   //   that is such a conversion.
   3504   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
   3505     return SCS2.isPointerConversionToBool()
   3506              ? ImplicitConversionSequence::Better
   3507              : ImplicitConversionSequence::Worse;
   3508 
   3509   // C++ [over.ics.rank]p4b2:
   3510   //
   3511   //   If class B is derived directly or indirectly from class A,
   3512   //   conversion of B* to A* is better than conversion of B* to
   3513   //   void*, and conversion of A* to void* is better than conversion
   3514   //   of B* to void*.
   3515   bool SCS1ConvertsToVoid
   3516     = SCS1.isPointerConversionToVoidPointer(S.Context);
   3517   bool SCS2ConvertsToVoid
   3518     = SCS2.isPointerConversionToVoidPointer(S.Context);
   3519   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
   3520     // Exactly one of the conversion sequences is a conversion to
   3521     // a void pointer; it's the worse conversion.
   3522     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
   3523                               : ImplicitConversionSequence::Worse;
   3524   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
   3525     // Neither conversion sequence converts to a void pointer; compare
   3526     // their derived-to-base conversions.
   3527     if (ImplicitConversionSequence::CompareKind DerivedCK
   3528           = CompareDerivedToBaseConversions(S, SCS1, SCS2))
   3529       return DerivedCK;
   3530   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
   3531              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
   3532     // Both conversion sequences are conversions to void
   3533     // pointers. Compare the source types to determine if there's an
   3534     // inheritance relationship in their sources.
   3535     QualType FromType1 = SCS1.getFromType();
   3536     QualType FromType2 = SCS2.getFromType();
   3537 
   3538     // Adjust the types we're converting from via the array-to-pointer
   3539     // conversion, if we need to.
   3540     if (SCS1.First == ICK_Array_To_Pointer)
   3541       FromType1 = S.Context.getArrayDecayedType(FromType1);
   3542     if (SCS2.First == ICK_Array_To_Pointer)
   3543       FromType2 = S.Context.getArrayDecayedType(FromType2);
   3544 
   3545     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
   3546     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
   3547 
   3548     if (S.IsDerivedFrom(FromPointee2, FromPointee1))
   3549       return ImplicitConversionSequence::Better;
   3550     else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
   3551       return ImplicitConversionSequence::Worse;
   3552 
   3553     // Objective-C++: If one interface is more specific than the
   3554     // other, it is the better one.
   3555     const ObjCObjectPointerType* FromObjCPtr1
   3556       = FromType1->getAs<ObjCObjectPointerType>();
   3557     const ObjCObjectPointerType* FromObjCPtr2
   3558       = FromType2->getAs<ObjCObjectPointerType>();
   3559     if (FromObjCPtr1 && FromObjCPtr2) {
   3560       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
   3561                                                           FromObjCPtr2);
   3562       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
   3563                                                            FromObjCPtr1);
   3564       if (AssignLeft != AssignRight) {
   3565         return AssignLeft? ImplicitConversionSequence::Better
   3566                          : ImplicitConversionSequence::Worse;
   3567       }
   3568     }
   3569   }
   3570 
   3571   // Compare based on qualification conversions (C++ 13.3.3.2p3,
   3572   // bullet 3).
   3573   if (ImplicitConversionSequence::CompareKind QualCK
   3574         = CompareQualificationConversions(S, SCS1, SCS2))
   3575     return QualCK;
   3576 
   3577   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
   3578     // Check for a better reference binding based on the kind of bindings.
   3579     if (isBetterReferenceBindingKind(SCS1, SCS2))
   3580       return ImplicitConversionSequence::Better;
   3581     else if (isBetterReferenceBindingKind(SCS2, SCS1))
   3582       return ImplicitConversionSequence::Worse;
   3583 
   3584     // C++ [over.ics.rank]p3b4:
   3585     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
   3586     //      which the references refer are the same type except for
   3587     //      top-level cv-qualifiers, and the type to which the reference
   3588     //      initialized by S2 refers is more cv-qualified than the type
   3589     //      to which the reference initialized by S1 refers.
   3590     QualType T1 = SCS1.getToType(2);
   3591     QualType T2 = SCS2.getToType(2);
   3592     T1 = S.Context.getCanonicalType(T1);
   3593     T2 = S.Context.getCanonicalType(T2);
   3594     Qualifiers T1Quals, T2Quals;
   3595     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
   3596     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
   3597     if (UnqualT1 == UnqualT2) {
   3598       // Objective-C++ ARC: If the references refer to objects with different
   3599       // lifetimes, prefer bindings that don't change lifetime.
   3600       if (SCS1.ObjCLifetimeConversionBinding !=
   3601                                           SCS2.ObjCLifetimeConversionBinding) {
   3602         return SCS1.ObjCLifetimeConversionBinding
   3603                                            ? ImplicitConversionSequence::Worse
   3604                                            : ImplicitConversionSequence::Better;
   3605       }
   3606 
   3607       // If the type is an array type, promote the element qualifiers to the
   3608       // type for comparison.
   3609       if (isa<ArrayType>(T1) && T1Quals)
   3610         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
   3611       if (isa<ArrayType>(T2) && T2Quals)
   3612         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
   3613       if (T2.isMoreQualifiedThan(T1))
   3614         return ImplicitConversionSequence::Better;
   3615       else if (T1.isMoreQualifiedThan(T2))
   3616         return ImplicitConversionSequence::Worse;
   3617     }
   3618   }
   3619 
   3620   // In Microsoft mode, prefer an integral conversion to a
   3621   // floating-to-integral conversion if the integral conversion
   3622   // is between types of the same size.
   3623   // For example:
   3624   // void f(float);
   3625   // void f(int);
   3626   // int main {
   3627   //    long a;
   3628   //    f(a);
   3629   // }
   3630   // Here, MSVC will call f(int) instead of generating a compile error
   3631   // as clang will do in standard mode.
   3632   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
   3633       SCS2.Second == ICK_Floating_Integral &&
   3634       S.Context.getTypeSize(SCS1.getFromType()) ==
   3635           S.Context.getTypeSize(SCS1.getToType(2)))
   3636     return ImplicitConversionSequence::Better;
   3637 
   3638   return ImplicitConversionSequence::Indistinguishable;
   3639 }
   3640 
   3641 /// CompareQualificationConversions - Compares two standard conversion
   3642 /// sequences to determine whether they can be ranked based on their
   3643 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
   3644 static ImplicitConversionSequence::CompareKind
   3645 CompareQualificationConversions(Sema &S,
   3646                                 const StandardConversionSequence& SCS1,
   3647                                 const StandardConversionSequence& SCS2) {
   3648   // C++ 13.3.3.2p3:
   3649   //  -- S1 and S2 differ only in their qualification conversion and
   3650   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
   3651   //     cv-qualification signature of type T1 is a proper subset of
   3652   //     the cv-qualification signature of type T2, and S1 is not the
   3653   //     deprecated string literal array-to-pointer conversion (4.2).
   3654   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
   3655       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
   3656     return ImplicitConversionSequence::Indistinguishable;
   3657 
   3658   // FIXME: the example in the standard doesn't use a qualification
   3659   // conversion (!)
   3660   QualType T1 = SCS1.getToType(2);
   3661   QualType T2 = SCS2.getToType(2);
   3662   T1 = S.Context.getCanonicalType(T1);
   3663   T2 = S.Context.getCanonicalType(T2);
   3664   Qualifiers T1Quals, T2Quals;
   3665   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
   3666   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
   3667 
   3668   // If the types are the same, we won't learn anything by unwrapped
   3669   // them.
   3670   if (UnqualT1 == UnqualT2)
   3671     return ImplicitConversionSequence::Indistinguishable;
   3672 
   3673   // If the type is an array type, promote the element qualifiers to the type
   3674   // for comparison.
   3675   if (isa<ArrayType>(T1) && T1Quals)
   3676     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
   3677   if (isa<ArrayType>(T2) && T2Quals)
   3678     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
   3679 
   3680   ImplicitConversionSequence::CompareKind Result
   3681     = ImplicitConversionSequence::Indistinguishable;
   3682 
   3683   // Objective-C++ ARC:
   3684   //   Prefer qualification conversions not involving a change in lifetime
   3685   //   to qualification conversions that do not change lifetime.
   3686   if (SCS1.QualificationIncludesObjCLifetime !=
   3687                                       SCS2.QualificationIncludesObjCLifetime) {
   3688     Result = SCS1.QualificationIncludesObjCLifetime
   3689                ? ImplicitConversionSequence::Worse
   3690                : ImplicitConversionSequence::Better;
   3691   }
   3692 
   3693   while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
   3694     // Within each iteration of the loop, we check the qualifiers to
   3695     // determine if this still looks like a qualification
   3696     // conversion. Then, if all is well, we unwrap one more level of
   3697     // pointers or pointers-to-members and do it all again
   3698     // until there are no more pointers or pointers-to-members left
   3699     // to unwrap. This essentially mimics what
   3700     // IsQualificationConversion does, but here we're checking for a
   3701     // strict subset of qualifiers.
   3702     if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
   3703       // The qualifiers are the same, so this doesn't tell us anything
   3704       // about how the sequences rank.
   3705       ;
   3706     else if (T2.isMoreQualifiedThan(T1)) {
   3707       // T1 has fewer qualifiers, so it could be the better sequence.
   3708       if (Result == ImplicitConversionSequence::Worse)
   3709         // Neither has qualifiers that are a subset of the other's
   3710         // qualifiers.
   3711         return ImplicitConversionSequence::Indistinguishable;
   3712 
   3713       Result = ImplicitConversionSequence::Better;
   3714     } else if (T1.isMoreQualifiedThan(T2)) {
   3715       // T2 has fewer qualifiers, so it could be the better sequence.
   3716       if (Result == ImplicitConversionSequence::Better)
   3717         // Neither has qualifiers that are a subset of the other's
   3718         // qualifiers.
   3719         return ImplicitConversionSequence::Indistinguishable;
   3720 
   3721       Result = ImplicitConversionSequence::Worse;
   3722     } else {
   3723       // Qualifiers are disjoint.
   3724       return ImplicitConversionSequence::Indistinguishable;
   3725     }
   3726 
   3727     // If the types after this point are equivalent, we're done.
   3728     if (S.Context.hasSameUnqualifiedType(T1, T2))
   3729       break;
   3730   }
   3731 
   3732   // Check that the winning standard conversion sequence isn't using
   3733   // the deprecated string literal array to pointer conversion.
   3734   switch (Result) {
   3735   case ImplicitConversionSequence::Better:
   3736     if (SCS1.DeprecatedStringLiteralToCharPtr)
   3737       Result = ImplicitConversionSequence::Indistinguishable;
   3738     break;
   3739 
   3740   case ImplicitConversionSequence::Indistinguishable:
   3741     break;
   3742 
   3743   case ImplicitConversionSequence::Worse:
   3744     if (SCS2.DeprecatedStringLiteralToCharPtr)
   3745       Result = ImplicitConversionSequence::Indistinguishable;
   3746     break;
   3747   }
   3748 
   3749   return Result;
   3750 }
   3751 
   3752 /// CompareDerivedToBaseConversions - Compares two standard conversion
   3753 /// sequences to determine whether they can be ranked based on their
   3754 /// various kinds of derived-to-base conversions (C++
   3755 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
   3756 /// conversions between Objective-C interface types.
   3757 static ImplicitConversionSequence::CompareKind
   3758 CompareDerivedToBaseConversions(Sema &S,
   3759                                 const StandardConversionSequence& SCS1,
   3760                                 const StandardConversionSequence& SCS2) {
   3761   QualType FromType1 = SCS1.getFromType();
   3762   QualType ToType1 = SCS1.getToType(1);
   3763   QualType FromType2 = SCS2.getFromType();
   3764   QualType ToType2 = SCS2.getToType(1);
   3765 
   3766   // Adjust the types we're converting from via the array-to-pointer
   3767   // conversion, if we need to.
   3768   if (SCS1.First == ICK_Array_To_Pointer)
   3769     FromType1 = S.Context.getArrayDecayedType(FromType1);
   3770   if (SCS2.First == ICK_Array_To_Pointer)
   3771     FromType2 = S.Context.getArrayDecayedType(FromType2);
   3772 
   3773   // Canonicalize all of the types.
   3774   FromType1 = S.Context.getCanonicalType(FromType1);
   3775   ToType1 = S.Context.getCanonicalType(ToType1);
   3776   FromType2 = S.Context.getCanonicalType(FromType2);
   3777   ToType2 = S.Context.getCanonicalType(ToType2);
   3778 
   3779   // C++ [over.ics.rank]p4b3:
   3780   //
   3781   //   If class B is derived directly or indirectly from class A and
   3782   //   class C is derived directly or indirectly from B,
   3783   //
   3784   // Compare based on pointer conversions.
   3785   if (SCS1.Second == ICK_Pointer_Conversion &&
   3786       SCS2.Second == ICK_Pointer_Conversion &&
   3787       /*FIXME: Remove if Objective-C id conversions get their own rank*/
   3788       FromType1->isPointerType() && FromType2->isPointerType() &&
   3789       ToType1->isPointerType() && ToType2->isPointerType()) {
   3790     QualType FromPointee1
   3791       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3792     QualType ToPointee1
   3793       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3794     QualType FromPointee2
   3795       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3796     QualType ToPointee2
   3797       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3798 
   3799     //   -- conversion of C* to B* is better than conversion of C* to A*,
   3800     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
   3801       if (S.IsDerivedFrom(ToPointee1, ToPointee2))
   3802         return ImplicitConversionSequence::Better;
   3803       else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
   3804         return ImplicitConversionSequence::Worse;
   3805     }
   3806 
   3807     //   -- conversion of B* to A* is better than conversion of C* to A*,
   3808     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
   3809       if (S.IsDerivedFrom(FromPointee2, FromPointee1))
   3810         return ImplicitConversionSequence::Better;
   3811       else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
   3812         return ImplicitConversionSequence::Worse;
   3813     }
   3814   } else if (SCS1.Second == ICK_Pointer_Conversion &&
   3815              SCS2.Second == ICK_Pointer_Conversion) {
   3816     const ObjCObjectPointerType *FromPtr1
   3817       = FromType1->getAs<ObjCObjectPointerType>();
   3818     const ObjCObjectPointerType *FromPtr2
   3819       = FromType2->getAs<ObjCObjectPointerType>();
   3820     const ObjCObjectPointerType *ToPtr1
   3821       = ToType1->getAs<ObjCObjectPointerType>();
   3822     const ObjCObjectPointerType *ToPtr2
   3823       = ToType2->getAs<ObjCObjectPointerType>();
   3824 
   3825     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
   3826       // Apply the same conversion ranking rules for Objective-C pointer types
   3827       // that we do for C++ pointers to class types. However, we employ the
   3828       // Objective-C pseudo-subtyping relationship used for assignment of
   3829       // Objective-C pointer types.
   3830       bool FromAssignLeft
   3831         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
   3832       bool FromAssignRight
   3833         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
   3834       bool ToAssignLeft
   3835         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
   3836       bool ToAssignRight
   3837         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
   3838 
   3839       // A conversion to an a non-id object pointer type or qualified 'id'
   3840       // type is better than a conversion to 'id'.
   3841       if (ToPtr1->isObjCIdType() &&
   3842           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
   3843         return ImplicitConversionSequence::Worse;
   3844       if (ToPtr2->isObjCIdType() &&
   3845           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
   3846         return ImplicitConversionSequence::Better;
   3847 
   3848       // A conversion to a non-id object pointer type is better than a
   3849       // conversion to a qualified 'id' type
   3850       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
   3851         return ImplicitConversionSequence::Worse;
   3852       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
   3853         return ImplicitConversionSequence::Better;
   3854 
   3855       // A conversion to an a non-Class object pointer type or qualified 'Class'
   3856       // type is better than a conversion to 'Class'.
   3857       if (ToPtr1->isObjCClassType() &&
   3858           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
   3859         return ImplicitConversionSequence::Worse;
   3860       if (ToPtr2->isObjCClassType() &&
   3861           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
   3862         return ImplicitConversionSequence::Better;
   3863 
   3864       // A conversion to a non-Class object pointer type is better than a
   3865       // conversion to a qualified 'Class' type.
   3866       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
   3867         return ImplicitConversionSequence::Worse;
   3868       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
   3869         return ImplicitConversionSequence::Better;
   3870 
   3871       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
   3872       if (S.Context.hasSameType(FromType1, FromType2) &&
   3873           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
   3874           (ToAssignLeft != ToAssignRight))
   3875         return ToAssignLeft? ImplicitConversionSequence::Worse
   3876                            : ImplicitConversionSequence::Better;
   3877 
   3878       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
   3879       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
   3880           (FromAssignLeft != FromAssignRight))
   3881         return FromAssignLeft? ImplicitConversionSequence::Better
   3882         : ImplicitConversionSequence::Worse;
   3883     }
   3884   }
   3885 
   3886   // Ranking of member-pointer types.
   3887   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
   3888       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
   3889       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
   3890     const MemberPointerType * FromMemPointer1 =
   3891                                         FromType1->getAs<MemberPointerType>();
   3892     const MemberPointerType * ToMemPointer1 =
   3893                                           ToType1->getAs<MemberPointerType>();
   3894     const MemberPointerType * FromMemPointer2 =
   3895                                           FromType2->getAs<MemberPointerType>();
   3896     const MemberPointerType * ToMemPointer2 =
   3897                                           ToType2->getAs<MemberPointerType>();
   3898     const Type *FromPointeeType1 = FromMemPointer1->getClass();
   3899     const Type *ToPointeeType1 = ToMemPointer1->getClass();
   3900     const Type *FromPointeeType2 = FromMemPointer2->getClass();
   3901     const Type *ToPointeeType2 = ToMemPointer2->getClass();
   3902     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
   3903     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
   3904     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
   3905     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
   3906     // conversion of A::* to B::* is better than conversion of A::* to C::*,
   3907     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
   3908       if (S.IsDerivedFrom(ToPointee1, ToPointee2))
   3909         return ImplicitConversionSequence::Worse;
   3910       else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
   3911         return ImplicitConversionSequence::Better;
   3912     }
   3913     // conversion of B::* to C::* is better than conversion of A::* to C::*
   3914     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
   3915       if (S.IsDerivedFrom(FromPointee1, FromPointee2))
   3916         return ImplicitConversionSequence::Better;
   3917       else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
   3918         return ImplicitConversionSequence::Worse;
   3919     }
   3920   }
   3921 
   3922   if (SCS1.Second == ICK_Derived_To_Base) {
   3923     //   -- conversion of C to B is better than conversion of C to A,
   3924     //   -- binding of an expression of type C to a reference of type
   3925     //      B& is better than binding an expression of type C to a
   3926     //      reference of type A&,
   3927     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
   3928         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
   3929       if (S.IsDerivedFrom(ToType1, ToType2))
   3930         return ImplicitConversionSequence::Better;
   3931       else if (S.IsDerivedFrom(ToType2, ToType1))
   3932         return ImplicitConversionSequence::Worse;
   3933     }
   3934 
   3935     //   -- conversion of B to A is better than conversion of C to A.
   3936     //   -- binding of an expression of type B to a reference of type
   3937     //      A& is better than binding an expression of type C to a
   3938     //      reference of type A&,
   3939     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
   3940         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
   3941       if (S.IsDerivedFrom(FromType2, FromType1))
   3942         return ImplicitConversionSequence::Better;
   3943       else if (S.IsDerivedFrom(FromType1, FromType2))
   3944         return ImplicitConversionSequence::Worse;
   3945     }
   3946   }
   3947 
   3948   return ImplicitConversionSequence::Indistinguishable;
   3949 }
   3950 
   3951 /// \brief Determine whether the given type is valid, e.g., it is not an invalid
   3952 /// C++ class.
   3953 static bool isTypeValid(QualType T) {
   3954   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
   3955     return !Record->isInvalidDecl();
   3956 
   3957   return true;
   3958 }
   3959 
   3960 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
   3961 /// determine whether they are reference-related,
   3962 /// reference-compatible, reference-compatible with added
   3963 /// qualification, or incompatible, for use in C++ initialization by
   3964 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
   3965 /// type, and the first type (T1) is the pointee type of the reference
   3966 /// type being initialized.
   3967 Sema::ReferenceCompareResult
   3968 Sema::CompareReferenceRelationship(SourceLocation Loc,
   3969                                    QualType OrigT1, QualType OrigT2,
   3970                                    bool &DerivedToBase,
   3971                                    bool &ObjCConversion,
   3972                                    bool &ObjCLifetimeConversion) {
   3973   assert(!OrigT1->isReferenceType() &&
   3974     "T1 must be the pointee type of the reference type");
   3975   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
   3976 
   3977   QualType T1 = Context.getCanonicalType(OrigT1);
   3978   QualType T2 = Context.getCanonicalType(OrigT2);
   3979   Qualifiers T1Quals, T2Quals;
   3980   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
   3981   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
   3982 
   3983   // C++ [dcl.init.ref]p4:
   3984   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
   3985   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
   3986   //   T1 is a base class of T2.
   3987   DerivedToBase = false;
   3988   ObjCConversion = false;
   3989   ObjCLifetimeConversion = false;
   3990   if (UnqualT1 == UnqualT2) {
   3991     // Nothing to do.
   3992   } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
   3993              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
   3994              IsDerivedFrom(UnqualT2, UnqualT1))
   3995     DerivedToBase = true;
   3996   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
   3997            UnqualT2->isObjCObjectOrInterfaceType() &&
   3998            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
   3999     ObjCConversion = true;
   4000   else
   4001     return Ref_Incompatible;
   4002 
   4003   // At this point, we know that T1 and T2 are reference-related (at
   4004   // least).
   4005 
   4006   // If the type is an array type, promote the element qualifiers to the type
   4007   // for comparison.
   4008   if (isa<ArrayType>(T1) && T1Quals)
   4009     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
   4010   if (isa<ArrayType>(T2) && T2Quals)
   4011     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
   4012 
   4013   // C++ [dcl.init.ref]p4:
   4014   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
   4015   //   reference-related to T2 and cv1 is the same cv-qualification
   4016   //   as, or greater cv-qualification than, cv2. For purposes of
   4017   //   overload resolution, cases for which cv1 is greater
   4018   //   cv-qualification than cv2 are identified as
   4019   //   reference-compatible with added qualification (see 13.3.3.2).
   4020   //
   4021   // Note that we also require equivalence of Objective-C GC and address-space
   4022   // qualifiers when performing these computations, so that e.g., an int in
   4023   // address space 1 is not reference-compatible with an int in address
   4024   // space 2.
   4025   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
   4026       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
   4027     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
   4028       ObjCLifetimeConversion = true;
   4029 
   4030     T1Quals.removeObjCLifetime();
   4031     T2Quals.removeObjCLifetime();
   4032   }
   4033 
   4034   if (T1Quals == T2Quals)
   4035     return Ref_Compatible;
   4036   else if (T1Quals.compatiblyIncludes(T2Quals))
   4037     return Ref_Compatible_With_Added_Qualification;
   4038   else
   4039     return Ref_Related;
   4040 }
   4041 
   4042 /// \brief Look for a user-defined conversion to an value reference-compatible
   4043 ///        with DeclType. Return true if something definite is found.
   4044 static bool
   4045 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
   4046                          QualType DeclType, SourceLocation DeclLoc,
   4047                          Expr *Init, QualType T2, bool AllowRvalues,
   4048                          bool AllowExplicit) {
   4049   assert(T2->isRecordType() && "Can only find conversions of record types.");
   4050   CXXRecordDecl *T2RecordDecl
   4051     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
   4052 
   4053   OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
   4054   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
   4055   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   4056     NamedDecl *D = *I;
   4057     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
   4058     if (isa<UsingShadowDecl>(D))
   4059       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   4060 
   4061     FunctionTemplateDecl *ConvTemplate
   4062       = dyn_cast<FunctionTemplateDecl>(D);
   4063     CXXConversionDecl *Conv;
   4064     if (ConvTemplate)
   4065       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   4066     else
   4067       Conv = cast<CXXConversionDecl>(D);
   4068 
   4069     // If this is an explicit conversion, and we're not allowed to consider
   4070     // explicit conversions, skip it.
   4071     if (!AllowExplicit && Conv->isExplicit())
   4072       continue;
   4073 
   4074     if (AllowRvalues) {
   4075       bool DerivedToBase = false;
   4076       bool ObjCConversion = false;
   4077       bool ObjCLifetimeConversion = false;
   4078 
   4079       // If we are initializing an rvalue reference, don't permit conversion
   4080       // functions that return lvalues.
   4081       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
   4082         const ReferenceType *RefType
   4083           = Conv->getConversionType()->getAs<LValueReferenceType>();
   4084         if (RefType && !RefType->getPointeeType()->isFunctionType())
   4085           continue;
   4086       }
   4087 
   4088       if (!ConvTemplate &&
   4089           S.CompareReferenceRelationship(
   4090             DeclLoc,
   4091             Conv->getConversionType().getNonReferenceType()
   4092               .getUnqualifiedType(),
   4093             DeclType.getNonReferenceType().getUnqualifiedType(),
   4094             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
   4095           Sema::Ref_Incompatible)
   4096         continue;
   4097     } else {
   4098       // If the conversion function doesn't return a reference type,
   4099       // it can't be considered for this conversion. An rvalue reference
   4100       // is only acceptable if its referencee is a function type.
   4101 
   4102       const ReferenceType *RefType =
   4103         Conv->getConversionType()->getAs<ReferenceType>();
   4104       if (!RefType ||
   4105           (!RefType->isLValueReferenceType() &&
   4106            !RefType->getPointeeType()->isFunctionType()))
   4107         continue;
   4108     }
   4109 
   4110     if (ConvTemplate)
   4111       S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
   4112                                        Init, DeclType, CandidateSet,
   4113                                        /*AllowObjCConversionOnExplicit=*/false);
   4114     else
   4115       S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
   4116                                DeclType, CandidateSet,
   4117                                /*AllowObjCConversionOnExplicit=*/false);
   4118   }
   4119 
   4120   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   4121 
   4122   OverloadCandidateSet::iterator Best;
   4123   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
   4124   case OR_Success:
   4125     // C++ [over.ics.ref]p1:
   4126     //
   4127     //   [...] If the parameter binds directly to the result of
   4128     //   applying a conversion function to the argument
   4129     //   expression, the implicit conversion sequence is a
   4130     //   user-defined conversion sequence (13.3.3.1.2), with the
   4131     //   second standard conversion sequence either an identity
   4132     //   conversion or, if the conversion function returns an
   4133     //   entity of a type that is a derived class of the parameter
   4134     //   type, a derived-to-base Conversion.
   4135     if (!Best->FinalConversion.DirectBinding)
   4136       return false;
   4137 
   4138     ICS.setUserDefined();
   4139     ICS.UserDefined.Before = Best->Conversions[0].Standard;
   4140     ICS.UserDefined.After = Best->FinalConversion;
   4141     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
   4142     ICS.UserDefined.ConversionFunction = Best->Function;
   4143     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
   4144     ICS.UserDefined.EllipsisConversion = false;
   4145     assert(ICS.UserDefined.After.ReferenceBinding &&
   4146            ICS.UserDefined.After.DirectBinding &&
   4147            "Expected a direct reference binding!");
   4148     return true;
   4149 
   4150   case OR_Ambiguous:
   4151     ICS.setAmbiguous();
   4152     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
   4153          Cand != CandidateSet.end(); ++Cand)
   4154       if (Cand->Viable)
   4155         ICS.Ambiguous.addConversion(Cand->Function);
   4156     return true;
   4157 
   4158   case OR_No_Viable_Function:
   4159   case OR_Deleted:
   4160     // There was no suitable conversion, or we found a deleted
   4161     // conversion; continue with other checks.
   4162     return false;
   4163   }
   4164 
   4165   llvm_unreachable("Invalid OverloadResult!");
   4166 }
   4167 
   4168 /// \brief Compute an implicit conversion sequence for reference
   4169 /// initialization.
   4170 static ImplicitConversionSequence
   4171 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
   4172                  SourceLocation DeclLoc,
   4173                  bool SuppressUserConversions,
   4174                  bool AllowExplicit) {
   4175   assert(DeclType->isReferenceType() && "Reference init needs a reference");
   4176 
   4177   // Most paths end in a failed conversion.
   4178   ImplicitConversionSequence ICS;
   4179   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
   4180 
   4181   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
   4182   QualType T2 = Init->getType();
   4183 
   4184   // If the initializer is the address of an overloaded function, try
   4185   // to resolve the overloaded function. If all goes well, T2 is the
   4186   // type of the resulting function.
   4187   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   4188     DeclAccessPair Found;
   4189     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
   4190                                                                 false, Found))
   4191       T2 = Fn->getType();
   4192   }
   4193 
   4194   // Compute some basic properties of the types and the initializer.
   4195   bool isRValRef = DeclType->isRValueReferenceType();
   4196   bool DerivedToBase = false;
   4197   bool ObjCConversion = false;
   4198   bool ObjCLifetimeConversion = false;
   4199   Expr::Classification InitCategory = Init->Classify(S.Context);
   4200   Sema::ReferenceCompareResult RefRelationship
   4201     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
   4202                                      ObjCConversion, ObjCLifetimeConversion);
   4203 
   4204 
   4205   // C++0x [dcl.init.ref]p5:
   4206   //   A reference to type "cv1 T1" is initialized by an expression
   4207   //   of type "cv2 T2" as follows:
   4208 
   4209   //     -- If reference is an lvalue reference and the initializer expression
   4210   if (!isRValRef) {
   4211     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
   4212     //        reference-compatible with "cv2 T2," or
   4213     //
   4214     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
   4215     if (InitCategory.isLValue() &&
   4216         RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
   4217       // C++ [over.ics.ref]p1:
   4218       //   When a parameter of reference type binds directly (8.5.3)
   4219       //   to an argument expression, the implicit conversion sequence
   4220       //   is the identity conversion, unless the argument expression
   4221       //   has a type that is a derived class of the parameter type,
   4222       //   in which case the implicit conversion sequence is a
   4223       //   derived-to-base Conversion (13.3.3.1).
   4224       ICS.setStandard();
   4225       ICS.Standard.First = ICK_Identity;
   4226       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
   4227                          : ObjCConversion? ICK_Compatible_Conversion
   4228                          : ICK_Identity;
   4229       ICS.Standard.Third = ICK_Identity;
   4230       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
   4231       ICS.Standard.setToType(0, T2);
   4232       ICS.Standard.setToType(1, T1);
   4233       ICS.Standard.setToType(2, T1);
   4234       ICS.Standard.ReferenceBinding = true;
   4235       ICS.Standard.DirectBinding = true;
   4236       ICS.Standard.IsLvalueReference = !isRValRef;
   4237       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4238       ICS.Standard.BindsToRvalue = false;
   4239       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4240       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
   4241       ICS.Standard.CopyConstructor = nullptr;
   4242       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
   4243 
   4244       // Nothing more to do: the inaccessibility/ambiguity check for
   4245       // derived-to-base conversions is suppressed when we're
   4246       // computing the implicit conversion sequence (C++
   4247       // [over.best.ics]p2).
   4248       return ICS;
   4249     }
   4250 
   4251     //       -- has a class type (i.e., T2 is a class type), where T1 is
   4252     //          not reference-related to T2, and can be implicitly
   4253     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
   4254     //          is reference-compatible with "cv3 T3" 92) (this
   4255     //          conversion is selected by enumerating the applicable
   4256     //          conversion functions (13.3.1.6) and choosing the best
   4257     //          one through overload resolution (13.3)),
   4258     if (!SuppressUserConversions && T2->isRecordType() &&
   4259         !S.RequireCompleteType(DeclLoc, T2, 0) &&
   4260         RefRelationship == Sema::Ref_Incompatible) {
   4261       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
   4262                                    Init, T2, /*AllowRvalues=*/false,
   4263                                    AllowExplicit))
   4264         return ICS;
   4265     }
   4266   }
   4267 
   4268   //     -- Otherwise, the reference shall be an lvalue reference to a
   4269   //        non-volatile const type (i.e., cv1 shall be const), or the reference
   4270   //        shall be an rvalue reference.
   4271   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
   4272     return ICS;
   4273 
   4274   //       -- If the initializer expression
   4275   //
   4276   //            -- is an xvalue, class prvalue, array prvalue or function
   4277   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
   4278   if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
   4279       (InitCategory.isXValue() ||
   4280       (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
   4281       (InitCategory.isLValue() && T2->isFunctionType()))) {
   4282     ICS.setStandard();
   4283     ICS.Standard.First = ICK_Identity;
   4284     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
   4285                       : ObjCConversion? ICK_Compatible_Conversion
   4286                       : ICK_Identity;
   4287     ICS.Standard.Third = ICK_Identity;
   4288     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
   4289     ICS.Standard.setToType(0, T2);
   4290     ICS.Standard.setToType(1, T1);
   4291     ICS.Standard.setToType(2, T1);
   4292     ICS.Standard.ReferenceBinding = true;
   4293     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
   4294     // binding unless we're binding to a class prvalue.
   4295     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
   4296     // allow the use of rvalue references in C++98/03 for the benefit of
   4297     // standard library implementors; therefore, we need the xvalue check here.
   4298     ICS.Standard.DirectBinding =
   4299       S.getLangOpts().CPlusPlus11 ||
   4300       !(InitCategory.isPRValue() || T2->isRecordType());
   4301     ICS.Standard.IsLvalueReference = !isRValRef;
   4302     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4303     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
   4304     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4305     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
   4306     ICS.Standard.CopyConstructor = nullptr;
   4307     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
   4308     return ICS;
   4309   }
   4310 
   4311   //            -- has a class type (i.e., T2 is a class type), where T1 is not
   4312   //               reference-related to T2, and can be implicitly converted to
   4313   //               an xvalue, class prvalue, or function lvalue of type
   4314   //               "cv3 T3", where "cv1 T1" is reference-compatible with
   4315   //               "cv3 T3",
   4316   //
   4317   //          then the reference is bound to the value of the initializer
   4318   //          expression in the first case and to the result of the conversion
   4319   //          in the second case (or, in either case, to an appropriate base
   4320   //          class subobject).
   4321   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
   4322       T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
   4323       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
   4324                                Init, T2, /*AllowRvalues=*/true,
   4325                                AllowExplicit)) {
   4326     // In the second case, if the reference is an rvalue reference
   4327     // and the second standard conversion sequence of the
   4328     // user-defined conversion sequence includes an lvalue-to-rvalue
   4329     // conversion, the program is ill-formed.
   4330     if (ICS.isUserDefined() && isRValRef &&
   4331         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
   4332       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
   4333 
   4334     return ICS;
   4335   }
   4336 
   4337   // A temporary of function type cannot be created; don't even try.
   4338   if (T1->isFunctionType())
   4339     return ICS;
   4340 
   4341   //       -- Otherwise, a temporary of type "cv1 T1" is created and
   4342   //          initialized from the initializer expression using the
   4343   //          rules for a non-reference copy initialization (8.5). The
   4344   //          reference is then bound to the temporary. If T1 is
   4345   //          reference-related to T2, cv1 must be the same
   4346   //          cv-qualification as, or greater cv-qualification than,
   4347   //          cv2; otherwise, the program is ill-formed.
   4348   if (RefRelationship == Sema::Ref_Related) {
   4349     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
   4350     // we would be reference-compatible or reference-compatible with
   4351     // added qualification. But that wasn't the case, so the reference
   4352     // initialization fails.
   4353     //
   4354     // Note that we only want to check address spaces and cvr-qualifiers here.
   4355     // ObjC GC and lifetime qualifiers aren't important.
   4356     Qualifiers T1Quals = T1.getQualifiers();
   4357     Qualifiers T2Quals = T2.getQualifiers();
   4358     T1Quals.removeObjCGCAttr();
   4359     T1Quals.removeObjCLifetime();
   4360     T2Quals.removeObjCGCAttr();
   4361     T2Quals.removeObjCLifetime();
   4362     if (!T1Quals.compatiblyIncludes(T2Quals))
   4363       return ICS;
   4364   }
   4365 
   4366   // If at least one of the types is a class type, the types are not
   4367   // related, and we aren't allowed any user conversions, the
   4368   // reference binding fails. This case is important for breaking
   4369   // recursion, since TryImplicitConversion below will attempt to
   4370   // create a temporary through the use of a copy constructor.
   4371   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
   4372       (T1->isRecordType() || T2->isRecordType()))
   4373     return ICS;
   4374 
   4375   // If T1 is reference-related to T2 and the reference is an rvalue
   4376   // reference, the initializer expression shall not be an lvalue.
   4377   if (RefRelationship >= Sema::Ref_Related &&
   4378       isRValRef && Init->Classify(S.Context).isLValue())
   4379     return ICS;
   4380 
   4381   // C++ [over.ics.ref]p2:
   4382   //   When a parameter of reference type is not bound directly to
   4383   //   an argument expression, the conversion sequence is the one
   4384   //   required to convert the argument expression to the
   4385   //   underlying type of the reference according to
   4386   //   13.3.3.1. Conceptually, this conversion sequence corresponds
   4387   //   to copy-initializing a temporary of the underlying type with
   4388   //   the argument expression. Any difference in top-level
   4389   //   cv-qualification is subsumed by the initialization itself
   4390   //   and does not constitute a conversion.
   4391   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
   4392                               /*AllowExplicit=*/false,
   4393                               /*InOverloadResolution=*/false,
   4394                               /*CStyle=*/false,
   4395                               /*AllowObjCWritebackConversion=*/false,
   4396                               /*AllowObjCConversionOnExplicit=*/false);
   4397 
   4398   // Of course, that's still a reference binding.
   4399   if (ICS.isStandard()) {
   4400     ICS.Standard.ReferenceBinding = true;
   4401     ICS.Standard.IsLvalueReference = !isRValRef;
   4402     ICS.Standard.BindsToFunctionLvalue = false;
   4403     ICS.Standard.BindsToRvalue = true;
   4404     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4405     ICS.Standard.ObjCLifetimeConversionBinding = false;
   4406   } else if (ICS.isUserDefined()) {
   4407     const ReferenceType *LValRefType =
   4408         ICS.UserDefined.ConversionFunction->getReturnType()
   4409             ->getAs<LValueReferenceType>();
   4410 
   4411     // C++ [over.ics.ref]p3:
   4412     //   Except for an implicit object parameter, for which see 13.3.1, a
   4413     //   standard conversion sequence cannot be formed if it requires [...]
   4414     //   binding an rvalue reference to an lvalue other than a function
   4415     //   lvalue.
   4416     // Note that the function case is not possible here.
   4417     if (DeclType->isRValueReferenceType() && LValRefType) {
   4418       // FIXME: This is the wrong BadConversionSequence. The problem is binding
   4419       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
   4420       // reference to an rvalue!
   4421       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
   4422       return ICS;
   4423     }
   4424 
   4425     ICS.UserDefined.Before.setAsIdentityConversion();
   4426     ICS.UserDefined.After.ReferenceBinding = true;
   4427     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
   4428     ICS.UserDefined.After.BindsToFunctionLvalue = false;
   4429     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
   4430     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4431     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
   4432   }
   4433 
   4434   return ICS;
   4435 }
   4436 
   4437 static ImplicitConversionSequence
   4438 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
   4439                       bool SuppressUserConversions,
   4440                       bool InOverloadResolution,
   4441                       bool AllowObjCWritebackConversion,
   4442                       bool AllowExplicit = false);
   4443 
   4444 /// TryListConversion - Try to copy-initialize a value of type ToType from the
   4445 /// initializer list From.
   4446 static ImplicitConversionSequence
   4447 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
   4448                   bool SuppressUserConversions,
   4449                   bool InOverloadResolution,
   4450                   bool AllowObjCWritebackConversion) {
   4451   // C++11 [over.ics.list]p1:
   4452   //   When an argument is an initializer list, it is not an expression and
   4453   //   special rules apply for converting it to a parameter type.
   4454 
   4455   ImplicitConversionSequence Result;
   4456   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
   4457 
   4458   // We need a complete type for what follows. Incomplete types can never be
   4459   // initialized from init lists.
   4460   if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
   4461     return Result;
   4462 
   4463   // Per DR1467:
   4464   //   If the parameter type is a class X and the initializer list has a single
   4465   //   element of type cv U, where U is X or a class derived from X, the
   4466   //   implicit conversion sequence is the one required to convert the element
   4467   //   to the parameter type.
   4468   //
   4469   //   Otherwise, if the parameter type is a character array [... ]
   4470   //   and the initializer list has a single element that is an
   4471   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
   4472   //   implicit conversion sequence is the identity conversion.
   4473   if (From->getNumInits() == 1) {
   4474     if (ToType->isRecordType()) {
   4475       QualType InitType = From->getInit(0)->getType();
   4476       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
   4477           S.IsDerivedFrom(InitType, ToType))
   4478         return TryCopyInitialization(S, From->getInit(0), ToType,
   4479                                      SuppressUserConversions,
   4480                                      InOverloadResolution,
   4481                                      AllowObjCWritebackConversion);
   4482     }
   4483     // FIXME: Check the other conditions here: array of character type,
   4484     // initializer is a string literal.
   4485     if (ToType->isArrayType()) {
   4486       InitializedEntity Entity =
   4487         InitializedEntity::InitializeParameter(S.Context, ToType,
   4488                                                /*Consumed=*/false);
   4489       if (S.CanPerformCopyInitialization(Entity, From)) {
   4490         Result.setStandard();
   4491         Result.Standard.setAsIdentityConversion();
   4492         Result.Standard.setFromType(ToType);
   4493         Result.Standard.setAllToTypes(ToType);
   4494         return Result;
   4495       }
   4496     }
   4497   }
   4498 
   4499   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
   4500   // C++11 [over.ics.list]p2:
   4501   //   If the parameter type is std::initializer_list<X> or "array of X" and
   4502   //   all the elements can be implicitly converted to X, the implicit
   4503   //   conversion sequence is the worst conversion necessary to convert an
   4504   //   element of the list to X.
   4505   //
   4506   // C++14 [over.ics.list]p3:
   4507   //   Otherwise, if the parameter type is "array of N X", if the initializer
   4508   //   list has exactly N elements or if it has fewer than N elements and X is
   4509   //   default-constructible, and if all the elements of the initializer list
   4510   //   can be implicitly converted to X, the implicit conversion sequence is
   4511   //   the worst conversion necessary to convert an element of the list to X.
