Home | History | Annotate | Download | only in IPO
      1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass deletes dead arguments from internal functions.  Dead argument
     11 // elimination removes arguments which are directly dead, as well as arguments
     12 // only passed into function calls as dead arguments of other functions.  This
     13 // pass also deletes dead return values in a similar way.
     14 //
     15 // This pass is often useful as a cleanup pass to run after aggressive
     16 // interprocedural passes, which add possibly-dead arguments or return values.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Transforms/IPO.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/SmallVector.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/ADT/StringExtras.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/CallingConv.h"
     27 #include "llvm/IR/Constant.h"
     28 #include "llvm/IR/DIBuilder.h"
     29 #include "llvm/IR/DebugInfo.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Instructions.h"
     32 #include "llvm/IR/IntrinsicInst.h"
     33 #include "llvm/IR/LLVMContext.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/Pass.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <map>
     39 #include <set>
     40 #include <tuple>
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "deadargelim"
     44 
     45 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
     46 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
     47 STATISTIC(NumArgumentsReplacedWithUndef,
     48           "Number of unread args replaced with undef");
     49 namespace {
     50   /// DAE - The dead argument elimination pass.
     51   ///
     52   class DAE : public ModulePass {
     53   public:
     54 
     55     /// Struct that represents (part of) either a return value or a function
     56     /// argument.  Used so that arguments and return values can be used
     57     /// interchangeably.
     58     struct RetOrArg {
     59       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
     60                IsArg(IsArg) {}
     61       const Function *F;
     62       unsigned Idx;
     63       bool IsArg;
     64 
     65       /// Make RetOrArg comparable, so we can put it into a map.
     66       bool operator<(const RetOrArg &O) const {
     67         return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
     68       }
     69 
     70       /// Make RetOrArg comparable, so we can easily iterate the multimap.
     71       bool operator==(const RetOrArg &O) const {
     72         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
     73       }
     74 
     75       std::string getDescription() const {
     76         return (Twine(IsArg ? "Argument #" : "Return value #") + utostr(Idx) +
     77                 " of function " + F->getName()).str();
     78       }
     79     };
     80 
     81     /// Liveness enum - During our initial pass over the program, we determine
     82     /// that things are either alive or maybe alive. We don't mark anything
     83     /// explicitly dead (even if we know they are), since anything not alive
     84     /// with no registered uses (in Uses) will never be marked alive and will
     85     /// thus become dead in the end.
     86     enum Liveness { Live, MaybeLive };
     87 
     88     /// Convenience wrapper
     89     RetOrArg CreateRet(const Function *F, unsigned Idx) {
     90       return RetOrArg(F, Idx, false);
     91     }
     92     /// Convenience wrapper
     93     RetOrArg CreateArg(const Function *F, unsigned Idx) {
     94       return RetOrArg(F, Idx, true);
     95     }
     96 
     97     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
     98     /// This maps a return value or argument to any MaybeLive return values or
     99     /// arguments it uses. This allows the MaybeLive values to be marked live
    100     /// when any of its users is marked live.
    101     /// For example (indices are left out for clarity):
    102     ///  - Uses[ret F] = ret G
    103     ///    This means that F calls G, and F returns the value returned by G.
    104     ///  - Uses[arg F] = ret G
    105     ///    This means that some function calls G and passes its result as an
    106     ///    argument to F.
    107     ///  - Uses[ret F] = arg F
    108     ///    This means that F returns one of its own arguments.
    109     ///  - Uses[arg F] = arg G
    110     ///    This means that G calls F and passes one of its own (G's) arguments
    111     ///    directly to F.
    112     UseMap Uses;
    113 
    114     typedef std::set<RetOrArg> LiveSet;
    115     typedef std::set<const Function*> LiveFuncSet;
    116 
    117     /// This set contains all values that have been determined to be live.
    118     LiveSet LiveValues;
    119     /// This set contains all values that are cannot be changed in any way.
    120     LiveFuncSet LiveFunctions;
    121 
    122     typedef SmallVector<RetOrArg, 5> UseVector;
    123 
    124     // Map each LLVM function to corresponding metadata with debug info. If
    125     // the function is replaced with another one, we should patch the pointer
    126     // to LLVM function in metadata.
    127     // As the code generation for module is finished (and DIBuilder is
    128     // finalized) we assume that subprogram descriptors won't be changed, and
    129     // they are stored in map for short duration anyway.