   4512   //
   4513   // FIXME: We're missing a lot of these checks.
   4514   bool toStdInitializerList = false;
   4515   QualType X;
   4516   if (ToType->isArrayType())
   4517     X = S.Context.getAsArrayType(ToType)->getElementType();
   4518   else
   4519     toStdInitializerList = S.isStdInitializerList(ToType, &X);
   4520   if (!X.isNull()) {
   4521     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
   4522       Expr *Init = From->getInit(i);
   4523       ImplicitConversionSequence ICS =
   4524           TryCopyInitialization(S, Init, X, SuppressUserConversions,
   4525                                 InOverloadResolution,
   4526                                 AllowObjCWritebackConversion);
   4527       // If a single element isn't convertible, fail.
   4528       if (ICS.isBad()) {
   4529         Result = ICS;
   4530         break;
   4531       }
   4532       // Otherwise, look for the worst conversion.
   4533       if (Result.isBad() ||
   4534           CompareImplicitConversionSequences(S, ICS, Result) ==
   4535               ImplicitConversionSequence::Worse)
   4536         Result = ICS;
   4537     }
   4538 
   4539     // For an empty list, we won't have computed any conversion sequence.
   4540     // Introduce the identity conversion sequence.
   4541     if (From->getNumInits() == 0) {
   4542       Result.setStandard();
   4543       Result.Standard.setAsIdentityConversion();
   4544       Result.Standard.setFromType(ToType);
   4545       Result.Standard.setAllToTypes(ToType);
   4546     }
   4547 
   4548     Result.setStdInitializerListElement(toStdInitializerList);
   4549     return Result;
   4550   }
   4551 
   4552   // C++14 [over.ics.list]p4:
   4553   // C++11 [over.ics.list]p3:
   4554   //   Otherwise, if the parameter is a non-aggregate class X and overload
   4555   //   resolution chooses a single best constructor [...] the implicit
   4556   //   conversion sequence is a user-defined conversion sequence. If multiple
   4557   //   constructors are viable but none is better than the others, the
   4558   //   implicit conversion sequence is a user-defined conversion sequence.
   4559   if (ToType->isRecordType() && !ToType->isAggregateType()) {
   4560     // This function can deal with initializer lists.
   4561     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
   4562                                     /*AllowExplicit=*/false,
   4563                                     InOverloadResolution, /*CStyle=*/false,
   4564                                     AllowObjCWritebackConversion,
   4565                                     /*AllowObjCConversionOnExplicit=*/false);
   4566   }
   4567 
   4568   // C++14 [over.ics.list]p5:
   4569   // C++11 [over.ics.list]p4:
   4570   //   Otherwise, if the parameter has an aggregate type which can be
   4571   //   initialized from the initializer list [...] the implicit conversion
   4572   //   sequence is a user-defined conversion sequence.
   4573   if (ToType->isAggregateType()) {
   4574     // Type is an aggregate, argument is an init list. At this point it comes
   4575     // down to checking whether the initialization works.
   4576     // FIXME: Find out whether this parameter is consumed or not.
   4577     InitializedEntity Entity =
   4578         InitializedEntity::InitializeParameter(S.Context, ToType,
   4579                                                /*Consumed=*/false);
   4580     if (S.CanPerformCopyInitialization(Entity, From)) {
   4581       Result.setUserDefined();
   4582       Result.UserDefined.Before.setAsIdentityConversion();
   4583       // Initializer lists don't have a type.
   4584       Result.UserDefined.Before.setFromType(QualType());
   4585       Result.UserDefined.Before.setAllToTypes(QualType());
   4586 
   4587       Result.UserDefined.After.setAsIdentityConversion();
   4588       Result.UserDefined.After.setFromType(ToType);
   4589       Result.UserDefined.After.setAllToTypes(ToType);
   4590       Result.UserDefined.ConversionFunction = nullptr;
   4591     }
   4592     return Result;
   4593   }
   4594 
   4595   // C++14 [over.ics.list]p6:
   4596   // C++11 [over.ics.list]p5:
   4597   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
   4598   if (ToType->isReferenceType()) {
   4599     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
   4600     // mention initializer lists in any way. So we go by what list-
   4601     // initialization would do and try to extrapolate from that.
   4602 
   4603     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
   4604 
   4605     // If the initializer list has a single element that is reference-related
   4606     // to the parameter type, we initialize the reference from that.
   4607     if (From->getNumInits() == 1) {
   4608       Expr *Init = From->getInit(0);
   4609 
   4610       QualType T2 = Init->getType();
   4611 
   4612       // If the initializer is the address of an overloaded function, try
   4613       // to resolve the overloaded function. If all goes well, T2 is the
   4614       // type of the resulting function.
   4615       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   4616         DeclAccessPair Found;
   4617         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
   4618                                    Init, ToType, false, Found))
   4619           T2 = Fn->getType();
   4620       }
   4621 
   4622       // Compute some basic properties of the types and the initializer.
   4623       bool dummy1 = false;
   4624       bool dummy2 = false;
   4625       bool dummy3 = false;
   4626       Sema::ReferenceCompareResult RefRelationship
   4627         = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
   4628                                          dummy2, dummy3);
   4629 
   4630       if (RefRelationship >= Sema::Ref_Related) {
   4631         return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
   4632                                 SuppressUserConversions,
   4633                                 /*AllowExplicit=*/false);
   4634       }
   4635     }
   4636 
   4637     // Otherwise, we bind the reference to a temporary created from the
   4638     // initializer list.
   4639     Result = TryListConversion(S, From, T1, SuppressUserConversions,
   4640                                InOverloadResolution,
   4641                                AllowObjCWritebackConversion);
   4642     if (Result.isFailure())
   4643       return Result;
   4644     assert(!Result.isEllipsis() &&
   4645            "Sub-initialization cannot result in ellipsis conversion.");
   4646 
   4647     // Can we even bind to a temporary?
   4648     if (ToType->isRValueReferenceType() ||
   4649         (T1.isConstQualified() && !T1.isVolatileQualified())) {
   4650       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
   4651                                             Result.UserDefined.After;
   4652       SCS.ReferenceBinding = true;
   4653       SCS.IsLvalueReference = ToType->isLValueReferenceType();
   4654       SCS.BindsToRvalue = true;
   4655       SCS.BindsToFunctionLvalue = false;
   4656       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4657       SCS.ObjCLifetimeConversionBinding = false;
   4658     } else
   4659       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
   4660                     From, ToType);
   4661     return Result;
   4662   }
   4663 
   4664   // C++14 [over.ics.list]p7:
   4665   // C++11 [over.ics.list]p6:
   4666   //   Otherwise, if the parameter type is not a class:
   4667   if (!ToType->isRecordType()) {
   4668     //    - if the initializer list has one element that is not itself an
   4669     //      initializer list, the implicit conversion sequence is the one
   4670     //      required to convert the element to the parameter type.
   4671     unsigned NumInits = From->getNumInits();
   4672     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
   4673       Result = TryCopyInitialization(S, From->getInit(0), ToType,
   4674                                      SuppressUserConversions,
   4675                                      InOverloadResolution,
   4676                                      AllowObjCWritebackConversion);
   4677     //    - if the initializer list has no elements, the implicit conversion
   4678     //      sequence is the identity conversion.
   4679     else if (NumInits == 0) {
   4680       Result.setStandard();
   4681       Result.Standard.setAsIdentityConversion();
   4682       Result.Standard.setFromType(ToType);
   4683       Result.Standard.setAllToTypes(ToType);
   4684     }
   4685     return Result;
   4686   }
   4687 
   4688   // C++14 [over.ics.list]p8:
   4689   // C++11 [over.ics.list]p7:
   4690   //   In all cases other than those enumerated above, no conversion is possible
   4691   return Result;
   4692 }
   4693 
   4694 /// TryCopyInitialization - Try to copy-initialize a value of type
   4695 /// ToType from the expression From. Return the implicit conversion
   4696 /// sequence required to pass this argument, which may be a bad
   4697 /// conversion sequence (meaning that the argument cannot be passed to
   4698 /// a parameter of this type). If @p SuppressUserConversions, then we
   4699 /// do not permit any user-defined conversion sequences.
   4700 static ImplicitConversionSequence
   4701 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
   4702                       bool SuppressUserConversions,
   4703                       bool InOverloadResolution,
   4704                       bool AllowObjCWritebackConversion,
   4705                       bool AllowExplicit) {
   4706   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
   4707     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
   4708                              InOverloadResolution,AllowObjCWritebackConversion);
   4709 
   4710   if (ToType->isReferenceType())
   4711     return TryReferenceInit(S, From, ToType,
   4712                             /*FIXME:*/From->getLocStart(),
   4713                             SuppressUserConversions,
   4714                             AllowExplicit);
   4715 
   4716   return TryImplicitConversion(S, From, ToType,
   4717                                SuppressUserConversions,
   4718                                /*AllowExplicit=*/false,
   4719                                InOverloadResolution,
   4720                                /*CStyle=*/false,
   4721                                AllowObjCWritebackConversion,
   4722                                /*AllowObjCConversionOnExplicit=*/false);
   4723 }
   4724 
   4725 static bool TryCopyInitialization(const CanQualType FromQTy,
   4726                                   const CanQualType ToQTy,
   4727                                   Sema &S,
   4728                                   SourceLocation Loc,
   4729                                   ExprValueKind FromVK) {
   4730   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
   4731   ImplicitConversionSequence ICS =
   4732     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
   4733 
   4734   return !ICS.isBad();
   4735 }
   4736 
   4737 /// TryObjectArgumentInitialization - Try to initialize the object
   4738 /// parameter of the given member function (@c Method) from the
   4739 /// expression @p From.
   4740 static ImplicitConversionSequence
   4741 TryObjectArgumentInitialization(Sema &S, QualType FromType,
   4742                                 Expr::Classification FromClassification,
   4743                                 CXXMethodDecl *Method,
   4744                                 CXXRecordDecl *ActingContext) {
   4745   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
   4746   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
   4747   //                 const volatile object.
   4748   unsigned Quals = isa<CXXDestructorDecl>(Method) ?
   4749     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
   4750   QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
   4751 
   4752   // Set up the conversion sequence as a "bad" conversion, to allow us
   4753   // to exit early.
   4754   ImplicitConversionSequence ICS;
   4755 
   4756   // We need to have an object of class type.
   4757   if (const PointerType *PT = FromType->getAs<PointerType>()) {
   4758     FromType = PT->getPointeeType();
   4759 
   4760     // When we had a pointer, it's implicitly dereferenced, so we
   4761     // better have an lvalue.
   4762     assert(FromClassification.isLValue());
   4763   }
   4764 
   4765   assert(FromType->isRecordType());
   4766 
   4767   // C++0x [over.match.funcs]p4:
   4768   //   For non-static member functions, the type of the implicit object
   4769   //   parameter is
   4770   //
   4771   //     - "lvalue reference to cv X" for functions declared without a
   4772   //        ref-qualifier or with the & ref-qualifier
   4773   //     - "rvalue reference to cv X" for functions declared with the &&
   4774   //        ref-qualifier
   4775   //
   4776   // where X is the class of which the function is a member and cv is the
   4777   // cv-qualification on the member function declaration.
   4778   //
   4779   // However, when finding an implicit conversion sequence for the argument, we
   4780   // are not allowed to create temporaries or perform user-defined conversions
   4781   // (C++ [over.match.funcs]p5). We perform a simplified version of
   4782   // reference binding here, that allows class rvalues to bind to
   4783   // non-constant references.
   4784 
   4785   // First check the qualifiers.
   4786   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
   4787   if (ImplicitParamType.getCVRQualifiers()
   4788                                     != FromTypeCanon.getLocalCVRQualifiers() &&
   4789       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
   4790     ICS.setBad(BadConversionSequence::bad_qualifiers,
   4791                FromType, ImplicitParamType);
   4792     return ICS;
   4793   }
   4794 
   4795   // Check that we have either the same type or a derived type. It
   4796   // affects the conversion rank.
   4797   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
   4798   ImplicitConversionKind SecondKind;
   4799   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
   4800     SecondKind = ICK_Identity;
   4801   } else if (S.IsDerivedFrom(FromType, ClassType))
   4802     SecondKind = ICK_Derived_To_Base;
   4803   else {
   4804     ICS.setBad(BadConversionSequence::unrelated_class,
   4805                FromType, ImplicitParamType);
   4806     return ICS;
   4807   }
   4808 
   4809   // Check the ref-qualifier.
   4810   switch (Method->getRefQualifier()) {
   4811   case RQ_None:
   4812     // Do nothing; we don't care about lvalueness or rvalueness.
   4813     break;
   4814 
   4815   case RQ_LValue:
   4816     if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
   4817       // non-const lvalue reference cannot bind to an rvalue
   4818       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
   4819                  ImplicitParamType);
   4820       return ICS;
   4821     }
   4822     break;
   4823 
   4824   case RQ_RValue:
   4825     if (!FromClassification.isRValue()) {
   4826       // rvalue reference cannot bind to an lvalue
   4827       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
   4828                  ImplicitParamType);
   4829       return ICS;
   4830     }
   4831     break;
   4832   }
   4833 
   4834   // Success. Mark this as a reference binding.
   4835   ICS.setStandard();
   4836   ICS.Standard.setAsIdentityConversion();
   4837   ICS.Standard.Second = SecondKind;
   4838   ICS.Standard.setFromType(FromType);
   4839   ICS.Standard.setAllToTypes(ImplicitParamType);
   4840   ICS.Standard.ReferenceBinding = true;
   4841   ICS.Standard.DirectBinding = true;
   4842   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
   4843   ICS.Standard.BindsToFunctionLvalue = false;
   4844   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
   4845   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
   4846     = (Method->getRefQualifier() == RQ_None);
   4847   return ICS;
   4848 }
   4849 
   4850 /// PerformObjectArgumentInitialization - Perform initialization of
   4851 /// the implicit object parameter for the given Method with the given
   4852 /// expression.
   4853 ExprResult
   4854 Sema::PerformObjectArgumentInitialization(Expr *From,
   4855                                           NestedNameSpecifier *Qualifier,
   4856                                           NamedDecl *FoundDecl,
   4857                                           CXXMethodDecl *Method) {
   4858   QualType FromRecordType, DestType;
   4859   QualType ImplicitParamRecordType  =
   4860     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
   4861 
   4862   Expr::Classification FromClassification;
   4863   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
   4864     FromRecordType = PT->getPointeeType();
   4865     DestType = Method->getThisType(Context);
   4866     FromClassification = Expr::Classification::makeSimpleLValue();
   4867   } else {
   4868     FromRecordType = From->getType();
   4869     DestType = ImplicitParamRecordType;
   4870     FromClassification = From->Classify(Context);
   4871   }
   4872 
   4873   // Note that we always use the true parent context when performing
   4874   // the actual argument initialization.
   4875   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
   4876       *this, From->getType(), FromClassification, Method, Method->getParent());
   4877   if (ICS.isBad()) {
   4878     if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
   4879       Qualifiers FromQs = FromRecordType.getQualifiers();
   4880       Qualifiers ToQs = DestType.getQualifiers();
   4881       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
   4882       if (CVR) {
   4883         Diag(From->getLocStart(),
   4884              diag::err_member_function_call_bad_cvr)
   4885           << Method->getDeclName() << FromRecordType << (CVR - 1)
   4886           << From->getSourceRange();
   4887         Diag(Method->getLocation(), diag::note_previous_decl)
   4888           << Method->getDeclName();
   4889         return ExprError();
   4890       }
   4891     }
   4892 
   4893     return Diag(From->getLocStart(),
   4894                 diag::err_implicit_object_parameter_init)
   4895        << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
   4896   }
   4897 
   4898   if (ICS.Standard.Second == ICK_Derived_To_Base) {
   4899     ExprResult FromRes =
   4900       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
   4901     if (FromRes.isInvalid())
   4902       return ExprError();
   4903     From = FromRes.get();
   4904   }
   4905 
   4906   if (!Context.hasSameType(From->getType(), DestType))
   4907     From = ImpCastExprToType(From, DestType, CK_NoOp,
   4908                              From->getValueKind()).get();
   4909   return From;
   4910 }
   4911 
   4912 /// TryContextuallyConvertToBool - Attempt to contextually convert the
   4913 /// expression From to bool (C++0x [conv]p3).
   4914 static ImplicitConversionSequence
   4915 TryContextuallyConvertToBool(Sema &S, Expr *From) {
   4916   return TryImplicitConversion(S, From, S.Context.BoolTy,
   4917                                /*SuppressUserConversions=*/false,
   4918                                /*AllowExplicit=*/true,
   4919                                /*InOverloadResolution=*/false,
   4920                                /*CStyle=*/false,
   4921                                /*AllowObjCWritebackConversion=*/false,
   4922                                /*AllowObjCConversionOnExplicit=*/false);
   4923 }
   4924 
   4925 /// PerformContextuallyConvertToBool - Perform a contextual conversion
   4926 /// of the expression From to bool (C++0x [conv]p3).
   4927 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
   4928   if (checkPlaceholderForOverload(*this, From))
   4929     return ExprError();
   4930 
   4931   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
   4932   if (!ICS.isBad())
   4933     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
   4934 
   4935   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
   4936     return Diag(From->getLocStart(),
   4937                 diag::err_typecheck_bool_condition)
   4938                   << From->getType() << From->getSourceRange();
   4939   return ExprError();
   4940 }
   4941 
   4942 /// Check that the specified conversion is permitted in a converted constant
   4943 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
   4944 /// is acceptable.
   4945 static bool CheckConvertedConstantConversions(Sema &S,
   4946                                               StandardConversionSequence &SCS) {
   4947   // Since we know that the target type is an integral or unscoped enumeration
   4948   // type, most conversion kinds are impossible. All possible First and Third
   4949   // conversions are fine.
   4950   switch (SCS.Second) {
   4951   case ICK_Identity:
   4952   case ICK_NoReturn_Adjustment:
   4953   case ICK_Integral_Promotion:
   4954   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
   4955     return true;
   4956 
   4957   case ICK_Boolean_Conversion:
   4958     // Conversion from an integral or unscoped enumeration type to bool is
   4959     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
   4960     // conversion, so we allow it in a converted constant expression.
   4961     //
   4962     // FIXME: Per core issue 1407, we should not allow this, but that breaks
   4963     // a lot of popular code. We should at least add a warning for this
   4964     // (non-conforming) extension.
   4965     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
   4966            SCS.getToType(2)->isBooleanType();
   4967 
   4968   case ICK_Pointer_Conversion:
   4969   case ICK_Pointer_Member:
   4970     // C++1z: null pointer conversions and null member pointer conversions are
   4971     // only permitted if the source type is std::nullptr_t.
   4972     return SCS.getFromType()->isNullPtrType();
   4973 
   4974   case ICK_Floating_Promotion:
   4975   case ICK_Complex_Promotion:
   4976   case ICK_Floating_Conversion:
   4977   case ICK_Complex_Conversion:
   4978   case ICK_Floating_Integral:
   4979   case ICK_Compatible_Conversion:
   4980   case ICK_Derived_To_Base:
   4981   case ICK_Vector_Conversion:
   4982   case ICK_Vector_Splat:
   4983   case ICK_Complex_Real:
   4984   case ICK_Block_Pointer_Conversion:
   4985   case ICK_TransparentUnionConversion:
   4986   case ICK_Writeback_Conversion:
   4987   case ICK_Zero_Event_Conversion:
   4988     return false;
   4989 
   4990   case ICK_Lvalue_To_Rvalue:
   4991   case ICK_Array_To_Pointer:
   4992   case ICK_Function_To_Pointer:
   4993     llvm_unreachable("found a first conversion kind in Second");
   4994 
   4995   case ICK_Qualification:
   4996     llvm_unreachable("found a third conversion kind in Second");
   4997 
   4998   case ICK_Num_Conversion_Kinds:
   4999     break;
   5000   }
   5001 
   5002   llvm_unreachable("unknown conversion kind");
   5003 }
   5004 
   5005 /// CheckConvertedConstantExpression - Check that the expression From is a
   5006 /// converted constant expression of type T, perform the conversion and produce
   5007 /// the converted expression, per C++11 [expr.const]p3.
   5008 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
   5009                                                    QualType T, APValue &Value,
   5010                                                    Sema::CCEKind CCE,
   5011                                                    bool RequireInt) {
   5012   assert(S.getLangOpts().CPlusPlus11 &&
   5013          "converted constant expression outside C++11");
   5014 
   5015   if (checkPlaceholderForOverload(S, From))
   5016     return ExprError();
   5017 
   5018   // C++1z [expr.const]p3:
   5019   //  A converted constant expression of type T is an expression,
   5020   //  implicitly converted to type T, where the converted
   5021   //  expression is a constant expression and the implicit conversion
   5022   //  sequence contains only [... list of conversions ...].
   5023   ImplicitConversionSequence ICS =
   5024     TryCopyInitialization(S, From, T,
   5025                           /*SuppressUserConversions=*/false,
   5026                           /*InOverloadResolution=*/false,
   5027                           /*AllowObjcWritebackConversion=*/false,
   5028                           /*AllowExplicit=*/false);
   5029   StandardConversionSequence *SCS = nullptr;
   5030   switch (ICS.getKind()) {
   5031   case ImplicitConversionSequence::StandardConversion:
   5032     SCS = &ICS.Standard;
   5033     break;
   5034   case ImplicitConversionSequence::UserDefinedConversion:
   5035     // We are converting to a non-class type, so the Before sequence
   5036     // must be trivial.
   5037     SCS = &ICS.UserDefined.After;
   5038     break;
   5039   case ImplicitConversionSequence::AmbiguousConversion:
   5040   case ImplicitConversionSequence::BadConversion:
   5041     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
   5042       return S.Diag(From->getLocStart(),
   5043                     diag::err_typecheck_converted_constant_expression)
   5044                 << From->getType() << From->getSourceRange() << T;
   5045     return ExprError();
   5046 
   5047   case ImplicitConversionSequence::EllipsisConversion:
   5048     llvm_unreachable("ellipsis conversion in converted constant expression");
   5049   }
   5050 
   5051   // Check that we would only use permitted conversions.
   5052   if (!CheckConvertedConstantConversions(S, *SCS)) {
   5053     return S.Diag(From->getLocStart(),
   5054                   diag::err_typecheck_converted_constant_expression_disallowed)
   5055              << From->getType() << From->getSourceRange() << T;
   5056   }
   5057   // [...] and where the reference binding (if any) binds directly.
   5058   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
   5059     return S.Diag(From->getLocStart(),
   5060                   diag::err_typecheck_converted_constant_expression_indirect)
   5061              << From->getType() << From->getSourceRange() << T;
   5062   }
   5063 
   5064   ExprResult Result =
   5065       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
   5066   if (Result.isInvalid())
   5067     return Result;
   5068 
   5069   // Check for a narrowing implicit conversion.
   5070   APValue PreNarrowingValue;
   5071   QualType PreNarrowingType;
   5072   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
   5073                                 PreNarrowingType)) {
   5074   case NK_Variable_Narrowing:
   5075     // Implicit conversion to a narrower type, and the value is not a constant
   5076     // expression. We'll diagnose this in a moment.
   5077   case NK_Not_Narrowing:
   5078     break;
   5079 
   5080   case NK_Constant_Narrowing:
   5081     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
   5082       << CCE << /*Constant*/1
   5083       << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
   5084     break;
   5085 
   5086   case NK_Type_Narrowing:
   5087     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
   5088       << CCE << /*Constant*/0 << From->getType() << T;
   5089     break;
   5090   }
   5091 
   5092   // Check the expression is a constant expression.
   5093   SmallVector<PartialDiagnosticAt, 8> Notes;
   5094   Expr::EvalResult Eval;
   5095   Eval.Diag = &Notes;
   5096 
   5097   if ((T->isReferenceType()
   5098            ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
   5099            : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
   5100       (RequireInt && !Eval.Val.isInt())) {
   5101     // The expression can't be folded, so we can't keep it at this position in
   5102     // the AST.
   5103     Result = ExprError();
   5104   } else {
   5105     Value = Eval.Val;
   5106 
   5107     if (Notes.empty()) {
   5108       // It's a constant expression.
   5109       return Result;
   5110     }
   5111   }
   5112 
   5113   // It's not a constant expression. Produce an appropriate diagnostic.
   5114   if (Notes.size() == 1 &&
   5115       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
   5116     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
   5117   else {
   5118     S.Diag(From->getLocStart(), diag::err_expr_not_cce)
   5119       << CCE << From->getSourceRange();
   5120     for (unsigned I = 0; I < Notes.size(); ++I)
   5121       S.Diag(Notes[I].first, Notes[I].second);
   5122   }
   5123   return ExprError();
   5124 }
   5125 
   5126 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
   5127                                                   APValue &Value, CCEKind CCE) {
   5128   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
   5129 }
   5130 
   5131 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
   5132                                                   llvm::APSInt &Value,
   5133                                                   CCEKind CCE) {
   5134   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
   5135 
   5136   APValue V;
   5137   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
   5138   if (!R.isInvalid())
   5139     Value = V.getInt();
   5140   return R;
   5141 }
   5142 
   5143 
   5144 /// dropPointerConversions - If the given standard conversion sequence
   5145 /// involves any pointer conversions, remove them.  This may change
   5146 /// the result type of the conversion sequence.
   5147 static void dropPointerConversion(StandardConversionSequence &SCS) {
   5148   if (SCS.Second == ICK_Pointer_Conversion) {
   5149     SCS.Second = ICK_Identity;
   5150     SCS.Third = ICK_Identity;
   5151     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
   5152   }
   5153 }
   5154 
   5155 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
   5156 /// convert the expression From to an Objective-C pointer type.
   5157 static ImplicitConversionSequence
   5158 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
   5159   // Do an implicit conversion to 'id'.
   5160   QualType Ty = S.Context.getObjCIdType();
   5161   ImplicitConversionSequence ICS
   5162     = TryImplicitConversion(S, From, Ty,
   5163                             // FIXME: Are these flags correct?
   5164                             /*SuppressUserConversions=*/false,
   5165                             /*AllowExplicit=*/true,
   5166                             /*InOverloadResolution=*/false,
   5167                             /*CStyle=*/false,
   5168                             /*AllowObjCWritebackConversion=*/false,
   5169                             /*AllowObjCConversionOnExplicit=*/true);
   5170 
   5171   // Strip off any final conversions to 'id'.
   5172   switch (ICS.getKind()) {
   5173   case ImplicitConversionSequence::BadConversion:
   5174   case ImplicitConversionSequence::AmbiguousConversion:
   5175   case ImplicitConversionSequence::EllipsisConversion:
   5176     break;
   5177 
   5178   case ImplicitConversionSequence::UserDefinedConversion:
   5179     dropPointerConversion(ICS.UserDefined.After);
   5180     break;
   5181 
   5182   case ImplicitConversionSequence::StandardConversion:
   5183     dropPointerConversion(ICS.Standard);
   5184     break;
   5185   }
   5186 
   5187   return ICS;
   5188 }
   5189 
   5190 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
   5191 /// conversion of the expression From to an Objective-C pointer type.
   5192 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
   5193   if (checkPlaceholderForOverload(*this, From))
   5194     return ExprError();
   5195 
   5196   QualType Ty = Context.getObjCIdType();
   5197   ImplicitConversionSequence ICS =
   5198     TryContextuallyConvertToObjCPointer(*this, From);
   5199   if (!ICS.isBad())
   5200     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
   5201   return ExprError();
   5202 }
   5203 
   5204 /// Determine whether the provided type is an integral type, or an enumeration
   5205 /// type of a permitted flavor.
   5206 bool Sema::ICEConvertDiagnoser::match(QualType T) {
   5207   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
   5208                                  : T->isIntegralOrUnscopedEnumerationType();
   5209 }
   5210 
   5211 static ExprResult
   5212 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
   5213                             Sema::ContextualImplicitConverter &Converter,
   5214                             QualType T, UnresolvedSetImpl &ViableConversions) {
   5215 
   5216   if (Converter.Suppress)
   5217     return ExprError();
   5218 
   5219   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
   5220   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
   5221     CXXConversionDecl *Conv =
   5222         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
   5223     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
   5224     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
   5225   }
   5226   return From;
   5227 }
   5228 
   5229 static bool
   5230 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
   5231                            Sema::ContextualImplicitConverter &Converter,
   5232                            QualType T, bool HadMultipleCandidates,
   5233                            UnresolvedSetImpl &ExplicitConversions) {
   5234   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
   5235     DeclAccessPair Found = ExplicitConversions[0];
   5236     CXXConversionDecl *Conversion =
   5237         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
   5238 
   5239     // The user probably meant to invoke the given explicit
   5240     // conversion; use it.
   5241     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
   5242     std::string TypeStr;
   5243     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
   5244 
   5245     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
   5246         << FixItHint::CreateInsertion(From->getLocStart(),
   5247                                       "static_cast<" + TypeStr + ">(")
   5248         << FixItHint::CreateInsertion(
   5249                SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
   5250     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
   5251 
   5252     // If we aren't in a SFINAE context, build a call to the
   5253     // explicit conversion function.
   5254     if (SemaRef.isSFINAEContext())
   5255       return true;
   5256 
   5257     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
   5258     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
   5259                                                        HadMultipleCandidates);
   5260     if (Result.isInvalid())
   5261       return true;
   5262     // Record usage of conversion in an implicit cast.
   5263     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
   5264                                     CK_UserDefinedConversion, Result.get(),
   5265                                     nullptr, Result.get()->getValueKind());
   5266   }
   5267   return false;
   5268 }
   5269 
   5270 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
   5271                              Sema::ContextualImplicitConverter &Converter,
   5272                              QualType T, bool HadMultipleCandidates,
   5273                              DeclAccessPair &Found) {
   5274   CXXConversionDecl *Conversion =
   5275       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
   5276   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
   5277 
   5278   QualType ToType = Conversion->getConversionType().getNonReferenceType();
   5279   if (!Converter.SuppressConversion) {
   5280     if (SemaRef.isSFINAEContext())
   5281       return true;
   5282 
   5283     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
   5284         << From->getSourceRange();
   5285   }
   5286 
   5287   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
   5288                                                      HadMultipleCandidates);
   5289   if (Result.isInvalid())
   5290     return true;
   5291   // Record usage of conversion in an implicit cast.
   5292   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
   5293                                   CK_UserDefinedConversion, Result.get(),
   5294                                   nullptr, Result.get()->getValueKind());
   5295   return false;
   5296 }
   5297 
   5298 static ExprResult finishContextualImplicitConversion(
   5299     Sema &SemaRef, SourceLocation Loc, Expr *From,
   5300     Sema::ContextualImplicitConverter &Converter) {
   5301   if (!Converter.match(From->getType()) && !Converter.Suppress)
   5302     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
   5303         << From->getSourceRange();
   5304 
   5305   return SemaRef.DefaultLvalueConversion(From);
   5306 }
   5307 
   5308 static void
   5309 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
   5310                                   UnresolvedSetImpl &ViableConversions,
   5311                                   OverloadCandidateSet &CandidateSet) {
   5312   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
   5313     DeclAccessPair FoundDecl = ViableConversions[I];
   5314     NamedDecl *D = FoundDecl.getDecl();
   5315     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   5316     if (isa<UsingShadowDecl>(D))
   5317       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   5318 
   5319     CXXConversionDecl *Conv;
   5320     FunctionTemplateDecl *ConvTemplate;
   5321     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
   5322       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   5323     else
   5324       Conv = cast<CXXConversionDecl>(D);
   5325 
   5326     if (ConvTemplate)
   5327       SemaRef.AddTemplateConversionCandidate(
   5328         ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
   5329         /*AllowObjCConversionOnExplicit=*/false);
   5330     else
   5331       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
   5332                                      ToType, CandidateSet,
   5333                                      /*AllowObjCConversionOnExplicit=*/false);
   5334   }
   5335 }
   5336 
   5337 /// \brief Attempt to convert the given expression to a type which is accepted
   5338 /// by the given converter.
   5339 ///
   5340 /// This routine will attempt to convert an expression of class type to a
   5341 /// type accepted by the specified converter. In C++11 and before, the class
   5342 /// must have a single non-explicit conversion function converting to a matching
   5343 /// type. In C++1y, there can be multiple such conversion functions, but only
   5344 /// one target type.
   5345 ///
   5346 /// \param Loc The source location of the construct that requires the
   5347 /// conversion.
   5348 ///
   5349 /// \param From The expression we're converting from.
   5350 ///
   5351 /// \param Converter Used to control and diagnose the conversion process.
   5352 ///
   5353 /// \returns The expression, converted to an integral or enumeration type if
   5354 /// successful.
   5355 ExprResult Sema::PerformContextualImplicitConversion(
   5356     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
   5357   // We can't perform any more checking for type-dependent expressions.
   5358   if (From->isTypeDependent())
   5359     return From;
   5360 
   5361   // Process placeholders immediately.
   5362   if (From->hasPlaceholderType()) {
   5363     ExprResult result = CheckPlaceholderExpr(From);
   5364     if (result.isInvalid())
   5365       return result;
   5366     From = result.get();
   5367   }
   5368 
   5369   // If the expression already has a matching type, we're golden.
   5370   QualType T = From->getType();
   5371   if (Converter.match(T))
   5372     return DefaultLvalueConversion(From);
   5373 
   5374   // FIXME: Check for missing '()' if T is a function type?
   5375 
   5376   // We can only perform contextual implicit conversions on objects of class
   5377   // type.
   5378   const RecordType *RecordTy = T->getAs<RecordType>();
   5379   if (!RecordTy || !getLangOpts().CPlusPlus) {
   5380     if (!Converter.Suppress)
   5381       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
   5382     return From;
   5383   }
   5384 
   5385   // We must have a complete class type.
   5386   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
   5387     ContextualImplicitConverter &Converter;
   5388     Expr *From;
   5389 
   5390     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
   5391         : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
   5392 
   5393     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   5394       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
   5395     }
   5396   } IncompleteDiagnoser(Converter, From);
   5397 
   5398   if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
   5399     return From;
   5400 
   5401   // Look for a conversion to an integral or enumeration type.
   5402   UnresolvedSet<4>
   5403       ViableConversions; // These are *potentially* viable in C++1y.
   5404   UnresolvedSet<4> ExplicitConversions;
   5405   const auto &Conversions =
   5406       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
   5407 
   5408   bool HadMultipleCandidates =
   5409       (std::distance(Conversions.begin(), Conversions.end()) > 1);
   5410 
   5411   // To check that there is only one target type, in C++1y:
   5412   QualType ToType;
   5413   bool HasUniqueTargetType = true;
   5414 
   5415   // Collect explicit or viable (potentially in C++1y) conversions.
   5416   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   5417     NamedDecl *D = (*I)->getUnderlyingDecl();
   5418     CXXConversionDecl *Conversion;
   5419     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
   5420     if (ConvTemplate) {
   5421       if (getLangOpts().CPlusPlus14)
   5422         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   5423       else
   5424         continue; // C++11 does not consider conversion operator templates(?).
   5425     } else
   5426       Conversion = cast<CXXConversionDecl>(D);
   5427 
   5428     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
   5429            "Conversion operator templates are considered potentially "
   5430            "viable in C++1y");
   5431 
   5432     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
   5433     if (Converter.match(CurToType) || ConvTemplate) {
   5434 
   5435       if (Conversion->isExplicit()) {
   5436         // FIXME: For C++1y, do we need this restriction?
   5437         // cf. diagnoseNoViableConversion()
   5438         if (!ConvTemplate)
   5439           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
   5440       } else {
   5441         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
   5442           if (ToType.isNull())
   5443             ToType = CurToType.getUnqualifiedType();
   5444           else if (HasUniqueTargetType &&
   5445                    (CurToType.getUnqualifiedType() != ToType))
   5446             HasUniqueTargetType = false;
   5447         }
   5448         ViableConversions.addDecl(I.getDecl(), I.getAccess());
   5449       }
   5450     }
   5451   }
   5452 
   5453   if (getLangOpts().CPlusPlus14) {
   5454     // C++1y [conv]p6:
   5455     // ... An expression e of class type E appearing in such a context
   5456     // is said to be contextually implicitly converted to a specified
   5457     // type T and is well-formed if and only if e can be implicitly
   5458     // converted to a type T that is determined as follows: E is searched
   5459     // for conversion functions whose return type is cv T or reference to
   5460     // cv T such that T is allowed by the context. There shall be
   5461     // exactly one such T.
   5462 
   5463     // If no unique T is found:
   5464     if (ToType.isNull()) {
   5465       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5466                                      HadMultipleCandidates,
   5467                                      ExplicitConversions))
   5468         return ExprError();
   5469       return finishContextualImplicitConversion(*this, Loc, From, Converter);
   5470     }
   5471 
   5472     // If more than one unique Ts are found:
   5473     if (!HasUniqueTargetType)
   5474       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5475                                          ViableConversions);
   5476 
   5477     // If one unique T is found:
   5478     // First, build a candidate set from the previously recorded
   5479     // potentially viable conversions.
   5480     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
   5481     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
   5482                                       CandidateSet);
   5483 
   5484     // Then, perform overload resolution over the candidate set.
   5485     OverloadCandidateSet::iterator Best;
   5486     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
   5487     case OR_Success: {
   5488       // Apply this conversion.
   5489       DeclAccessPair Found =
   5490           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
   5491       if (recordConversion(*this, Loc, From, Converter, T,
   5492                            HadMultipleCandidates, Found))
   5493         return ExprError();
   5494       break;
   5495     }
   5496     case OR_Ambiguous:
   5497       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5498                                          ViableConversions);
   5499     case OR_No_Viable_Function:
   5500       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5501                                      HadMultipleCandidates,
   5502                                      ExplicitConversions))
   5503         return ExprError();
   5504     // fall through 'OR_Deleted' case.
   5505     case OR_Deleted:
   5506       // We'll complain below about a non-integral condition type.
   5507       break;
   5508     }
   5509   } else {
   5510     switch (ViableConversions.size()) {
   5511     case 0: {
   5512       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5513                                      HadMultipleCandidates,
   5514                                      ExplicitConversions))
   5515         return ExprError();
   5516 
   5517       // We'll complain below about a non-integral condition type.
   5518       break;
   5519     }
   5520     case 1: {
   5521       // Apply this conversion.
   5522       DeclAccessPair Found = ViableConversions[0];
   5523       if (recordConversion(*this, Loc, From, Converter, T,
   5524                            HadMultipleCandidates, Found))
   5525         return ExprError();
   5526       break;
   5527     }
   5528     default:
   5529       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5530                                          ViableConversions);
   5531     }
   5532   }
   5533 
   5534   return finishContextualImplicitConversion(*this, Loc, From, Converter);
   5535 }
   5536 
   5537 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
   5538 /// an acceptable non-member overloaded operator for a call whose
   5539 /// arguments have types T1 (and, if non-empty, T2). This routine
   5540 /// implements the check in C++ [over.match.oper]p3b2 concerning
   5541 /// enumeration types.
   5542 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
   5543                                                    FunctionDecl *Fn,
   5544                                                    ArrayRef<Expr *> Args) {
   5545   QualType T1 = Args[0]->getType();
   5546   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
   5547 
   5548   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
   5549     return true;
   5550 
   5551   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
   5552     return true;
   5553 
   5554   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
   5555   if (Proto->getNumParams() < 1)
   5556     return false;
   5557 
   5558   if (T1->isEnumeralType()) {
   5559     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
   5560     if (Context.hasSameUnqualifiedType(T1, ArgType))
   5561       return true;
   5562   }
   5563 
   5564   if (Proto->getNumParams() < 2)
   5565     return false;
   5566 
   5567   if (!T2.isNull() && T2->isEnumeralType()) {
   5568     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
   5569     if (Context.hasSameUnqualifiedType(T2, ArgType))
   5570       return true;
   5571   }
   5572 
   5573   return false;
   5574 }
   5575 
   5576 /// AddOverloadCandidate - Adds the given function to the set of
   5577 /// candidate functions, using the given function call arguments.  If
   5578 /// @p SuppressUserConversions, then don't allow user-defined
   5579 /// conversions via constructors or conversion operators.
   5580 ///
   5581 /// \param PartialOverloading true if we are performing "partial" overloading
   5582 /// based on an incomplete set of function arguments. This feature is used by
   5583 /// code completion.
   5584 void
   5585 Sema::AddOverloadCandidate(FunctionDecl *Function,
   5586                            DeclAccessPair FoundDecl,
   5587                            ArrayRef<Expr *> Args,
   5588                            OverloadCandidateSet &CandidateSet,
   5589                            bool SuppressUserConversions,
   5590                            bool PartialOverloading,
   5591                            bool AllowExplicit) {
   5592   const FunctionProtoType *Proto
   5593     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
   5594   assert(Proto && "Functions without a prototype cannot be overloaded");
   5595   assert(!Function->getDescribedFunctionTemplate() &&
   5596          "Use AddTemplateOverloadCandidate for function templates");
   5597 
   5598   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   5599     if (!isa<CXXConstructorDecl>(Method)) {
   5600       // If we get here, it's because we're calling a member function
   5601       // that is named without a member access expression (e.g.,
   5602       // "this->f") that was either written explicitly or created
   5603       // implicitly. This can happen with a qualified call to a member
   5604       // function, e.g., X::f(). We use an empty type for the implied
   5605       // object argument (C++ [over.call.func]p3), and the acting context
   5606       // is irrelevant.
   5607       AddMethodCandidate(Method, FoundDecl, Method->getParent(),
   5608                          QualType(), Expr::Classification::makeSimpleLValue(),
   5609                          Args, CandidateSet, SuppressUserConversions,
   5610                          PartialOverloading);
   5611       return;
   5612     }
   5613     // We treat a constructor like a non-member function, since its object
   5614     // argument doesn't participate in overload resolution.
   5615   }
   5616 
   5617   if (!CandidateSet.isNewCandidate(Function))
   5618     return;
   5619 
   5620   // C++ [over.match.oper]p3:
   5621   //   if no operand has a class type, only those non-member functions in the
   5622   //   lookup set that have a first parameter of type T1 or "reference to
   5623   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
   5624   //   is a right operand) a second parameter of type T2 or "reference to
   5625   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
   5626   //   candidate functions.
   5627   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
   5628       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
   5629     return;
   5630 
   5631   // C++11 [class.copy]p11: [DR1402]
   5632   //   A defaulted move constructor that is defined as deleted is ignored by
   5633   //   overload resolution.
   5634   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
   5635   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
   5636       Constructor->isMoveConstructor())
   5637     return;
   5638 
   5639   // Overload resolution is always an unevaluated context.
   5640   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   5641 
   5642   // Add this candidate
   5643   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
   5644   Candidate.FoundDecl = FoundDecl;
   5645   Candidate.Function = Function;
   5646   Candidate.Viable = true;
   5647   Candidate.IsSurrogate = false;
   5648   Candidate.IgnoreObjectArgument = false;
   5649   Candidate.ExplicitCallArguments = Args.size();
   5650 
   5651   if (Constructor) {
   5652     // C++ [class.copy]p3:
   5653     //   A member function template is never instantiated to perform the copy
   5654     //   of a class object to an object of its class type.
   5655     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
   5656     if (Args.size() == 1 &&
   5657         Constructor->isSpecializationCopyingObject() &&
   5658         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
   5659          IsDerivedFrom(Args[0]->getType(), ClassType))) {
   5660       Candidate.Viable = false;
   5661       Candidate.FailureKind = ovl_fail_illegal_constructor;
   5662       return;
   5663     }
   5664   }
   5665 
   5666   unsigned NumParams = Proto->getNumParams();
   5667 
   5668   // (C++ 13.3.2p2): A candidate function having fewer than m
   5669   // parameters is viable only if it has an ellipsis in its parameter
   5670   // list (8.3.5).
   5671   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
   5672       !Proto->isVariadic()) {
   5673     Candidate.Viable = false;
   5674     Candidate.FailureKind = ovl_fail_too_many_arguments;
   5675     return;
   5676   }
   5677 
   5678   // (C++ 13.3.2p2): A candidate function having more than m parameters
   5679   // is viable only if the (m+1)st parameter has a default argument
   5680   // (8.3.6). For the purposes of overload resolution, the
   5681   // parameter list is truncated on the right, so that there are
   5682   // exactly m parameters.
   5683   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
   5684   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
   5685     // Not enough arguments.
   5686     Candidate.Viable = false;
   5687     Candidate.FailureKind = ovl_fail_too_few_arguments;
   5688     return;
   5689   }
   5690 
   5691   // (CUDA B.1): Check for invalid calls between targets.
   5692   if (getLangOpts().CUDA)
   5693     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   5694       // Skip the check for callers that are implicit members, because in this
   5695       // case we may not yet know what the member's target is; the target is
   5696       // inferred for the member automatically, based on the bases and fields of
   5697       // the class.
   5698       if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
   5699         Candidate.Viable = false;
   5700         Candidate.FailureKind = ovl_fail_bad_target;
   5701         return;
   5702       }
   5703 
   5704   // Determine the implicit conversion sequences for each of the
   5705   // arguments.
   5706   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
   5707     if (ArgIdx < NumParams) {
   5708       // (C++ 13.3.2p3): for F to be a viable function, there shall
   5709       // exist for each argument an implicit conversion sequence
   5710       // (13.3.3.1) that converts that argument to the corresponding
   5711       // parameter of F.
   5712       QualType ParamType = Proto->getParamType(ArgIdx);
   5713       Candidate.Conversions[ArgIdx]
   5714         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   5715                                 SuppressUserConversions,
   5716                                 /*InOverloadResolution=*/true,
   5717                                 /*AllowObjCWritebackConversion=*/
   5718                                   getLangOpts().ObjCAutoRefCount,
   5719                                 AllowExplicit);
   5720       if (Candidate.Conversions[ArgIdx].isBad()) {
   5721         Candidate.Viable = false;
   5722         Candidate.FailureKind = ovl_fail_bad_conversion;
   5723         return;
   5724       }
   5725     } else {
   5726       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   5727       // argument for which there is no corresponding parameter is
   5728       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
   5729       Candidate.Conversions[ArgIdx].setEllipsis();
   5730     }
   5731   }
   5732 
   5733   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
   5734     Candidate.Viable = false;
   5735     Candidate.FailureKind = ovl_fail_enable_if;
   5736     Candidate.DeductionFailure.Data = FailedAttr;
   5737     return;
   5738   }
   5739 }
   5740 
   5741 ObjCMethodDecl *Sema::SelectBestMethod(Selector Sel, MultiExprArg Args,
   5742                                        bool IsInstance) {
   5743   SmallVector<ObjCMethodDecl*, 4> Methods;
   5744   if (!CollectMultipleMethodsInGlobalPool(Sel, Methods, IsInstance))
   5745     return nullptr;
   5746 
   5747   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
   5748     bool Match = true;
   5749     ObjCMethodDecl *Method = Methods[b];
   5750     unsigned NumNamedArgs = Sel.getNumArgs();
   5751     // Method might have more arguments than selector indicates. This is due
   5752     // to addition of c-style arguments in method.
   5753     if (Method->param_size() > NumNamedArgs)
   5754       NumNamedArgs = Method->param_size();
   5755     if (Args.size() < NumNamedArgs)
   5756       continue;
   5757 
   5758     for (unsigned i = 0; i < NumNamedArgs; i++) {
   5759       // We can't do any type-checking on a type-dependent argument.
   5760       if (Args[i]->isTypeDependent()) {
   5761         Match = false;
   5762         break;
   5763       }
   5764 
   5765       ParmVarDecl *param = Method->parameters()[i];
   5766       Expr *argExpr = Args[i];
   5767       assert(argExpr && "SelectBestMethod(): missing expression");
   5768 
   5769       // Strip the unbridged-cast placeholder expression off unless it's
   5770       // a consumed argument.
   5771       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
   5772           !param->hasAttr<CFConsumedAttr>())
   5773         argExpr = stripARCUnbridgedCast(argExpr);
   5774 
   5775       // If the parameter is __unknown_anytype, move on to the next method.
   5776       if (param->getType() == Context.UnknownAnyTy) {
   5777         Match = false;
   5778         break;
   5779       }
   5780 
   5781       ImplicitConversionSequence ConversionState
   5782         = TryCopyInitialization(*this, argExpr, param->getType(),
   5783                                 /*SuppressUserConversions*/false,
   5784                                 /*InOverloadResolution=*/true,
   5785                                 /*AllowObjCWritebackConversion=*/
   5786                                 getLangOpts().ObjCAutoRefCount,
   5787                                 /*AllowExplicit*/false);
   5788         if (ConversionState.isBad()) {
   5789           Match = false;
   5790           break;
   5791         }
   5792     }
   5793     // Promote additional arguments to variadic methods.
   5794     if (Match && Method->isVariadic()) {
   5795       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
   5796         if (Args[i]->isTypeDependent()) {
   5797           Match = false;
   5798           break;
   5799         }
   5800         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
   5801                                                           nullptr);
   5802         if (Arg.isInvalid()) {
   5803           Match = false;
   5804           break;
   5805         }
   5806       }
   5807     } else {
   5808       // Check for extra arguments to non-variadic methods.
   5809       if (Args.size() != NumNamedArgs)
   5810         Match = false;
   5811       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
   5812         // Special case when selectors have no argument. In this case, select
   5813         // one with the most general result type of 'id'.
   5814         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
   5815           QualType ReturnT = Methods[b]->getReturnType();
   5816           if (ReturnT->isObjCIdType())
   5817             return Methods[b];
   5818         }
   5819       }
   5820     }
   5821 
   5822     if (Match)
   5823       return Method;
   5824   }
   5825   return nullptr;
   5826 }
   5827 
   5828 static bool IsNotEnableIfAttr(Attr *A) { return !isa<EnableIfAttr>(A); }
   5829 
   5830 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
   5831                                   bool MissingImplicitThis) {
   5832   // FIXME: specific_attr_iterator<EnableIfAttr> iterates in reverse order, but
   5833   // we need to find the first failing one.
   5834   if (!Function->hasAttrs())
   5835     return nullptr;
   5836   AttrVec Attrs = Function->getAttrs();
   5837   AttrVec::iterator E = std::remove_if(Attrs.begin(), Attrs.end(),
   5838                                        IsNotEnableIfAttr);
   5839   if (Attrs.begin() == E)
   5840     return nullptr;
   5841   std::reverse(Attrs.begin(), E);
   5842 
   5843   SFINAETrap Trap(*this);
   5844 
   5845   // Convert the arguments.
   5846   SmallVector<Expr *, 16> ConvertedArgs;
   5847   bool InitializationFailed = false;
   5848   bool ContainsValueDependentExpr = false;
   5849   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   5850     if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
   5851         !cast<CXXMethodDecl>(Function)->isStatic() &&
   5852         !isa<CXXConstructorDecl>(Function)) {
   5853       CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
   5854       ExprResult R =
   5855         PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   5856                                             Method, Method);
   5857       if (R.isInvalid()) {
   5858         InitializationFailed = true;
   5859         break;
   5860       }
   5861       ContainsValueDependentExpr |= R.get()->isValueDependent();
   5862       ConvertedArgs.push_back(R.get());
   5863     } else {
   5864       ExprResult R =
   5865         PerformCopyInitialization(InitializedEntity::InitializeParameter(
   5866                                                 Context,
   5867                                                 Function->getParamDecl(i)),
   5868                                   SourceLocation(),
   5869                                   Args[i]);
   5870       if (R.isInvalid()) {
   5871         InitializationFailed = true;
   5872         break;
   5873       }
   5874       ContainsValueDependentExpr |= R.get()->isValueDependent();
   5875       ConvertedArgs.push_back(R.get());
   5876     }
   5877   }
   5878 
   5879   if (InitializationFailed || Trap.hasErrorOccurred())
   5880     return cast<EnableIfAttr>(Attrs[0]);
   5881 
   5882   for (AttrVec::iterator I = Attrs.begin(); I != E; ++I) {
   5883     APValue Result;
   5884     EnableIfAttr *EIA = cast<EnableIfAttr>(*I);
   5885     if (EIA->getCond()->isValueDependent()) {
   5886       // Don't even try now, we'll examine it after instantiation.
   5887       continue;
   5888     }
   5889 
   5890     if (!EIA->getCond()->EvaluateWithSubstitution(
   5891             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) {
   5892       if (!ContainsValueDependentExpr)
   5893         return EIA;
   5894     } else if (!Result.isInt() || !Result.getInt().getBoolValue()) {
   5895       return EIA;
   5896     }
   5897   }
   5898   return nullptr;
   5899 }
   5900 
   5901 /// \brief Add all of the function declarations in the given function set to
   5902 /// the overload candidate set.
   5903 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
   5904                                  ArrayRef<Expr *> Args,
   5905                                  OverloadCandidateSet& CandidateSet,
   5906                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   5907                                  bool SuppressUserConversions,
   5908                                  bool PartialOverloading) {
   5909   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
   5910     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
   5911     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   5912       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
   5913         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
   5914                            cast<CXXMethodDecl>(FD)->getParent(),
   5915                            Args[0]->getType(), Args[0]->Classify(Context),
   5916                            Args.slice(1), CandidateSet,
   5917                            SuppressUserConversions, PartialOverloading);
   5918       else
   5919         AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
   5920                              SuppressUserConversions, PartialOverloading);
   5921     } else {
   5922       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
   5923       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
   5924           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
   5925         AddMethodTemplateCandidate(FunTmpl, F.getPair(),
   5926                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
   5927                                    ExplicitTemplateArgs,
   5928                                    Args[0]->getType(),
   5929                                    Args[0]->Classify(Context), Args.slice(1),
   5930                                    CandidateSet, SuppressUserConversions,
   5931                                    PartialOverloading);
   5932       else
   5933         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
   5934                                      ExplicitTemplateArgs, Args,
   5935                                      CandidateSet, SuppressUserConversions,
   5936                                      PartialOverloading);
   5937     }
   5938   }
   5939 }
   5940 
   5941 /// AddMethodCandidate - Adds a named decl (which is some kind of
   5942 /// method) as a method candidate to the given overload set.
   5943 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
   5944                               QualType ObjectType,
   5945                               Expr::Classification ObjectClassification,
   5946                               ArrayRef<Expr *> Args,
   5947                               OverloadCandidateSet& CandidateSet,
   5948                               bool SuppressUserConversions) {
   5949   NamedDecl *Decl = FoundDecl.getDecl();
   5950   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
   5951 
   5952   if (isa<UsingShadowDecl>(Decl))
   5953     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
   5954 
   5955   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
   5956     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
   5957            "Expected a member function template");
   5958     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
   5959                                /*ExplicitArgs*/ nullptr,
   5960                                ObjectType, ObjectClassification,
   5961                                Args, CandidateSet,
   5962                                SuppressUserConversions);
   5963   } else {
   5964     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
   5965                        ObjectType, ObjectClassification,
   5966                        Args,
   5967                        CandidateSet, SuppressUserConversions);
   5968   }
   5969 }
   5970 
   5971 /// AddMethodCandidate - Adds the given C++ member function to the set
   5972 /// of candidate functions, using the given function call arguments
   5973 /// and the object argument (@c Object). For example, in a call
   5974 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
   5975 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
   5976 /// allow user-defined conversions via constructors or conversion
   5977 /// operators.
   5978 void
   5979 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
   5980                          CXXRecordDecl *ActingContext, QualType ObjectType,
   5981                          Expr::Classification ObjectClassification,
   5982                          ArrayRef<Expr *> Args,
   5983                          OverloadCandidateSet &CandidateSet,
   5984                          bool SuppressUserConversions,
   5985                          bool PartialOverloading) {
   5986   const FunctionProtoType *Proto
   5987     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
   5988   assert(Proto && "Methods without a prototype cannot be overloaded");
   5989   assert(!isa<CXXConstructorDecl>(Method) &&
   5990          "Use AddOverloadCandidate for constructors");
   5991 
   5992   if (!CandidateSet.isNewCandidate(Method))
   5993     return;
   5994 
   5995   // C++11 [class.copy]p23: [DR1402]
   5996   //   A defaulted move assignment operator that is defined as deleted is
   5997   //   ignored by overload resolution.
   5998   if (Method->isDefaulted() && Method->isDeleted() &&
   5999       Method->isMoveAssignmentOperator())
   6000     return;
   6001 
   6002   // Overload resolution is always an unevaluated context.
   6003   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6004 
   6005   // Add this candidate
   6006   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
   6007   Candidate.FoundDecl = FoundDecl;
   6008   Candidate.Function = Method;
   6009   Candidate.IsSurrogate = false;
   6010   Candidate.IgnoreObjectArgument = false;
   6011   Candidate.ExplicitCallArguments = Args.size();
   6012 
   6013   unsigned NumParams = Proto->getNumParams();
   6014 
   6015   // (C++ 13.3.2p2): A candidate function having fewer than m
   6016   // parameters is viable only if it has an ellipsis in its parameter
   6017   // list (8.3.5).
   6018   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
   6019       !Proto->isVariadic()) {
   6020     Candidate.Viable = false;
   6021     Candidate.FailureKind = ovl_fail_too_many_arguments;
   6022     return;
   6023   }
   6024 
   6025   // (C++ 13.3.2p2): A candidate function having more than m parameters
   6026   // is viable only if the (m+1)st parameter has a default argument
   6027   // (8.3.6). For the purposes of overload resolution, the
   6028   // parameter list is truncated on the right, so that there are
   6029   // exactly m parameters.
   6030   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
   6031   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
   6032     // Not enough arguments.
   6033     Candidate.Viable = false;
   6034     Candidate.FailureKind = ovl_fail_too_few_arguments;
   6035     return;
   6036   }
   6037 
   6038   Candidate.Viable = true;
   6039 
   6040   if (Method->isStatic() || ObjectType.isNull())
   6041     // The implicit object argument is ignored.
   6042     Candidate.IgnoreObjectArgument = true;
   6043   else {
   6044     // Determine the implicit conversion sequence for the object
   6045     // parameter.
   6046     Candidate.Conversions[0]
   6047       = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
   6048                                         Method, ActingContext);
   6049     if (Candidate.Conversions[0].isBad()) {
   6050       Candidate.Viable = false;
   6051       Candidate.FailureKind = ovl_fail_bad_conversion;
   6052       return;
   6053     }
   6054   }
   6055 
   6056   // (CUDA B.1): Check for invalid calls between targets.
   6057   if (getLangOpts().CUDA)
   6058     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   6059       if (CheckCUDATarget(Caller, Method)) {
   6060         Candidate.Viable = false;
   6061         Candidate.FailureKind = ovl_fail_bad_target;
   6062         return;
   6063       }
   6064 
   6065   // Determine the implicit conversion sequences for each of the
   6066   // arguments.
   6067   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
   6068     if (ArgIdx < NumParams) {
   6069       // (C++ 13.3.2p3): for F to be a viable function, there shall
   6070       // exist for each argument an implicit conversion sequence
   6071       // (13.3.3.1) that converts that argument to the corresponding
   6072       // parameter of F.
   6073       QualType ParamType = Proto->getParamType(ArgIdx);
   6074       Candidate.Conversions[ArgIdx + 1]
   6075         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   6076                                 SuppressUserConversions,
   6077                                 /*InOverloadResolution=*/true,
   6078                                 /*AllowObjCWritebackConversion=*/
   6079                                   getLangOpts().ObjCAutoRefCount);
   6080       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
   6081         Candidate.Viable = false;
   6082         Candidate.FailureKind = ovl_fail_bad_conversion;
   6083         return;
   6084       }
   6085     } else {
   6086       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   6087       // argument for which there is no corresponding parameter is
   6088       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
   6089       Candidate.Conversions[ArgIdx + 1].setEllipsis();
   6090     }
   6091   }
   6092 
   6093   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
   6094     Candidate.Viable = false;
   6095     Candidate.FailureKind = ovl_fail_enable_if;
   6096     Candidate.DeductionFailure.Data = FailedAttr;
   6097     return;
   6098   }
   6099 }
   6100 
   6101 /// \brief Add a C++ member function template as a candidate to the candidate
   6102 /// set, using template argument deduction to produce an appropriate member
   6103 /// function template specialization.
   6104 void
   6105 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
   6106                                  DeclAccessPair FoundDecl,
   6107                                  CXXRecordDecl *ActingContext,
   6108                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   6109                                  QualType ObjectType,
   6110                                  Expr::Classification ObjectClassification,
   6111                                  ArrayRef<Expr *> Args,
   6112                                  OverloadCandidateSet& CandidateSet,
   6113                                  bool SuppressUserConversions,
   6114                                  bool PartialOverloading) {
   6115   if (!CandidateSet.isNewCandidate(MethodTmpl))
   6116     return;
   6117 
   6118   // C++ [over.match.funcs]p7:
   6119   //   In each case where a candidate is a function template, candidate
   6120   //   function template specializations are generated using template argument
   6121   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
   6122   //   candidate functions in the usual way.113) A given name can refer to one
   6123   //   or more function templates and also to a set of overloaded non-template
   6124   //   functions. In such a case, the candidate functions generated from each
   6125   //   function template are combined with the set of non-template candidate
   6126   //   functions.
   6127   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6128   FunctionDecl *Specialization = nullptr;
   6129   if (TemplateDeductionResult Result
   6130       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
   6131                                 Specialization, Info, PartialOverloading)) {
   6132     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6133     Candidate.FoundDecl = FoundDecl;
   6134     Candidate.Function = MethodTmpl->getTemplatedDecl();
   6135     Candidate.Viable = false;
   6136     Candidate.FailureKind = ovl_fail_bad_deduction;
   6137     Candidate.IsSurrogate = false;
   6138     Candidate.IgnoreObjectArgument = false;
   6139     Candidate.ExplicitCallArguments = Args.size();
   6140     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6141                                                           Info);
   6142     return;
   6143   }
   6144 
   6145   // Add the function template specialization produced by template argument
   6146   // deduction as a candidate.
   6147   assert(Specialization && "Missing member function template specialization?");
   6148   assert(isa<CXXMethodDecl>(Specialization) &&
   6149          "Specialization is not a member function?");
   6150   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
   6151                      ActingContext, ObjectType, ObjectClassification, Args,
   6152                      CandidateSet, SuppressUserConversions, PartialOverloading);
   6153 }
   6154 
   6155 /// \brief Add a C++ function template specialization as a candidate
   6156 /// in the candidate set, using template argument deduction to produce
   6157 /// an appropriate function template specialization.
   6158 void
   6159 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
   6160                                    DeclAccessPair FoundDecl,
   6161                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   6162                                    ArrayRef<Expr *> Args,
   6163                                    OverloadCandidateSet& CandidateSet,
   6164                                    bool SuppressUserConversions,
   6165                                    bool PartialOverloading) {
   6166   if (!CandidateSet.isNewCandidate(FunctionTemplate))
   6167     return;
   6168 
   6169   // C++ [over.match.funcs]p7:
   6170   //   In each case where a candidate is a function template, candidate
   6171   //   function template specializations are generated using template argument
   6172   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
   6173   //   candidate functions in the usual way.113) A given name can refer to one
   6174   //   or more function templates and also to a set of overloaded non-template
   6175   //   functions. In such a case, the candidate functions generated from each
   6176   //   function template are combined with the set of non-template candidate
   6177   //   functions.
   6178   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6179   FunctionDecl *Specialization = nullptr;
   6180   if (TemplateDeductionResult Result
   6181         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
   6182                                   Specialization, Info, PartialOverloading)) {
   6183     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6184     Candidate.FoundDecl = FoundDecl;
   6185     Candidate.Function = FunctionTemplate->getTemplatedDecl();
   6186     Candidate.Viable = false;
   6187     Candidate.FailureKind = ovl_fail_bad_deduction;
   6188     Candidate.IsSurrogate = false;
   6189     Candidate.IgnoreObjectArgument = false;
   6190     Candidate.ExplicitCallArguments = Args.size();
   6191     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6192                                                           Info);
   6193     return;
   6194   }
   6195 
   6196   // Add the function template specialization produced by template argument
   6197   // deduction as a candidate.
   6198   assert(Specialization && "Missing function template specialization?");
   6199   AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
   6200                        SuppressUserConversions, PartialOverloading);
   6201 }
   6202 
   6203 /// Determine whether this is an allowable conversion from the result
   6204 /// of an explicit conversion operator to the expected type, per C++
   6205 /// [over.match.conv]p1 and [over.match.ref]p1.
   6206 ///
   6207 /// \param ConvType The return type of the conversion function.
   6208 ///
   6209 /// \param ToType The type we are converting to.
   6210 ///
   6211 /// \param AllowObjCPointerConversion Allow a conversion from one
   6212 /// Objective-C pointer to another.
   6213 ///
   6214 /// \returns true if the conversion is allowable, false otherwise.
   6215 static bool isAllowableExplicitConversion(Sema &S,
   6216                                           QualType ConvType, QualType ToType,
   6217                                           bool AllowObjCPointerConversion) {
   6218   QualType ToNonRefType = ToType.getNonReferenceType();
   6219 
   6220   // Easy case: the types are the same.
   6221   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
   6222     return true;
   6223 
   6224   // Allow qualification conversions.
   6225   bool ObjCLifetimeConversion;
   6226   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
   6227                                   ObjCLifetimeConversion))
   6228     return true;
   6229 
   6230   // If we're not allowed to consider Objective-C pointer conversions,
   6231   // we're done.
   6232   if (!AllowObjCPointerConversion)
   6233     return false;
   6234 
   6235   // Is this an Objective-C pointer conversion?
   6236   bool IncompatibleObjC = false;
   6237   QualType ConvertedType;
   6238   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
   6239                                    IncompatibleObjC);
   6240 }
   6241 
   6242 /// AddConversionCandidate - Add a C++ conversion function as a
   6243 /// candidate in the candidate set (C++ [over.match.conv],
   6244 /// C++ [over.match.copy]). From is the expression we're converting from,
   6245 /// and ToType is the type that we're eventually trying to convert to
   6246 /// (which may or may not be the same type as the type that the
   6247 /// conversion function produces).
   6248 void
   6249 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
   6250                              DeclAccessPair FoundDecl,
   6251                              CXXRecordDecl *ActingContext,
   6252                              Expr *From, QualType ToType,
   6253                              OverloadCandidateSet& CandidateSet,
   6254                              bool AllowObjCConversionOnExplicit) {
   6255   assert(!Conversion->getDescribedFunctionTemplate() &&
   6256          "Conversion function templates use AddTemplateConversionCandidate");
   6257   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
   6258   if (!CandidateSet.isNewCandidate(Conversion))
   6259     return;
   6260 
   6261   // If the conversion function has an undeduced return type, trigger its
   6262   // deduction now.
   6263   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
   6264     if (DeduceReturnType(Conversion, From->getExprLoc()))
   6265       return;
   6266     ConvType = Conversion->getConversionType().getNonReferenceType();
   6267   }
   6268 
   6269   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
   6270   // operator is only a candidate if its return type is the target type or
   6271   // can be converted to the target type with a qualification conversion.
   6272   if (Conversion->isExplicit() &&
   6273       !isAllowableExplicitConversion(*this, ConvType, ToType,
   6274                                      AllowObjCConversionOnExplicit))
   6275     return;
   6276 
   6277   // Overload resolution is always an unevaluated context.
   6278   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6279 
   6280   // Add this candidate
   6281   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
   6282   Candidate.FoundDecl = FoundDecl;
   6283   Candidate.Function = Conversion;
   6284   Candidate.IsSurrogate = false;
   6285   Candidate.IgnoreObjectArgument = false;
   6286   Candidate.FinalConversion.setAsIdentityConversion();
   6287   Candidate.FinalConversion.setFromType(ConvType);
   6288   Candidate.FinalConversion.setAllToTypes(ToType);
   6289   Candidate.Viable = true;
   6290   Candidate.ExplicitCallArguments = 1;
   6291 
   6292   // C++ [over.match.funcs]p4:
   6293   //   For conversion functions, the function is considered to be a member of
   6294   //   the class of the implicit implied object argument for the purpose of
   6295   //   defining the type of the implicit object parameter.
   6296   //
   6297   // Determine the implicit conversion sequence for the implicit
   6298   // object parameter.
   6299   QualType ImplicitParamType = From->getType();
   6300   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
   6301     ImplicitParamType = FromPtrType->getPointeeType();
   6302   CXXRecordDecl *ConversionContext
   6303     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
   6304 
   6305   Candidate.Conversions[0]
   6306     = TryObjectArgumentInitialization(*this, From->getType(),
   6307                                       From->Classify(Context),
   6308                                       Conversion, ConversionContext);
   6309 
   6310   if (Candidate.Conversions[0].isBad()) {
   6311     Candidate.Viable = false;
   6312     Candidate.FailureKind = ovl_fail_bad_conversion;
   6313     return;
   6314   }
   6315 
   6316   // We won't go through a user-defined type conversion function to convert a
   6317   // derived to base as such conversions are given Conversion Rank. They only
   6318   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
   6319   QualType FromCanon
   6320     = Context.getCanonicalType(From->getType().getUnqualifiedType());
   6321   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
   6322   if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
   6323     Candidate.Viable = false;
   6324     Candidate.FailureKind = ovl_fail_trivial_conversion;
   6325     return;
   6326   }
   6327 
   6328   // To determine what the conversion from the result of calling the
   6329   // conversion function to the type we're eventually trying to
   6330   // convert to (ToType), we need to synthesize a call to the
   6331   // conversion function and attempt copy initialization from it. This
   6332   // makes sure that we get the right semantics with respect to
   6333   // lvalues/rvalues and the type. Fortunately, we can allocate this
   6334   // call on the stack and we don't need its arguments to be
   6335   // well-formed.
   6336   DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
   6337                             VK_LValue, From->getLocStart());
   6338   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
   6339                                 Context.getPointerType(Conversion->getType()),
   6340                                 CK_FunctionToPointerDecay,
   6341                                 &ConversionRef, VK_RValue);
   6342 
   6343   QualType ConversionType = Conversion->getConversionType();
   6344   if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
   6345     Candidate.Viable = false;
   6346     Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6347     return;
   6348   }
   6349 
   6350   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
   6351 
   6352   // Note that it is safe to allocate CallExpr on the stack here because
   6353   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
   6354   // allocator).
   6355   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
   6356   CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
   6357                 From->getLocStart());
   6358   ImplicitConversionSequence ICS =
   6359     TryCopyInitialization(*this, &Call, ToType,
   6360                           /*SuppressUserConversions=*/true,
   6361                           /*InOverloadResolution=*/false,
   6362                           /*AllowObjCWritebackConversion=*/false);
   6363 
   6364   switch (ICS.getKind()) {
   6365   case ImplicitConversionSequence::StandardConversion:
   6366     Candidate.FinalConversion = ICS.Standard;
   6367 
   6368     // C++ [over.ics.user]p3:
   6369     //   If the user-defined conversion is specified by a specialization of a
   6370     //   conversion function template, the second standard conversion sequence
   6371     //   shall have exact match rank.
   6372     if (Conversion->getPrimaryTemplate() &&
   6373         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
   6374       Candidate.Viable = false;
   6375       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
   6376       return;
   6377     }
   6378 
   6379     // C++0x [dcl.init.ref]p5:
   6380     //    In the second case, if the reference is an rvalue reference and
   6381     //    the second standard conversion sequence of the user-defined
   6382     //    conversion sequence includes an lvalue-to-rvalue conversion, the
   6383     //    program is ill-formed.
   6384     if (ToType->isRValueReferenceType() &&
   6385         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
   6386       Candidate.Viable = false;
   6387       Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6388       return;
   6389     }
   6390     break;
   6391 
   6392   case ImplicitConversionSequence::BadConversion:
   6393     Candidate.Viable = false;
   6394     Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6395     return;
   6396 
   6397   default:
   6398     llvm_unreachable(
   6399            "Can only end up with a standard conversion sequence or failure");
   6400   }
   6401 
   6402   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
   6403     Candidate.Viable = false;
   6404     Candidate.FailureKind = ovl_fail_enable_if;
   6405     Candidate.DeductionFailure.Data = FailedAttr;
   6406     return;
   6407   }
   6408 }
   6409 
   6410 /// \brief Adds a conversion function template specialization
   6411 /// candidate to the overload set, using template argument deduction
   6412 /// to deduce the template arguments of the conversion function
   6413 /// template from the type that we are converting to (C++
   6414 /// [temp.deduct.conv]).
   6415 void
   6416 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
   6417                                      DeclAccessPair FoundDecl,
   6418                                      CXXRecordDecl *ActingDC,
   6419                                      Expr *From, QualType ToType,
   6420                                      OverloadCandidateSet &CandidateSet,
   6421                                      bool AllowObjCConversionOnExplicit) {
   6422   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
   6423          "Only conversion function templates permitted here");
   6424 
   6425   if (!CandidateSet.isNewCandidate(FunctionTemplate))
   6426     return;
   6427 
   6428   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6429   CXXConversionDecl *Specialization = nullptr;
   6430   if (TemplateDeductionResult Result
   6431         = DeduceTemplateArguments(FunctionTemplate, ToType,
   6432                                   Specialization, Info)) {
   6433     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6434     Candidate.FoundDecl = FoundDecl;
   6435     Candidate.Function = FunctionTemplate->getTemplatedDecl();
   6436     Candidate.Viable = false;
   6437     Candidate.FailureKind = ovl_fail_bad_deduction;
   6438     Candidate.IsSurrogate = false;
   6439     Candidate.IgnoreObjectArgument = false;
   6440     Candidate.ExplicitCallArguments = 1;
   6441     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6442                                                           Info);
   6443     return;
   6444   }
   6445 
   6446   // Add the conversion function template specialization produced by
   6447   // template argument deduction as a candidate.
   6448   assert(Specialization && "Missing function template specialization?");
   6449   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
   6450                          CandidateSet, AllowObjCConversionOnExplicit);
   6451 }
   6452 
   6453 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
   6454 /// converts the given @c Object to a function pointer via the
   6455 /// conversion function @c Conversion, and then attempts to call it
   6456 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
   6457 /// the type of function that we'll eventually be calling.
   6458 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
   6459                                  DeclAccessPair FoundDecl,
   6460                                  CXXRecordDecl *ActingContext,
   6461                                  const FunctionProtoType *Proto,
   6462                                  Expr *Object,
   6463                                  ArrayRef<Expr *> Args,
   6464                                  OverloadCandidateSet& CandidateSet) {
   6465   if (!CandidateSet.isNewCandidate(Conversion))
   6466     return;
   6467 
   6468   // Overload resolution is always an unevaluated context.
   6469   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6470 
   6471   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
   6472   Candidate.FoundDecl = FoundDecl;
   6473   Candidate.Function = nullptr;
   6474   Candidate.Surrogate = Conversion;
   6475   Candidate.Viable = true;
   6476   Candidate.IsSurrogate = true;
   6477   Candidate.IgnoreObjectArgument = false;
   6478   Candidate.ExplicitCallArguments = Args.size();
   6479 
   6480   // Determine the implicit conversion sequence for the implicit
   6481   // object parameter.
   6482   ImplicitConversionSequence ObjectInit
   6483     = TryObjectArgumentInitialization(*this, Object->getType(),
   6484                                       Object->Classify(Context),
   6485                                       Conversion, ActingContext);
   6486   if (ObjectInit.isBad()) {
   6487     Candidate.Viable = false;
   6488     Candidate.FailureKind = ovl_fail_bad_conversion;
   6489     Candidate.Conversions[0] = ObjectInit;
   6490     return;
   6491   }
   6492 
   6493   // The first conversion is actually a user-defined conversion whose
   6494   // first conversion is ObjectInit's standard conversion (which is
   6495   // effectively a reference binding). Record it as such.
   6496   Candidate.Conversions[0].setUserDefined();
   6497   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
   6498   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
   6499   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
   6500   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
   6501   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
   6502   Candidate.Conversions[0].UserDefined.After
   6503     = Candidate.Conversions[0].UserDefined.Before;
   6504   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
   6505 
   6506   // Find the
   6507   unsigned NumParams = Proto->getNumParams();
   6508 
   6509   // (C++ 13.3.2p2): A candidate function having fewer than m
   6510   // parameters is viable only if it has an ellipsis in its parameter
   6511   // list (8.3.5).
   6512   if (Args.size() > NumParams && !Proto->isVariadic()) {
   6513     Candidate.Viable = false;
   6514     Candidate.FailureKind = ovl_fail_too_many_arguments;
   6515     return;
   6516   }
   6517 
   6518   // Function types don't have any default arguments, so just check if
   6519   // we have enough arguments.
   6520   if (Args.size() < NumParams) {
   6521     // Not enough arguments.
   6522     Candidate.Viable = false;
   6523     Candidate.FailureKind = ovl_fail_too_few_arguments;
   6524     return;
   6525   }
   6526 
   6527   // Determine the implicit conversion sequences for each of the
   6528   // arguments.
   6529   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   6530     if (ArgIdx < NumParams) {
   6531       // (C++ 13.3.2p3): for F to be a viable function, there shall
   6532       // exist for each argument an implicit conversion sequence
   6533       // (13.3.3.1) that converts that argument to the corresponding
   6534       // parameter of F.
   6535       QualType ParamType = Proto->getParamType(ArgIdx);
   6536       Candidate.Conversions[ArgIdx + 1]
   6537         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   6538                                 /*SuppressUserConversions=*/false,
   6539                                 /*InOverloadResolution=*/false,
   6540                                 /*AllowObjCWritebackConversion=*/
   6541                                   getLangOpts().ObjCAutoRefCount);
   6542       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
   6543         Candidate.Viable = false;
   6544         Candidate.FailureKind = ovl_fail_bad_conversion;
   6545         return;
   6546       }
   6547     } else {
   6548       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   6549       // argument for which there is no corresponding parameter is
   6550       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
   6551       Candidate.Conversions[ArgIdx + 1].setEllipsis();
   6552     }
   6553   }
   6554 
   6555   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
   6556     Candidate.Viable = false;
   6557     Candidate.FailureKind = ovl_fail_enable_if;
   6558     Candidate.DeductionFailure.Data = FailedAttr;
   6559     return;
   6560   }
   6561 }
   6562 
   6563 /// \brief Add overload candidates for overloaded operators that are
   6564 /// member functions.
   6565 ///
   6566 /// Add the overloaded operator candidates that are member functions
   6567 /// for the operator Op that was used in an operator expression such
   6568 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
   6569 /// CandidateSet will store the added overload candidates. (C++
   6570 /// [over.match.oper]).
   6571 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
   6572                                        SourceLocation OpLoc,
   6573                                        ArrayRef<Expr *> Args,
   6574                                        OverloadCandidateSet& CandidateSet,
   6575                                        SourceRange OpRange) {
   6576   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   6577 
   6578   // C++ [over.match.oper]p3:
   6579   //   For a unary operator @ with an operand of a type whose
   6580   //   cv-unqualified version is T1, and for a binary operator @ with
   6581   //   a left operand of a type whose cv-unqualified version is T1 and
   6582   //   a right operand of a type whose cv-unqualified version is T2,
   6583   //   three sets of candidate functions, designated member
   6584   //   candidates, non-member candidates and built-in candidates, are
   6585   //   constructed as follows:
   6586   QualType T1 = Args[0]->getType();
   6587 
   6588   //     -- If T1 is a complete class type or a class currently being
   6589   //        defined, the set of member candidates is the result of the
   6590   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
   6591   //        the set of member candidates is empty.
   6592   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
   6593     // Complete the type if it can be completed.
   6594     RequireCompleteType(OpLoc, T1, 0);
   6595     // If the type is neither complete nor being defined, bail out now.
   6596     if (!T1Rec->getDecl()->getDefinition())
   6597       return;
   6598 
   6599     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
   6600     LookupQualifiedName(Operators, T1Rec->getDecl());
   6601     Operators.suppressDiagnostics();
   6602 
   6603     for (LookupResult::iterator Oper = Operators.begin(),
   6604                              OperEnd = Operators.end();
   6605          Oper != OperEnd;
   6606          ++Oper)
   6607       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
   6608                          Args[0]->Classify(Context),
   6609                          Args.slice(1),
   6610                          CandidateSet,
   6611                          /* SuppressUserConversions = */ false);
   6612   }
   6613 }
   6614 
   6615 /// AddBuiltinCandidate - Add a candidate for a built-in
   6616 /// operator. ResultTy and ParamTys are the result and parameter types
   6617 /// of the built-in candidate, respectively. Args and NumArgs are the
   6618 /// arguments being passed to the candidate. IsAssignmentOperator
   6619 /// should be true when this built-in candidate is an assignment
   6620 /// operator. NumContextualBoolArguments is the number of arguments
   6621 /// (at the beginning of the argument list) that will be contextually
   6622 /// converted to bool.
   6623 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
   6624                                ArrayRef<Expr *> Args,
   6625                                OverloadCandidateSet& CandidateSet,
   6626                                bool IsAssignmentOperator,
   6627                                unsigned NumContextualBoolArguments) {
   6628   // Overload resolution is always an unevaluated context.
   6629   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6630 
   6631   // Add this candidate
   6632   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
   6633   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
   6634   Candidate.Function = nullptr;
   6635   Candidate.IsSurrogate = false;
   6636   Candidate.IgnoreObjectArgument = false;
   6637   Candidate.BuiltinTypes.ResultTy = ResultTy;
   6638   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
   6639     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
   6640 
   6641   // Determine the implicit conversion sequences for each of the
   6642   // arguments.
   6643   Candidate.Viable = true;
   6644   Candidate.ExplicitCallArguments = Args.size();
   6645   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   6646     // C++ [over.match.oper]p4:
   6647     //   For the built-in assignment operators, conversions of the
   6648     //   left operand are restricted as follows:
   6649     //     -- no temporaries are introduced to hold the left operand, and
   6650     //     -- no user-defined conversions are applied to the left
   6651     //        operand to achieve a type match with the left-most
   6652     //        parameter of a built-in candidate.
   6653     //
   6654     // We block these conversions by turning off user-defined
   6655     // conversions, since that is the only way that initialization of
   6656     // a reference to a non-class type can occur from something that
   6657     // is not of the same type.
   6658     if (ArgIdx < NumContextualBoolArguments) {
   6659       assert(ParamTys[ArgIdx] == Context.BoolTy &&
   6660              "Contextual conversion to bool requires bool type");
   6661       Candidate.Conversions[ArgIdx]
   6662         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
   6663     } else {
   6664       Candidate.Conversions[ArgIdx]
   6665         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
   6666                                 ArgIdx == 0 && IsAssignmentOperator,
   6667                                 /*InOverloadResolution=*/false,
   6668                                 /*AllowObjCWritebackConversion=*/
   6669                                   getLangOpts().ObjCAutoRefCount);
   6670     }
   6671     if (Candidate.Conversions[ArgIdx].isBad()) {
   6672       Candidate.Viable = false;
   6673       Candidate.FailureKind = ovl_fail_bad_conversion;
   6674       break;
   6675     }
   6676   }
   6677 }
   6678 
   6679 namespace {
   6680 
   6681 /// BuiltinCandidateTypeSet - A set of types that will be used for the
   6682 /// candidate operator functions for built-in operators (C++
   6683 /// [over.built]). The types are separated into pointer types and
   6684 /// enumeration types.
   6685 class BuiltinCandidateTypeSet  {
   6686   /// TypeSet - A set of types.
   6687   typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
   6688 
   6689   /// PointerTypes - The set of pointer types that will be used in the
   6690   /// built-in candidates.
   6691   TypeSet PointerTypes;
   6692 
   6693   /// MemberPointerTypes - The set of member pointer types that will be
   6694   /// used in the built-in candidates.
   6695   TypeSet MemberPointerTypes;
   6696 
   6697   /// EnumerationTypes - The set of enumeration types that will be
   6698   /// used in the built-in candidates.
   6699   TypeSet EnumerationTypes;
   6700 
   6701   /// \brief The set of vector types that will be used in the built-in
   6702   /// candidates.
   6703   TypeSet VectorTypes;
   6704 
   6705   /// \brief A flag indicating non-record types are viable candidates
   6706   bool HasNonRecordTypes;
   6707 
   6708   /// \brief A flag indicating whether either arithmetic or enumeration types
   6709   /// were present in the candidate set.
   6710   bool HasArithmeticOrEnumeralTypes;
   6711 
   6712   /// \brief A flag indicating whether the nullptr type was present in the
   6713   /// candidate set.
   6714   bool HasNullPtrType;
   6715 
   6716   /// Sema - The semantic analysis instance where we are building the
   6717   /// candidate type set.
   6718   Sema &SemaRef;
   6719 
   6720   /// Context - The AST context in which we will build the type sets.