    130     DenseMap<const Function *, DISubprogram> FunctionDIs;
    131 
    132   protected:
    133     // DAH uses this to specify a different ID.
    134     explicit DAE(char &ID) : ModulePass(ID) {}
    135 
    136   public:
    137     static char ID; // Pass identification, replacement for typeid
    138     DAE() : ModulePass(ID) {
    139       initializeDAEPass(*PassRegistry::getPassRegistry());
    140     }
    141 
    142     bool runOnModule(Module &M) override;
    143 
    144     virtual bool ShouldHackArguments() const { return false; }
    145 
    146   private:
    147     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
    148     Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
    149                        unsigned RetValNum = -1U);
    150     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
    151 
    152     void SurveyFunction(const Function &F);
    153     void MarkValue(const RetOrArg &RA, Liveness L,
    154                    const UseVector &MaybeLiveUses);
    155     void MarkLive(const RetOrArg &RA);
    156     void MarkLive(const Function &F);
    157     void PropagateLiveness(const RetOrArg &RA);
    158     bool RemoveDeadStuffFromFunction(Function *F);
    159     bool DeleteDeadVarargs(Function &Fn);
    160     bool RemoveDeadArgumentsFromCallers(Function &Fn);
    161   };
    162 }
    163 
    164 
    165 char DAE::ID = 0;
    166 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
    167 
    168 namespace {
    169   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
    170   /// deletes arguments to functions which are external.  This is only for use
    171   /// by bugpoint.
    172   struct DAH : public DAE {
    173     static char ID;
    174     DAH() : DAE(ID) {}
    175 
    176     bool ShouldHackArguments() const override { return true; }
    177   };
    178 }
    179 
    180 char DAH::ID = 0;
    181 INITIALIZE_PASS(DAH, "deadarghaX0r",
    182                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
    183                 false, false)
    184 
    185 /// createDeadArgEliminationPass - This pass removes arguments from functions
    186 /// which are not used by the body of the function.
    187 ///
    188 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
    189 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
    190 
    191 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
    192 /// llvm.vastart is never called, the varargs list is dead for the function.
    193 bool DAE::DeleteDeadVarargs(Function &Fn) {
    194   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
    195   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
    196 
    197   // Ensure that the function is only directly called.
    198   if (Fn.hasAddressTaken())
    199     return false;
    200 
    201   // Okay, we know we can transform this function if safe.  Scan its body
    202   // looking for calls marked musttail or calls to llvm.vastart.
    203   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    204     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    205       CallInst *CI = dyn_cast<CallInst>(I);
    206       if (!CI)
    207         continue;
    208       if (CI->isMustTailCall())
    209         return false;
    210       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
    211         if (II->getIntrinsicID() == Intrinsic::vastart)
    212           return false;
    213       }
    214     }
    215   }
    216 
    217   // If we get here, there are no calls to llvm.vastart in the function body,
    218   // remove the "..." and adjust all the calls.
    219 
    220   // Start by computing a new prototype for the function, which is the same as
    221   // the old function, but doesn't have isVarArg set.
    222   FunctionType *FTy = Fn.getFunctionType();
    223 
    224   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
    225   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
    226                                                 Params, false);
    227   unsigned NumArgs = Params.size();
    228 
    229   // Create the new function body and insert it into the module...
    230   Function *NF = Function::Create(NFTy, Fn.getLinkage());
    231   NF->copyAttributesFrom(&Fn);
    232   Fn.getParent()->getFunctionList().insert(&Fn, NF);
    233   NF->takeName(&Fn);
    234 
    235   // Loop over all of the callers of the function, transforming the call sites
    236   // to pass in a smaller number of arguments into the new function.
    237   //
    238   std::vector<Value*> Args;
    239   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
    240     CallSite CS(*I++);
    241     if (!CS)
    242       continue;
    243     Instruction *Call = CS.getInstruction();
    244 
    245     // Pass all the same arguments.
    246     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
    247 
    248     // Drop any attributes that were on the vararg arguments.