   6721   ASTContext &Context;
   6722 
   6723   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
   6724                                                const Qualifiers &VisibleQuals);
   6725   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
   6726 
   6727 public:
   6728   /// iterator - Iterates through the types that are part of the set.
   6729   typedef TypeSet::iterator iterator;
   6730 
   6731   BuiltinCandidateTypeSet(Sema &SemaRef)
   6732     : HasNonRecordTypes(false),
   6733       HasArithmeticOrEnumeralTypes(false),
   6734       HasNullPtrType(false),
   6735       SemaRef(SemaRef),
   6736       Context(SemaRef.Context) { }
   6737 
   6738   void AddTypesConvertedFrom(QualType Ty,
   6739                              SourceLocation Loc,
   6740                              bool AllowUserConversions,
   6741                              bool AllowExplicitConversions,
   6742                              const Qualifiers &VisibleTypeConversionsQuals);
   6743 
   6744   /// pointer_begin - First pointer type found;
   6745   iterator pointer_begin() { return PointerTypes.begin(); }
   6746 
   6747   /// pointer_end - Past the last pointer type found;
   6748   iterator pointer_end() { return PointerTypes.end(); }
   6749 
   6750   /// member_pointer_begin - First member pointer type found;
   6751   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
   6752 
   6753   /// member_pointer_end - Past the last member pointer type found;
   6754   iterator member_pointer_end() { return MemberPointerTypes.end(); }
   6755 
   6756   /// enumeration_begin - First enumeration type found;
   6757   iterator enumeration_begin() { return EnumerationTypes.begin(); }
   6758 
   6759   /// enumeration_end - Past the last enumeration type found;
   6760   iterator enumeration_end() { return EnumerationTypes.end(); }
   6761 
   6762   iterator vector_begin() { return VectorTypes.begin(); }
   6763   iterator vector_end() { return VectorTypes.end(); }
   6764 
   6765   bool hasNonRecordTypes() { return HasNonRecordTypes; }
   6766   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
   6767   bool hasNullPtrType() const { return HasNullPtrType; }
   6768 };
   6769 
   6770 } // end anonymous namespace
   6771 
   6772 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
   6773 /// the set of pointer types along with any more-qualified variants of
   6774 /// that type. For example, if @p Ty is "int const *", this routine
   6775 /// will add "int const *", "int const volatile *", "int const
   6776 /// restrict *", and "int const volatile restrict *" to the set of
   6777 /// pointer types. Returns true if the add of @p Ty itself succeeded,
   6778 /// false otherwise.
   6779 ///
   6780 /// FIXME: what to do about extended qualifiers?
   6781 bool
   6782 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
   6783                                              const Qualifiers &VisibleQuals) {
   6784 
   6785   // Insert this type.
   6786   if (!PointerTypes.insert(Ty).second)
   6787     return false;
   6788 
   6789   QualType PointeeTy;
   6790   const PointerType *PointerTy = Ty->getAs<PointerType>();
   6791   bool buildObjCPtr = false;
   6792   if (!PointerTy) {
   6793     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
   6794     PointeeTy = PTy->getPointeeType();
   6795     buildObjCPtr = true;
   6796   } else {
   6797     PointeeTy = PointerTy->getPointeeType();
   6798   }
   6799 
   6800   // Don't add qualified variants of arrays. For one, they're not allowed
   6801   // (the qualifier would sink to the element type), and for another, the
   6802   // only overload situation where it matters is subscript or pointer +- int,
   6803   // and those shouldn't have qualifier variants anyway.
   6804   if (PointeeTy->isArrayType())
   6805     return true;
   6806 
   6807   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
   6808   bool hasVolatile = VisibleQuals.hasVolatile();
   6809   bool hasRestrict = VisibleQuals.hasRestrict();
   6810 
   6811   // Iterate through all strict supersets of BaseCVR.
   6812   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
   6813     if ((CVR | BaseCVR) != CVR) continue;
   6814     // Skip over volatile if no volatile found anywhere in the types.
   6815     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
   6816 
   6817     // Skip over restrict if no restrict found anywhere in the types, or if
   6818     // the type cannot be restrict-qualified.
   6819     if ((CVR & Qualifiers::Restrict) &&
   6820         (!hasRestrict ||
   6821          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
   6822       continue;
   6823 
   6824     // Build qualified pointee type.
   6825     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
   6826 
   6827     // Build qualified pointer type.
   6828     QualType QPointerTy;
   6829     if (!buildObjCPtr)
   6830       QPointerTy = Context.getPointerType(QPointeeTy);
   6831     else
   6832       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
   6833 
   6834     // Insert qualified pointer type.
   6835     PointerTypes.insert(QPointerTy);
   6836   }
   6837 
   6838   return true;
   6839 }
   6840 
   6841 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
   6842 /// to the set of pointer types along with any more-qualified variants of
   6843 /// that type. For example, if @p Ty is "int const *", this routine
   6844 /// will add "int const *", "int const volatile *", "int const
   6845 /// restrict *", and "int const volatile restrict *" to the set of
   6846 /// pointer types. Returns true if the add of @p Ty itself succeeded,
   6847 /// false otherwise.
   6848 ///
   6849 /// FIXME: what to do about extended qualifiers?
   6850 bool
   6851 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
   6852     QualType Ty) {
   6853   // Insert this type.
   6854   if (!MemberPointerTypes.insert(Ty).second)
   6855     return false;
   6856 
   6857   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
   6858   assert(PointerTy && "type was not a member pointer type!");
   6859 
   6860   QualType PointeeTy = PointerTy->getPointeeType();
   6861   // Don't add qualified variants of arrays. For one, they're not allowed
   6862   // (the qualifier would sink to the element type), and for another, the
   6863   // only overload situation where it matters is subscript or pointer +- int,
   6864   // and those shouldn't have qualifier variants anyway.
   6865   if (PointeeTy->isArrayType())
   6866     return true;
   6867   const Type *ClassTy = PointerTy->getClass();
   6868 
   6869   // Iterate through all strict supersets of the pointee type's CVR
   6870   // qualifiers.
   6871   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
   6872   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
   6873     if ((CVR | BaseCVR) != CVR) continue;
   6874 
   6875     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
   6876     MemberPointerTypes.insert(
   6877       Context.getMemberPointerType(QPointeeTy, ClassTy));
   6878   }
   6879 
   6880   return true;
   6881 }
   6882 
   6883 /// AddTypesConvertedFrom - Add each of the types to which the type @p
   6884 /// Ty can be implicit converted to the given set of @p Types. We're
   6885 /// primarily interested in pointer types and enumeration types. We also
   6886 /// take member pointer types, for the conditional operator.
   6887 /// AllowUserConversions is true if we should look at the conversion
   6888 /// functions of a class type, and AllowExplicitConversions if we
   6889 /// should also include the explicit conversion functions of a class
   6890 /// type.
   6891 void
   6892 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
   6893                                                SourceLocation Loc,
   6894                                                bool AllowUserConversions,
   6895                                                bool AllowExplicitConversions,
   6896                                                const Qualifiers &VisibleQuals) {
   6897   // Only deal with canonical types.
   6898   Ty = Context.getCanonicalType(Ty);
   6899 
   6900   // Look through reference types; they aren't part of the type of an
   6901   // expression for the purposes of conversions.
   6902   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
   6903     Ty = RefTy->getPointeeType();
   6904 
   6905   // If we're dealing with an array type, decay to the pointer.
   6906   if (Ty->isArrayType())
   6907     Ty = SemaRef.Context.getArrayDecayedType(Ty);
   6908 
   6909   // Otherwise, we don't care about qualifiers on the type.
   6910   Ty = Ty.getLocalUnqualifiedType();
   6911 
   6912   // Flag if we ever add a non-record type.
   6913   const RecordType *TyRec = Ty->getAs<RecordType>();
   6914   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
   6915 
   6916   // Flag if we encounter an arithmetic type.
   6917   HasArithmeticOrEnumeralTypes =
   6918     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
   6919 
   6920   if (Ty->isObjCIdType() || Ty->isObjCClassType())
   6921     PointerTypes.insert(Ty);
   6922   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
   6923     // Insert our type, and its more-qualified variants, into the set
   6924     // of types.
   6925     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
   6926       return;
   6927   } else if (Ty->isMemberPointerType()) {
   6928     // Member pointers are far easier, since the pointee can't be converted.
   6929     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
   6930       return;
   6931   } else if (Ty->isEnumeralType()) {
   6932     HasArithmeticOrEnumeralTypes = true;
   6933     EnumerationTypes.insert(Ty);
   6934   } else if (Ty->isVectorType()) {
   6935     // We treat vector types as arithmetic types in many contexts as an
   6936     // extension.
   6937     HasArithmeticOrEnumeralTypes = true;
   6938     VectorTypes.insert(Ty);
   6939   } else if (Ty->isNullPtrType()) {
   6940     HasNullPtrType = true;
   6941   } else if (AllowUserConversions && TyRec) {
   6942     // No conversion functions in incomplete types.
   6943     if (SemaRef.RequireCompleteType(Loc, Ty, 0))
   6944       return;
   6945 
   6946     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
   6947     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
   6948       if (isa<UsingShadowDecl>(D))
   6949         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   6950 
   6951       // Skip conversion function templates; they don't tell us anything
   6952       // about which builtin types we can convert to.
   6953       if (isa<FunctionTemplateDecl>(D))
   6954         continue;
   6955 
   6956       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   6957       if (AllowExplicitConversions || !Conv->isExplicit()) {
   6958         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
   6959                               VisibleQuals);
   6960       }
   6961     }
   6962   }
   6963 }
   6964 
   6965 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
   6966 /// the volatile- and non-volatile-qualified assignment operators for the
   6967 /// given type to the candidate set.
   6968 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
   6969                                                    QualType T,
   6970                                                    ArrayRef<Expr *> Args,
   6971                                     OverloadCandidateSet &CandidateSet) {
   6972   QualType ParamTypes[2];
   6973 
   6974   // T& operator=(T&, T)
   6975   ParamTypes[0] = S.Context.getLValueReferenceType(T);
   6976   ParamTypes[1] = T;
   6977   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   6978                         /*IsAssignmentOperator=*/true);
   6979 
   6980   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
   6981     // volatile T& operator=(volatile T&, T)
   6982     ParamTypes[0]
   6983       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
   6984     ParamTypes[1] = T;
   6985     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   6986                           /*IsAssignmentOperator=*/true);
   6987   }
   6988 }
   6989 
   6990 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
   6991 /// if any, found in visible type conversion functions found in ArgExpr's type.
   6992 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
   6993     Qualifiers VRQuals;
   6994     const RecordType *TyRec;
   6995     if (const MemberPointerType *RHSMPType =
   6996         ArgExpr->getType()->getAs<MemberPointerType>())
   6997       TyRec = RHSMPType->getClass()->getAs<RecordType>();
   6998     else
   6999       TyRec = ArgExpr->getType()->getAs<RecordType>();
   7000     if (!TyRec) {
   7001       // Just to be safe, assume the worst case.
   7002       VRQuals.addVolatile();
   7003       VRQuals.addRestrict();
   7004       return VRQuals;
   7005     }
   7006 
   7007     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
   7008     if (!ClassDecl->hasDefinition())
   7009       return VRQuals;
   7010 
   7011     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
   7012       if (isa<UsingShadowDecl>(D))
   7013         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   7014       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
   7015         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
   7016         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
   7017           CanTy = ResTypeRef->getPointeeType();
   7018         // Need to go down the pointer/mempointer chain and add qualifiers
   7019         // as see them.
   7020         bool done = false;
   7021         while (!done) {
   7022           if (CanTy.isRestrictQualified())
   7023             VRQuals.addRestrict();
   7024           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
   7025             CanTy = ResTypePtr->getPointeeType();
   7026           else if (const MemberPointerType *ResTypeMPtr =
   7027                 CanTy->getAs<MemberPointerType>())
   7028             CanTy = ResTypeMPtr->getPointeeType();
   7029           else
   7030             done = true;
   7031           if (CanTy.isVolatileQualified())
   7032             VRQuals.addVolatile();
   7033           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
   7034             return VRQuals;
   7035         }
   7036       }
   7037     }
   7038     return VRQuals;
   7039 }
   7040 
   7041 namespace {
   7042 
   7043 /// \brief Helper class to manage the addition of builtin operator overload
   7044 /// candidates. It provides shared state and utility methods used throughout
   7045 /// the process, as well as a helper method to add each group of builtin
   7046 /// operator overloads from the standard to a candidate set.
   7047 class BuiltinOperatorOverloadBuilder {
   7048   // Common instance state available to all overload candidate addition methods.
   7049   Sema &S;
   7050   ArrayRef<Expr *> Args;
   7051   Qualifiers VisibleTypeConversionsQuals;
   7052   bool HasArithmeticOrEnumeralCandidateType;
   7053   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
   7054   OverloadCandidateSet &CandidateSet;
   7055 
   7056   // Define some constants used to index and iterate over the arithemetic types
   7057   // provided via the getArithmeticType() method below.
   7058   // The "promoted arithmetic types" are the arithmetic
   7059   // types are that preserved by promotion (C++ [over.built]p2).
   7060   static const unsigned FirstIntegralType = 3;
   7061   static const unsigned LastIntegralType = 20;
   7062   static const unsigned FirstPromotedIntegralType = 3,
   7063                         LastPromotedIntegralType = 11;
   7064   static const unsigned FirstPromotedArithmeticType = 0,
   7065                         LastPromotedArithmeticType = 11;
   7066   static const unsigned NumArithmeticTypes = 20;
   7067 
   7068   /// \brief Get the canonical type for a given arithmetic type index.
   7069   CanQualType getArithmeticType(unsigned index) {
   7070     assert(index < NumArithmeticTypes);
   7071     static CanQualType ASTContext::* const
   7072       ArithmeticTypes[NumArithmeticTypes] = {
   7073       // Start of promoted types.
   7074       &ASTContext::FloatTy,
   7075       &ASTContext::DoubleTy,
   7076       &ASTContext::LongDoubleTy,
   7077 
   7078       // Start of integral types.
   7079       &ASTContext::IntTy,
   7080       &ASTContext::LongTy,
   7081       &ASTContext::LongLongTy,
   7082       &ASTContext::Int128Ty,
   7083       &ASTContext::UnsignedIntTy,
   7084       &ASTContext::UnsignedLongTy,
   7085       &ASTContext::UnsignedLongLongTy,
   7086       &ASTContext::UnsignedInt128Ty,
   7087       // End of promoted types.
   7088 
   7089       &ASTContext::BoolTy,
   7090       &ASTContext::CharTy,
   7091       &ASTContext::WCharTy,
   7092       &ASTContext::Char16Ty,
   7093       &ASTContext::Char32Ty,
   7094       &ASTContext::SignedCharTy,
   7095       &ASTContext::ShortTy,
   7096       &ASTContext::UnsignedCharTy,
   7097       &ASTContext::UnsignedShortTy,
   7098       // End of integral types.
   7099       // FIXME: What about complex? What about half?
   7100     };
   7101     return S.Context.*ArithmeticTypes[index];
   7102   }
   7103 
   7104   /// \brief Gets the canonical type resulting from the usual arithemetic
   7105   /// converions for the given arithmetic types.
   7106   CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
   7107     // Accelerator table for performing the usual arithmetic conversions.
   7108     // The rules are basically:
   7109     //   - if either is floating-point, use the wider floating-point
   7110     //   - if same signedness, use the higher rank
   7111     //   - if same size, use unsigned of the higher rank
   7112     //   - use the larger type
   7113     // These rules, together with the axiom that higher ranks are
   7114     // never smaller, are sufficient to precompute all of these results
   7115     // *except* when dealing with signed types of higher rank.
   7116     // (we could precompute SLL x UI for all known platforms, but it's
   7117     // better not to make any assumptions).
   7118     // We assume that int128 has a higher rank than long long on all platforms.
   7119     enum PromotedType {
   7120             Dep=-1,
   7121             Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
   7122     };
   7123     static const PromotedType ConversionsTable[LastPromotedArithmeticType]
   7124                                         [LastPromotedArithmeticType] = {
   7125 /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
   7126 /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
   7127 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
   7128 /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
   7129 /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
   7130 /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
   7131 /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
   7132 /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
   7133 /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
   7134 /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
   7135 /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
   7136     };
   7137 
   7138     assert(L < LastPromotedArithmeticType);
   7139     assert(R < LastPromotedArithmeticType);
   7140     int Idx = ConversionsTable[L][R];
   7141 
   7142     // Fast path: the table gives us a concrete answer.
   7143     if (Idx != Dep) return getArithmeticType(Idx);
   7144 
   7145     // Slow path: we need to compare widths.
   7146     // An invariant is that the signed type has higher rank.
   7147     CanQualType LT = getArithmeticType(L),
   7148                 RT = getArithmeticType(R);
   7149     unsigned LW = S.Context.getIntWidth(LT),
   7150              RW = S.Context.getIntWidth(RT);
   7151 
   7152     // If they're different widths, use the signed type.
   7153     if (LW > RW) return LT;
   7154     else if (LW < RW) return RT;
   7155 
   7156     // Otherwise, use the unsigned type of the signed type's rank.
   7157     if (L == SL || R == SL) return S.Context.UnsignedLongTy;
   7158     assert(L == SLL || R == SLL);
   7159     return S.Context.UnsignedLongLongTy;
   7160   }
   7161 
   7162   /// \brief Helper method to factor out the common pattern of adding overloads
   7163   /// for '++' and '--' builtin operators.
   7164   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
   7165                                            bool HasVolatile,
   7166                                            bool HasRestrict) {
   7167     QualType ParamTypes[2] = {
   7168       S.Context.getLValueReferenceType(CandidateTy),
   7169       S.Context.IntTy
   7170     };
   7171 
   7172     // Non-volatile version.
   7173     if (Args.size() == 1)
   7174       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7175     else
   7176       S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7177 
   7178     // Use a heuristic to reduce number of builtin candidates in the set:
   7179     // add volatile version only if there are conversions to a volatile type.
   7180     if (HasVolatile) {
   7181       ParamTypes[0] =
   7182         S.Context.getLValueReferenceType(
   7183           S.Context.getVolatileType(CandidateTy));
   7184       if (Args.size() == 1)
   7185         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7186       else
   7187         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7188     }
   7189 
   7190     // Add restrict version only if there are conversions to a restrict type
   7191     // and our candidate type is a non-restrict-qualified pointer.
   7192     if (HasRestrict && CandidateTy->isAnyPointerType() &&
   7193         !CandidateTy.isRestrictQualified()) {
   7194       ParamTypes[0]
   7195         = S.Context.getLValueReferenceType(
   7196             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
   7197       if (Args.size() == 1)
   7198         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7199       else
   7200         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7201 
   7202       if (HasVolatile) {
   7203         ParamTypes[0]
   7204           = S.Context.getLValueReferenceType(
   7205               S.Context.getCVRQualifiedType(CandidateTy,
   7206                                             (Qualifiers::Volatile |
   7207                                              Qualifiers::Restrict)));
   7208         if (Args.size() == 1)
   7209           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7210         else
   7211           S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7212       }
   7213     }
   7214 
   7215   }
   7216 
   7217 public:
   7218   BuiltinOperatorOverloadBuilder(
   7219     Sema &S, ArrayRef<Expr *> Args,
   7220     Qualifiers VisibleTypeConversionsQuals,
   7221     bool HasArithmeticOrEnumeralCandidateType,
   7222     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
   7223     OverloadCandidateSet &CandidateSet)
   7224     : S(S), Args(Args),
   7225       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
   7226       HasArithmeticOrEnumeralCandidateType(
   7227         HasArithmeticOrEnumeralCandidateType),
   7228       CandidateTypes(CandidateTypes),
   7229       CandidateSet(CandidateSet) {
   7230     // Validate some of our static helper constants in debug builds.
   7231     assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
   7232            "Invalid first promoted integral type");
   7233     assert(getArithmeticType(LastPromotedIntegralType - 1)
   7234              == S.Context.UnsignedInt128Ty &&
   7235            "Invalid last promoted integral type");
   7236     assert(getArithmeticType(FirstPromotedArithmeticType)
   7237              == S.Context.FloatTy &&
   7238            "Invalid first promoted arithmetic type");
   7239     assert(getArithmeticType(LastPromotedArithmeticType - 1)
   7240              == S.Context.UnsignedInt128Ty &&
   7241            "Invalid last promoted arithmetic type");
   7242   }
   7243 
   7244   // C++ [over.built]p3:
   7245   //
   7246   //   For every pair (T, VQ), where T is an arithmetic type, and VQ
   7247   //   is either volatile or empty, there exist candidate operator
   7248   //   functions of the form
   7249   //
   7250   //       VQ T&      operator++(VQ T&);
   7251   //       T          operator++(VQ T&, int);
   7252   //
   7253   // C++ [over.built]p4:
   7254   //
   7255   //   For every pair (T, VQ), where T is an arithmetic type other
   7256   //   than bool, and VQ is either volatile or empty, there exist
   7257   //   candidate operator functions of the form
   7258   //
   7259   //       VQ T&      operator--(VQ T&);
   7260   //       T          operator--(VQ T&, int);
   7261   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
   7262     if (!HasArithmeticOrEnumeralCandidateType)
   7263       return;
   7264 
   7265     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
   7266          Arith < NumArithmeticTypes; ++Arith) {
   7267       addPlusPlusMinusMinusStyleOverloads(
   7268         getArithmeticType(Arith),
   7269         VisibleTypeConversionsQuals.hasVolatile(),
   7270         VisibleTypeConversionsQuals.hasRestrict());
   7271     }
   7272   }
   7273 
   7274   // C++ [over.built]p5:
   7275   //
   7276   //   For every pair (T, VQ), where T is a cv-qualified or
   7277   //   cv-unqualified object type, and VQ is either volatile or
   7278   //   empty, there exist candidate operator functions of the form
   7279   //
   7280   //       T*VQ&      operator++(T*VQ&);
   7281   //       T*VQ&      operator--(T*VQ&);
   7282   //       T*         operator++(T*VQ&, int);
   7283   //       T*         operator--(T*VQ&, int);
   7284   void addPlusPlusMinusMinusPointerOverloads() {
   7285     for (BuiltinCandidateTypeSet::iterator
   7286               Ptr = CandidateTypes[0].pointer_begin(),
   7287            PtrEnd = CandidateTypes[0].pointer_end();
   7288          Ptr != PtrEnd; ++Ptr) {
   7289       // Skip pointer types that aren't pointers to object types.
   7290       if (!(*Ptr)->getPointeeType()->isObjectType())
   7291         continue;
   7292 
   7293       addPlusPlusMinusMinusStyleOverloads(*Ptr,
   7294         (!(*Ptr).isVolatileQualified() &&
   7295          VisibleTypeConversionsQuals.hasVolatile()),
   7296         (!(*Ptr).isRestrictQualified() &&
   7297          VisibleTypeConversionsQuals.hasRestrict()));
   7298     }
   7299   }
   7300 
   7301   // C++ [over.built]p6:
   7302   //   For every cv-qualified or cv-unqualified object type T, there
   7303   //   exist candidate operator functions of the form
   7304   //
   7305   //       T&         operator*(T*);
   7306   //
   7307   // C++ [over.built]p7:
   7308   //   For every function type T that does not have cv-qualifiers or a
   7309   //   ref-qualifier, there exist candidate operator functions of the form
   7310   //       T&         operator*(T*);
   7311   void addUnaryStarPointerOverloads() {
   7312     for (BuiltinCandidateTypeSet::iterator
   7313               Ptr = CandidateTypes[0].pointer_begin(),
   7314            PtrEnd = CandidateTypes[0].pointer_end();
   7315          Ptr != PtrEnd; ++Ptr) {
   7316       QualType ParamTy = *Ptr;
   7317       QualType PointeeTy = ParamTy->getPointeeType();
   7318       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
   7319         continue;
   7320 
   7321       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
   7322         if (Proto->getTypeQuals() || Proto->getRefQualifier())
   7323           continue;
   7324 
   7325       S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
   7326                             &ParamTy, Args, CandidateSet);
   7327     }
   7328   }
   7329 
   7330   // C++ [over.built]p9:
   7331   //  For every promoted arithmetic type T, there exist candidate
   7332   //  operator functions of the form
   7333   //
   7334   //       T         operator+(T);
   7335   //       T         operator-(T);
   7336   void addUnaryPlusOrMinusArithmeticOverloads() {
   7337     if (!HasArithmeticOrEnumeralCandidateType)
   7338       return;
   7339 
   7340     for (unsigned Arith = FirstPromotedArithmeticType;
   7341          Arith < LastPromotedArithmeticType; ++Arith) {
   7342       QualType ArithTy = getArithmeticType(Arith);
   7343       S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
   7344     }
   7345 
   7346     // Extension: We also add these operators for vector types.
   7347     for (BuiltinCandidateTypeSet::iterator
   7348               Vec = CandidateTypes[0].vector_begin(),
   7349            VecEnd = CandidateTypes[0].vector_end();
   7350          Vec != VecEnd; ++Vec) {
   7351       QualType VecTy = *Vec;
   7352       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
   7353     }
   7354   }
   7355 
   7356   // C++ [over.built]p8:
   7357   //   For every type T, there exist candidate operator functions of
   7358   //   the form
   7359   //
   7360   //       T*         operator+(T*);
   7361   void addUnaryPlusPointerOverloads() {
   7362     for (BuiltinCandidateTypeSet::iterator
   7363               Ptr = CandidateTypes[0].pointer_begin(),
   7364            PtrEnd = CandidateTypes[0].pointer_end();
   7365          Ptr != PtrEnd; ++Ptr) {
   7366       QualType ParamTy = *Ptr;
   7367       S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
   7368     }
   7369   }
   7370 
   7371   // C++ [over.built]p10:
   7372   //   For every promoted integral type T, there exist candidate
   7373   //   operator functions of the form
   7374   //
   7375   //        T         operator~(T);
   7376   void addUnaryTildePromotedIntegralOverloads() {
   7377     if (!HasArithmeticOrEnumeralCandidateType)
   7378       return;
   7379 
   7380     for (unsigned Int = FirstPromotedIntegralType;
   7381          Int < LastPromotedIntegralType; ++Int) {
   7382       QualType IntTy = getArithmeticType(Int);
   7383       S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
   7384     }
   7385 
   7386     // Extension: We also add this operator for vector types.
   7387     for (BuiltinCandidateTypeSet::iterator
   7388               Vec = CandidateTypes[0].vector_begin(),
   7389            VecEnd = CandidateTypes[0].vector_end();
   7390          Vec != VecEnd; ++Vec) {
   7391       QualType VecTy = *Vec;
   7392       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
   7393     }
   7394   }
   7395 
   7396   // C++ [over.match.oper]p16:
   7397   //   For every pointer to member type T, there exist candidate operator
   7398   //   functions of the form
   7399   //
   7400   //        bool operator==(T,T);
   7401   //        bool operator!=(T,T);
   7402   void addEqualEqualOrNotEqualMemberPointerOverloads() {
   7403     /// Set of (canonical) types that we've already handled.
   7404     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7405 
   7406     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7407       for (BuiltinCandidateTypeSet::iterator
   7408                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7409              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7410            MemPtr != MemPtrEnd;
   7411            ++MemPtr) {
   7412         // Don't add the same builtin candidate twice.
   7413         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   7414           continue;
   7415 
   7416         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
   7417         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7418       }
   7419     }
   7420   }
   7421 
   7422   // C++ [over.built]p15:
   7423   //
   7424   //   For every T, where T is an enumeration type, a pointer type, or
   7425   //   std::nullptr_t, there exist candidate operator functions of the form
   7426   //
   7427   //        bool       operator<(T, T);
   7428   //        bool       operator>(T, T);
   7429   //        bool       operator<=(T, T);
   7430   //        bool       operator>=(T, T);
   7431   //        bool       operator==(T, T);
   7432   //        bool       operator!=(T, T);
   7433   void addRelationalPointerOrEnumeralOverloads() {
   7434     // C++ [over.match.oper]p3:
   7435     //   [...]the built-in candidates include all of the candidate operator
   7436     //   functions defined in 13.6 that, compared to the given operator, [...]
   7437     //   do not have the same parameter-type-list as any non-template non-member
   7438     //   candidate.
   7439     //
   7440     // Note that in practice, this only affects enumeration types because there
   7441     // aren't any built-in candidates of record type, and a user-defined operator
   7442     // must have an operand of record or enumeration type. Also, the only other
   7443     // overloaded operator with enumeration arguments, operator=,
   7444     // cannot be overloaded for enumeration types, so this is the only place
   7445     // where we must suppress candidates like this.
   7446     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
   7447       UserDefinedBinaryOperators;
   7448 
   7449     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7450       if (CandidateTypes[ArgIdx].enumeration_begin() !=
   7451           CandidateTypes[ArgIdx].enumeration_end()) {
   7452         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
   7453                                          CEnd = CandidateSet.end();
   7454              C != CEnd; ++C) {
   7455           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
   7456             continue;
   7457 
   7458           if (C->Function->isFunctionTemplateSpecialization())
   7459             continue;
   7460 
   7461           QualType FirstParamType =
   7462             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
   7463           QualType SecondParamType =
   7464             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
   7465 
   7466           // Skip if either parameter isn't of enumeral type.
   7467           if (!FirstParamType->isEnumeralType() ||
   7468               !SecondParamType->isEnumeralType())
   7469             continue;
   7470 
   7471           // Add this operator to the set of known user-defined operators.
   7472           UserDefinedBinaryOperators.insert(
   7473             std::make_pair(S.Context.getCanonicalType(FirstParamType),
   7474                            S.Context.getCanonicalType(SecondParamType)));
   7475         }
   7476       }
   7477     }
   7478 
   7479     /// Set of (canonical) types that we've already handled.
   7480     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7481 
   7482     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7483       for (BuiltinCandidateTypeSet::iterator
   7484                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
   7485              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
   7486            Ptr != PtrEnd; ++Ptr) {
   7487         // Don't add the same builtin candidate twice.
   7488         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7489           continue;
   7490 
   7491         QualType ParamTypes[2] = { *Ptr, *Ptr };
   7492         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7493       }
   7494       for (BuiltinCandidateTypeSet::iterator
   7495                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7496              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7497            Enum != EnumEnd; ++Enum) {
   7498         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
   7499 
   7500         // Don't add the same builtin candidate twice, or if a user defined
   7501         // candidate exists.
   7502         if (!AddedTypes.insert(CanonType).second ||
   7503             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
   7504                                                             CanonType)))
   7505           continue;
   7506 
   7507         QualType ParamTypes[2] = { *Enum, *Enum };
   7508         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7509       }
   7510 
   7511       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
   7512         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
   7513         if (AddedTypes.insert(NullPtrTy).second &&
   7514             !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
   7515                                                              NullPtrTy))) {
   7516           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
   7517           S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
   7518                                 CandidateSet);
   7519         }
   7520       }
   7521     }
   7522   }
   7523 
   7524   // C++ [over.built]p13:
   7525   //
   7526   //   For every cv-qualified or cv-unqualified object type T
   7527   //   there exist candidate operator functions of the form
   7528   //
   7529   //      T*         operator+(T*, ptrdiff_t);
   7530   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
   7531   //      T*         operator-(T*, ptrdiff_t);
   7532   //      T*         operator+(ptrdiff_t, T*);
   7533   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
   7534   //
   7535   // C++ [over.built]p14:
   7536   //
   7537   //   For every T, where T is a pointer to object type, there
   7538   //   exist candidate operator functions of the form
   7539   //
   7540   //      ptrdiff_t  operator-(T, T);
   7541   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
   7542     /// Set of (canonical) types that we've already handled.
   7543     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7544 
   7545     for (int Arg = 0; Arg < 2; ++Arg) {
   7546       QualType AsymetricParamTypes[2] = {
   7547         S.Context.getPointerDiffType(),
   7548         S.Context.getPointerDiffType(),
   7549       };
   7550       for (BuiltinCandidateTypeSet::iterator
   7551                 Ptr = CandidateTypes[Arg].pointer_begin(),
   7552              PtrEnd = CandidateTypes[Arg].pointer_end();
   7553            Ptr != PtrEnd; ++Ptr) {
   7554         QualType PointeeTy = (*Ptr)->getPointeeType();
   7555         if (!PointeeTy->isObjectType())
   7556           continue;
   7557 
   7558         AsymetricParamTypes[Arg] = *Ptr;
   7559         if (Arg == 0 || Op == OO_Plus) {
   7560           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
   7561           // T* operator+(ptrdiff_t, T*);
   7562           S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
   7563         }
   7564         if (Op == OO_Minus) {
   7565           // ptrdiff_t operator-(T, T);
   7566           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7567             continue;
   7568 
   7569           QualType ParamTypes[2] = { *Ptr, *Ptr };
   7570           S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
   7571                                 Args, CandidateSet);
   7572         }
   7573       }
   7574     }
   7575   }
   7576 
   7577   // C++ [over.built]p12:
   7578   //
   7579   //   For every pair of promoted arithmetic types L and R, there
   7580   //   exist candidate operator functions of the form
   7581   //
   7582   //        LR         operator*(L, R);
   7583   //        LR         operator/(L, R);
   7584   //        LR         operator+(L, R);
   7585   //        LR         operator-(L, R);
   7586   //        bool       operator<(L, R);
   7587   //        bool       operator>(L, R);
   7588   //        bool       operator<=(L, R);
   7589   //        bool       operator>=(L, R);
   7590   //        bool       operator==(L, R);
   7591   //        bool       operator!=(L, R);
   7592   //
   7593   //   where LR is the result of the usual arithmetic conversions
   7594   //   between types L and R.
   7595   //
   7596   // C++ [over.built]p24:
   7597   //
   7598   //   For every pair of promoted arithmetic types L and R, there exist
   7599   //   candidate operator functions of the form
   7600   //
   7601   //        LR       operator?(bool, L, R);
   7602   //
   7603   //   where LR is the result of the usual arithmetic conversions
   7604   //   between types L and R.
   7605   // Our candidates ignore the first parameter.
   7606   void addGenericBinaryArithmeticOverloads(bool isComparison) {
   7607     if (!HasArithmeticOrEnumeralCandidateType)
   7608       return;
   7609 
   7610     for (unsigned Left = FirstPromotedArithmeticType;
   7611          Left < LastPromotedArithmeticType; ++Left) {
   7612       for (unsigned Right = FirstPromotedArithmeticType;
   7613            Right < LastPromotedArithmeticType; ++Right) {
   7614         QualType LandR[2] = { getArithmeticType(Left),
   7615                               getArithmeticType(Right) };
   7616         QualType Result =
   7617           isComparison ? S.Context.BoolTy
   7618                        : getUsualArithmeticConversions(Left, Right);
   7619         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7620       }
   7621     }
   7622 
   7623     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
   7624     // conditional operator for vector types.
   7625     for (BuiltinCandidateTypeSet::iterator
   7626               Vec1 = CandidateTypes[0].vector_begin(),
   7627            Vec1End = CandidateTypes[0].vector_end();
   7628          Vec1 != Vec1End; ++Vec1) {
   7629       for (BuiltinCandidateTypeSet::iterator
   7630                 Vec2 = CandidateTypes[1].vector_begin(),
   7631              Vec2End = CandidateTypes[1].vector_end();
   7632            Vec2 != Vec2End; ++Vec2) {
   7633         QualType LandR[2] = { *Vec1, *Vec2 };
   7634         QualType Result = S.Context.BoolTy;
   7635         if (!isComparison) {
   7636           if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
   7637             Result = *Vec1;
   7638           else
   7639             Result = *Vec2;
   7640         }
   7641 
   7642         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7643       }
   7644     }
   7645   }
   7646 
   7647   // C++ [over.built]p17:
   7648   //
   7649   //   For every pair of promoted integral types L and R, there
   7650   //   exist candidate operator functions of the form
   7651   //
   7652   //      LR         operator%(L, R);
   7653   //      LR         operator&(L, R);
   7654   //      LR         operator^(L, R);
   7655   //      LR         operator|(L, R);
   7656   //      L          operator<<(L, R);
   7657   //      L          operator>>(L, R);
   7658   //
   7659   //   where LR is the result of the usual arithmetic conversions
   7660   //   between types L and R.
   7661   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
   7662     if (!HasArithmeticOrEnumeralCandidateType)
   7663       return;
   7664 
   7665     for (unsigned Left = FirstPromotedIntegralType;
   7666          Left < LastPromotedIntegralType; ++Left) {
   7667       for (unsigned Right = FirstPromotedIntegralType;
   7668            Right < LastPromotedIntegralType; ++Right) {
   7669         QualType LandR[2] = { getArithmeticType(Left),
   7670                               getArithmeticType(Right) };
   7671         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
   7672             ? LandR[0]
   7673             : getUsualArithmeticConversions(Left, Right);
   7674         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7675       }
   7676     }
   7677   }
   7678 
   7679   // C++ [over.built]p20:
   7680   //
   7681   //   For every pair (T, VQ), where T is an enumeration or
   7682   //   pointer to member type and VQ is either volatile or
   7683   //   empty, there exist candidate operator functions of the form
   7684   //
   7685   //        VQ T&      operator=(VQ T&, T);
   7686   void addAssignmentMemberPointerOrEnumeralOverloads() {
   7687     /// Set of (canonical) types that we've already handled.
   7688     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7689 
   7690     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
   7691       for (BuiltinCandidateTypeSet::iterator
   7692                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7693              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7694            Enum != EnumEnd; ++Enum) {
   7695         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
   7696           continue;
   7697 
   7698         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
   7699       }
   7700 
   7701       for (BuiltinCandidateTypeSet::iterator
   7702                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7703              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7704            MemPtr != MemPtrEnd; ++MemPtr) {
   7705         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   7706           continue;
   7707 
   7708         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
   7709       }
   7710     }
   7711   }
   7712 
   7713   // C++ [over.built]p19:
   7714   //
   7715   //   For every pair (T, VQ), where T is any type and VQ is either
   7716   //   volatile or empty, there exist candidate operator functions
   7717   //   of the form
   7718   //
   7719   //        T*VQ&      operator=(T*VQ&, T*);
   7720   //
   7721   // C++ [over.built]p21:
   7722   //
   7723   //   For every pair (T, VQ), where T is a cv-qualified or
   7724   //   cv-unqualified object type and VQ is either volatile or
   7725   //   empty, there exist candidate operator functions of the form
   7726   //
   7727   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
   7728   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
   7729   void addAssignmentPointerOverloads(bool isEqualOp) {
   7730     /// Set of (canonical) types that we've already handled.
   7731     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7732 
   7733     for (BuiltinCandidateTypeSet::iterator
   7734               Ptr = CandidateTypes[0].pointer_begin(),
   7735            PtrEnd = CandidateTypes[0].pointer_end();
   7736          Ptr != PtrEnd; ++Ptr) {
   7737       // If this is operator=, keep track of the builtin candidates we added.
   7738       if (isEqualOp)
   7739         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
   7740       else if (!(*Ptr)->getPointeeType()->isObjectType())
   7741         continue;
   7742 
   7743       // non-volatile version
   7744       QualType ParamTypes[2] = {
   7745         S.Context.getLValueReferenceType(*Ptr),
   7746         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
   7747       };
   7748       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7749                             /*IsAssigmentOperator=*/ isEqualOp);
   7750 
   7751       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
   7752                           VisibleTypeConversionsQuals.hasVolatile();
   7753       if (NeedVolatile) {
   7754         // volatile version
   7755         ParamTypes[0] =
   7756           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
   7757         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7758                               /*IsAssigmentOperator=*/isEqualOp);
   7759       }
   7760 
   7761       if (!(*Ptr).isRestrictQualified() &&
   7762           VisibleTypeConversionsQuals.hasRestrict()) {
   7763         // restrict version
   7764         ParamTypes[0]
   7765           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
   7766         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7767                               /*IsAssigmentOperator=*/isEqualOp);
   7768 
   7769         if (NeedVolatile) {
   7770           // volatile restrict version
   7771           ParamTypes[0]
   7772             = S.Context.getLValueReferenceType(
   7773                 S.Context.getCVRQualifiedType(*Ptr,
   7774                                               (Qualifiers::Volatile |
   7775                                                Qualifiers::Restrict)));
   7776           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7777                                 /*IsAssigmentOperator=*/isEqualOp);
   7778         }
   7779       }
   7780     }
   7781 
   7782     if (isEqualOp) {
   7783       for (BuiltinCandidateTypeSet::iterator
   7784                 Ptr = CandidateTypes[1].pointer_begin(),
   7785              PtrEnd = CandidateTypes[1].pointer_end();
   7786            Ptr != PtrEnd; ++Ptr) {
   7787         // Make sure we don't add the same candidate twice.
   7788         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7789           continue;
   7790 
   7791         QualType ParamTypes[2] = {
   7792           S.Context.getLValueReferenceType(*Ptr),
   7793           *Ptr,
   7794         };
   7795 
   7796         // non-volatile version
   7797         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7798                               /*IsAssigmentOperator=*/true);
   7799 
   7800         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
   7801                            VisibleTypeConversionsQuals.hasVolatile();
   7802         if (NeedVolatile) {
   7803           // volatile version
   7804           ParamTypes[0] =
   7805             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
   7806           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7807                                 /*IsAssigmentOperator=*/true);
   7808         }
   7809 
   7810         if (!(*Ptr).isRestrictQualified() &&
   7811             VisibleTypeConversionsQuals.hasRestrict()) {
   7812           // restrict version
   7813           ParamTypes[0]
   7814             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
   7815           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7816                                 /*IsAssigmentOperator=*/true);
   7817 
   7818           if (NeedVolatile) {
   7819             // volatile restrict version
   7820             ParamTypes[0]
   7821               = S.Context.getLValueReferenceType(
   7822                   S.Context.getCVRQualifiedType(*Ptr,
   7823                                                 (Qualifiers::Volatile |
   7824                                                  Qualifiers::Restrict)));
   7825             S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7826                                   /*IsAssigmentOperator=*/true);
   7827           }
   7828         }
   7829       }
   7830     }
   7831   }
   7832 
   7833   // C++ [over.built]p18:
   7834   //
   7835   //   For every triple (L, VQ, R), where L is an arithmetic type,
   7836   //   VQ is either volatile or empty, and R is a promoted
   7837   //   arithmetic type, there exist candidate operator functions of
   7838   //   the form
   7839   //
   7840   //        VQ L&      operator=(VQ L&, R);
   7841   //        VQ L&      operator*=(VQ L&, R);
   7842   //        VQ L&      operator/=(VQ L&, R);
   7843   //        VQ L&      operator+=(VQ L&, R);
   7844   //        VQ L&      operator-=(VQ L&, R);
   7845   void addAssignmentArithmeticOverloads(bool isEqualOp) {
   7846     if (!HasArithmeticOrEnumeralCandidateType)
   7847       return;
   7848 
   7849     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
   7850       for (unsigned Right = FirstPromotedArithmeticType;
   7851            Right < LastPromotedArithmeticType; ++Right) {
   7852         QualType ParamTypes[2];
   7853         ParamTypes[1] = getArithmeticType(Right);
   7854 
   7855         // Add this built-in operator as a candidate (VQ is empty).
   7856         ParamTypes[0] =
   7857           S.Context.getLValueReferenceType(getArithmeticType(Left));
   7858         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7859                               /*IsAssigmentOperator=*/isEqualOp);
   7860 
   7861         // Add this built-in operator as a candidate (VQ is 'volatile').
   7862         if (VisibleTypeConversionsQuals.hasVolatile()) {
   7863           ParamTypes[0] =
   7864             S.Context.getVolatileType(getArithmeticType(Left));
   7865           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   7866           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7867                                 /*IsAssigmentOperator=*/isEqualOp);
   7868         }
   7869       }
   7870     }
   7871 
   7872     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
   7873     for (BuiltinCandidateTypeSet::iterator
   7874               Vec1 = CandidateTypes[0].vector_begin(),
   7875            Vec1End = CandidateTypes[0].vector_end();
   7876          Vec1 != Vec1End; ++Vec1) {
   7877       for (BuiltinCandidateTypeSet::iterator
   7878                 Vec2 = CandidateTypes[1].vector_begin(),
   7879              Vec2End = CandidateTypes[1].vector_end();
   7880            Vec2 != Vec2End; ++Vec2) {
   7881         QualType ParamTypes[2];
   7882         ParamTypes[1] = *Vec2;
   7883         // Add this built-in operator as a candidate (VQ is empty).
   7884         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
   7885         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7886                               /*IsAssigmentOperator=*/isEqualOp);
   7887 
   7888         // Add this built-in operator as a candidate (VQ is 'volatile').
   7889         if (VisibleTypeConversionsQuals.hasVolatile()) {
   7890           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
   7891           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   7892           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7893                                 /*IsAssigmentOperator=*/isEqualOp);
   7894         }
   7895       }
   7896     }
   7897   }
   7898 
   7899   // C++ [over.built]p22:
   7900   //
   7901   //   For every triple (L, VQ, R), where L is an integral type, VQ
   7902   //   is either volatile or empty, and R is a promoted integral
   7903   //   type, there exist candidate operator functions of the form
   7904   //
   7905   //        VQ L&       operator%=(VQ L&, R);
   7906   //        VQ L&       operator<<=(VQ L&, R);
   7907   //        VQ L&       operator>>=(VQ L&, R);
   7908   //        VQ L&       operator&=(VQ L&, R);
   7909   //        VQ L&       operator^=(VQ L&, R);
   7910   //        VQ L&       operator|=(VQ L&, R);
   7911   void addAssignmentIntegralOverloads() {
   7912     if (!HasArithmeticOrEnumeralCandidateType)
   7913       return;
   7914 
   7915     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
   7916       for (unsigned Right = FirstPromotedIntegralType;
   7917            Right < LastPromotedIntegralType; ++Right) {
   7918         QualType ParamTypes[2];
   7919         ParamTypes[1] = getArithmeticType(Right);
   7920 
   7921         // Add this built-in operator as a candidate (VQ is empty).
   7922         ParamTypes[0] =
   7923           S.Context.getLValueReferenceType(getArithmeticType(Left));
   7924         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7925         if (VisibleTypeConversionsQuals.hasVolatile()) {
   7926           // Add this built-in operator as a candidate (VQ is 'volatile').
   7927           ParamTypes[0] = getArithmeticType(Left);
   7928           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
   7929           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   7930           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7931         }
   7932       }
   7933     }
   7934   }
   7935 
   7936   // C++ [over.operator]p23:
   7937   //
   7938   //   There also exist candidate operator functions of the form
   7939   //
   7940   //        bool        operator!(bool);
   7941   //        bool        operator&&(bool, bool);
   7942   //        bool        operator||(bool, bool);
   7943   void addExclaimOverload() {
   7944     QualType ParamTy = S.Context.BoolTy;
   7945     S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
   7946                           /*IsAssignmentOperator=*/false,
   7947                           /*NumContextualBoolArguments=*/1);
   7948   }
   7949   void addAmpAmpOrPipePipeOverload() {
   7950     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
   7951     S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
   7952                           /*IsAssignmentOperator=*/false,
   7953                           /*NumContextualBoolArguments=*/2);
   7954   }
   7955 
   7956   // C++ [over.built]p13:
   7957   //
   7958   //   For every cv-qualified or cv-unqualified object type T there
   7959   //   exist candidate operator functions of the form
   7960   //
   7961   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
   7962   //        T&         operator[](T*, ptrdiff_t);
   7963   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
   7964   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
   7965   //        T&         operator[](ptrdiff_t, T*);
   7966   void addSubscriptOverloads() {
   7967     for (BuiltinCandidateTypeSet::iterator
   7968               Ptr = CandidateTypes[0].pointer_begin(),
   7969            PtrEnd = CandidateTypes[0].pointer_end();
   7970          Ptr != PtrEnd; ++Ptr) {
   7971       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
   7972       QualType PointeeType = (*Ptr)->getPointeeType();
   7973       if (!PointeeType->isObjectType())
   7974         continue;
   7975 
   7976       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
   7977 
   7978       // T& operator[](T*, ptrdiff_t)
   7979       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   7980     }
   7981 
   7982     for (BuiltinCandidateTypeSet::iterator
   7983               Ptr = CandidateTypes[1].pointer_begin(),
   7984            PtrEnd = CandidateTypes[1].pointer_end();
   7985          Ptr != PtrEnd; ++Ptr) {
   7986       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
   7987       QualType PointeeType = (*Ptr)->getPointeeType();
   7988       if (!PointeeType->isObjectType())
   7989         continue;
   7990 
   7991       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
   7992 
   7993       // T& operator[](ptrdiff_t, T*)
   7994       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   7995     }
   7996   }
   7997 
   7998   // C++ [over.built]p11:
   7999   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
   8000   //    C1 is the same type as C2 or is a derived class of C2, T is an object
   8001   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
   8002   //    there exist candidate operator functions of the form
   8003   //
   8004   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
   8005   //
   8006   //    where CV12 is the union of CV1 and CV2.
   8007   void addArrowStarOverloads() {
   8008     for (BuiltinCandidateTypeSet::iterator
   8009              Ptr = CandidateTypes[0].pointer_begin(),
   8010            PtrEnd = CandidateTypes[0].pointer_end();
   8011          Ptr != PtrEnd; ++Ptr) {
   8012       QualType C1Ty = (*Ptr);
   8013       QualType C1;
   8014       QualifierCollector Q1;
   8015       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
   8016       if (!isa<RecordType>(C1))
   8017         continue;
   8018       // heuristic to reduce number of builtin candidates in the set.
   8019       // Add volatile/restrict version only if there are conversions to a
   8020       // volatile/restrict type.
   8021       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
   8022         continue;
   8023       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
   8024         continue;
   8025       for (BuiltinCandidateTypeSet::iterator
   8026                 MemPtr = CandidateTypes[1].member_pointer_begin(),
   8027              MemPtrEnd = CandidateTypes[1].member_pointer_end();
   8028            MemPtr != MemPtrEnd; ++MemPtr) {
   8029         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
   8030         QualType C2 = QualType(mptr->getClass(), 0);
   8031         C2 = C2.getUnqualifiedType();
   8032         if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
   8033           break;
   8034         QualType ParamTypes[2] = { *Ptr, *MemPtr };
   8035         // build CV12 T&
   8036         QualType T = mptr->getPointeeType();
   8037         if (!VisibleTypeConversionsQuals.hasVolatile() &&
   8038             T.isVolatileQualified())
   8039           continue;
   8040         if (!VisibleTypeConversionsQuals.hasRestrict() &&
   8041             T.isRestrictQualified())
   8042           continue;
   8043         T = Q1.apply(S.Context, T);
   8044         QualType ResultTy = S.Context.getLValueReferenceType(T);
   8045         S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   8046       }
   8047     }
   8048   }
   8049 
   8050   // Note that we don't consider the first argument, since it has been
   8051   // contextually converted to bool long ago. The candidates below are
   8052   // therefore added as binary.
   8053   //
   8054   // C++ [over.built]p25:
   8055   //   For every type T, where T is a pointer, pointer-to-member, or scoped
   8056   //   enumeration type, there exist candidate operator functions of the form
   8057   //
   8058   //        T        operator?(bool, T, T);
   8059   //
   8060   void addConditionalOperatorOverloads() {
   8061     /// Set of (canonical) types that we've already handled.
   8062     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   8063 
   8064     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
   8065       for (BuiltinCandidateTypeSet::iterator
   8066                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
   8067              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
   8068            Ptr != PtrEnd; ++Ptr) {
   8069         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   8070           continue;
   8071 
   8072         QualType ParamTypes[2] = { *Ptr, *Ptr };
   8073         S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
   8074       }
   8075 
   8076       for (BuiltinCandidateTypeSet::iterator
   8077                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   8078              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   8079            MemPtr != MemPtrEnd; ++MemPtr) {
   8080         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   8081           continue;
   8082 
   8083         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
   8084         S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
   8085       }
   8086 
   8087       if (S.getLangOpts().CPlusPlus11) {
   8088         for (BuiltinCandidateTypeSet::iterator
   8089                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   8090                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   8091              Enum != EnumEnd; ++Enum) {
   8092           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
   8093             continue;
   8094 
   8095           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
   8096             continue;
   8097 
   8098           QualType ParamTypes[2] = { *Enum, *Enum };
   8099           S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
   8100         }
   8101       }
   8102     }
   8103   }
   8104 };
   8105 
   8106 } // end anonymous namespace
   8107 
   8108 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
   8109 /// operator overloads to the candidate set (C++ [over.built]), based
   8110 /// on the operator @p Op and the arguments given. For example, if the
   8111 /// operator is a binary '+', this routine might add "int
   8112 /// operator+(int, int)" to cover integer addition.
   8113 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
   8114                                         SourceLocation OpLoc,
   8115                                         ArrayRef<Expr *> Args,
   8116                                         OverloadCandidateSet &CandidateSet) {
   8117   // Find all of the types that the arguments can convert to, but only
   8118   // if the operator we're looking at has built-in operator candidates
   8119   // that make use of these types. Also record whether we encounter non-record
   8120   // candidate types or either arithmetic or enumeral candidate types.
   8121   Qualifiers VisibleTypeConversionsQuals;
   8122   VisibleTypeConversionsQuals.addConst();
   8123   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
   8124     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
   8125 
   8126   bool HasNonRecordCandidateType = false;
   8127   bool HasArithmeticOrEnumeralCandidateType = false;
   8128   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
   8129   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   8130     CandidateTypes.emplace_back(*this);
   8131     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
   8132                                                  OpLoc,
   8133                                                  true,
   8134                                                  (Op == OO_Exclaim ||
   8135                                                   Op == OO_AmpAmp ||
   8136                                                   Op == OO_PipePipe),
   8137                                                  VisibleTypeConversionsQuals);
   8138     HasNonRecordCandidateType = HasNonRecordCandidateType ||
   8139         CandidateTypes[ArgIdx].hasNonRecordTypes();
   8140     HasArithmeticOrEnumeralCandidateType =
   8141         HasArithmeticOrEnumeralCandidateType ||
   8142         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
   8143   }
   8144 
   8145   // Exit early when no non-record types have been added to the candidate set
   8146   // for any of the arguments to the operator.
   8147   //
   8148   // We can't exit early for !, ||, or &&, since there we have always have
   8149   // 'bool' overloads.
   8150   if (!HasNonRecordCandidateType &&
   8151       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
   8152     return;
   8153 
   8154   // Setup an object to manage the common state for building overloads.
   8155   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
   8156                                            VisibleTypeConversionsQuals,
   8157                                            HasArithmeticOrEnumeralCandidateType,
   8158                                            CandidateTypes, CandidateSet);
   8159 
   8160   // Dispatch over the operation to add in only those overloads which apply.
   8161   switch (Op) {
   8162   case OO_None:
   8163   case NUM_OVERLOADED_OPERATORS:
   8164     llvm_unreachable("Expected an overloaded operator");
   8165 
   8166   case OO_New:
   8167   case OO_Delete:
   8168   case OO_Array_New:
   8169   case OO_Array_Delete:
   8170   case OO_Call:
   8171     llvm_unreachable(
   8172                     "Special operators don't use AddBuiltinOperatorCandidates");
   8173 
   8174   case OO_Comma:
   8175   case OO_Arrow:
   8176     // C++ [over.match.oper]p3:
   8177     //   -- For the operator ',', the unary operator '&', or the
   8178     //      operator '->', the built-in candidates set is empty.
   8179     break;
   8180 
   8181   case OO_Plus: // '+' is either unary or binary
   8182     if (Args.size() == 1)
   8183       OpBuilder.addUnaryPlusPointerOverloads();
   8184     // Fall through.
   8185 
   8186   case OO_Minus: // '-' is either unary or binary
   8187     if (Args.size() == 1) {
   8188       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
   8189     } else {
   8190       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
   8191       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8192     }
   8193     break;
   8194 
   8195   case OO_Star: // '*' is either unary or binary
   8196     if (Args.size() == 1)
   8197       OpBuilder.addUnaryStarPointerOverloads();
   8198     else
   8199       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8200     break;
   8201 
   8202   case OO_Slash:
   8203     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8204     break;
   8205 
   8206   case OO_PlusPlus:
   8207   case OO_MinusMinus:
   8208     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
   8209     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
   8210     break;
   8211 
   8212   case OO_EqualEqual:
   8213   case OO_ExclaimEqual:
   8214     OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
   8215     // Fall through.
   8216 
   8217   case OO_Less:
   8218   case OO_Greater:
   8219   case OO_LessEqual:
   8220   case OO_GreaterEqual:
   8221     OpBuilder.addRelationalPointerOrEnumeralOverloads();
   8222     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
   8223     break;
   8224 
   8225   case OO_Percent:
   8226   case OO_Caret:
   8227   case OO_Pipe:
   8228   case OO_LessLess:
   8229   case OO_GreaterGreater:
   8230     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
   8231     break;
   8232 
   8233   case OO_Amp: // '&' is either unary or binary
   8234     if (Args.size() == 1)
   8235       // C++ [over.match.oper]p3:
   8236       //   -- For the operator ',', the unary operator '&', or the
   8237       //      operator '->', the built-in candidates set is empty.
   8238       break;
   8239 
   8240     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
   8241     break;
   8242 
   8243   case OO_Tilde:
   8244     OpBuilder.addUnaryTildePromotedIntegralOverloads();
   8245     break;
   8246 
   8247   case OO_Equal:
   8248     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
   8249     // Fall through.
   8250 
   8251   case OO_PlusEqual:
   8252   case OO_MinusEqual:
   8253     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
   8254     // Fall through.
   8255 
   8256   case OO_StarEqual:
   8257   case OO_SlashEqual:
   8258     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
   8259     break;
   8260 
   8261   case OO_PercentEqual:
   8262   case OO_LessLessEqual:
   8263   case OO_GreaterGreaterEqual:
   8264   case OO_AmpEqual:
   8265   case OO_CaretEqual:
   8266   case OO_PipeEqual:
   8267     OpBuilder.addAssignmentIntegralOverloads();
   8268     break;
   8269 
   8270   case OO_Exclaim:
   8271     OpBuilder.addExclaimOverload();
   8272     break;
   8273 
   8274   case OO_AmpAmp:
   8275   case OO_PipePipe:
   8276     OpBuilder.addAmpAmpOrPipePipeOverload();
   8277     break;
   8278 
   8279   case OO_Subscript:
   8280     OpBuilder.addSubscriptOverloads();
   8281     break;
   8282 
   8283   case OO_ArrowStar:
   8284     OpBuilder.addArrowStarOverloads();
   8285     break;
   8286 
   8287   case OO_Conditional:
   8288     OpBuilder.addConditionalOperatorOverloads();
   8289     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8290     break;
   8291   }
   8292 }
   8293 
   8294 /// \brief Add function candidates found via argument-dependent lookup
   8295 /// to the set of overloading candidates.
   8296 ///
   8297 /// This routine performs argument-dependent name lookup based on the
   8298 /// given function name (which may also be an operator name) and adds
   8299 /// all of the overload candidates found by ADL to the overload
   8300 /// candidate set (C++ [basic.lookup.argdep]).
   8301 void
   8302 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
   8303                                            SourceLocation Loc,
   8304                                            ArrayRef<Expr *> Args,
   8305                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   8306                                            OverloadCandidateSet& CandidateSet,
   8307                                            bool PartialOverloading) {
   8308   ADLResult Fns;
   8309 
   8310   // FIXME: This approach for uniquing ADL results (and removing
   8311   // redundant candidates from the set) relies on pointer-equality,
   8312   // which means we need to key off the canonical decl.  However,
   8313   // always going back to the canonical decl might not get us the
   8314   // right set of default arguments.  What default arguments are
   8315   // we supposed to consider on ADL candidates, anyway?
   8316 
   8317   // FIXME: Pass in the explicit template arguments?
   8318   ArgumentDependentLookup(Name, Loc, Args, Fns);
   8319 
   8320   // Erase all of the candidates we already knew about.
   8321   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
   8322                                    CandEnd = CandidateSet.end();
   8323        Cand != CandEnd; ++Cand)
   8324     if (Cand->Function) {
   8325       Fns.erase(Cand->Function);
   8326       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
   8327         Fns.erase(FunTmpl);
   8328     }
   8329 
   8330   // For each of the ADL candidates we found, add it to the overload
   8331   // set.
   8332   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
   8333     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
   8334     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
   8335       if (ExplicitTemplateArgs)
   8336         continue;
   8337 
   8338       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
   8339                            PartialOverloading);
   8340     } else
   8341       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
   8342                                    FoundDecl, ExplicitTemplateArgs,
   8343                                    Args, CandidateSet, PartialOverloading);
   8344   }
   8345 }
   8346 
   8347 /// isBetterOverloadCandidate - Determines whether the first overload
   8348 /// candidate is a better candidate than the second (C++ 13.3.3p1).
   8349 bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
   8350                                       const OverloadCandidate &Cand2,
   8351                                       SourceLocation Loc,
   8352                                       bool UserDefinedConversion) {
   8353   // Define viable functions to be better candidates than non-viable
   8354   // functions.
   8355   if (!Cand2.Viable)
   8356     return Cand1.Viable;
   8357   else if (!Cand1.Viable)
   8358     return false;
   8359 
   8360   // C++ [over.match.best]p1:
   8361   //
   8362   //   -- if F is a static member function, ICS1(F) is defined such
   8363   //      that ICS1(F) is neither better nor worse than ICS1(G) for
   8364   //      any function G, and, symmetrically, ICS1(G) is neither
   8365   //      better nor worse than ICS1(F).
   8366   unsigned StartArg = 0;
   8367   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
   8368     StartArg = 1;
   8369 
   8370   // C++ [over.match.best]p1:
   8371   //   A viable function F1 is defined to be a better function than another
   8372   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
   8373   //   conversion sequence than ICSi(F2), and then...
   8374   unsigned NumArgs = Cand1.NumConversions;
   8375   assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
   8376   bool HasBetterConversion = false;
   8377   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
   8378     switch (CompareImplicitConversionSequences(S,
   8379                                                Cand1.Conversions[ArgIdx],
   8380                                                Cand2.Conversions[ArgIdx])) {
   8381     case ImplicitConversionSequence::Better:
   8382       // Cand1 has a better conversion sequence.
   8383       HasBetterConversion = true;
   8384       break;
   8385 
   8386     case ImplicitConversionSequence::Worse:
   8387       // Cand1 can't be better than Cand2.
   8388       return false;
   8389 
   8390     case ImplicitConversionSequence::Indistinguishable:
   8391       // Do nothing.
   8392       break;
   8393     }
   8394   }
   8395 
   8396   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
   8397   //       ICSj(F2), or, if not that,
   8398   if (HasBetterConversion)
   8399     return true;
   8400 
   8401   //   -- the context is an initialization by user-defined conversion
   8402   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
   8403   //      from the return type of F1 to the destination type (i.e.,
   8404   //      the type of the entity being initialized) is a better
   8405   //      conversion sequence than the standard conversion sequence
   8406   //      from the return type of F2 to the destination type.
   8407   if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
   8408       isa<CXXConversionDecl>(Cand1.Function) &&
   8409       isa<CXXConversionDecl>(Cand2.Function)) {
   8410     // First check whether we prefer one of the conversion functions over the
   8411     // other. This only distinguishes the results in non-standard, extension
   8412     // cases such as the conversion from a lambda closure type to a function
   8413     // pointer or block.
   8414     ImplicitConversionSequence::CompareKind Result =
   8415         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
   8416     if (Result == ImplicitConversionSequence::Indistinguishable)
   8417       Result = CompareStandardConversionSequences(S,
   8418                                                   Cand1.FinalConversion,
   8419                                                   Cand2.FinalConversion);
   8420 
   8421     if (Result != ImplicitConversionSequence::Indistinguishable)
   8422       return Result == ImplicitConversionSequence::Better;
   8423 
   8424     // FIXME: Compare kind of reference binding if conversion functions
   8425     // convert to a reference type used in direct reference binding, per
   8426     // C++14 [over.match.best]p1 section 2 bullet 3.
   8427   }
   8428 
   8429   //    -- F1 is a non-template function and F2 is a function template
   8430   //       specialization, or, if not that,
   8431   bool Cand1IsSpecialization = Cand1.Function &&
   8432                                Cand1.Function->getPrimaryTemplate();
   8433   bool Cand2IsSpecialization = Cand2.Function &&
   8434                                Cand2.Function->getPrimaryTemplate();
   8435   if (Cand1IsSpecialization != Cand2IsSpecialization)
   8436     return Cand2IsSpecialization;
   8437 
   8438   //   -- F1 and F2 are function template specializations, and the function
   8439   //      template for F1 is more specialized than the template for F2
   8440   //      according to the partial ordering rules described in 14.5.5.2, or,
   8441   //      if not that,
   8442   if (Cand1IsSpecialization && Cand2IsSpecialization) {
   8443     if (FunctionTemplateDecl *BetterTemplate
   8444           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
   8445                                          Cand2.Function->getPrimaryTemplate(),
   8446                                          Loc,
   8447                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
   8448                                                              : TPOC_Call,
   8449                                          Cand1.ExplicitCallArguments,
   8450                                          Cand2.ExplicitCallArguments))
   8451       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
   8452   }
   8453 
   8454   // Check for enable_if value-based overload resolution.
   8455   if (Cand1.Function && Cand2.Function &&
   8456       (Cand1.Function->hasAttr<EnableIfAttr>() ||
   8457        Cand2.Function->hasAttr<EnableIfAttr>())) {
   8458     // FIXME: The next several lines are just
   8459     // specific_attr_iterator<EnableIfAttr> but going in declaration order,
   8460     // instead of reverse order which is how they're stored in the AST.
   8461     AttrVec Cand1Attrs;
   8462     if (Cand1.Function->hasAttrs()) {
   8463       Cand1Attrs = Cand1.Function->getAttrs();
   8464       Cand1Attrs.erase(std::remove_if(Cand1Attrs.begin(), Cand1Attrs.end(),
   8465                                       IsNotEnableIfAttr),
   8466                        Cand1Attrs.end());
   8467       std::reverse(Cand1Attrs.begin(), Cand1Attrs.end());
   8468     }
   8469 
   8470     AttrVec Cand2Attrs;
   8471     if (Cand2.Function->hasAttrs()) {
   8472       Cand2Attrs = Cand2.Function->getAttrs();
   8473       Cand2Attrs.erase(std::remove_if(Cand2Attrs.begin(), Cand2Attrs.end(),
   8474                                       IsNotEnableIfAttr),
   8475                        Cand2Attrs.end());
   8476       std::reverse(Cand2Attrs.begin(), Cand2Attrs.end());
   8477     }
   8478 
   8479     // Candidate 1 is better if it has strictly more attributes and
   8480     // the common sequence is identical.
   8481     if (Cand1Attrs.size() <= Cand2Attrs.size())
   8482       return false;
   8483 
   8484     auto Cand1I = Cand1Attrs.begin();
   8485     for (auto &Cand2A : Cand2Attrs) {
   8486       auto &Cand1A = *Cand1I++;
   8487       llvm::FoldingSetNodeID Cand1ID, Cand2ID;
   8488       cast<EnableIfAttr>(Cand1A)->getCond()->Profile(Cand1ID,
   8489                                                      S.getASTContext(), true);
   8490       cast<EnableIfAttr>(Cand2A)->getCond()->Profile(Cand2ID,
   8491                                                      S.getASTContext(), true);
   8492       if (Cand1ID != Cand2ID)
   8493         return false;
   8494     }
   8495 
   8496     return true;
   8497   }
   8498 
   8499   return false;
   8500 }
   8501 
   8502 /// \brief Computes the best viable function (C++ 13.3.3)
   8503 /// within an overload candidate set.
   8504 ///
   8505 /// \param Loc The location of the function name (or operator symbol) for
   8506 /// which overload resolution occurs.
   8507 ///
   8508 /// \param Best If overload resolution was successful or found a deleted
   8509 /// function, \p Best points to the candidate function found.
   8510 ///
   8511 /// \returns The result of overload resolution.
   8512 OverloadingResult
   8513 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
   8514                                          iterator &Best,
   8515                                          bool UserDefinedConversion) {
   8516   // Find the best viable function.
   8517   Best = end();
   8518   for (iterator Cand = begin(); Cand != end(); ++Cand) {
   8519     if (Cand->Viable)
   8520       if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
   8521                                                      UserDefinedConversion))
   8522         Best = Cand;
   8523   }
   8524 
   8525   // If we didn't find any viable functions, abort.
   8526   if (Best == end())
   8527     return OR_No_Viable_Function;
   8528 
   8529   // Make sure that this function is better than every other viable
   8530   // function. If not, we have an ambiguity.
   8531   for (iterator Cand = begin(); Cand != end(); ++Cand) {
   8532     if (Cand->Viable &&
   8533         Cand != Best &&
   8534         !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
   8535                                    UserDefinedConversion)) {
   8536       Best = end();
   8537       return OR_Ambiguous;
   8538     }
   8539   }
   8540 
   8541   // Best is the best viable function.
   8542   if (Best->Function &&
   8543       (Best->Function->isDeleted() ||
   8544        S.isFunctionConsideredUnavailable(Best->Function)))
   8545     return OR_Deleted;
   8546 
   8547   return OR_Success;
   8548 }
   8549 
   8550 namespace {
   8551 
   8552 enum OverloadCandidateKind {
   8553   oc_function,
   8554   oc_method,
   8555   oc_constructor,
   8556   oc_function_template,
   8557   oc_method_template,
   8558   oc_constructor_template,
   8559   oc_implicit_default_constructor,
   8560   oc_implicit_copy_constructor,
   8561   oc_implicit_move_constructor,
   8562   oc_implicit_copy_assignment,
   8563   oc_implicit_move_assignment,
   8564   oc_implicit_inherited_constructor
   8565 };
   8566 
   8567 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
   8568                                                 FunctionDecl *Fn,
   8569                                                 std::string &Description) {
   8570   bool isTemplate = false;
   8571 
   8572   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
   8573     isTemplate = true;
   8574     Description = S.getTemplateArgumentBindingsText(
   8575       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
   8576   }
   8577 
   8578   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
   8579     if (!Ctor->isImplicit())
   8580       return isTemplate ? oc_constructor_template : oc_constructor;
   8581 
   8582     if (Ctor->getInheritedConstructor())
   8583       return oc_implicit_inherited_constructor;
   8584 
   8585     if (Ctor->isDefaultConstructor())
   8586       return oc_implicit_default_constructor;
   8587 
   8588     if (Ctor->isMoveConstructor())
   8589       return oc_implicit_move_constructor;
   8590 
   8591     assert(Ctor->isCopyConstructor() &&
   8592            "unexpected sort of implicit constructor");
   8593     return oc_implicit_copy_constructor;
   8594   }
   8595 
   8596   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
   8597     // This actually gets spelled 'candidate function' for now, but
   8598     // it doesn't hurt to split it out.
   8599     if (!Meth->isImplicit())
   8600       return isTemplate ? oc_method_template : oc_method;
   8601 
   8602     if (Meth->isMoveAssignmentOperator())
   8603       return oc_implicit_move_assignment;
   8604 
   8605     if (Meth->isCopyAssignmentOperator())
   8606       return oc_implicit_copy_assignment;
   8607 
   8608     assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
   8609     return oc_method;
   8610   }
   8611 
   8612   return isTemplate ? oc_function_template : oc_function;
   8613 }
   8614 
   8615 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
   8616   const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
   8617   if (!Ctor) return;
   8618 
   8619   Ctor = Ctor->getInheritedConstructor();
   8620   if (!Ctor) return;
   8621 
   8622   S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
   8623 }
   8624 
   8625 } // end anonymous namespace
   8626 
   8627 // Notes the location of an overload candidate.
   8628 void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
   8629   std::string FnDesc;
   8630   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
   8631   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
   8632                              << (unsigned) K << FnDesc;
   8633   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
   8634   Diag(Fn->getLocation(), PD);
   8635   MaybeEmitInheritedConstructorNote(*this, Fn);
   8636 }
   8637 
   8638 // Notes the location of all overload candidates designated through
   8639 // OverloadedExpr
   8640 void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
   8641   assert(OverloadedExpr->getType() == Context.OverloadTy);
   8642 
   8643   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
   8644   OverloadExpr *OvlExpr = Ovl.Expression;
   8645 
   8646   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   8647                             IEnd = OvlExpr->decls_end();
   8648        I != IEnd; ++I) {
   8649     if (FunctionTemplateDecl *FunTmpl =
   8650                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
   8651       NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
   8652     } else if (FunctionDecl *Fun
   8653                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
   8654       NoteOverloadCandidate(Fun, DestType);
   8655     }
   8656   }
   8657 }
   8658 
   8659 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
   8660 /// "lead" diagnostic; it will be given two arguments, the source and
   8661 /// target types of the conversion.
   8662 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
   8663                                  Sema &S,
   8664                                  SourceLocation CaretLoc,
   8665                                  const PartialDiagnostic &PDiag) const {
   8666   S.Diag(CaretLoc, PDiag)
   8667     << Ambiguous.getFromType() << Ambiguous.getToType();
   8668   // FIXME: The note limiting machinery is borrowed from
   8669   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
   8670   // refactoring here.
   8671   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   8672   unsigned CandsShown = 0;
   8673   AmbiguousConversionSequence::const_iterator I, E;
   8674   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
   8675     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
   8676       break;
   8677     ++CandsShown;
   8678     S.NoteOverloadCandidate(*I);
   8679   }
   8680   if (I != E)
   8681     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
   8682 }
   8683 
   8684 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
   8685                                   unsigned I) {
   8686   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
   8687   assert(Conv.isBad());
   8688   assert(Cand->Function && "for now, candidate must be a function");
   8689   FunctionDecl *Fn = Cand->Function;
   8690 
   8691   // There's a conversion slot for the object argument if this is a
   8692   // non-constructor method.  Note that 'I' corresponds the
   8693   // conversion-slot index.
   8694   bool isObjectArgument = false;
   8695   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
   8696     if (I == 0)
   8697       isObjectArgument = true;
   8698     else
   8699       I--;
   8700   }
   8701 
   8702   std::string FnDesc;
   8703   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
   8704 
   8705   Expr *FromExpr = Conv.Bad.FromExpr;
   8706   QualType FromTy = Conv.Bad.getFromType();
   8707   QualType ToTy = Conv.Bad.getToType();
   8708 
   8709   if (FromTy == S.Context.OverloadTy) {
   8710     assert(FromExpr && "overload set argument came from implicit argument?");
   8711     Expr *E = FromExpr->IgnoreParens();
   8712     if (isa<UnaryOperator>(E))
   8713       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
   8714     DeclarationName Name = cast<OverloadExpr>(E)->getName();
   8715 
   8716     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
   8717       << (unsigned) FnKind << FnDesc
   8718       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8719       << ToTy << Name << I+1;
   8720     MaybeEmitInheritedConstructorNote(S, Fn);
   8721     return;
   8722   }
   8723 
   8724   // Do some hand-waving analysis to see if the non-viability is due
   8725   // to a qualifier mismatch.
   8726   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
   8727   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
   8728   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
   8729     CToTy = RT->getPointeeType();
   8730   else {
   8731     // TODO: detect and diagnose the full richness of const mismatches.
   8732     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
   8733       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
   8734         CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
   8735   }
   8736 
   8737   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
   8738       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
   8739     Qualifiers FromQs = CFromTy.getQualifiers();
   8740     Qualifiers ToQs = CToTy.getQualifiers();
   8741 
   8742     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
   8743       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
   8744         << (unsigned) FnKind << FnDesc
   8745         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8746         << FromTy
   8747         << FromQs.getAddressSpace() << ToQs.getAddressSpace()
   8748         << (unsigned) isObjectArgument << I+1;
   8749       MaybeEmitInheritedConstructorNote(S, Fn);
   8750       return;
   8751     }
   8752 
   8753     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
   8754       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
   8755         << (unsigned) FnKind << FnDesc
   8756         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8757         << FromTy
   8758         << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
   8759         << (unsigned) isObjectArgument << I+1;
   8760       MaybeEmitInheritedConstructorNote(S, Fn);
   8761       return;
   8762     }
   8763 
   8764     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
   8765       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
   8766       << (unsigned) FnKind << FnDesc
   8767       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8768       << FromTy
   8769       << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
   8770       << (unsigned) isObjectArgument << I+1;
   8771       MaybeEmitInheritedConstructorNote(S, Fn);
   8772       return;
   8773     }
   8774 
   8775     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
   8776     assert(CVR && "unexpected qualifiers mismatch");
   8777 
   8778     if (isObjectArgument) {
   8779       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
   8780         << (unsigned) FnKind << FnDesc
   8781         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8782         << FromTy << (CVR - 1);
   8783     } else {
   8784       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
   8785         << (unsigned) FnKind << FnDesc
   8786         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8787         << FromTy << (CVR - 1) << I+1;
   8788     }
   8789     MaybeEmitInheritedConstructorNote(S, Fn);
   8790     return;
   8791   }
   8792 
   8793   // Special diagnostic for failure to convert an initializer list, since
   8794   // telling the user that it has type void is not useful.
   8795   if (FromExpr && isa<InitListExpr>(FromExpr)) {
   8796     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
   8797       << (unsigned) FnKind << FnDesc
   8798       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8799       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   8800     MaybeEmitInheritedConstructorNote(S, Fn);
   8801     return;
   8802   }
   8803 
   8804   // Diagnose references or pointers to incomplete types differently,
   8805   // since it's far from impossible that the incompleteness triggered
   8806   // the failure.
   8807   QualType TempFromTy = FromTy.getNonReferenceType();
   8808   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
   8809     TempFromTy = PTy->getPointeeType();
   8810   if (TempFromTy->isIncompleteType()) {
   8811     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
   8812       << (unsigned) FnKind << FnDesc
   8813       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8814       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   8815     MaybeEmitInheritedConstructorNote(S, Fn);
   8816     return;
   8817   }
   8818 
   8819   // Diagnose base -> derived pointer conversions.
   8820   unsigned BaseToDerivedConversion = 0;
   8821   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
   8822     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
   8823       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
   8824                                                FromPtrTy->getPointeeType()) &&
   8825           !FromPtrTy->getPointeeType()->isIncompleteType() &&
   8826           !ToPtrTy->getPointeeType()->isIncompleteType() &&
   8827           S.IsDerivedFrom(ToPtrTy->getPointeeType(),
   8828                           FromPtrTy->getPointeeType()))
   8829         BaseToDerivedConversion = 1;
   8830     }
   8831   } else if (const ObjCObjectPointerType *FromPtrTy
   8832                                     = FromTy->getAs<ObjCObjectPointerType>()) {
   8833     if (const ObjCObjectPointerType *ToPtrTy
   8834                                         = ToTy->getAs<ObjCObjectPointerType>())
   8835       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
   8836         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
   8837           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
   8838                                                 FromPtrTy->getPointeeType()) &&
   8839               FromIface->isSuperClassOf(ToIface))
   8840             BaseToDerivedConversion = 2;
   8841   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
   8842     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
   8843         !FromTy->isIncompleteType() &&
   8844         !ToRefTy->getPointeeType()->isIncompleteType() &&
   8845         S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
   8846       BaseToDerivedConversion = 3;
   8847     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
   8848                ToTy.getNonReferenceType().getCanonicalType() ==
   8849                FromTy.getNonReferenceType().getCanonicalType()) {
   8850       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
   8851         << (unsigned) FnKind << FnDesc
   8852         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8853         << (unsigned) isObjectArgument << I + 1;
   8854       MaybeEmitInheritedConstructorNote(S, Fn);
   8855       return;
   8856     }
   8857   }
   8858 
   8859   if (BaseToDerivedConversion) {
   8860     S.Diag(Fn->getLocation(),
   8861            diag::note_ovl_candidate_bad_base_to_derived_conv)
   8862       << (unsigned) FnKind << FnDesc
   8863       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8864       << (BaseToDerivedConversion - 1)
   8865       << FromTy << ToTy << I+1;
   8866     MaybeEmitInheritedConstructorNote(S, Fn);
   8867     return;
   8868   }
   8869 
   8870   if (isa<ObjCObjectPointerType>(CFromTy) &&
   8871       isa<PointerType>(CToTy)) {
   8872       Qualifiers FromQs = CFromTy.getQualifiers();
   8873       Qualifiers ToQs = CToTy.getQualifiers();
   8874       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
   8875         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
   8876         << (unsigned) FnKind << FnDesc
   8877         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8878         << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   8879         MaybeEmitInheritedConstructorNote(S, Fn);
   8880         return;
   8881       }
   8882   }
   8883 
   8884   // Emit the generic diagnostic and, optionally, add the hints to it.
   8885   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
   8886   FDiag << (unsigned) FnKind << FnDesc
   8887     << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8888     << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
   8889     << (unsigned) (Cand->Fix.Kind);
   8890 
   8891   // If we can fix the conversion, suggest the FixIts.
   8892   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
   8893        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
   8894     FDiag << *HI;
   8895   S.Diag(Fn->getLocation(), FDiag);
   8896 
   8897   MaybeEmitInheritedConstructorNote(S, Fn);
   8898 }
   8899 
   8900 /// Additional arity mismatch diagnosis specific to a function overload
   8901 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
   8902 /// over a candidate in any candidate set.
   8903 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
   8904                                unsigned NumArgs) {
   8905   FunctionDecl *Fn = Cand->Function;
   8906   unsigned MinParams = Fn->getMinRequiredArguments();
   8907 
   8908   // With invalid overloaded operators, it's possible that we think we
   8909   // have an arity mismatch when in fact it looks like we have the
   8910   // right number of arguments, because only overloaded operators have
   8911   // the weird behavior of overloading member and non-member functions.
   8912   // Just don't report anything.
   8913   if (Fn->isInvalidDecl() &&
   8914       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
   8915     return true;
   8916 
   8917   if (NumArgs < MinParams) {
   8918     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
   8919            (Cand->FailureKind == ovl_fail_bad_deduction &&
   8920             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
   8921   } else {
   8922     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
   8923            (Cand->FailureKind == ovl_fail_bad_deduction &&
   8924             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
   8925   }
   8926 
   8927   return false;
   8928 }
   8929 
   8930 /// General arity mismatch diagnosis over a candidate in a candidate set.
   8931 static void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
   8932   assert(isa<FunctionDecl>(D) &&
   8933       "The templated declaration should at least be a function"
   8934       " when diagnosing bad template argument deduction due to too many"
   8935       " or too few arguments");
   8936 
   8937   FunctionDecl *Fn = cast<FunctionDecl>(D);
   8938 
   8939   // TODO: treat calls to a missing default constructor as a special case
   8940   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
   8941   unsigned MinParams = Fn->getMinRequiredArguments();
   8942 
   8943   // at least / at most / exactly
   8944   unsigned mode, modeCount;
   8945   if (NumFormalArgs < MinParams) {
   8946     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
   8947         FnTy->isTemplateVariadic())
   8948       mode = 0; // "at least"
   8949     else
   8950       mode = 2; // "exactly"
   8951     modeCount = MinParams;
   8952   } else {
   8953     if (MinParams != FnTy->getNumParams())
   8954       mode = 1; // "at most"
   8955     else
   8956       mode = 2; // "exactly"
   8957     modeCount = FnTy->getNumParams();
   8958   }
   8959 
   8960   std::string Description;
   8961   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
   8962 
   8963   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
   8964     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
   8965       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
   8966       << mode << Fn->getParamDecl(0) << NumFormalArgs;
   8967   else
   8968     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
   8969       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
   8970       << mode << modeCount << NumFormalArgs;
   8971   MaybeEmitInheritedConstructorNote(S, Fn);
   8972 }
   8973 
   8974 /// Arity mismatch diagnosis specific to a function overload candidate.
   8975 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
   8976                                   unsigned NumFormalArgs) {
   8977   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
   8978     DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
   8979 }
   8980 
   8981 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
   8982   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
   8983     return FD->getDescribedFunctionTemplate();
   8984   else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
   8985     return RD->getDescribedClassTemplate();
   8986 
   8987   llvm_unreachable("Unsupported: Getting the described template declaration"
   8988                    " for bad deduction diagnosis");
   8989 }
   8990 
   8991 /// Diagnose a failed template-argument deduction.