    249     AttributeSet PAL = CS.getAttributes();
    250     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
    251       SmallVector<AttributeSet, 8> AttributesVec;
    252       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
    253         AttributesVec.push_back(PAL.getSlotAttributes(i));
    254       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    255         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
    256                                                   PAL.getFnAttributes()));
    257       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
    258     }
    259 
    260     Instruction *New;
    261     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    262       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    263                                Args, "", Call);
    264       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    265       cast<InvokeInst>(New)->setAttributes(PAL);
    266     } else {
    267       New = CallInst::Create(NF, Args, "", Call);
    268       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    269       cast<CallInst>(New)->setAttributes(PAL);
    270       if (cast<CallInst>(Call)->isTailCall())
    271         cast<CallInst>(New)->setTailCall();
    272     }
    273     New->setDebugLoc(Call->getDebugLoc());
    274 
    275     Args.clear();
    276 
    277     if (!Call->use_empty())
    278       Call->replaceAllUsesWith(New);
    279 
    280     New->takeName(Call);
    281 
    282     // Finally, remove the old call from the program, reducing the use-count of
    283     // F.
    284     Call->eraseFromParent();
    285   }
    286 
    287   // Since we have now created the new function, splice the body of the old
    288   // function right into the new function, leaving the old rotting hulk of the
    289   // function empty.
    290   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
    291 
    292   // Loop over the argument list, transferring uses of the old arguments over to
    293   // the new arguments, also transferring over the names as well.  While we're at
    294   // it, remove the dead arguments from the DeadArguments list.
    295   //
    296   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
    297        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    298     // Move the name and users over to the new version.
    299     I->replaceAllUsesWith(I2);
    300     I2->takeName(I);
    301   }
    302 
    303   // Patch the pointer to LLVM function in debug info descriptor.
    304   auto DI = FunctionDIs.find(&Fn);
    305   if (DI != FunctionDIs.end()) {
    306     DISubprogram SP = DI->second;
    307     SP->replaceFunction(NF);
    308     // Ensure the map is updated so it can be reused on non-varargs argument
    309     // eliminations of the same function.
    310     FunctionDIs.erase(DI);
    311     FunctionDIs[NF] = SP;
    312   }
    313 
    314   // Fix up any BlockAddresses that refer to the function.
    315   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
    316   // Delete the bitcast that we just created, so that NF does not
    317   // appear to be address-taken.
    318   NF->removeDeadConstantUsers();
    319   // Finally, nuke the old function.
    320   Fn.eraseFromParent();
    321   return true;
    322 }
    323 
    324 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
    325 /// arguments that are unused, and changes the caller parameters to be undefined
    326 /// instead.
    327 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
    328 {
    329   if (Fn.isDeclaration() || Fn.mayBeOverridden())
    330     return false;
    331 
    332   // Functions with local linkage should already have been handled, except the
    333   // fragile (variadic) ones which we can improve here.
    334   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
    335     return false;
    336 
    337   // If a function seen at compile time is not necessarily the one linked to
    338   // the binary being built, it is illegal to change the actual arguments
    339   // passed to it. These functions can be captured by isWeakForLinker().
    340   // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
    341   // doesn't include linkage types like AvailableExternallyLinkage and
    342   // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
    343   // *EQUIVALENT* globals that can be merged at link-time. However, the
    344   // semantic of *EQUIVALENT*-functions includes parameters. Changing
    345   // parameters breaks this assumption.
    346   //
    347   if (Fn.isWeakForLinker())
    348     return false;
    349 
    350   if (Fn.use_empty())
    351     return false;
    352 
    353   SmallVector<unsigned, 8> UnusedArgs;
    354   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
    355        I != E; ++I) {
    356     Argument *Arg = I;
    357 
    358     if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr())
    359       UnusedArgs.push_back(Arg->getArgNo());
    360   }
    361 
    362   if (UnusedArgs.empty())
    363     return false;
    364 
    365   bool Changed = false;
    366 
    367   for (Use &U : Fn.uses()) {
    368     CallSite CS(U.getUser());
    369     if (!CS || !CS.isCallee(&U))
    370       continue;
    371 
    372     // Now go through all unused args and replace them with "undef".
    373     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
    374       unsigned ArgNo = UnusedArgs[I];
    375 
    376       Value *Arg = CS.getArgument(ArgNo);
    377       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
    378       ++NumArgumentsReplacedWithUndef;
    379       Changed = true;
    380     }
    381   }
    382 
    383   return Changed;
    384 }
    385 
    386 /// Convenience function that returns the number of return values. It returns 0
    387 /// for void functions and 1 for functions not returning a struct. It returns
    388 /// the number of struct elements for functions returning a struct.