   8992 static void DiagnoseBadDeduction(Sema &S, Decl *Templated,
   8993                                  DeductionFailureInfo &DeductionFailure,
   8994                                  unsigned NumArgs) {
   8995   TemplateParameter Param = DeductionFailure.getTemplateParameter();
   8996   NamedDecl *ParamD;
   8997   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
   8998   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
   8999   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
   9000   switch (DeductionFailure.Result) {
   9001   case Sema::TDK_Success:
   9002     llvm_unreachable("TDK_success while diagnosing bad deduction");
   9003 
   9004   case Sema::TDK_Incomplete: {
   9005     assert(ParamD && "no parameter found for incomplete deduction result");
   9006     S.Diag(Templated->getLocation(),
   9007            diag::note_ovl_candidate_incomplete_deduction)
   9008         << ParamD->getDeclName();
   9009     MaybeEmitInheritedConstructorNote(S, Templated);
   9010     return;
   9011   }
   9012 
   9013   case Sema::TDK_Underqualified: {
   9014     assert(ParamD && "no parameter found for bad qualifiers deduction result");
   9015     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
   9016 
   9017     QualType Param = DeductionFailure.getFirstArg()->getAsType();
   9018 
   9019     // Param will have been canonicalized, but it should just be a
   9020     // qualified version of ParamD, so move the qualifiers to that.
   9021     QualifierCollector Qs;
   9022     Qs.strip(Param);
   9023     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
   9024     assert(S.Context.hasSameType(Param, NonCanonParam));
   9025 
   9026     // Arg has also been canonicalized, but there's nothing we can do
   9027     // about that.  It also doesn't matter as much, because it won't
   9028     // have any template parameters in it (because deduction isn't
   9029     // done on dependent types).
   9030     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
   9031 
   9032     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
   9033         << ParamD->getDeclName() << Arg << NonCanonParam;
   9034     MaybeEmitInheritedConstructorNote(S, Templated);
   9035     return;
   9036   }
   9037 
   9038   case Sema::TDK_Inconsistent: {
   9039     assert(ParamD && "no parameter found for inconsistent deduction result");
   9040     int which = 0;
   9041     if (isa<TemplateTypeParmDecl>(ParamD))
   9042       which = 0;
   9043     else if (isa<NonTypeTemplateParmDecl>(ParamD))
   9044       which = 1;
   9045     else {
   9046       which = 2;
   9047     }
   9048 
   9049     S.Diag(Templated->getLocation(),
   9050            diag::note_ovl_candidate_inconsistent_deduction)
   9051         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
   9052         << *DeductionFailure.getSecondArg();
   9053     MaybeEmitInheritedConstructorNote(S, Templated);
   9054     return;
   9055   }
   9056 
   9057   case Sema::TDK_InvalidExplicitArguments:
   9058     assert(ParamD && "no parameter found for invalid explicit arguments");
   9059     if (ParamD->getDeclName())
   9060       S.Diag(Templated->getLocation(),
   9061              diag::note_ovl_candidate_explicit_arg_mismatch_named)
   9062           << ParamD->getDeclName();
   9063     else {
   9064       int index = 0;
   9065       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
   9066         index = TTP->getIndex();
   9067       else if (NonTypeTemplateParmDecl *NTTP
   9068                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
   9069         index = NTTP->getIndex();
   9070       else
   9071         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
   9072       S.Diag(Templated->getLocation(),
   9073              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
   9074           << (index + 1);
   9075     }
   9076     MaybeEmitInheritedConstructorNote(S, Templated);
   9077     return;
   9078 
   9079   case Sema::TDK_TooManyArguments:
   9080   case Sema::TDK_TooFewArguments:
   9081     DiagnoseArityMismatch(S, Templated, NumArgs);
   9082     return;
   9083 
   9084   case Sema::TDK_InstantiationDepth:
   9085     S.Diag(Templated->getLocation(),
   9086            diag::note_ovl_candidate_instantiation_depth);
   9087     MaybeEmitInheritedConstructorNote(S, Templated);
   9088     return;
   9089 
   9090   case Sema::TDK_SubstitutionFailure: {
   9091     // Format the template argument list into the argument string.
   9092     SmallString<128> TemplateArgString;
   9093     if (TemplateArgumentList *Args =
   9094             DeductionFailure.getTemplateArgumentList()) {
   9095       TemplateArgString = " ";
   9096       TemplateArgString += S.getTemplateArgumentBindingsText(
   9097           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
   9098     }
   9099 
   9100     // If this candidate was disabled by enable_if, say so.
   9101     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
   9102     if (PDiag && PDiag->second.getDiagID() ==
   9103           diag::err_typename_nested_not_found_enable_if) {
   9104       // FIXME: Use the source range of the condition, and the fully-qualified
   9105       //        name of the enable_if template. These are both present in PDiag.
   9106       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
   9107         << "'enable_if'" << TemplateArgString;
   9108       return;
   9109     }
   9110 
   9111     // Format the SFINAE diagnostic into the argument string.
   9112     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
   9113     //        formatted message in another diagnostic.
   9114     SmallString<128> SFINAEArgString;
   9115     SourceRange R;
   9116     if (PDiag) {
   9117       SFINAEArgString = ": ";
   9118       R = SourceRange(PDiag->first, PDiag->first);
   9119       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
   9120     }
   9121 
   9122     S.Diag(Templated->getLocation(),
   9123            diag::note_ovl_candidate_substitution_failure)
   9124         << TemplateArgString << SFINAEArgString << R;
   9125     MaybeEmitInheritedConstructorNote(S, Templated);
   9126     return;
   9127   }
   9128 
   9129   case Sema::TDK_FailedOverloadResolution: {
   9130     OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
   9131     S.Diag(Templated->getLocation(),
   9132            diag::note_ovl_candidate_failed_overload_resolution)
   9133         << R.Expression->getName();
   9134     return;
   9135   }
   9136 
   9137   case Sema::TDK_NonDeducedMismatch: {
   9138     // FIXME: Provide a source location to indicate what we couldn't match.
   9139     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
   9140     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
   9141     if (FirstTA.getKind() == TemplateArgument::Template &&
   9142         SecondTA.getKind() == TemplateArgument::Template) {
   9143       TemplateName FirstTN = FirstTA.getAsTemplate();
   9144       TemplateName SecondTN = SecondTA.getAsTemplate();
   9145       if (FirstTN.getKind() == TemplateName::Template &&
   9146           SecondTN.getKind() == TemplateName::Template) {
   9147         if (FirstTN.getAsTemplateDecl()->getName() ==
   9148             SecondTN.getAsTemplateDecl()->getName()) {
   9149           // FIXME: This fixes a bad diagnostic where both templates are named
   9150           // the same.  This particular case is a bit difficult since:
   9151           // 1) It is passed as a string to the diagnostic printer.
   9152           // 2) The diagnostic printer only attempts to find a better
   9153           //    name for types, not decls.
   9154           // Ideally, this should folded into the diagnostic printer.
   9155           S.Diag(Templated->getLocation(),
   9156                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
   9157               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
   9158           return;
   9159         }
   9160       }
   9161     }
   9162     // FIXME: For generic lambda parameters, check if the function is a lambda
   9163     // call operator, and if so, emit a prettier and more informative
   9164     // diagnostic that mentions 'auto' and lambda in addition to
   9165     // (or instead of?) the canonical template type parameters.
   9166     S.Diag(Templated->getLocation(),
   9167            diag::note_ovl_candidate_non_deduced_mismatch)
   9168         << FirstTA << SecondTA;
   9169     return;
   9170   }
   9171   // TODO: diagnose these individually, then kill off
   9172   // note_ovl_candidate_bad_deduction, which is uselessly vague.
   9173   case Sema::TDK_MiscellaneousDeductionFailure:
   9174     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
   9175     MaybeEmitInheritedConstructorNote(S, Templated);
   9176     return;
   9177   }
   9178 }
   9179 
   9180 /// Diagnose a failed template-argument deduction, for function calls.
   9181 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
   9182                                  unsigned NumArgs) {
   9183   unsigned TDK = Cand->DeductionFailure.Result;
   9184   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
   9185     if (CheckArityMismatch(S, Cand, NumArgs))
   9186       return;
   9187   }
   9188   DiagnoseBadDeduction(S, Cand->Function, // pattern
   9189                        Cand->DeductionFailure, NumArgs);
   9190 }
   9191 
   9192 /// CUDA: diagnose an invalid call across targets.
   9193 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
   9194   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
   9195   FunctionDecl *Callee = Cand->Function;
   9196 
   9197   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
   9198                            CalleeTarget = S.IdentifyCUDATarget(Callee);
   9199 
   9200   std::string FnDesc;
   9201   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
   9202 
   9203   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
   9204       << (unsigned)FnKind << CalleeTarget << CallerTarget;
   9205 
   9206   // This could be an implicit constructor for which we could not infer the
   9207   // target due to a collsion. Diagnose that case.
   9208   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
   9209   if (Meth != nullptr && Meth->isImplicit()) {
   9210     CXXRecordDecl *ParentClass = Meth->getParent();
   9211     Sema::CXXSpecialMember CSM;
   9212 
   9213     switch (FnKind) {
   9214     default:
   9215       return;
   9216     case oc_implicit_default_constructor:
   9217       CSM = Sema::CXXDefaultConstructor;
   9218       break;
   9219     case oc_implicit_copy_constructor:
   9220       CSM = Sema::CXXCopyConstructor;
   9221       break;
   9222     case oc_implicit_move_constructor:
   9223       CSM = Sema::CXXMoveConstructor;
   9224       break;
   9225     case oc_implicit_copy_assignment:
   9226       CSM = Sema::CXXCopyAssignment;
   9227       break;
   9228     case oc_implicit_move_assignment:
   9229       CSM = Sema::CXXMoveAssignment;
   9230       break;
   9231     };
   9232 
   9233     bool ConstRHS = false;
   9234     if (Meth->getNumParams()) {
   9235       if (const ReferenceType *RT =
   9236               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
   9237         ConstRHS = RT->getPointeeType().isConstQualified();
   9238       }
   9239     }
   9240 
   9241     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
   9242                                               /* ConstRHS */ ConstRHS,
   9243                                               /* Diagnose */ true);
   9244   }
   9245 }
   9246 
   9247 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
   9248   FunctionDecl *Callee = Cand->Function;
   9249   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
   9250 
   9251   S.Diag(Callee->getLocation(),
   9252          diag::note_ovl_candidate_disabled_by_enable_if_attr)
   9253       << Attr->getCond()->getSourceRange() << Attr->getMessage();
   9254 }
   9255 
   9256 /// Generates a 'note' diagnostic for an overload candidate.  We've
   9257 /// already generated a primary error at the call site.
   9258 ///
   9259 /// It really does need to be a single diagnostic with its caret
   9260 /// pointed at the candidate declaration.  Yes, this creates some
   9261 /// major challenges of technical writing.  Yes, this makes pointing
   9262 /// out problems with specific arguments quite awkward.  It's still
   9263 /// better than generating twenty screens of text for every failed
   9264 /// overload.
   9265 ///
   9266 /// It would be great to be able to express per-candidate problems
   9267 /// more richly for those diagnostic clients that cared, but we'd
   9268 /// still have to be just as careful with the default diagnostics.
   9269 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
   9270                                   unsigned NumArgs) {
   9271   FunctionDecl *Fn = Cand->Function;
   9272 
   9273   // Note deleted candidates, but only if they're viable.
   9274   if (Cand->Viable && (Fn->isDeleted() ||
   9275       S.isFunctionConsideredUnavailable(Fn))) {
   9276     std::string FnDesc;
   9277     OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
   9278 
   9279     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
   9280       << FnKind << FnDesc
   9281       << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
   9282     MaybeEmitInheritedConstructorNote(S, Fn);
   9283     return;
   9284   }
   9285 
   9286   // We don't really have anything else to say about viable candidates.
   9287   if (Cand->Viable) {
   9288     S.NoteOverloadCandidate(Fn);
   9289     return;
   9290   }
   9291 
   9292   switch (Cand->FailureKind) {
   9293   case ovl_fail_too_many_arguments:
   9294   case ovl_fail_too_few_arguments:
   9295     return DiagnoseArityMismatch(S, Cand, NumArgs);
   9296 
   9297   case ovl_fail_bad_deduction:
   9298     return DiagnoseBadDeduction(S, Cand, NumArgs);
   9299 
   9300   case ovl_fail_illegal_constructor: {
   9301     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
   9302       << (Fn->getPrimaryTemplate() ? 1 : 0);
   9303     MaybeEmitInheritedConstructorNote(S, Fn);
   9304     return;
   9305   }
   9306 
   9307   case ovl_fail_trivial_conversion:
   9308   case ovl_fail_bad_final_conversion:
   9309   case ovl_fail_final_conversion_not_exact:
   9310     return S.NoteOverloadCandidate(Fn);
   9311 
   9312   case ovl_fail_bad_conversion: {
   9313     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
   9314     for (unsigned N = Cand->NumConversions; I != N; ++I)
   9315       if (Cand->Conversions[I].isBad())
   9316         return DiagnoseBadConversion(S, Cand, I);
   9317 
   9318     // FIXME: this currently happens when we're called from SemaInit
   9319     // when user-conversion overload fails.  Figure out how to handle
   9320     // those conditions and diagnose them well.
   9321     return S.NoteOverloadCandidate(Fn);
   9322   }
   9323 
   9324   case ovl_fail_bad_target:
   9325     return DiagnoseBadTarget(S, Cand);
   9326 
   9327   case ovl_fail_enable_if:
   9328     return DiagnoseFailedEnableIfAttr(S, Cand);
   9329   }
   9330 }
   9331 
   9332 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
   9333   // Desugar the type of the surrogate down to a function type,
   9334   // retaining as many typedefs as possible while still showing
   9335   // the function type (and, therefore, its parameter types).
   9336   QualType FnType = Cand->Surrogate->getConversionType();
   9337   bool isLValueReference = false;
   9338   bool isRValueReference = false;
   9339   bool isPointer = false;
   9340   if (const LValueReferenceType *FnTypeRef =
   9341         FnType->getAs<LValueReferenceType>()) {
   9342     FnType = FnTypeRef->getPointeeType();
   9343     isLValueReference = true;
   9344   } else if (const RValueReferenceType *FnTypeRef =
   9345                FnType->getAs<RValueReferenceType>()) {
   9346     FnType = FnTypeRef->getPointeeType();
   9347     isRValueReference = true;
   9348   }
   9349   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
   9350     FnType = FnTypePtr->getPointeeType();
   9351     isPointer = true;
   9352   }
   9353   // Desugar down to a function type.
   9354   FnType = QualType(FnType->getAs<FunctionType>(), 0);
   9355   // Reconstruct the pointer/reference as appropriate.
   9356   if (isPointer) FnType = S.Context.getPointerType(FnType);
   9357   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
   9358   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
   9359 
   9360   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
   9361     << FnType;
   9362   MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
   9363 }
   9364 
   9365 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
   9366                                          SourceLocation OpLoc,
   9367                                          OverloadCandidate *Cand) {
   9368   assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
   9369   std::string TypeStr("operator");
   9370   TypeStr += Opc;
   9371   TypeStr += "(";
   9372   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
   9373   if (Cand->NumConversions == 1) {
   9374     TypeStr += ")";
   9375     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
   9376   } else {
   9377     TypeStr += ", ";
   9378     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
   9379     TypeStr += ")";
   9380     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
   9381   }
   9382 }
   9383 
   9384 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
   9385                                          OverloadCandidate *Cand) {
   9386   unsigned NoOperands = Cand->NumConversions;
   9387   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
   9388     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
   9389     if (ICS.isBad()) break; // all meaningless after first invalid
   9390     if (!ICS.isAmbiguous()) continue;
   9391 
   9392     ICS.DiagnoseAmbiguousConversion(S, OpLoc,
   9393                               S.PDiag(diag::note_ambiguous_type_conversion));
   9394   }
   9395 }
   9396 
   9397 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
   9398   if (Cand->Function)
   9399     return Cand->Function->getLocation();
   9400   if (Cand->IsSurrogate)
   9401     return Cand->Surrogate->getLocation();
   9402   return SourceLocation();
   9403 }
   9404 
   9405 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
   9406   switch ((Sema::TemplateDeductionResult)DFI.Result) {
   9407   case Sema::TDK_Success:
   9408     llvm_unreachable("TDK_success while diagnosing bad deduction");
   9409 
   9410   case Sema::TDK_Invalid:
   9411   case Sema::TDK_Incomplete:
   9412     return 1;
   9413 
   9414   case Sema::TDK_Underqualified:
   9415   case Sema::TDK_Inconsistent:
   9416     return 2;
   9417 
   9418   case Sema::TDK_SubstitutionFailure:
   9419   case Sema::TDK_NonDeducedMismatch:
   9420   case Sema::TDK_MiscellaneousDeductionFailure:
   9421     return 3;
   9422 
   9423   case Sema::TDK_InstantiationDepth:
   9424   case Sema::TDK_FailedOverloadResolution:
   9425     return 4;
   9426 
   9427   case Sema::TDK_InvalidExplicitArguments:
   9428     return 5;
   9429 
   9430   case Sema::TDK_TooManyArguments:
   9431   case Sema::TDK_TooFewArguments:
   9432     return 6;
   9433   }
   9434   llvm_unreachable("Unhandled deduction result");
   9435 }
   9436 
   9437 namespace {
   9438 struct CompareOverloadCandidatesForDisplay {
   9439   Sema &S;
   9440   size_t NumArgs;
   9441 
   9442   CompareOverloadCandidatesForDisplay(Sema &S, size_t nArgs)
   9443       : S(S), NumArgs(nArgs) {}
   9444 
   9445   bool operator()(const OverloadCandidate *L,
   9446                   const OverloadCandidate *R) {
   9447     // Fast-path this check.
   9448     if (L == R) return false;
   9449 
   9450     // Order first by viability.
   9451     if (L->Viable) {
   9452       if (!R->Viable) return true;
   9453 
   9454       // TODO: introduce a tri-valued comparison for overload
   9455       // candidates.  Would be more worthwhile if we had a sort
   9456       // that could exploit it.
   9457       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
   9458       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
   9459     } else if (R->Viable)
   9460       return false;
   9461 
   9462     assert(L->Viable == R->Viable);
   9463 
   9464     // Criteria by which we can sort non-viable candidates:
   9465     if (!L->Viable) {
   9466       // 1. Arity mismatches come after other candidates.
   9467       if (L->FailureKind == ovl_fail_too_many_arguments ||
   9468           L->FailureKind == ovl_fail_too_few_arguments) {
   9469         if (R->FailureKind == ovl_fail_too_many_arguments ||
   9470             R->FailureKind == ovl_fail_too_few_arguments) {
   9471           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
   9472           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
   9473           if (LDist == RDist) {
   9474             if (L->FailureKind == R->FailureKind)
   9475               // Sort non-surrogates before surrogates.
   9476               return !L->IsSurrogate && R->IsSurrogate;
   9477             // Sort candidates requiring fewer parameters than there were
   9478             // arguments given after candidates requiring more parameters
   9479             // than there were arguments given.
   9480             return L->FailureKind == ovl_fail_too_many_arguments;
   9481           }
   9482           return LDist < RDist;
   9483         }
   9484         return false;
   9485       }
   9486       if (R->FailureKind == ovl_fail_too_many_arguments ||
   9487           R->FailureKind == ovl_fail_too_few_arguments)
   9488         return true;
   9489 
   9490       // 2. Bad conversions come first and are ordered by the number
   9491       // of bad conversions and quality of good conversions.
   9492       if (L->FailureKind == ovl_fail_bad_conversion) {
   9493         if (R->FailureKind != ovl_fail_bad_conversion)
   9494           return true;
   9495 
   9496         // The conversion that can be fixed with a smaller number of changes,
   9497         // comes first.
   9498         unsigned numLFixes = L->Fix.NumConversionsFixed;
   9499         unsigned numRFixes = R->Fix.NumConversionsFixed;
   9500         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
   9501         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
   9502         if (numLFixes != numRFixes) {
   9503           return numLFixes < numRFixes;
   9504         }
   9505 
   9506         // If there's any ordering between the defined conversions...
   9507         // FIXME: this might not be transitive.
   9508         assert(L->NumConversions == R->NumConversions);
   9509 
   9510         int leftBetter = 0;
   9511         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
   9512         for (unsigned E = L->NumConversions; I != E; ++I) {
   9513           switch (CompareImplicitConversionSequences(S,
   9514                                                      L->Conversions[I],
   9515                                                      R->Conversions[I])) {
   9516           case ImplicitConversionSequence::Better:
   9517             leftBetter++;
   9518             break;
   9519 
   9520           case ImplicitConversionSequence::Worse:
   9521             leftBetter--;
   9522             break;
   9523 
   9524           case ImplicitConversionSequence::Indistinguishable:
   9525             break;
   9526           }
   9527         }
   9528         if (leftBetter > 0) return true;
   9529         if (leftBetter < 0) return false;
   9530 
   9531       } else if (R->FailureKind == ovl_fail_bad_conversion)
   9532         return false;
   9533 
   9534       if (L->FailureKind == ovl_fail_bad_deduction) {
   9535         if (R->FailureKind != ovl_fail_bad_deduction)
   9536           return true;
   9537 
   9538         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
   9539           return RankDeductionFailure(L->DeductionFailure)
   9540                < RankDeductionFailure(R->DeductionFailure);
   9541       } else if (R->FailureKind == ovl_fail_bad_deduction)
   9542         return false;
   9543 
   9544       // TODO: others?
   9545     }
   9546 
   9547     // Sort everything else by location.
   9548     SourceLocation LLoc = GetLocationForCandidate(L);
   9549     SourceLocation RLoc = GetLocationForCandidate(R);
   9550 
   9551     // Put candidates without locations (e.g. builtins) at the end.
   9552     if (LLoc.isInvalid()) return false;
   9553     if (RLoc.isInvalid()) return true;
   9554 
   9555     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
   9556   }
   9557 };
   9558 }
   9559 
   9560 /// CompleteNonViableCandidate - Normally, overload resolution only
   9561 /// computes up to the first. Produces the FixIt set if possible.
   9562 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
   9563                                        ArrayRef<Expr *> Args) {
   9564   assert(!Cand->Viable);
   9565 
   9566   // Don't do anything on failures other than bad conversion.
   9567   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
   9568 
   9569   // We only want the FixIts if all the arguments can be corrected.
   9570   bool Unfixable = false;
   9571   // Use a implicit copy initialization to check conversion fixes.
   9572   Cand->Fix.setConversionChecker(TryCopyInitialization);
   9573 
   9574   // Skip forward to the first bad conversion.
   9575   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
   9576   unsigned ConvCount = Cand->NumConversions;
   9577   while (true) {
   9578     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
   9579     ConvIdx++;
   9580     if (Cand->Conversions[ConvIdx - 1].isBad()) {
   9581       Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
   9582       break;
   9583     }
   9584   }
   9585 
   9586   if (ConvIdx == ConvCount)
   9587     return;
   9588 
   9589   assert(!Cand->Conversions[ConvIdx].isInitialized() &&
   9590          "remaining conversion is initialized?");
   9591 
   9592   // FIXME: this should probably be preserved from the overload
   9593   // operation somehow.
   9594   bool SuppressUserConversions = false;
   9595 
   9596   const FunctionProtoType* Proto;
   9597   unsigned ArgIdx = ConvIdx;
   9598 
   9599   if (Cand->IsSurrogate) {
   9600     QualType ConvType
   9601       = Cand->Surrogate->getConversionType().getNonReferenceType();
   9602     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   9603       ConvType = ConvPtrType->getPointeeType();
   9604     Proto = ConvType->getAs<FunctionProtoType>();
   9605     ArgIdx--;
   9606   } else if (Cand->Function) {
   9607     Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
   9608     if (isa<CXXMethodDecl>(Cand->Function) &&
   9609         !isa<CXXConstructorDecl>(Cand->Function))
   9610       ArgIdx--;
   9611   } else {
   9612     // Builtin binary operator with a bad first conversion.
   9613     assert(ConvCount <= 3);
   9614     for (; ConvIdx != ConvCount; ++ConvIdx)
   9615       Cand->Conversions[ConvIdx]
   9616         = TryCopyInitialization(S, Args[ConvIdx],
   9617                                 Cand->BuiltinTypes.ParamTypes[ConvIdx],
   9618                                 SuppressUserConversions,
   9619                                 /*InOverloadResolution*/ true,
   9620                                 /*AllowObjCWritebackConversion=*/
   9621                                   S.getLangOpts().ObjCAutoRefCount);
   9622     return;
   9623   }
   9624 
   9625   // Fill in the rest of the conversions.
   9626   unsigned NumParams = Proto->getNumParams();
   9627   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
   9628     if (ArgIdx < NumParams) {
   9629       Cand->Conversions[ConvIdx] = TryCopyInitialization(
   9630           S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
   9631           /*InOverloadResolution=*/true,
   9632           /*AllowObjCWritebackConversion=*/
   9633           S.getLangOpts().ObjCAutoRefCount);
   9634       // Store the FixIt in the candidate if it exists.
   9635       if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
   9636         Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
   9637     }
   9638     else
   9639       Cand->Conversions[ConvIdx].setEllipsis();
   9640   }
   9641 }
   9642 
   9643 /// PrintOverloadCandidates - When overload resolution fails, prints
   9644 /// diagnostic messages containing the candidates in the candidate
   9645 /// set.
   9646 void OverloadCandidateSet::NoteCandidates(Sema &S,
   9647                                           OverloadCandidateDisplayKind OCD,
   9648                                           ArrayRef<Expr *> Args,
   9649                                           StringRef Opc,
   9650                                           SourceLocation OpLoc) {
   9651   // Sort the candidates by viability and position.  Sorting directly would
   9652   // be prohibitive, so we make a set of pointers and sort those.
   9653   SmallVector<OverloadCandidate*, 32> Cands;
   9654   if (OCD == OCD_AllCandidates) Cands.reserve(size());
   9655   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
   9656     if (Cand->Viable)
   9657       Cands.push_back(Cand);
   9658     else if (OCD == OCD_AllCandidates) {
   9659       CompleteNonViableCandidate(S, Cand, Args);
   9660       if (Cand->Function || Cand->IsSurrogate)
   9661         Cands.push_back(Cand);
   9662       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
   9663       // want to list every possible builtin candidate.
   9664     }
   9665   }
   9666 
   9667   std::sort(Cands.begin(), Cands.end(),
   9668             CompareOverloadCandidatesForDisplay(S, Args.size()));
   9669 
   9670   bool ReportedAmbiguousConversions = false;
   9671 
   9672   SmallVectorImpl<OverloadCandidate*>::iterator I, E;
   9673   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   9674   unsigned CandsShown = 0;
   9675   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
   9676     OverloadCandidate *Cand = *I;
   9677 
   9678     // Set an arbitrary limit on the number of candidate functions we'll spam
   9679     // the user with.  FIXME: This limit should depend on details of the
   9680     // candidate list.
   9681     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
   9682       break;
   9683     }
   9684     ++CandsShown;
   9685 
   9686     if (Cand->Function)
   9687       NoteFunctionCandidate(S, Cand, Args.size());
   9688     else if (Cand->IsSurrogate)
   9689       NoteSurrogateCandidate(S, Cand);
   9690     else {
   9691       assert(Cand->Viable &&
   9692              "Non-viable built-in candidates are not added to Cands.");
   9693       // Generally we only see ambiguities including viable builtin
   9694       // operators if overload resolution got screwed up by an
   9695       // ambiguous user-defined conversion.
   9696       //
   9697       // FIXME: It's quite possible for different conversions to see
   9698       // different ambiguities, though.
   9699       if (!ReportedAmbiguousConversions) {
   9700         NoteAmbiguousUserConversions(S, OpLoc, Cand);
   9701         ReportedAmbiguousConversions = true;
   9702       }
   9703 
   9704       // If this is a viable builtin, print it.
   9705       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
   9706     }
   9707   }
   9708 
   9709   if (I != E)
   9710     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
   9711 }
   9712 
   9713 static SourceLocation
   9714 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
   9715   return Cand->Specialization ? Cand->Specialization->getLocation()
   9716                               : SourceLocation();
   9717 }
   9718 
   9719 namespace {
   9720 struct CompareTemplateSpecCandidatesForDisplay {
   9721   Sema &S;
   9722   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
   9723 
   9724   bool operator()(const TemplateSpecCandidate *L,
   9725                   const TemplateSpecCandidate *R) {
   9726     // Fast-path this check.
   9727     if (L == R)
   9728       return false;
   9729 
   9730     // Assuming that both candidates are not matches...
   9731 
   9732     // Sort by the ranking of deduction failures.
   9733     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
   9734       return RankDeductionFailure(L->DeductionFailure) <
   9735              RankDeductionFailure(R->DeductionFailure);
   9736 
   9737     // Sort everything else by location.
   9738     SourceLocation LLoc = GetLocationForCandidate(L);
   9739     SourceLocation RLoc = GetLocationForCandidate(R);
   9740 
   9741     // Put candidates without locations (e.g. builtins) at the end.
   9742     if (LLoc.isInvalid())
   9743       return false;
   9744     if (RLoc.isInvalid())
   9745       return true;
   9746 
   9747     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
   9748   }
   9749 };
   9750 }
   9751 
   9752 /// Diagnose a template argument deduction failure.
   9753 /// We are treating these failures as overload failures due to bad
   9754 /// deductions.
   9755 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
   9756   DiagnoseBadDeduction(S, Specialization, // pattern
   9757                        DeductionFailure, /*NumArgs=*/0);
   9758 }
   9759 
   9760 void TemplateSpecCandidateSet::destroyCandidates() {
   9761   for (iterator i = begin(), e = end(); i != e; ++i) {
   9762     i->DeductionFailure.Destroy();
   9763   }
   9764 }
   9765 
   9766 void TemplateSpecCandidateSet::clear() {
   9767   destroyCandidates();
   9768   Candidates.clear();
   9769 }
   9770 
   9771 /// NoteCandidates - When no template specialization match is found, prints
   9772 /// diagnostic messages containing the non-matching specializations that form
   9773 /// the candidate set.
   9774 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
   9775 /// OCD == OCD_AllCandidates and Cand->Viable == false.
   9776 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
   9777   // Sort the candidates by position (assuming no candidate is a match).
   9778   // Sorting directly would be prohibitive, so we make a set of pointers
   9779   // and sort those.
   9780   SmallVector<TemplateSpecCandidate *, 32> Cands;
   9781   Cands.reserve(size());
   9782   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
   9783     if (Cand->Specialization)
   9784       Cands.push_back(Cand);
   9785     // Otherwise, this is a non-matching builtin candidate.  We do not,
   9786     // in general, want to list every possible builtin candidate.
   9787   }
   9788 
   9789   std::sort(Cands.begin(), Cands.end(),
   9790             CompareTemplateSpecCandidatesForDisplay(S));
   9791 
   9792   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
   9793   // for generalization purposes (?).
   9794   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   9795 
   9796   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
   9797   unsigned CandsShown = 0;
   9798   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
   9799     TemplateSpecCandidate *Cand = *I;
   9800 
   9801     // Set an arbitrary limit on the number of candidates we'll spam
   9802     // the user with.  FIXME: This limit should depend on details of the
   9803     // candidate list.
   9804     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
   9805       break;
   9806     ++CandsShown;
   9807 
   9808     assert(Cand->Specialization &&
   9809            "Non-matching built-in candidates are not added to Cands.");
   9810     Cand->NoteDeductionFailure(S);
   9811   }
   9812 
   9813   if (I != E)
   9814     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
   9815 }
   9816 
   9817 // [PossiblyAFunctionType]  -->   [Return]
   9818 // NonFunctionType --> NonFunctionType
   9819 // R (A) --> R(A)
   9820 // R (*)(A) --> R (A)
   9821 // R (&)(A) --> R (A)
   9822 // R (S::*)(A) --> R (A)
   9823 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
   9824   QualType Ret = PossiblyAFunctionType;
   9825   if (const PointerType *ToTypePtr =
   9826     PossiblyAFunctionType->getAs<PointerType>())
   9827     Ret = ToTypePtr->getPointeeType();
   9828   else if (const ReferenceType *ToTypeRef =
   9829     PossiblyAFunctionType->getAs<ReferenceType>())
   9830     Ret = ToTypeRef->getPointeeType();
   9831   else if (const MemberPointerType *MemTypePtr =
   9832     PossiblyAFunctionType->getAs<MemberPointerType>())
   9833     Ret = MemTypePtr->getPointeeType();
   9834   Ret =
   9835     Context.getCanonicalType(Ret).getUnqualifiedType();
   9836   return Ret;
   9837 }
   9838 
   9839 namespace {
   9840 // A helper class to help with address of function resolution
   9841 // - allows us to avoid passing around all those ugly parameters
   9842 class AddressOfFunctionResolver {
   9843   Sema& S;
   9844   Expr* SourceExpr;
   9845   const QualType& TargetType;
   9846   QualType TargetFunctionType; // Extracted function type from target type
   9847 
   9848   bool Complain;
   9849   //DeclAccessPair& ResultFunctionAccessPair;
   9850   ASTContext& Context;
   9851 
   9852   bool TargetTypeIsNonStaticMemberFunction;
   9853   bool FoundNonTemplateFunction;
   9854   bool StaticMemberFunctionFromBoundPointer;
   9855 
   9856   OverloadExpr::FindResult OvlExprInfo;
   9857   OverloadExpr *OvlExpr;
   9858   TemplateArgumentListInfo OvlExplicitTemplateArgs;
   9859   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
   9860   TemplateSpecCandidateSet FailedCandidates;
   9861 
   9862 public:
   9863   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
   9864                             const QualType &TargetType, bool Complain)
   9865       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
   9866         Complain(Complain), Context(S.getASTContext()),
   9867         TargetTypeIsNonStaticMemberFunction(
   9868             !!TargetType->getAs<MemberPointerType>()),
   9869         FoundNonTemplateFunction(false),
   9870         StaticMemberFunctionFromBoundPointer(false),
   9871         OvlExprInfo(OverloadExpr::find(SourceExpr)),
   9872         OvlExpr(OvlExprInfo.Expression),
   9873         FailedCandidates(OvlExpr->getNameLoc()) {
   9874     ExtractUnqualifiedFunctionTypeFromTargetType();
   9875 
   9876     if (TargetFunctionType->isFunctionType()) {
   9877       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
   9878         if (!UME->isImplicitAccess() &&
   9879             !S.ResolveSingleFunctionTemplateSpecialization(UME))
   9880           StaticMemberFunctionFromBoundPointer = true;
   9881     } else if (OvlExpr->hasExplicitTemplateArgs()) {
   9882       DeclAccessPair dap;
   9883       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
   9884               OvlExpr, false, &dap)) {
   9885         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   9886           if (!Method->isStatic()) {
   9887             // If the target type is a non-function type and the function found
   9888             // is a non-static member function, pretend as if that was the
   9889             // target, it's the only possible type to end up with.
   9890             TargetTypeIsNonStaticMemberFunction = true;
   9891 
   9892             // And skip adding the function if its not in the proper form.
   9893             // We'll diagnose this due to an empty set of functions.
   9894             if (!OvlExprInfo.HasFormOfMemberPointer)
   9895               return;
   9896           }
   9897 
   9898         Matches.push_back(std::make_pair(dap, Fn));
   9899       }
   9900       return;
   9901     }
   9902 
   9903     if (OvlExpr->hasExplicitTemplateArgs())
   9904       OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
   9905 
   9906     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
   9907       // C++ [over.over]p4:
   9908       //   If more than one function is selected, [...]
   9909       if (Matches.size() > 1) {
   9910         if (FoundNonTemplateFunction)
   9911           EliminateAllTemplateMatches();
   9912         else
   9913           EliminateAllExceptMostSpecializedTemplate();
   9914       }
   9915     }
   9916   }
   9917 
   9918 private:
   9919   bool isTargetTypeAFunction() const {
   9920     return TargetFunctionType->isFunctionType();
   9921   }
   9922 
   9923   // [ToType]     [Return]
   9924 
   9925   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
   9926   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
   9927   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
   9928   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
   9929     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
   9930   }
   9931 
   9932   // return true if any matching specializations were found
   9933   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
   9934                                    const DeclAccessPair& CurAccessFunPair) {
   9935     if (CXXMethodDecl *Method
   9936               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
   9937       // Skip non-static function templates when converting to pointer, and
   9938       // static when converting to member pointer.
   9939       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
   9940         return false;
   9941     }
   9942     else if (TargetTypeIsNonStaticMemberFunction)
   9943       return false;
   9944 
   9945     // C++ [over.over]p2:
   9946     //   If the name is a function template, template argument deduction is
   9947     //   done (14.8.2.2), and if the argument deduction succeeds, the
   9948     //   resulting template argument list is used to generate a single
   9949     //   function template specialization, which is added to the set of
   9950     //   overloaded functions considered.
   9951     FunctionDecl *Specialization = nullptr;
   9952     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   9953     if (Sema::TemplateDeductionResult Result
   9954           = S.DeduceTemplateArguments(FunctionTemplate,
   9955                                       &OvlExplicitTemplateArgs,
   9956                                       TargetFunctionType, Specialization,
   9957                                       Info, /*InOverloadResolution=*/true)) {
   9958       // Make a note of the failed deduction for diagnostics.
   9959       FailedCandidates.addCandidate()
   9960           .set(FunctionTemplate->getTemplatedDecl(),
   9961                MakeDeductionFailureInfo(Context, Result, Info));
   9962       return false;
   9963     }
   9964 
   9965     // Template argument deduction ensures that we have an exact match or
   9966     // compatible pointer-to-function arguments that would be adjusted by ICS.
   9967     // This function template specicalization works.
   9968     Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
   9969     assert(S.isSameOrCompatibleFunctionType(
   9970               Context.getCanonicalType(Specialization->getType()),
   9971               Context.getCanonicalType(TargetFunctionType)));
   9972     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
   9973     return true;
   9974   }
   9975 
   9976   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
   9977                                       const DeclAccessPair& CurAccessFunPair) {
   9978     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
   9979       // Skip non-static functions when converting to pointer, and static
   9980       // when converting to member pointer.
   9981       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
   9982         return false;
   9983     }
   9984     else if (TargetTypeIsNonStaticMemberFunction)
   9985       return false;
   9986 
   9987     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
   9988       if (S.getLangOpts().CUDA)
   9989         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
   9990           if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
   9991             return false;
   9992 
   9993       // If any candidate has a placeholder return type, trigger its deduction
   9994       // now.
   9995       if (S.getLangOpts().CPlusPlus14 &&
   9996           FunDecl->getReturnType()->isUndeducedType() &&
   9997           S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
   9998         return false;
   9999 
   10000       QualType ResultTy;
   10001       if (Context.hasSameUnqualifiedType(TargetFunctionType,
   10002                                          FunDecl->getType()) ||
   10003           S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
   10004                                  ResultTy)) {
   10005         Matches.push_back(std::make_pair(CurAccessFunPair,
   10006           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
   10007         FoundNonTemplateFunction = true;
   10008         return true;
   10009       }
   10010     }
   10011 
   10012     return false;
   10013   }
   10014 
   10015   bool FindAllFunctionsThatMatchTargetTypeExactly() {
   10016     bool Ret = false;
   10017 
   10018     // If the overload expression doesn't have the form of a pointer to
   10019     // member, don't try to convert it to a pointer-to-member type.
   10020     if (IsInvalidFormOfPointerToMemberFunction())
   10021       return false;
   10022 
   10023     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   10024                                E = OvlExpr->decls_end();
   10025          I != E; ++I) {
   10026       // Look through any using declarations to find the underlying function.
   10027       NamedDecl *Fn = (*I)->getUnderlyingDecl();
   10028 
   10029       // C++ [over.over]p3:
   10030       //   Non-member functions and static member functions match
   10031       //   targets of type "pointer-to-function" or "reference-to-function."
   10032       //   Nonstatic member functions match targets of
   10033       //   type "pointer-to-member-function."
   10034       // Note that according to DR 247, the containing class does not matter.
   10035       if (FunctionTemplateDecl *FunctionTemplate
   10036                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
   10037         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
   10038           Ret = true;
   10039       }
   10040       // If we have explicit template arguments supplied, skip non-templates.
   10041       else if (!OvlExpr->hasExplicitTemplateArgs() &&
   10042                AddMatchingNonTemplateFunction(Fn, I.getPair()))
   10043         Ret = true;
   10044     }
   10045     assert(Ret || Matches.empty());
   10046     return Ret;
   10047   }
   10048 
   10049   void EliminateAllExceptMostSpecializedTemplate() {
   10050     //   [...] and any given function template specialization F1 is
   10051     //   eliminated if the set contains a second function template
   10052     //   specialization whose function template is more specialized
   10053     //   than the function template of F1 according to the partial
   10054     //   ordering rules of 14.5.5.2.
   10055 
   10056     // The algorithm specified above is quadratic. We instead use a
   10057     // two-pass algorithm (similar to the one used to identify the
   10058     // best viable function in an overload set) that identifies the
   10059     // best function template (if it exists).
   10060 
   10061     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
   10062     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
   10063       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
   10064 
   10065     // TODO: It looks like FailedCandidates does not serve much purpose
   10066     // here, since the no_viable diagnostic has index 0.
   10067     UnresolvedSetIterator Result = S.getMostSpecialized(
   10068         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
   10069         SourceExpr->getLocStart(), S.PDiag(),
   10070         S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
   10071                                                      .second->getDeclName(),
   10072         S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
   10073         Complain, TargetFunctionType);
   10074 
   10075     if (Result != MatchesCopy.end()) {
   10076       // Make it the first and only element
   10077       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
   10078       Matches[0].second = cast<FunctionDecl>(*Result);
   10079       Matches.resize(1);
   10080     }
   10081   }
   10082 
   10083   void EliminateAllTemplateMatches() {
   10084     //   [...] any function template specializations in the set are
   10085     //   eliminated if the set also contains a non-template function, [...]
   10086     for (unsigned I = 0, N = Matches.size(); I != N; ) {
   10087       if (Matches[I].second->getPrimaryTemplate() == nullptr)
   10088         ++I;
   10089       else {
   10090         Matches[I] = Matches[--N];
   10091         Matches.set_size(N);
   10092       }
   10093     }
   10094   }
   10095 
   10096 public:
   10097   void ComplainNoMatchesFound() const {
   10098     assert(Matches.empty());
   10099     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
   10100         << OvlExpr->getName() << TargetFunctionType
   10101         << OvlExpr->getSourceRange();
   10102     if (FailedCandidates.empty())
   10103       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
   10104     else {
   10105       // We have some deduction failure messages. Use them to diagnose
   10106       // the function templates, and diagnose the non-template candidates
   10107       // normally.