    389 static unsigned NumRetVals(const Function *F) {
    390   Type *RetTy = F->getReturnType();
    391   if (RetTy->isVoidTy())
    392     return 0;
    393   else if (StructType *STy = dyn_cast<StructType>(RetTy))
    394     return STy->getNumElements();
    395   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
    396     return ATy->getNumElements();
    397   else
    398     return 1;
    399 }
    400 
    401 /// Returns the sub-type a function will return at a given Idx. Should
    402 /// correspond to the result type of an ExtractValue instruction executed with
    403 /// just that one Idx (i.e. only top-level structure is considered).
    404 static Type *getRetComponentType(const Function *F, unsigned Idx) {
    405   Type *RetTy = F->getReturnType();
    406   assert(!RetTy->isVoidTy() && "void type has no subtype");
    407 
    408   if (StructType *STy = dyn_cast<StructType>(RetTy))
    409     return STy->getElementType(Idx);
    410   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
    411     return ATy->getElementType();
    412   else
    413     return RetTy;
    414 }
    415 
    416 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
    417 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
    418 /// liveness of Use.
    419 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
    420   // We're live if our use or its Function is already marked as live.
    421   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    422     return Live;
    423 
    424   // We're maybe live otherwise, but remember that we must become live if
    425   // Use becomes live.
    426   MaybeLiveUses.push_back(Use);
    427   return MaybeLive;
    428 }
    429 
    430 
    431 /// SurveyUse - This looks at a single use of an argument or return value
    432 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
    433 /// if it causes the used value to become MaybeLive.
    434 ///
    435 /// RetValNum is the return value number to use when this use is used in a
    436 /// return instruction. This is used in the recursion, you should always leave
    437 /// it at 0.
    438 DAE::Liveness DAE::SurveyUse(const Use *U,
    439                              UseVector &MaybeLiveUses, unsigned RetValNum) {
    440     const User *V = U->getUser();
    441     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
    442       // The value is returned from a function. It's only live when the
    443       // function's return value is live. We use RetValNum here, for the case
    444       // that U is really a use of an insertvalue instruction that uses the
    445       // original Use.
    446       const Function *F = RI->getParent()->getParent();
    447       if (RetValNum != -1U) {
    448         RetOrArg Use = CreateRet(F, RetValNum);
    449         // We might be live, depending on the liveness of Use.
    450         return MarkIfNotLive(Use, MaybeLiveUses);
    451       } else {
    452         DAE::Liveness Result = MaybeLive;
    453         for (unsigned i = 0; i < NumRetVals(F); ++i) {
    454           RetOrArg Use = CreateRet(F, i);
    455           // We might be live, depending on the liveness of Use. If any
    456           // sub-value is live, then the entire value is considered live. This
    457           // is a conservative choice, and better tracking is possible.
    458           DAE::Liveness SubResult = MarkIfNotLive(Use, MaybeLiveUses);
    459           if (Result != Live)
    460             Result = SubResult;
    461         }
    462         return Result;
    463       }
    464     }
    465     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
    466       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
    467           && IV->hasIndices())
    468         // The use we are examining is inserted into an aggregate. Our liveness
    469         // depends on all uses of that aggregate, but if it is used as a return
    470         // value, only index at which we were inserted counts.
    471         RetValNum = *IV->idx_begin();
    472 
    473       // Note that if we are used as the aggregate operand to the insertvalue,
    474       // we don't change RetValNum, but do survey all our uses.
    475 
    476       Liveness Result = MaybeLive;
    477       for (const Use &UU : IV->uses()) {
    478         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
    479         if (Result == Live)
    480           break;
    481       }
    482       return Result;
    483     }
    484 
    485     if (auto CS = ImmutableCallSite(V)) {
    486       const Function *F = CS.getCalledFunction();
    487       if (F) {
    488         // Used in a direct call.
    489 
    490         // Find the argument number. We know for sure that this use is an
    491         // argument, since if it was the function argument this would be an
    492         // indirect call and the we know can't be looking at a value of the
    493         // label type (for the invoke instruction).
    494         unsigned ArgNo = CS.getArgumentNo(U);
    495 
    496         if (ArgNo >= F->getFunctionType()->getNumParams())
    497           // The value is passed in through a vararg! Must be live.