   10108       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   10109                                  IEnd = OvlExpr->decls_end();
   10110            I != IEnd; ++I)
   10111         if (FunctionDecl *Fun =
   10112                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
   10113           S.NoteOverloadCandidate(Fun, TargetFunctionType);
   10114       FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
   10115     }
   10116   }
   10117 
   10118   bool IsInvalidFormOfPointerToMemberFunction() const {
   10119     return TargetTypeIsNonStaticMemberFunction &&
   10120       !OvlExprInfo.HasFormOfMemberPointer;
   10121   }
   10122 
   10123   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
   10124       // TODO: Should we condition this on whether any functions might
   10125       // have matched, or is it more appropriate to do that in callers?
   10126       // TODO: a fixit wouldn't hurt.
   10127       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
   10128         << TargetType << OvlExpr->getSourceRange();
   10129   }
   10130 
   10131   bool IsStaticMemberFunctionFromBoundPointer() const {
   10132     return StaticMemberFunctionFromBoundPointer;
   10133   }
   10134 
   10135   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
   10136     S.Diag(OvlExpr->getLocStart(),
   10137            diag::err_invalid_form_pointer_member_function)
   10138       << OvlExpr->getSourceRange();
   10139   }
   10140 
   10141   void ComplainOfInvalidConversion() const {
   10142     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
   10143       << OvlExpr->getName() << TargetType;
   10144   }
   10145 
   10146   void ComplainMultipleMatchesFound() const {
   10147     assert(Matches.size() > 1);
   10148     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
   10149       << OvlExpr->getName()
   10150       << OvlExpr->getSourceRange();
   10151     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
   10152   }
   10153 
   10154   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
   10155 
   10156   int getNumMatches() const { return Matches.size(); }
   10157 
   10158   FunctionDecl* getMatchingFunctionDecl() const {
   10159     if (Matches.size() != 1) return nullptr;
   10160     return Matches[0].second;
   10161   }
   10162 
   10163   const DeclAccessPair* getMatchingFunctionAccessPair() const {
   10164     if (Matches.size() != 1) return nullptr;
   10165     return &Matches[0].first;
   10166   }
   10167 };
   10168 }
   10169 
   10170 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
   10171 /// an overloaded function (C++ [over.over]), where @p From is an
   10172 /// expression with overloaded function type and @p ToType is the type
   10173 /// we're trying to resolve to. For example:
   10174 ///
   10175 /// @code
   10176 /// int f(double);
   10177 /// int f(int);
   10178 ///
   10179 /// int (*pfd)(double) = f; // selects f(double)
   10180 /// @endcode
   10181 ///
   10182 /// This routine returns the resulting FunctionDecl if it could be
   10183 /// resolved, and NULL otherwise. When @p Complain is true, this
   10184 /// routine will emit diagnostics if there is an error.
   10185 FunctionDecl *
   10186 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
   10187                                          QualType TargetType,
   10188                                          bool Complain,
   10189                                          DeclAccessPair &FoundResult,
   10190                                          bool *pHadMultipleCandidates) {
   10191   assert(AddressOfExpr->getType() == Context.OverloadTy);
   10192 
   10193   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
   10194                                      Complain);
   10195   int NumMatches = Resolver.getNumMatches();
   10196   FunctionDecl *Fn = nullptr;
   10197   if (NumMatches == 0 && Complain) {
   10198     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
   10199       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
   10200     else
   10201       Resolver.ComplainNoMatchesFound();
   10202   }
   10203   else if (NumMatches > 1 && Complain)
   10204     Resolver.ComplainMultipleMatchesFound();
   10205   else if (NumMatches == 1) {
   10206     Fn = Resolver.getMatchingFunctionDecl();
   10207     assert(Fn);
   10208     FoundResult = *Resolver.getMatchingFunctionAccessPair();
   10209     if (Complain) {
   10210       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
   10211         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
   10212       else
   10213         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
   10214     }
   10215   }
   10216 
   10217   if (pHadMultipleCandidates)
   10218     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
   10219   return Fn;
   10220 }
   10221 
   10222 /// \brief Given an expression that refers to an overloaded function, try to
   10223 /// resolve that overloaded function expression down to a single function.
   10224 ///
   10225 /// This routine can only resolve template-ids that refer to a single function
   10226 /// template, where that template-id refers to a single template whose template
   10227 /// arguments are either provided by the template-id or have defaults,
   10228 /// as described in C++0x [temp.arg.explicit]p3.
   10229 ///
   10230 /// If no template-ids are found, no diagnostics are emitted and NULL is
   10231 /// returned.
   10232 FunctionDecl *
   10233 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
   10234                                                   bool Complain,
   10235                                                   DeclAccessPair *FoundResult) {
   10236   // C++ [over.over]p1:
   10237   //   [...] [Note: any redundant set of parentheses surrounding the
   10238   //   overloaded function name is ignored (5.1). ]
   10239   // C++ [over.over]p1:
   10240   //   [...] The overloaded function name can be preceded by the &
   10241   //   operator.
   10242 
   10243   // If we didn't actually find any template-ids, we're done.
   10244   if (!ovl->hasExplicitTemplateArgs())
   10245     return nullptr;
   10246 
   10247   TemplateArgumentListInfo ExplicitTemplateArgs;
   10248   ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   10249   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
   10250 
   10251   // Look through all of the overloaded functions, searching for one
   10252   // whose type matches exactly.
   10253   FunctionDecl *Matched = nullptr;
   10254   for (UnresolvedSetIterator I = ovl->decls_begin(),
   10255          E = ovl->decls_end(); I != E; ++I) {
   10256     // C++0x [temp.arg.explicit]p3:
   10257     //   [...] In contexts where deduction is done and fails, or in contexts
   10258     //   where deduction is not done, if a template argument list is
   10259     //   specified and it, along with any default template arguments,
   10260     //   identifies a single function template specialization, then the
   10261     //   template-id is an lvalue for the function template specialization.
   10262     FunctionTemplateDecl *FunctionTemplate
   10263       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
   10264 
   10265     // C++ [over.over]p2:
   10266     //   If the name is a function template, template argument deduction is
   10267     //   done (14.8.2.2), and if the argument deduction succeeds, the
   10268     //   resulting template argument list is used to generate a single
   10269     //   function template specialization, which is added to the set of
   10270     //   overloaded functions considered.
   10271     FunctionDecl *Specialization = nullptr;
   10272     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   10273     if (TemplateDeductionResult Result
   10274           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
   10275                                     Specialization, Info,
   10276                                     /*InOverloadResolution=*/true)) {
   10277       // Make a note of the failed deduction for diagnostics.
   10278       // TODO: Actually use the failed-deduction info?
   10279       FailedCandidates.addCandidate()
   10280           .set(FunctionTemplate->getTemplatedDecl(),
   10281                MakeDeductionFailureInfo(Context, Result, Info));
   10282       continue;
   10283     }
   10284 
   10285     assert(Specialization && "no specialization and no error?");
   10286 
   10287     // Multiple matches; we can't resolve to a single declaration.
   10288     if (Matched) {
   10289       if (Complain) {
   10290         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
   10291           << ovl->getName();
   10292         NoteAllOverloadCandidates(ovl);
   10293       }
   10294       return nullptr;
   10295     }
   10296 
   10297     Matched = Specialization;
   10298     if (FoundResult) *FoundResult = I.getPair();
   10299   }
   10300 
   10301   if (Matched && getLangOpts().CPlusPlus14 &&
   10302       Matched->getReturnType()->isUndeducedType() &&
   10303       DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
   10304     return nullptr;
   10305 
   10306   return Matched;
   10307 }
   10308 
   10309 
   10310 
   10311 
   10312 // Resolve and fix an overloaded expression that can be resolved
   10313 // because it identifies a single function template specialization.
   10314 //
   10315 // Last three arguments should only be supplied if Complain = true
   10316 //
   10317 // Return true if it was logically possible to so resolve the
   10318 // expression, regardless of whether or not it succeeded.  Always
   10319 // returns true if 'complain' is set.
   10320 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
   10321                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
   10322                    bool complain, const SourceRange& OpRangeForComplaining,
   10323                                            QualType DestTypeForComplaining,
   10324                                             unsigned DiagIDForComplaining) {
   10325   assert(SrcExpr.get()->getType() == Context.OverloadTy);
   10326 
   10327   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
   10328 
   10329   DeclAccessPair found;
   10330   ExprResult SingleFunctionExpression;
   10331   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
   10332                            ovl.Expression, /*complain*/ false, &found)) {
   10333     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
   10334       SrcExpr = ExprError();
   10335       return true;
   10336     }
   10337 
   10338     // It is only correct to resolve to an instance method if we're
   10339     // resolving a form that's permitted to be a pointer to member.
   10340     // Otherwise we'll end up making a bound member expression, which
   10341     // is illegal in all the contexts we resolve like this.
   10342     if (!ovl.HasFormOfMemberPointer &&
   10343         isa<CXXMethodDecl>(fn) &&
   10344         cast<CXXMethodDecl>(fn)->isInstance()) {
   10345       if (!complain) return false;
   10346 
   10347       Diag(ovl.Expression->getExprLoc(),
   10348            diag::err_bound_member_function)
   10349         << 0 << ovl.Expression->getSourceRange();
   10350 
   10351       // TODO: I believe we only end up here if there's a mix of
   10352       // static and non-static candidates (otherwise the expression
   10353       // would have 'bound member' type, not 'overload' type).
   10354       // Ideally we would note which candidate was chosen and why
   10355       // the static candidates were rejected.
   10356       SrcExpr = ExprError();
   10357       return true;
   10358     }
   10359 
   10360     // Fix the expression to refer to 'fn'.
   10361     SingleFunctionExpression =
   10362         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
   10363 
   10364     // If desired, do function-to-pointer decay.
   10365     if (doFunctionPointerConverion) {
   10366       SingleFunctionExpression =
   10367         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
   10368       if (SingleFunctionExpression.isInvalid()) {
   10369         SrcExpr = ExprError();
   10370         return true;
   10371       }
   10372     }
   10373   }
   10374 
   10375   if (!SingleFunctionExpression.isUsable()) {
   10376     if (complain) {
   10377       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
   10378         << ovl.Expression->getName()
   10379         << DestTypeForComplaining
   10380         << OpRangeForComplaining
   10381         << ovl.Expression->getQualifierLoc().getSourceRange();
   10382       NoteAllOverloadCandidates(SrcExpr.get());
   10383 
   10384       SrcExpr = ExprError();
   10385       return true;
   10386     }
   10387 
   10388     return false;
   10389   }
   10390 
   10391   SrcExpr = SingleFunctionExpression;
   10392   return true;
   10393 }
   10394 
   10395 /// \brief Add a single candidate to the overload set.
   10396 static void AddOverloadedCallCandidate(Sema &S,
   10397                                        DeclAccessPair FoundDecl,
   10398                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   10399                                        ArrayRef<Expr *> Args,
   10400                                        OverloadCandidateSet &CandidateSet,
   10401                                        bool PartialOverloading,
   10402                                        bool KnownValid) {
   10403   NamedDecl *Callee = FoundDecl.getDecl();
   10404   if (isa<UsingShadowDecl>(Callee))
   10405     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
   10406 
   10407   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
   10408     if (ExplicitTemplateArgs) {
   10409       assert(!KnownValid && "Explicit template arguments?");
   10410       return;
   10411     }
   10412     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
   10413                            /*SuppressUsedConversions=*/false,
   10414                            PartialOverloading);
   10415     return;
   10416   }
   10417 
   10418   if (FunctionTemplateDecl *FuncTemplate
   10419       = dyn_cast<FunctionTemplateDecl>(Callee)) {
   10420     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
   10421                                    ExplicitTemplateArgs, Args, CandidateSet,
   10422                                    /*SuppressUsedConversions=*/false,
   10423                                    PartialOverloading);
   10424     return;
   10425   }
   10426 
   10427   assert(!KnownValid && "unhandled case in overloaded call candidate");
   10428 }
   10429 
   10430 /// \brief Add the overload candidates named by callee and/or found by argument
   10431 /// dependent lookup to the given overload set.
   10432 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
   10433                                        ArrayRef<Expr *> Args,
   10434                                        OverloadCandidateSet &CandidateSet,
   10435                                        bool PartialOverloading) {
   10436 
   10437 #ifndef NDEBUG
   10438   // Verify that ArgumentDependentLookup is consistent with the rules
   10439   // in C++0x [basic.lookup.argdep]p3:
   10440   //
   10441   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   10442   //   and let Y be the lookup set produced by argument dependent
   10443   //   lookup (defined as follows). If X contains
   10444   //
   10445   //     -- a declaration of a class member, or
   10446   //
   10447   //     -- a block-scope function declaration that is not a
   10448   //        using-declaration, or
   10449   //
   10450   //     -- a declaration that is neither a function or a function
   10451   //        template
   10452   //
   10453   //   then Y is empty.
   10454 
   10455   if (ULE->requiresADL()) {
   10456     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
   10457            E = ULE->decls_end(); I != E; ++I) {
   10458       assert(!(*I)->getDeclContext()->isRecord());
   10459       assert(isa<UsingShadowDecl>(*I) ||
   10460              !(*I)->getDeclContext()->isFunctionOrMethod());
   10461       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
   10462     }
   10463   }
   10464 #endif
   10465 
   10466   // It would be nice to avoid this copy.
   10467   TemplateArgumentListInfo TABuffer;
   10468   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
   10469   if (ULE->hasExplicitTemplateArgs()) {
   10470     ULE->copyTemplateArgumentsInto(TABuffer);
   10471     ExplicitTemplateArgs = &TABuffer;
   10472   }
   10473 
   10474   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
   10475          E = ULE->decls_end(); I != E; ++I)
   10476     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
   10477                                CandidateSet, PartialOverloading,
   10478                                /*KnownValid*/ true);
   10479 
   10480   if (ULE->requiresADL())
   10481     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
   10482                                          Args, ExplicitTemplateArgs,
   10483                                          CandidateSet, PartialOverloading);
   10484 }
   10485 
   10486 /// Determine whether a declaration with the specified name could be moved into
   10487 /// a different namespace.
   10488 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
   10489   switch (Name.getCXXOverloadedOperator()) {
   10490   case OO_New: case OO_Array_New:
   10491   case OO_Delete: case OO_Array_Delete:
   10492     return false;
   10493 
   10494   default:
   10495     return true;
   10496   }
   10497 }
   10498 
   10499 /// Attempt to recover from an ill-formed use of a non-dependent name in a
   10500 /// template, where the non-dependent name was declared after the template
   10501 /// was defined. This is common in code written for a compilers which do not
   10502 /// correctly implement two-stage name lookup.
   10503 ///
   10504 /// Returns true if a viable candidate was found and a diagnostic was issued.
   10505 static bool
   10506 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
   10507                        const CXXScopeSpec &SS, LookupResult &R,
   10508                        OverloadCandidateSet::CandidateSetKind CSK,
   10509                        TemplateArgumentListInfo *ExplicitTemplateArgs,
   10510                        ArrayRef<Expr *> Args) {
   10511   if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
   10512     return false;
   10513 
   10514   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
   10515     if (DC->isTransparentContext())
   10516       continue;
   10517 
   10518     SemaRef.LookupQualifiedName(R, DC);
   10519 
   10520     if (!R.empty()) {
   10521       R.suppressDiagnostics();
   10522 
   10523       if (isa<CXXRecordDecl>(DC)) {
   10524         // Don't diagnose names we find in classes; we get much better
   10525         // diagnostics for these from DiagnoseEmptyLookup.
   10526         R.clear();
   10527         return false;
   10528       }
   10529 
   10530       OverloadCandidateSet Candidates(FnLoc, CSK);
   10531       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   10532         AddOverloadedCallCandidate(SemaRef, I.getPair(),
   10533                                    ExplicitTemplateArgs, Args,
   10534                                    Candidates, false, /*KnownValid*/ false);
   10535 
   10536       OverloadCandidateSet::iterator Best;
   10537       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
   10538         // No viable functions. Don't bother the user with notes for functions
   10539         // which don't work and shouldn't be found anyway.
   10540         R.clear();
   10541         return false;
   10542       }
   10543 
   10544       // Find the namespaces where ADL would have looked, and suggest
   10545       // declaring the function there instead.
   10546       Sema::AssociatedNamespaceSet AssociatedNamespaces;
   10547       Sema::AssociatedClassSet AssociatedClasses;
   10548       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
   10549                                                  AssociatedNamespaces,
   10550                                                  AssociatedClasses);
   10551       Sema::AssociatedNamespaceSet SuggestedNamespaces;
   10552       if (canBeDeclaredInNamespace(R.getLookupName())) {
   10553         DeclContext *Std = SemaRef.getStdNamespace();
   10554         for (Sema::AssociatedNamespaceSet::iterator
   10555                it = AssociatedNamespaces.begin(),
   10556                end = AssociatedNamespaces.end(); it != end; ++it) {
   10557           // Never suggest declaring a function within namespace 'std'.
   10558           if (Std && Std->Encloses(*it))
   10559             continue;
   10560 
   10561           // Never suggest declaring a function within a namespace with a
   10562           // reserved name, like __gnu_cxx.
   10563           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
   10564           if (NS &&
   10565               NS->getQualifiedNameAsString().find("__") != std::string::npos)
   10566             continue;
   10567 
   10568           SuggestedNamespaces.insert(*it);
   10569         }
   10570       }
   10571 
   10572       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
   10573         << R.getLookupName();
   10574       if (SuggestedNamespaces.empty()) {
   10575         SemaRef.Diag(Best->Function->getLocation(),
   10576                      diag::note_not_found_by_two_phase_lookup)
   10577           << R.getLookupName() << 0;
   10578       } else if (SuggestedNamespaces.size() == 1) {
   10579         SemaRef.Diag(Best->Function->getLocation(),
   10580                      diag::note_not_found_by_two_phase_lookup)
   10581           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
   10582       } else {
   10583         // FIXME: It would be useful to list the associated namespaces here,
   10584         // but the diagnostics infrastructure doesn't provide a way to produce
   10585         // a localized representation of a list of items.
   10586         SemaRef.Diag(Best->Function->getLocation(),
   10587                      diag::note_not_found_by_two_phase_lookup)
   10588           << R.getLookupName() << 2;
   10589       }
   10590 
   10591       // Try to recover by calling this function.
   10592       return true;
   10593     }
   10594 
   10595     R.clear();
   10596   }
   10597 
   10598   return false;
   10599 }
   10600 
   10601 /// Attempt to recover from ill-formed use of a non-dependent operator in a
   10602 /// template, where the non-dependent operator was declared after the template
   10603 /// was defined.
   10604 ///
   10605 /// Returns true if a viable candidate was found and a diagnostic was issued.
   10606 static bool
   10607 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
   10608                                SourceLocation OpLoc,
   10609                                ArrayRef<Expr *> Args) {
   10610   DeclarationName OpName =
   10611     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
   10612   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
   10613   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
   10614                                 OverloadCandidateSet::CSK_Operator,
   10615                                 /*ExplicitTemplateArgs=*/nullptr, Args);
   10616 }
   10617 
   10618 namespace {
   10619 class BuildRecoveryCallExprRAII {
   10620   Sema &SemaRef;
   10621 public:
   10622   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
   10623     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
   10624     SemaRef.IsBuildingRecoveryCallExpr = true;
   10625   }
   10626 
   10627   ~BuildRecoveryCallExprRAII() {
   10628     SemaRef.IsBuildingRecoveryCallExpr = false;
   10629   }
   10630 };
   10631 
   10632 }
   10633 
   10634 static std::unique_ptr<CorrectionCandidateCallback>
   10635 MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
   10636               bool HasTemplateArgs, bool AllowTypoCorrection) {
   10637   if (!AllowTypoCorrection)
   10638     return llvm::make_unique<NoTypoCorrectionCCC>();
   10639   return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
   10640                                                   HasTemplateArgs, ME);
   10641 }
   10642 
   10643 /// Attempts to recover from a call where no functions were found.
   10644 ///
   10645 /// Returns true if new candidates were found.
   10646 static ExprResult
   10647 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
   10648                       UnresolvedLookupExpr *ULE,
   10649                       SourceLocation LParenLoc,
   10650                       MutableArrayRef<Expr *> Args,
   10651                       SourceLocation RParenLoc,
   10652                       bool EmptyLookup, bool AllowTypoCorrection) {
   10653   // Do not try to recover if it is already building a recovery call.
   10654   // This stops infinite loops for template instantiations like
   10655   //
   10656   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
   10657   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
   10658   //
   10659   if (SemaRef.IsBuildingRecoveryCallExpr)
   10660     return ExprError();
   10661   BuildRecoveryCallExprRAII RCE(SemaRef);
   10662 
   10663   CXXScopeSpec SS;
   10664   SS.Adopt(ULE->getQualifierLoc());
   10665   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
   10666 
   10667   TemplateArgumentListInfo TABuffer;
   10668   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
   10669   if (ULE->hasExplicitTemplateArgs()) {
   10670     ULE->copyTemplateArgumentsInto(TABuffer);
   10671     ExplicitTemplateArgs = &TABuffer;
   10672   }
   10673 
   10674   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
   10675                  Sema::LookupOrdinaryName);
   10676   if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
   10677                               OverloadCandidateSet::CSK_Normal,
   10678                               ExplicitTemplateArgs, Args) &&
   10679       (!EmptyLookup ||
   10680        SemaRef.DiagnoseEmptyLookup(
   10681            S, SS, R,
   10682            MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
   10683                          ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
   10684            ExplicitTemplateArgs, Args)))
   10685     return ExprError();
   10686 
   10687   assert(!R.empty() && "lookup results empty despite recovery");
   10688 
   10689   // Build an implicit member call if appropriate.  Just drop the
   10690   // casts and such from the call, we don't really care.
   10691   ExprResult NewFn = ExprError();
   10692   if ((*R.begin())->isCXXClassMember())
   10693     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   10694                                                     R, ExplicitTemplateArgs);
   10695   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
   10696     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
   10697                                         ExplicitTemplateArgs);
   10698   else
   10699     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
   10700 
   10701   if (NewFn.isInvalid())
   10702     return ExprError();
   10703 
   10704   // This shouldn't cause an infinite loop because we're giving it
   10705   // an expression with viable lookup results, which should never
   10706   // end up here.
   10707   return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
   10708                                MultiExprArg(Args.data(), Args.size()),
   10709                                RParenLoc);
   10710 }
   10711 
   10712 /// \brief Constructs and populates an OverloadedCandidateSet from
   10713 /// the given function.
   10714 /// \returns true when an the ExprResult output parameter has been set.
   10715 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
   10716                                   UnresolvedLookupExpr *ULE,
   10717                                   MultiExprArg Args,
   10718                                   SourceLocation RParenLoc,
   10719                                   OverloadCandidateSet *CandidateSet,
   10720                                   ExprResult *Result) {
   10721 #ifndef NDEBUG
   10722   if (ULE->requiresADL()) {
   10723     // To do ADL, we must have found an unqualified name.
   10724     assert(!ULE->getQualifier() && "qualified name with ADL");
   10725 
   10726     // We don't perform ADL for implicit declarations of builtins.
   10727     // Verify that this was correctly set up.
   10728     FunctionDecl *F;
   10729     if (ULE->decls_begin() + 1 == ULE->decls_end() &&
   10730         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
   10731         F->getBuiltinID() && F->isImplicit())
   10732       llvm_unreachable("performing ADL for builtin");
   10733 
   10734     // We don't perform ADL in C.
   10735     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
   10736   }
   10737 #endif
   10738 
   10739   UnbridgedCastsSet UnbridgedCasts;
   10740   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
   10741     *Result = ExprError();
   10742     return true;
   10743   }
   10744 
   10745   // Add the functions denoted by the callee to the set of candidate
   10746   // functions, including those from argument-dependent lookup.
   10747   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
   10748 
   10749   // If we found nothing, try to recover.
   10750   // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
   10751   // out if it fails.
   10752   if (CandidateSet->empty()) {
   10753     // In Microsoft mode, if we are inside a template class member function then
   10754     // create a type dependent CallExpr. The goal is to postpone name lookup
   10755     // to instantiation time to be able to search into type dependent base
   10756     // classes.
   10757     if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
   10758         (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
   10759       CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
   10760                                             Context.DependentTy, VK_RValue,
   10761                                             RParenLoc);
   10762       CE->setTypeDependent(true);
   10763       *Result = CE;
   10764       return true;
   10765     }
   10766     return false;
   10767   }
   10768 
   10769   UnbridgedCasts.restore();
   10770   return false;
   10771 }
   10772 
   10773 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
   10774 /// the completed call expression. If overload resolution fails, emits
   10775 /// diagnostics and returns ExprError()
   10776 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
   10777                                            UnresolvedLookupExpr *ULE,
   10778                                            SourceLocation LParenLoc,
   10779                                            MultiExprArg Args,
   10780                                            SourceLocation RParenLoc,
   10781                                            Expr *ExecConfig,
   10782                                            OverloadCandidateSet *CandidateSet,
   10783                                            OverloadCandidateSet::iterator *Best,
   10784                                            OverloadingResult OverloadResult,
   10785                                            bool AllowTypoCorrection) {
   10786   if (CandidateSet->empty())
   10787     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
   10788                                  RParenLoc, /*EmptyLookup=*/true,
   10789                                  AllowTypoCorrection);
   10790 
   10791   switch (OverloadResult) {
   10792   case OR_Success: {
   10793     FunctionDecl *FDecl = (*Best)->Function;
   10794     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
   10795     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
   10796       return ExprError();
   10797     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
   10798     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
   10799                                          ExecConfig);
   10800   }
   10801 
   10802   case OR_No_Viable_Function: {
   10803     // Try to recover by looking for viable functions which the user might
   10804     // have meant to call.
   10805     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
   10806                                                 Args, RParenLoc,
   10807                                                 /*EmptyLookup=*/false,
   10808                                                 AllowTypoCorrection);
   10809     if (!Recovery.isInvalid())
   10810       return Recovery;
   10811 
   10812     SemaRef.Diag(Fn->getLocStart(),
   10813          diag::err_ovl_no_viable_function_in_call)
   10814       << ULE->getName() << Fn->getSourceRange();
   10815     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
   10816     break;
   10817   }
   10818 
   10819   case OR_Ambiguous:
   10820     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
   10821       << ULE->getName() << Fn->getSourceRange();
   10822     CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
   10823     break;
   10824 
   10825   case OR_Deleted: {
   10826     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
   10827       << (*Best)->Function->isDeleted()
   10828       << ULE->getName()
   10829       << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
   10830       << Fn->getSourceRange();
   10831     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
   10832 
   10833     // We emitted an error for the unvailable/deleted function call but keep
   10834     // the call in the AST.
   10835     FunctionDecl *FDecl = (*Best)->Function;
   10836     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
   10837     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
   10838                                          ExecConfig);
   10839   }
   10840   }
   10841 
   10842   // Overload resolution failed.
   10843   return ExprError();
   10844 }
   10845 
   10846 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
   10847 /// (which eventually refers to the declaration Func) and the call
   10848 /// arguments Args/NumArgs, attempt to resolve the function call down
   10849 /// to a specific function. If overload resolution succeeds, returns
   10850 /// the call expression produced by overload resolution.
   10851 /// Otherwise, emits diagnostics and returns ExprError.
   10852 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
   10853                                          UnresolvedLookupExpr *ULE,
   10854                                          SourceLocation LParenLoc,
   10855                                          MultiExprArg Args,
   10856                                          SourceLocation RParenLoc,
   10857                                          Expr *ExecConfig,
   10858                                          bool AllowTypoCorrection) {
   10859   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
   10860                                     OverloadCandidateSet::CSK_Normal);
   10861   ExprResult result;
   10862 
   10863   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
   10864                              &result))
   10865     return result;
   10866 
   10867   OverloadCandidateSet::iterator Best;
   10868   OverloadingResult OverloadResult =
   10869       CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
   10870 
   10871   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
   10872                                   RParenLoc, ExecConfig, &CandidateSet,
   10873                                   &Best, OverloadResult,
   10874                                   AllowTypoCorrection);
   10875 }
   10876 
   10877 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
   10878   return Functions.size() > 1 ||
   10879     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
   10880 }
   10881 
   10882 /// \brief Create a unary operation that may resolve to an overloaded
   10883 /// operator.
   10884 ///
   10885 /// \param OpLoc The location of the operator itself (e.g., '*').
   10886 ///
   10887 /// \param OpcIn The UnaryOperator::Opcode that describes this
   10888 /// operator.
   10889 ///
   10890 /// \param Fns The set of non-member functions that will be
   10891 /// considered by overload resolution. The caller needs to build this
   10892 /// set based on the context using, e.g.,
   10893 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
   10894 /// set should not contain any member functions; those will be added
   10895 /// by CreateOverloadedUnaryOp().
   10896 ///
   10897 /// \param Input The input argument.
   10898 ExprResult
   10899 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
   10900                               const UnresolvedSetImpl &Fns,
   10901                               Expr *Input) {
   10902   UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
   10903 
   10904   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
   10905   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
   10906   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   10907   // TODO: provide better source location info.
   10908   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
   10909 
   10910   if (checkPlaceholderForOverload(*this, Input))
   10911     return ExprError();
   10912 
   10913   Expr *Args[2] = { Input, nullptr };
   10914   unsigned NumArgs = 1;
   10915 
   10916   // For post-increment and post-decrement, add the implicit '0' as
   10917   // the second argument, so that we know this is a post-increment or
   10918   // post-decrement.
   10919   if (Opc == UO_PostInc || Opc == UO_PostDec) {
   10920     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
   10921     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
   10922                                      SourceLocation());
   10923     NumArgs = 2;
   10924   }
   10925 
   10926   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
   10927 
   10928   if (Input->isTypeDependent()) {
   10929     if (Fns.empty())
   10930       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
   10931                                          VK_RValue, OK_Ordinary, OpLoc);
   10932 
   10933     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   10934     UnresolvedLookupExpr *Fn
   10935       = UnresolvedLookupExpr::Create(Context, NamingClass,
   10936                                      NestedNameSpecifierLoc(), OpNameInfo,
   10937                                      /*ADL*/ true, IsOverloaded(Fns),
   10938                                      Fns.begin(), Fns.end());
   10939     return new (Context)
   10940         CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
   10941                             VK_RValue, OpLoc, false);
   10942   }
   10943 
   10944   // Build an empty overload set.
   10945   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
   10946 
   10947   // Add the candidates from the given function set.
   10948   AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
   10949 
   10950   // Add operator candidates that are member functions.
   10951   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
   10952 
   10953   // Add candidates from ADL.
   10954   AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
   10955                                        /*ExplicitTemplateArgs*/nullptr,
   10956                                        CandidateSet);
   10957 
   10958   // Add builtin operator candidates.
   10959   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
   10960 
   10961   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   10962 
   10963   // Perform overload resolution.
   10964   OverloadCandidateSet::iterator Best;
   10965   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   10966   case OR_Success: {
   10967     // We found a built-in operator or an overloaded operator.
   10968     FunctionDecl *FnDecl = Best->Function;
   10969 
   10970     if (FnDecl) {
   10971       // We matched an overloaded operator. Build a call to that
   10972       // operator.
   10973 
   10974       // Convert the arguments.
   10975       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
   10976         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
   10977 
   10978         ExprResult InputRes =
   10979           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
   10980                                               Best->FoundDecl, Method);
   10981         if (InputRes.isInvalid())
   10982           return ExprError();
   10983         Input = InputRes.get();
   10984       } else {
   10985         // Convert the arguments.
   10986         ExprResult InputInit
   10987           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   10988                                                       Context,
   10989                                                       FnDecl->getParamDecl(0)),
   10990                                       SourceLocation(),
   10991                                       Input);
   10992         if (InputInit.isInvalid())
   10993           return ExprError();
   10994         Input = InputInit.get();
   10995       }
   10996 
   10997       // Build the actual expression node.
   10998       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
   10999                                                 HadMultipleCandidates, OpLoc);
   11000       if (FnExpr.isInvalid())
   11001         return ExprError();
   11002 
   11003       // Determine the result type.
   11004       QualType ResultTy = FnDecl->getReturnType();
   11005       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11006       ResultTy = ResultTy.getNonLValueExprType(Context);
   11007 
   11008       Args[0] = Input;
   11009       CallExpr *TheCall =
   11010         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
   11011                                           ResultTy, VK, OpLoc, false);
   11012 
   11013       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
   11014         return ExprError();
   11015 
   11016       return MaybeBindToTemporary(TheCall);
   11017     } else {
   11018       // We matched a built-in operator. Convert the arguments, then
   11019       // break out so that we will build the appropriate built-in
   11020       // operator node.
   11021       ExprResult InputRes =
   11022         PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
   11023                                   Best->Conversions[0], AA_Passing);
   11024       if (InputRes.isInvalid())
   11025         return ExprError();
   11026       Input = InputRes.get();
   11027       break;
   11028     }
   11029   }
   11030 
   11031   case OR_No_Viable_Function:
   11032     // This is an erroneous use of an operator which can be overloaded by
   11033     // a non-member function. Check for non-member operators which were
   11034     // defined too late to be candidates.
   11035     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
   11036       // FIXME: Recover by calling the found function.
   11037       return ExprError();
   11038 
   11039     // No viable function; fall through to handling this as a
   11040     // built-in operator, which will produce an error message for us.
   11041     break;
   11042 
   11043   case OR_Ambiguous:
   11044     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
   11045         << UnaryOperator::getOpcodeStr(Opc)
   11046         << Input->getType()
   11047         << Input->getSourceRange();
   11048     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
   11049                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
   11050     return ExprError();
   11051 
   11052   case OR_Deleted:
   11053     Diag(OpLoc, diag::err_ovl_deleted_oper)
   11054       << Best->Function->isDeleted()
   11055       << UnaryOperator::getOpcodeStr(Opc)
   11056       << getDeletedOrUnavailableSuffix(Best->Function)
   11057       << Input->getSourceRange();
   11058     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
   11059                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
   11060     return ExprError();
   11061   }
   11062 
   11063   // Either we found no viable overloaded operator or we matched a
   11064   // built-in operator. In either case, fall through to trying to
   11065   // build a built-in operation.
   11066   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11067 }
   11068 
   11069 /// \brief Create a binary operation that may resolve to an overloaded
   11070 /// operator.
   11071 ///
   11072 /// \param OpLoc The location of the operator itself (e.g., '+').
   11073 ///
   11074 /// \param OpcIn The BinaryOperator::Opcode that describes this
   11075 /// operator.
   11076 ///
   11077 /// \param Fns The set of non-member functions that will be
   11078 /// considered by overload resolution. The caller needs to build this
   11079 /// set based on the context using, e.g.,
   11080 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
   11081 /// set should not contain any member functions; those will be added
   11082 /// by CreateOverloadedBinOp().
   11083 ///
   11084 /// \param LHS Left-hand argument.
   11085 /// \param RHS Right-hand argument.
   11086 ExprResult
   11087 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
   11088                             unsigned OpcIn,
   11089                             const UnresolvedSetImpl &Fns,
   11090                             Expr *LHS, Expr *RHS) {
   11091   Expr *Args[2] = { LHS, RHS };
   11092   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
   11093 
   11094   BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
   11095   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
   11096   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   11097 
   11098   // If either side is type-dependent, create an appropriate dependent
   11099   // expression.
   11100   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
   11101     if (Fns.empty()) {
   11102       // If there are no functions to store, just build a dependent
   11103       // BinaryOperator or CompoundAssignment.
   11104       if (Opc <= BO_Assign || Opc > BO_OrAssign)
   11105         return new (Context) BinaryOperator(
   11106             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
   11107             OpLoc, FPFeatures.fp_contract);
   11108 
   11109       return new (Context) CompoundAssignOperator(
   11110           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
   11111           Context.DependentTy, Context.DependentTy, OpLoc,
   11112           FPFeatures.fp_contract);
   11113     }
   11114 
   11115     // FIXME: save results of ADL from here?
   11116     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11117     // TODO: provide better source location info in DNLoc component.
   11118     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
   11119     UnresolvedLookupExpr *Fn
   11120       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11121                                      NestedNameSpecifierLoc(), OpNameInfo,
   11122                                      /*ADL*/ true, IsOverloaded(Fns),
   11123                                      Fns.begin(), Fns.end());
   11124     return new (Context)
   11125         CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
   11126                             VK_RValue, OpLoc, FPFeatures.fp_contract);
   11127   }
   11128 
   11129   // Always do placeholder-like conversions on the RHS.
   11130   if (checkPlaceholderForOverload(*this, Args[1]))
   11131     return ExprError();
   11132 
   11133   // Do placeholder-like conversion on the LHS; note that we should
   11134   // not get here with a PseudoObject LHS.
   11135   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
   11136   if (checkPlaceholderForOverload(*this, Args[0]))
   11137     return ExprError();
   11138 
   11139   // If this is the assignment operator, we only perform overload resolution
   11140   // if the left-hand side is a class or enumeration type. This is actually
   11141   // a hack. The standard requires that we do overload resolution between the
   11142   // various built-in candidates, but as DR507 points out, this can lead to
   11143   // problems. So we do it this way, which pretty much follows what GCC does.
   11144   // Note that we go the traditional code path for compound assignment forms.
   11145   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
   11146     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11147 
   11148   // If this is the .* operator, which is not overloadable, just
   11149   // create a built-in binary operator.
   11150   if (Opc == BO_PtrMemD)
   11151     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11152 
   11153   // Build an empty overload set.
   11154   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
   11155 
   11156   // Add the candidates from the given function set.
   11157   AddFunctionCandidates(Fns, Args, CandidateSet);
   11158 
   11159   // Add operator candidates that are member functions.
   11160   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
   11161 
   11162   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
   11163   // performed for an assignment operator (nor for operator[] nor operator->,
   11164   // which don't get here).
   11165   if (Opc != BO_Assign)
   11166     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
   11167                                          /*ExplicitTemplateArgs*/ nullptr,
   11168                                          CandidateSet);
   11169 
   11170   // Add builtin operator candidates.
   11171   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
   11172 
   11173   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11174 
   11175   // Perform overload resolution.
   11176   OverloadCandidateSet::iterator Best;
   11177   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   11178     case OR_Success: {
   11179       // We found a built-in operator or an overloaded operator.
   11180       FunctionDecl *FnDecl = Best->Function;
   11181 
   11182       if (FnDecl) {
   11183         // We matched an overloaded operator. Build a call to that
   11184         // operator.
   11185 
   11186         // Convert the arguments.
   11187         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
   11188           // Best->Access is only meaningful for class members.
   11189           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
   11190 
   11191           ExprResult Arg1 =
   11192             PerformCopyInitialization(
   11193               InitializedEntity::InitializeParameter(Context,
   11194                                                      FnDecl->getParamDecl(0)),
   11195               SourceLocation(), Args[1]);
   11196           if (Arg1.isInvalid())
   11197             return ExprError();
   11198 
   11199           ExprResult Arg0 =
   11200             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   11201                                                 Best->FoundDecl, Method);
   11202           if (Arg0.isInvalid())
   11203             return ExprError();
   11204           Args[0] = Arg0.getAs<Expr>();
   11205           Args[1] = RHS = Arg1.getAs<Expr>();
   11206         } else {
   11207           // Convert the arguments.
   11208           ExprResult Arg0 = PerformCopyInitialization(
   11209             InitializedEntity::InitializeParameter(Context,
   11210                                                    FnDecl->getParamDecl(0)),
   11211             SourceLocation(), Args[0]);
   11212           if (Arg0.isInvalid())
   11213             return ExprError();
   11214 
   11215           ExprResult Arg1 =
   11216             PerformCopyInitialization(
   11217               InitializedEntity::InitializeParameter(Context,
   11218                                                      FnDecl->getParamDecl(1)),
   11219               SourceLocation(), Args[1]);
   11220           if (Arg1.isInvalid())
   11221             return ExprError();
   11222           Args[0] = LHS = Arg0.getAs<Expr>();
   11223           Args[1] = RHS = Arg1.getAs<Expr>();
   11224         }
   11225 
   11226         // Build the actual expression node.
   11227         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
   11228                                                   Best->FoundDecl,
   11229                                                   HadMultipleCandidates, OpLoc);
   11230         if (FnExpr.isInvalid())
   11231           return ExprError();
   11232 
   11233         // Determine the result type.
   11234         QualType ResultTy = FnDecl->getReturnType();
   11235         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11236         ResultTy = ResultTy.getNonLValueExprType(Context);
   11237 
   11238         CXXOperatorCallExpr *TheCall =
   11239           new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
   11240                                             Args, ResultTy, VK, OpLoc,
   11241                                             FPFeatures.fp_contract);
   11242 
   11243         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
   11244                                 FnDecl))
   11245           return ExprError();
   11246 
   11247         ArrayRef<const Expr *> ArgsArray(Args, 2);
   11248         // Cut off the implicit 'this'.
   11249         if (isa<CXXMethodDecl>(FnDecl))
   11250           ArgsArray = ArgsArray.slice(1);
   11251 
   11252         // Check for a self move.
   11253         if (Op == OO_Equal)
   11254           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
   11255 
   11256         checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc,
   11257                   TheCall->getSourceRange(), VariadicDoesNotApply);
   11258 
   11259         return MaybeBindToTemporary(TheCall);
   11260       } else {
   11261         // We matched a built-in operator. Convert the arguments, then
   11262         // break out so that we will build the appropriate built-in
   11263         // operator node.
   11264         ExprResult ArgsRes0 =
   11265           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
   11266                                     Best->Conversions[0], AA_Passing);
   11267         if (ArgsRes0.isInvalid())
   11268           return ExprError();
   11269         Args[0] = ArgsRes0.get();
   11270 
   11271         ExprResult ArgsRes1 =
   11272           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
   11273                                     Best->Conversions[1], AA_Passing);
   11274         if (ArgsRes1.isInvalid())
   11275           return ExprError();
   11276         Args[1] = ArgsRes1.get();
   11277         break;
   11278       }
   11279     }
   11280 
   11281     case OR_No_Viable_Function: {
   11282       // C++ [over.match.oper]p9:
   11283       //   If the operator is the operator , [...] and there are no
   11284       //   viable functions, then the operator is assumed to be the
   11285       //   built-in operator and interpreted according to clause 5.
   11286       if (Opc == BO_Comma)
   11287         break;
   11288 
   11289       // For class as left operand for assignment or compound assigment
   11290       // operator do not fall through to handling in built-in, but report that
   11291       // no overloaded assignment operator found
   11292       ExprResult Result = ExprError();
   11293       if (Args[0]->getType()->isRecordType() &&
   11294           Opc >= BO_Assign && Opc <= BO_OrAssign) {
   11295         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
   11296              << BinaryOperator::getOpcodeStr(Opc)
   11297              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11298         if (Args[0]->getType()->isIncompleteType()) {
   11299           Diag(OpLoc, diag::note_assign_lhs_incomplete)
   11300             << Args[0]->getType()
   11301             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11302         }
   11303       } else {
   11304         // This is an erroneous use of an operator which can be overloaded by
   11305         // a non-member function. Check for non-member operators which were
   11306         // defined too late to be candidates.
   11307         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
   11308           // FIXME: Recover by calling the found function.
   11309           return ExprError();
   11310 
   11311         // No viable function; try to create a built-in operation, which will
   11312         // produce an error. Then, show the non-viable candidates.
   11313         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11314       }
   11315       assert(Result.isInvalid() &&
   11316              "C++ binary operator overloading is missing candidates!");
   11317       if (Result.isInvalid())
   11318         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11319                                     BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11320       return Result;
   11321     }
   11322 
   11323     case OR_Ambiguous:
   11324       Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
   11325           << BinaryOperator::getOpcodeStr(Opc)
   11326           << Args[0]->getType() << Args[1]->getType()
   11327           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11328       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
   11329                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11330       return ExprError();
   11331 
   11332     case OR_Deleted:
   11333       if (isImplicitlyDeleted(Best->Function)) {
   11334         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   11335         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
   11336           << Context.getRecordType(Method->getParent())
   11337           << getSpecialMember(Method);
   11338 
   11339         // The user probably meant to call this special member. Just
   11340         // explain why it's deleted.
   11341         NoteDeletedFunction(Method);
   11342         return ExprError();
   11343       } else {
   11344         Diag(OpLoc, diag::err_ovl_deleted_oper)
   11345           << Best->Function->isDeleted()
   11346           << BinaryOperator::getOpcodeStr(Opc)
   11347           << getDeletedOrUnavailableSuffix(Best->Function)
   11348           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11349       }
   11350       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11351                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11352       return ExprError();
   11353   }
   11354 
   11355   // We matched a built-in operator; build it.
   11356   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11357 }
   11358 
   11359 ExprResult
   11360 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
   11361                                          SourceLocation RLoc,
   11362                                          Expr *Base, Expr *Idx) {
   11363   Expr *Args[2] = { Base, Idx };
   11364   DeclarationName OpName =
   11365       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
   11366 
   11367   // If either side is type-dependent, create an appropriate dependent
   11368   // expression.
   11369   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
   11370 
   11371     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11372     // CHECKME: no 'operator' keyword?
   11373     DeclarationNameInfo OpNameInfo(OpName, LLoc);
   11374     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
   11375     UnresolvedLookupExpr *Fn
   11376       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11377                                      NestedNameSpecifierLoc(), OpNameInfo,
   11378                                      /*ADL*/ true, /*Overloaded*/ false,
   11379                                      UnresolvedSetIterator(),
   11380                                      UnresolvedSetIterator());
   11381     // Can't add any actual overloads yet
   11382 
   11383     return new (Context)
   11384         CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
   11385                             Context.DependentTy, VK_RValue, RLoc, false);
   11386   }
   11387 
   11388   // Handle placeholders on both operands.
   11389   if (checkPlaceholderForOverload(*this, Args[0]))
   11390     return ExprError();
   11391   if (checkPlaceholderForOverload(*this, Args[1]))
   11392     return ExprError();
   11393 
   11394   // Build an empty overload set.
   11395   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
   11396 
   11397   // Subscript can only be overloaded as a member function.
   11398 
   11399   // Add operator candidates that are member functions.
   11400   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
   11401 
   11402   // Add builtin operator candidates.
   11403   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
   11404 
   11405   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11406 
   11407   // Perform overload resolution.
   11408   OverloadCandidateSet::iterator Best;
   11409   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
   11410     case OR_Success: {
   11411       // We found a built-in operator or an overloaded operator.
   11412       FunctionDecl *FnDecl = Best->Function;
   11413 
   11414       if (FnDecl) {
   11415         // We matched an overloaded operator. Build a call to that
   11416         // operator.
   11417 
   11418         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
   11419 
   11420         // Convert the arguments.
   11421         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
   11422         ExprResult Arg0 =
   11423           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   11424                                               Best->FoundDecl, Method);
   11425         if (Arg0.isInvalid())
   11426           return ExprError();
   11427         Args[0] = Arg0.get();
   11428 
   11429         // Convert the arguments.
   11430         ExprResult InputInit
   11431           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   11432                                                       Context,
   11433                                                       FnDecl->getParamDecl(0)),
   11434                                       SourceLocation(),
   11435                                       Args[1]);
   11436         if (InputInit.isInvalid())
   11437           return ExprError();
   11438 
   11439         Args[1] = InputInit.getAs<Expr>();
   11440 
   11441         // Build the actual expression node.
   11442         DeclarationNameInfo OpLocInfo(OpName, LLoc);
   11443         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
   11444         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
   11445                                                   Best->FoundDecl,
   11446                                                   HadMultipleCandidates,
   11447                                                   OpLocInfo.getLoc(),
   11448                                                   OpLocInfo.getInfo());
   11449         if (FnExpr.isInvalid())
   11450           return ExprError();
   11451 
   11452         // Determine the result type
   11453         QualType ResultTy = FnDecl->getReturnType();
   11454         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11455         ResultTy = ResultTy.getNonLValueExprType(Context);
   11456 
   11457         CXXOperatorCallExpr *TheCall =
   11458           new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
   11459                                             FnExpr.get(), Args,
   11460                                             ResultTy, VK, RLoc,
   11461                                             false);
   11462 
   11463         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
   11464           return ExprError();
   11465 
   11466         return MaybeBindToTemporary(TheCall);
   11467       } else {
   11468         // We matched a built-in operator. Convert the arguments, then
   11469         // break out so that we will build the appropriate built-in
   11470         // operator node.
   11471         ExprResult ArgsRes0 =
   11472           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
   11473                                     Best->Conversions[0], AA_Passing);
   11474         if (ArgsRes0.isInvalid())
   11475           return ExprError();
   11476         Args[0] = ArgsRes0.get();
   11477 
   11478         ExprResult ArgsRes1 =
   11479           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
   11480                                     Best->Conversions[1], AA_Passing);
   11481         if (ArgsRes1.isInvalid())
   11482           return ExprError();
   11483         Args[1] = ArgsRes1.get();
   11484 
   11485         break;
   11486       }
   11487     }
   11488 
   11489     case OR_No_Viable_Function: {
   11490       if (CandidateSet.empty())
   11491         Diag(LLoc, diag::err_ovl_no_oper)
   11492           << Args[0]->getType() << /*subscript*/ 0
   11493           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11494       else
   11495         Diag(LLoc, diag::err_ovl_no_viable_subscript)
   11496           << Args[0]->getType()
   11497           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11498       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11499                                   "[]", LLoc);
   11500       return ExprError();
   11501     }
   11502 
   11503     case OR_Ambiguous:
   11504       Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
   11505           << "[]"
   11506           << Args[0]->getType() << Args[1]->getType()
   11507           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11508       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
   11509                                   "[]", LLoc);
   11510       return ExprError();
   11511 
   11512     case OR_Deleted:
   11513       Diag(LLoc, diag::err_ovl_deleted_oper)
   11514         << Best->Function->isDeleted() << "[]"
   11515         << getDeletedOrUnavailableSuffix(Best->Function)
   11516         << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11517       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11518                                   "[]", LLoc);
   11519       return ExprError();
   11520     }
   11521 
   11522   // We matched a built-in operator; build it.
   11523   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
   11524 }
   11525 
   11526 /// BuildCallToMemberFunction - Build a call to a member
   11527 /// function. MemExpr is the expression that refers to the member
   11528 /// function (and includes the object parameter), Args/NumArgs are the
   11529 /// arguments to the function call (not including the object
   11530 /// parameter). The caller needs to validate that the member
   11531 /// expression refers to a non-static member function or an overloaded
   11532 /// member function.
   11533 ExprResult
   11534 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
   11535                                 SourceLocation LParenLoc,
   11536                                 MultiExprArg Args,
   11537                                 SourceLocation RParenLoc) {
   11538   assert(MemExprE->getType() == Context.BoundMemberTy ||
   11539          MemExprE->getType() == Context.OverloadTy);
   11540 
   11541   // Dig out the member expression. This holds both the object
   11542   // argument and the member function we're referring to.
   11543   Expr *NakedMemExpr = MemExprE->IgnoreParens();
   11544 
   11545   // Determine whether this is a call to a pointer-to-member function.
   11546   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
   11547     assert(op->getType() == Context.BoundMemberTy);
   11548     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
   11549 
   11550     QualType fnType =
   11551       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
   11552 
   11553     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
   11554     QualType resultType = proto->getCallResultType(Context);
   11555     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
   11556 
   11557     // Check that the object type isn't more qualified than the
   11558     // member function we're calling.
   11559     Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
   11560 
   11561     QualType objectType = op->getLHS()->getType();
   11562     if (op->getOpcode() == BO_PtrMemI)
   11563       objectType = objectType->castAs<PointerType>()->getPointeeType();
   11564     Qualifiers objectQuals = objectType.getQualifiers();
   11565 
   11566     Qualifiers difference = objectQuals - funcQuals;
   11567     difference.removeObjCGCAttr();
   11568     difference.removeAddressSpace();
   11569     if (difference) {
   11570       std::string qualsString = difference.getAsString();
   11571       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
   11572         << fnType.getUnqualifiedType()
   11573         << qualsString
   11574         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
   11575     }
   11576 
   11577     if (resultType->isMemberPointerType())
   11578       if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   11579         RequireCompleteType(LParenLoc, resultType, 0);
   11580 
   11581     CXXMemberCallExpr *call
   11582       = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
   11583                                         resultType, valueKind, RParenLoc);
   11584 
   11585     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
   11586                             call, nullptr))
   11587       return ExprError();
   11588 
   11589     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
   11590       return ExprError();
   11591 
   11592     if (CheckOtherCall(call, proto))
   11593       return ExprError();
   11594 
   11595     return MaybeBindToTemporary(call);
   11596   }
   11597 
   11598   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
   11599     return new (Context)
   11600         CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
   11601 
   11602   UnbridgedCastsSet UnbridgedCasts;
   11603   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
   11604     return ExprError();
   11605 
   11606   MemberExpr *MemExpr;
   11607   CXXMethodDecl *Method = nullptr;
   11608   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
   11609   NestedNameSpecifier *Qualifier = nullptr;
   11610   if (isa<MemberExpr>(NakedMemExpr)) {
   11611     MemExpr = cast<MemberExpr>(NakedMemExpr);
   11612     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
   11613     FoundDecl = MemExpr->getFoundDecl();
   11614     Qualifier = MemExpr->getQualifier();
   11615     UnbridgedCasts.restore();
   11616   } else {
   11617     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
   11618     Qualifier = UnresExpr->getQualifier();
   11619 
   11620     QualType ObjectType = UnresExpr->getBaseType();
   11621     Expr::Classification ObjectClassification
   11622       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
   11623                             : UnresExpr->getBase()->Classify(Context);
   11624 
   11625     // Add overload candidates
   11626     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
   11627                                       OverloadCandidateSet::CSK_Normal);
   11628 
   11629     // FIXME: avoid copy.
   11630     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   11631     if (UnresExpr->hasExplicitTemplateArgs()) {
   11632       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
   11633       TemplateArgs = &TemplateArgsBuffer;
   11634     }
   11635 
   11636     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
   11637            E = UnresExpr->decls_end(); I != E; ++I) {
   11638 
   11639       NamedDecl *Func = *I;
   11640       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
   11641       if (isa<UsingShadowDecl>(Func))
   11642         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
   11643 
   11644 
   11645       // Microsoft supports direct constructor calls.
   11646       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
   11647         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
   11648                              Args, CandidateSet);
   11649       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
   11650         // If explicit template arguments were provided, we can't call a
   11651         // non-template member function.
   11652         if (TemplateArgs)
   11653           continue;
   11654 
   11655         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
   11656                            ObjectClassification, Args, CandidateSet,
   11657                            /*SuppressUserConversions=*/false);
   11658       } else {
   11659         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
   11660                                    I.getPair(), ActingDC, TemplateArgs,
   11661                                    ObjectType,  ObjectClassification,
   11662                                    Args, CandidateSet,
   11663                                    /*SuppressUsedConversions=*/false);
   11664       }
   11665     }
   11666 
   11667     DeclarationName DeclName = UnresExpr->getMemberName();
   11668 
   11669     UnbridgedCasts.restore();
   11670 
   11671     OverloadCandidateSet::iterator Best;
   11672     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
   11673                                             Best)) {
   11674     case OR_Success:
   11675       Method = cast<CXXMethodDecl>(Best->Function);
   11676       FoundDecl = Best->FoundDecl;
   11677       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
   11678       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
   11679         return ExprError();
   11680       // If FoundDecl is different from Method (such as if one is a template
   11681       // and the other a specialization), make sure DiagnoseUseOfDecl is
   11682       // called on both.
   11683       // FIXME: This would be more comprehensively addressed by modifying
   11684       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
   11685       // being used.
   11686       if (Method != FoundDecl.getDecl() &&
   11687                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
   11688         return ExprError();
   11689       break;
   11690 
   11691     case OR_No_Viable_Function:
   11692       Diag(UnresExpr->getMemberLoc(),
   11693            diag::err_ovl_no_viable_member_function_in_call)
   11694         << DeclName << MemExprE->getSourceRange();
   11695       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11696       // FIXME: Leaking incoming expressions!
   11697       return ExprError();
   11698 
   11699     case OR_Ambiguous:
   11700       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
   11701         << DeclName << MemExprE->getSourceRange();
   11702       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11703       // FIXME: Leaking incoming expressions!
   11704       return ExprError();
   11705 
   11706     case OR_Deleted:
   11707       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
   11708         << Best->Function->isDeleted()
   11709         << DeclName
   11710         << getDeletedOrUnavailableSuffix(Best->Function)
   11711         << MemExprE->getSourceRange();
   11712       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11713       // FIXME: Leaking incoming expressions!
   11714       return ExprError();
   11715     }
   11716 
   11717     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
   11718 
   11719     // If overload resolution picked a static member, build a
   11720     // non-member call based on that function.
   11721     if (Method->isStatic()) {
   11722       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
   11723                                    RParenLoc);
   11724     }
   11725 
   11726     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
   11727   }
   11728 
   11729   QualType ResultType = Method->getReturnType();
   11730   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   11731   ResultType = ResultType.getNonLValueExprType(Context);
   11732 
   11733   assert(Method && "Member call to something that isn't a method?");
   11734   CXXMemberCallExpr *TheCall =
   11735     new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
   11736                                     ResultType, VK, RParenLoc);
   11737 
   11738   // (CUDA B.1): Check for invalid calls between targets.
   11739   if (getLangOpts().CUDA) {
   11740     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
   11741       if (CheckCUDATarget(Caller, Method)) {
   11742         Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
   11743             << IdentifyCUDATarget(Method) << Method->getIdentifier()
   11744             << IdentifyCUDATarget(Caller);
   11745         return ExprError();
   11746       }
   11747     }
   11748   }
   11749 
   11750   // Check for a valid return type.
   11751   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
   11752                           TheCall, Method))
   11753     return ExprError();
   11754 
   11755   // Convert the object argument (for a non-static member function call).
   11756   // We only need to do this if there was actually an overload; otherwise
   11757   // it was done at lookup.
   11758   if (!Method->isStatic()) {
   11759     ExprResult ObjectArg =
   11760       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
   11761                                           FoundDecl, Method);
   11762     if (ObjectArg.isInvalid())
   11763       return ExprError();
   11764     MemExpr->setBase(ObjectArg.get());
   11765   }
   11766 
   11767   // Convert the rest of the arguments
   11768   const FunctionProtoType *Proto =
   11769     Method->getType()->getAs<FunctionProtoType>();
   11770   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
   11771                               RParenLoc))
   11772     return ExprError();
   11773 
   11774   DiagnoseSentinelCalls(Method, LParenLoc, Args);
   11775 
   11776   if (CheckFunctionCall(Method, TheCall, Proto))
   11777     return ExprError();
   11778 
   11779   if ((isa<CXXConstructorDecl>(CurContext) ||
   11780        isa<CXXDestructorDecl>(CurContext)) &&
   11781       TheCall->getMethodDecl()->isPure()) {
   11782     const CXXMethodDecl *MD = TheCall->getMethodDecl();
   11783 
   11784     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
   11785       Diag(MemExpr->getLocStart(),
   11786            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
   11787         << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
   11788         << MD->getParent()->getDeclName();
   11789 
   11790       Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
   11791     }
   11792   }
   11793   return MaybeBindToTemporary(TheCall);
   11794 }
   11795 
   11796 /// BuildCallToObjectOfClassType - Build a call to an object of class
   11797 /// type (C++ [over.call.object]), which can end up invoking an
   11798 /// overloaded function call operator (@c operator()) or performing a
   11799 /// user-defined conversion on the object argument.
   11800 ExprResult
   11801 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
   11802                                    SourceLocation LParenLoc,
   11803                                    MultiExprArg Args,
   11804                                    SourceLocation RParenLoc) {
   11805   if (checkPlaceholderForOverload(*this, Obj))
   11806     return ExprError();
   11807   ExprResult Object = Obj;
   11808 
   11809   UnbridgedCastsSet UnbridgedCasts;
   11810   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
   11811     return ExprError();
   11812 
   11813   assert(Object.get()->getType()->isRecordType() &&
   11814          "Requires object type argument");
   11815   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
   11816 
   11817   // C++ [over.call.object]p1:
   11818   //  If the primary-expression E in the function call syntax
   11819   //  evaluates to a class object of type "cv T", then the set of
   11820   //  candidate functions includes at least the function call
   11821   //  operators of T. The function call operators of T are obtained by
   11822   //  ordinary lookup of the name operator() in the context of
   11823   //  (E).operator().
   11824   OverloadCandidateSet CandidateSet(LParenLoc,
   11825                                     OverloadCandidateSet::CSK_Operator);
   11826   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
   11827 
   11828   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
   11829                           diag::err_incomplete_object_call, Object.get()))
   11830     return true;
   11831 
   11832   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
   11833   LookupQualifiedName(R, Record->getDecl());
   11834   R.suppressDiagnostics();
   11835 
   11836   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
   11837        Oper != OperEnd; ++Oper) {
   11838     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
   11839                        Object.get()->Classify(Context),
   11840                        Args, CandidateSet,
   11841                        /*SuppressUserConversions=*/ false);
   11842   }
   11843 
   11844   // C++ [over.call.object]p2:
   11845   //   In addition, for each (non-explicit in C++0x) conversion function
   11846   //   declared in T of the form
   11847   //
   11848   //        operator conversion-type-id () cv-qualifier;
   11849   //
   11850   //   where cv-qualifier is the same cv-qualification as, or a
   11851   //   greater cv-qualification than, cv, and where conversion-type-id
   11852   //   denotes the type "pointer to function of (P1,...,Pn) returning
   11853   //   R", or the type "reference to pointer to function of
   11854   //   (P1,...,Pn) returning R", or the type "reference to function
   11855   //   of (P1,...,Pn) returning R", a surrogate call function [...]
   11856   //   is also considered as a candidate function. Similarly,
   11857   //   surrogate call functions are added to the set of candidate
   11858   //   functions for each conversion function declared in an
   11859   //   accessible base class provided the function is not hidden
   11860   //   within T by another intervening declaration.
   11861   const auto &Conversions =
   11862       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
   11863   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   11864     NamedDecl *D = *I;
   11865     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   11866     if (isa<UsingShadowDecl>(D))
   11867       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   11868 
   11869     // Skip over templated conversion functions; they aren't
   11870     // surrogates.
   11871     if (isa<FunctionTemplateDecl>(D))
   11872       continue;
   11873 
   11874     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   11875     if (!Conv->isExplicit()) {
   11876       // Strip the reference type (if any) and then the pointer type (if
   11877       // any) to get down to what might be a function type.
   11878       QualType ConvType = Conv->getConversionType().getNonReferenceType();
   11879       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   11880         ConvType = ConvPtrType->getPointeeType();
   11881 
   11882       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
   11883       {
   11884         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
   11885                               Object.get(), Args, CandidateSet);
   11886       }
   11887     }
   11888   }
   11889 
   11890   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11891 
   11892   // Perform overload resolution.
   11893   OverloadCandidateSet::iterator Best;
   11894   switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
   11895                              Best)) {
   11896   case OR_Success:
   11897     // Overload resolution succeeded; we'll build the appropriate call
   11898     // below.
   11899     break;
   11900 
   11901   case OR_No_Viable_Function:
   11902     if (CandidateSet.empty())
   11903       Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
   11904         << Object.get()->getType() << /*call*/ 1
   11905         << Object.get()->getSourceRange();
   11906     else
   11907       Diag(Object.get()->getLocStart(),
   11908            diag::err_ovl_no_viable_object_call)
   11909         << Object.get()->getType() << Object.get()->getSourceRange();
   11910     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11911     break;
   11912 
   11913   case OR_Ambiguous:
   11914     Diag(Object.get()->getLocStart(),
   11915          diag::err_ovl_ambiguous_object_call)
   11916       << Object.get()->getType() << Object.get()->getSourceRange();
   11917     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
   11918     break;
   11919 
   11920   case OR_Deleted:
   11921     Diag(Object.get()->getLocStart(),
   11922          diag::err_ovl_deleted_object_call)
   11923       << Best->Function->isDeleted()
   11924       << Object.get()->getType()
   11925       << getDeletedOrUnavailableSuffix(Best->Function)
   11926       << Object.get()->getSourceRange();
   11927     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11928     break;
   11929   }
   11930 
   11931   if (Best == CandidateSet.end())
   11932     return true;
   11933 
   11934   UnbridgedCasts.restore();
   11935 
   11936   if (Best->Function == nullptr) {
   11937     // Since there is no function declaration, this is one of the
   11938     // surrogate candidates. Dig out the conversion function.
   11939     CXXConversionDecl *Conv
   11940       = cast<CXXConversionDecl>(
   11941                          Best->Conversions[0].UserDefined.ConversionFunction);
   11942 
   11943     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
   11944                               Best->FoundDecl);
   11945     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
   11946       return ExprError();
   11947     assert(Conv == Best->FoundDecl.getDecl() &&
   11948              "Found Decl & conversion-to-functionptr should be same, right?!");
   11949     // We selected one of the surrogate functions that converts the
   11950     // object parameter to a function pointer. Perform the conversion
   11951     // on the object argument, then let ActOnCallExpr finish the job.
   11952 
   11953     // Create an implicit member expr to refer to the conversion operator.
   11954     // and then call it.
   11955     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
   11956                                              Conv, HadMultipleCandidates);
   11957     if (Call.isInvalid())
   11958       return ExprError();
   11959     // Record usage of conversion in an implicit cast.
   11960     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
   11961                                     CK_UserDefinedConversion, Call.get(),
   11962                                     nullptr, VK_RValue);
   11963 
   11964     return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
   11965   }
   11966 
   11967   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
   11968 
   11969   // We found an overloaded operator(). Build a CXXOperatorCallExpr
   11970   // that calls this method, using Object for the implicit object
   11971   // parameter and passing along the remaining arguments.
   11972   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   11973 
   11974   // An error diagnostic has already been printed when parsing the declaration.
   11975   if (Method->isInvalidDecl())
   11976     return ExprError();
   11977 
   11978   const FunctionProtoType *Proto =
   11979     Method->getType()->getAs<FunctionProtoType>();
   11980 
   11981   unsigned NumParams = Proto->getNumParams();
   11982 
   11983   DeclarationNameInfo OpLocInfo(
   11984                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
   11985   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
   11986   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
   11987                                            HadMultipleCandidates,
   11988                                            OpLocInfo.getLoc(),
   11989                                            OpLocInfo.getInfo());
   11990   if (NewFn.isInvalid())
   11991     return true;
   11992 
   11993   // Build the full argument list for the method call (the implicit object
   11994   // parameter is placed at the beginning of the list).
   11995   std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
   11996   MethodArgs[0] = Object.get();
   11997   std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
   11998 
   11999   // Once we've built TheCall, all of the expressions are properly
   12000   // owned.
   12001   QualType ResultTy = Method->getReturnType();
   12002   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12003   ResultTy = ResultTy.getNonLValueExprType(Context);
   12004 
   12005   CXXOperatorCallExpr *TheCall = new (Context)
   12006       CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
   12007                           llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
   12008                           ResultTy, VK, RParenLoc, false);
   12009   MethodArgs.reset();
   12010 
   12011   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
   12012     return true;
   12013 
   12014   // We may have default arguments. If so, we need to allocate more
   12015   // slots in the call for them.
   12016   if (Args.size() < NumParams)
   12017     TheCall->setNumArgs(Context, NumParams + 1);
   12018 
   12019   bool IsError = false;
   12020 
   12021   // Initialize the implicit object parameter.
   12022   ExprResult ObjRes =
   12023     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
   12024                                         Best->FoundDecl, Method);
   12025   if (ObjRes.isInvalid())
   12026     IsError = true;
   12027   else
   12028     Object = ObjRes;
   12029   TheCall->setArg(0, Object.get());
   12030 
   12031   // Check the argument types.
   12032   for (unsigned i = 0; i != NumParams; i++) {
   12033     Expr *Arg;
   12034     if (i < Args.size()) {
   12035       Arg = Args[i];
   12036 
   12037       // Pass the argument.
   12038 
   12039       ExprResult InputInit
   12040         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   12041                                                     Context,
   12042                                                     Method->getParamDecl(i)),
   12043                                     SourceLocation(), Arg);
   12044 
   12045       IsError |= InputInit.isInvalid();
   12046       Arg = InputInit.getAs<Expr>();
   12047     } else {
   12048       ExprResult DefArg
   12049         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
   12050       if (DefArg.isInvalid()) {
   12051         IsError = true;
   12052         break;
   12053       }
   12054 
   12055       Arg = DefArg.getAs<Expr>();
   12056     }
   12057 
   12058     TheCall->setArg(i + 1, Arg);
   12059   }
   12060 
   12061   // If this is a variadic call, handle args passed through "...".
   12062   if (Proto->isVariadic()) {
   12063     // Promote the arguments (C99 6.5.2.2p7).
   12064     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
   12065       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
   12066                                                         nullptr);
   12067       IsError |= Arg.isInvalid();
   12068       TheCall->setArg(i + 1, Arg.get());
   12069     }
   12070   }
   12071 
   12072   if (IsError) return true;
   12073 
   12074   DiagnoseSentinelCalls(Method, LParenLoc, Args);
   12075 
   12076   if (CheckFunctionCall(Method, TheCall, Proto))
   12077     return true;
   12078 
   12079   return MaybeBindToTemporary(TheCall);
   12080 }
   12081 
   12082 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
   12083 ///  (if one exists), where @c Base is an expression of class type and
   12084 /// @c Member is the name of the member we're trying to find.
   12085 ExprResult
   12086 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
   12087                                bool *NoArrowOperatorFound) {
   12088   assert(Base->getType()->isRecordType() &&
   12089          "left-hand side must have class type");
   12090 
   12091   if (checkPlaceholderForOverload(*this, Base))
   12092     return ExprError();
   12093 
   12094   SourceLocation Loc = Base->getExprLoc();
   12095 
   12096   // C++ [over.ref]p1:
   12097   //
   12098   //   [...] An expression x->m is interpreted as (x.operator->())->m
   12099   //   for a class object x of type T if T::operator->() exists and if
   12100   //   the operator is selected as the best match function by the
   12101   //   overload resolution mechanism (13.3).
   12102   DeclarationName OpName =
   12103     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
   12104   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
   12105   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
   12106 
   12107   if (RequireCompleteType(Loc, Base->getType(),
   12108                           diag::err_typecheck_incomplete_tag, Base))
   12109     return ExprError();
   12110 
   12111   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
   12112   LookupQualifiedName(R, BaseRecord->getDecl());
   12113   R.suppressDiagnostics();
   12114 
   12115   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
   12116        Oper != OperEnd; ++Oper) {
   12117     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
   12118                        None, CandidateSet, /*SuppressUserConversions=*/false);
   12119   }
   12120 
   12121   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12122 
   12123   // Perform overload resolution.
   12124   OverloadCandidateSet::iterator Best;
   12125   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   12126   case OR_Success:
   12127     // Overload resolution succeeded; we'll build the call below.
   12128     break;
   12129 
   12130   case OR_No_Viable_Function:
   12131     if (CandidateSet.empty()) {
   12132       QualType BaseType = Base->getType();
   12133       if (NoArrowOperatorFound) {
   12134         // Report this specific error to the caller instead of emitting a
   12135         // diagnostic, as requested.
   12136         *NoArrowOperatorFound = true;
   12137         return ExprError();
   12138       }
   12139       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
   12140         << BaseType << Base->getSourceRange();
   12141       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
   12142         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
   12143           << FixItHint::CreateReplacement(OpLoc, ".");
   12144       }
   12145     } else
   12146       Diag(OpLoc, diag::err_ovl_no_viable_oper)
   12147         << "operator->" << Base->getSourceRange();
   12148     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
   12149     return ExprError();
   12150 
   12151   case OR_Ambiguous:
   12152     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
   12153       << "->" << Base->getType() << Base->getSourceRange();
   12154     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
   12155     return ExprError();
   12156 
   12157   case OR_Deleted:
   12158     Diag(OpLoc,  diag::err_ovl_deleted_oper)
   12159       << Best->Function->isDeleted()
   12160       << "->"
   12161       << getDeletedOrUnavailableSuffix(Best->Function)
   12162       << Base->getSourceRange();
   12163     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
   12164     return ExprError();
   12165   }
   12166 
   12167   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
   12168 
   12169   // Convert the object parameter.
   12170   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   12171   ExprResult BaseResult =
   12172     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
   12173                                         Best->FoundDecl, Method);
   12174   if (BaseResult.isInvalid())
   12175     return ExprError();
   12176   Base = BaseResult.get();
   12177 
   12178   // Build the operator call.
   12179   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
   12180                                             HadMultipleCandidates, OpLoc);
   12181   if (FnExpr.isInvalid())
   12182     return ExprError();
   12183 
   12184   QualType ResultTy = Method->getReturnType();
   12185   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12186   ResultTy = ResultTy.getNonLValueExprType(Context);
   12187   CXXOperatorCallExpr *TheCall =
   12188     new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
   12189                                       Base, ResultTy, VK, OpLoc, false);
   12190 
   12191   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
   12192           return ExprError();
   12193 
   12194   return MaybeBindToTemporary(TheCall);
   12195 }
   12196 
   12197 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
   12198 /// a literal operator described by the provided lookup results.
   12199 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
   12200                                           DeclarationNameInfo &SuffixInfo,
   12201                                           ArrayRef<Expr*> Args,
   12202                                           SourceLocation LitEndLoc,
   12203                                        TemplateArgumentListInfo *TemplateArgs) {
   12204   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
   12205 
   12206   OverloadCandidateSet CandidateSet(UDSuffixLoc,
   12207                                     OverloadCandidateSet::CSK_Normal);
   12208   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
   12209                         /*SuppressUserConversions=*/true);
   12210 
   12211   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12212 
   12213   // Perform overload resolution. This will usually be trivial, but might need
   12214   // to perform substitutions for a literal operator template.
   12215   OverloadCandidateSet::iterator Best;
   12216   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
   12217   case OR_Success:
   12218   case OR_Deleted:
   12219     break;
   12220 
   12221   case OR_No_Viable_Function:
   12222     Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
   12223       << R.getLookupName();
   12224     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12225     return ExprError();
   12226 
   12227   case OR_Ambiguous:
   12228     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
   12229     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
   12230     return ExprError();
   12231   }
   12232 
   12233   FunctionDecl *FD = Best->Function;
   12234   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
   12235                                         HadMultipleCandidates,
   12236                                         SuffixInfo.getLoc(),
   12237                                         SuffixInfo.getInfo());
   12238   if (Fn.isInvalid())
   12239     return true;
   12240 
   12241   // Check the argument types. This should almost always be a no-op, except
   12242   // that array-to-pointer decay is applied to string literals.
   12243   Expr *ConvArgs[2];
   12244   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   12245     ExprResult InputInit = PerformCopyInitialization(
   12246       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
   12247       SourceLocation(), Args[ArgIdx]);
   12248     if (InputInit.isInvalid())
   12249       return true;
   12250     ConvArgs[ArgIdx] = InputInit.get();
   12251   }
   12252 
   12253   QualType ResultTy = FD->getReturnType();
   12254   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12255   ResultTy = ResultTy.getNonLValueExprType(Context);
   12256 
   12257   UserDefinedLiteral *UDL =
   12258     new (Context) UserDefinedLiteral(Context, Fn.get(),
   12259                                      llvm::makeArrayRef(ConvArgs, Args.size()),
   12260                                      ResultTy, VK, LitEndLoc, UDSuffixLoc);
   12261 
   12262   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
   12263     return ExprError();
   12264 
   12265   if (CheckFunctionCall(FD, UDL, nullptr))
   12266     return ExprError();
   12267 
   12268   return MaybeBindToTemporary(UDL);
   12269 }
   12270 
   12271 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
   12272 /// given LookupResult is non-empty, it is assumed to describe a member which
   12273 /// will be invoked. Otherwise, the function will be found via argument
   12274 /// dependent lookup.
   12275 /// CallExpr is set to a valid expression and FRS_Success returned on success,
   12276 /// otherwise CallExpr is set to ExprError() and some non-success value
   12277 /// is returned.
   12278 Sema::ForRangeStatus
   12279 Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
   12280                                 SourceLocation RangeLoc, VarDecl *Decl,
   12281                                 BeginEndFunction BEF,
   12282                                 const DeclarationNameInfo &NameInfo,
   12283                                 LookupResult &MemberLookup,
   12284                                 OverloadCandidateSet *CandidateSet,
   12285                                 Expr *Range, ExprResult *CallExpr) {
   12286   CandidateSet->clear();
   12287   if (!MemberLookup.empty()) {
   12288     ExprResult MemberRef =
   12289         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
   12290                                  /*IsPtr=*/false, CXXScopeSpec(),
   12291                                  /*TemplateKWLoc=*/SourceLocation(),
   12292                                  /*FirstQualifierInScope=*/nullptr,
   12293                                  MemberLookup,
   12294                                  /*TemplateArgs=*/nullptr);
   12295     if (MemberRef.isInvalid()) {
   12296       *CallExpr = ExprError();
   12297       Diag(Range->getLocStart(), diag::note_in_for_range)
   12298           << RangeLoc << BEF << Range->getType();
   12299       return FRS_DiagnosticIssued;
   12300     }
   12301     *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
   12302     if (CallExpr->isInvalid()) {
   12303       *CallExpr = ExprError();
   12304       Diag(Range->getLocStart(), diag::note_in_for_range)
   12305           << RangeLoc << BEF << Range->getType();
   12306       return FRS_DiagnosticIssued;
   12307     }
   12308   } else {
   12309     UnresolvedSet<0> FoundNames;
   12310     UnresolvedLookupExpr *Fn =
   12311       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
   12312                                    NestedNameSpecifierLoc(), NameInfo,
   12313                                    /*NeedsADL=*/true, /*Overloaded=*/false,
   12314                                    FoundNames.begin(), FoundNames.end());
   12315 
   12316     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
   12317                                                     CandidateSet, CallExpr);
   12318     if (CandidateSet->empty() || CandidateSetError) {
   12319       *CallExpr = ExprError();
   12320       return FRS_NoViableFunction;
   12321     }
   12322     OverloadCandidateSet::iterator Best;
   12323     OverloadingResult OverloadResult =
   12324         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
   12325 
   12326     if (OverloadResult == OR_No_Viable_Function) {
   12327       *CallExpr = ExprError();
   12328       return FRS_NoViableFunction;
   12329     }
   12330     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
   12331                                          Loc, nullptr, CandidateSet, &Best,
   12332                                          OverloadResult,
   12333                                          /*AllowTypoCorrection=*/false);
   12334     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
   12335       *CallExpr = ExprError();
   12336       Diag(Range->getLocStart(), diag::note_in_for_range)
   12337           << RangeLoc << BEF << Range->getType();
   12338       return FRS_DiagnosticIssued;
   12339     }
   12340   }
   12341   return FRS_Success;
   12342 }
   12343 
   12344 
   12345 /// FixOverloadedFunctionReference - E is an expression that refers to
   12346 /// a C++ overloaded function (possibly with some parentheses and
   12347 /// perhaps a '&' around it). We have resolved the overloaded function
   12348 /// to the function declaration Fn, so patch up the expression E to
   12349 /// refer (possibly indirectly) to Fn. Returns the new expr.
   12350 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
   12351                                            FunctionDecl *Fn) {
   12352   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   12353     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
   12354                                                    Found, Fn);
   12355     if (SubExpr == PE->getSubExpr())
   12356       return PE;
   12357 
   12358     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
   12359   }
   12360 
   12361   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   12362     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
   12363                                                    Found, Fn);
   12364     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
   12365                                SubExpr->getType()) &&
   12366            "Implicit cast type cannot be determined from overload");
   12367     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
   12368     if (SubExpr == ICE->getSubExpr())
   12369       return ICE;
   12370 
   12371     return ImplicitCastExpr::Create(Context, ICE->getType(),
   12372                                     ICE->getCastKind(),
   12373                                     SubExpr, nullptr,
   12374                                     ICE->getValueKind());
   12375   }
   12376 
   12377   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
   12378     assert(UnOp->getOpcode() == UO_AddrOf &&
   12379            "Can only take the address of an overloaded function");
   12380     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
   12381       if (Method->isStatic()) {
   12382         // Do nothing: static member functions aren't any different
   12383         // from non-member functions.
   12384       } else {
   12385         // Fix the subexpression, which really has to be an
   12386         // UnresolvedLookupExpr holding an overloaded member function
   12387         // or template.
   12388         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
   12389                                                        Found, Fn);
   12390         if (SubExpr == UnOp->getSubExpr())
   12391           return UnOp;
   12392 
   12393         assert(isa<DeclRefExpr>(SubExpr)
   12394                && "fixed to something other than a decl ref");
   12395         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
   12396                && "fixed to a member ref with no nested name qualifier");
   12397 
   12398         // We have taken the address of a pointer to member
   12399         // function. Perform the computation here so that we get the
   12400         // appropriate pointer to member type.
   12401         QualType ClassType
   12402           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
   12403         QualType MemPtrType
   12404           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
   12405 
   12406         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
   12407                                            VK_RValue, OK_Ordinary,
   12408                                            UnOp->getOperatorLoc());
   12409       }
   12410     }
   12411     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
   12412                                                    Found, Fn);
   12413     if (SubExpr == UnOp->getSubExpr())
   12414       return UnOp;
   12415 
   12416     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
   12417                                      Context.getPointerType(SubExpr->getType()),
   12418                                        VK_RValue, OK_Ordinary,
   12419                                        UnOp->getOperatorLoc());
   12420   }
   12421 
   12422   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   12423     // FIXME: avoid copy.
   12424     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   12425     if (ULE->hasExplicitTemplateArgs()) {
   12426       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
   12427       TemplateArgs = &TemplateArgsBuffer;
   12428     }
   12429 
   12430     DeclRefExpr *DRE = DeclRefExpr::Create(Context,
   12431                                            ULE->getQualifierLoc(),
   12432                                            ULE->getTemplateKeywordLoc(),
   12433                                            Fn,
   12434                                            /*enclosing*/ false, // FIXME?
   12435                                            ULE->getNameLoc(),
   12436                                            Fn->getType(),
   12437                                            VK_LValue,
   12438                                            Found.getDecl(),
   12439                                            TemplateArgs);
   12440     MarkDeclRefReferenced(DRE);
   12441     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
   12442     return DRE;
   12443   }
   12444 
   12445   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
   12446     // FIXME: avoid copy.
   12447     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   12448     if (MemExpr->hasExplicitTemplateArgs()) {
   12449       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
   12450       TemplateArgs = &TemplateArgsBuffer;
   12451     }
   12452 
   12453     Expr *Base;
   12454 
   12455     // If we're filling in a static method where we used to have an
   12456     // implicit member access, rewrite to a simple decl ref.
   12457     if (MemExpr->isImplicitAccess()) {
   12458       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
   12459         DeclRefExpr *DRE = DeclRefExpr::Create(Context,
   12460                                                MemExpr->getQualifierLoc(),
   12461                                                MemExpr->getTemplateKeywordLoc(),
   12462                                                Fn,
   12463                                                /*enclosing*/ false,
   12464                                                MemExpr->getMemberLoc(),
   12465                                                Fn->getType(),
   12466                                                VK_LValue,
   12467                                                Found.getDecl(),
   12468                                                TemplateArgs);
   12469         MarkDeclRefReferenced(DRE);
   12470         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
   12471         return DRE;
   12472       } else {
   12473         SourceLocation Loc = MemExpr->getMemberLoc();
   12474         if (MemExpr->getQualifier())
   12475           Loc = MemExpr->getQualifierLoc().getBeginLoc();
   12476         CheckCXXThisCapture(Loc);
   12477         Base = new (Context) CXXThisExpr(Loc,
   12478                                          MemExpr->getBaseType(),
   12479                                          /*isImplicit=*/true);
   12480       }
   12481     } else
   12482       Base = MemExpr->getBase();
   12483 
   12484     ExprValueKind valueKind;
   12485     QualType type;
   12486     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
   12487       valueKind = VK_LValue;
   12488       type = Fn->getType();
   12489     } else {
   12490       valueKind = VK_RValue;
   12491       type = Context.BoundMemberTy;
   12492     }
   12493 
   12494     MemberExpr *ME = MemberExpr::Create(
   12495         Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
   12496         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
   12497         MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
   12498         OK_Ordinary);
   12499     ME->setHadMultipleCandidates(true);
   12500     MarkMemberReferenced(ME);
   12501     return ME;
   12502   }
   12503 
   12504   llvm_unreachable("Invalid reference to overloaded function");
   12505 }
   12506 
   12507 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
   12508                                                 DeclAccessPair Found,
   12509                                                 FunctionDecl *Fn) {
   12510   return FixOverloadedFunctionReference(E.get(), Found, Fn);
   12511 }
   12512