    498           return Live;
    499 
    500         assert(CS.getArgument(ArgNo)
    501                == CS->getOperand(U->getOperandNo())
    502                && "Argument is not where we expected it");
    503 
    504         // Value passed to a normal call. It's only live when the corresponding
    505         // argument to the called function turns out live.
    506         RetOrArg Use = CreateArg(F, ArgNo);
    507         return MarkIfNotLive(Use, MaybeLiveUses);
    508       }
    509     }
    510     // Used in any other way? Value must be live.
    511     return Live;
    512 }
    513 
    514 /// SurveyUses - This looks at all the uses of the given value
    515 /// Returns the Liveness deduced from the uses of this value.
    516 ///
    517 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
    518 /// the result is Live, MaybeLiveUses might be modified but its content should
    519 /// be ignored (since it might not be complete).
    520 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
    521   // Assume it's dead (which will only hold if there are no uses at all..).
    522   Liveness Result = MaybeLive;
    523   // Check each use.
    524   for (const Use &U : V->uses()) {
    525     Result = SurveyUse(&U, MaybeLiveUses);
    526     if (Result == Live)
    527       break;
    528   }
    529   return Result;
    530 }
    531 
    532 // SurveyFunction - This performs the initial survey of the specified function,
    533 // checking out whether or not it uses any of its incoming arguments or whether
    534 // any callers use the return value.  This fills in the LiveValues set and Uses
    535 // map.
    536 //
    537 // We consider arguments of non-internal functions to be intrinsically alive as
    538 // well as arguments to functions which have their "address taken".
    539 //
    540 void DAE::SurveyFunction(const Function &F) {
    541   // Functions with inalloca parameters are expecting args in a particular
    542   // register and memory layout.
    543   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
    544     MarkLive(F);
    545     return;
    546   }
    547 
    548   unsigned RetCount = NumRetVals(&F);
    549   // Assume all return values are dead
    550   typedef SmallVector<Liveness, 5> RetVals;
    551   RetVals RetValLiveness(RetCount, MaybeLive);
    552 
    553   typedef SmallVector<UseVector, 5> RetUses;
    554   // These vectors map each return value to the uses that make it MaybeLive, so
    555   // we can add those to the Uses map if the return value really turns out to be
    556   // MaybeLive. Initialized to a list of RetCount empty lists.
    557   RetUses MaybeLiveRetUses(RetCount);
    558 
    559   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    560     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
    561       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
    562           != F.getFunctionType()->getReturnType()) {
    563         // We don't support old style multiple return values.
    564         MarkLive(F);
    565         return;
    566       }
    567 
    568   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
    569     MarkLive(F);
    570     return;
    571   }
    572 
    573   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
    574   // Keep track of the number of live retvals, so we can skip checks once all
    575   // of them turn out to be live.
    576   unsigned NumLiveRetVals = 0;
    577   // Loop all uses of the function.
    578   for (const Use &U : F.uses()) {
    579     // If the function is PASSED IN as an argument, its address has been
    580     // taken.
    581     ImmutableCallSite CS(U.getUser());
    582     if (!CS || !CS.isCallee(&U)) {
    583       MarkLive(F);
    584       return;
    585     }
    586 
    587     // If this use is anything other than a call site, the function is alive.
    588     const Instruction *TheCall = CS.getInstruction();
    589     if (!TheCall) {   // Not a direct call site?
    590       MarkLive(F);
    591       return;
    592     }
    593 
    594     // If we end up here, we are looking at a direct call to our function.
    595 
    596     // Now, check how our return value(s) is/are used in this caller. Don't
    597     // bother checking return values if all of them are live already.
    598     if (NumLiveRetVals == RetCount)
    599       continue;
    600 
    601     // Check all uses of the return value.
    602     for (const Use &U : TheCall->uses()) {
    603       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
    604         // This use uses a part of our return value, survey the uses of
    605         // that part and store the results for this index only.
    606         unsigned Idx = *Ext->idx_begin();
    607         if (RetValLiveness[Idx] != Live) {
    608           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
    609           if (RetValLiveness[Idx] == Live)
    610             NumLiveRetVals++;
    611         }
    612       } else {
    613         // Used by something else than extractvalue. Survey, but assume that the
    614         // result applies to all sub-values.
    615         UseVector MaybeLiveAggregateUses;
    616         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
    617           NumLiveRetVals = RetCount;
    618           RetValLiveness.assign(RetCount, Live);
    619           break;
    620         } else {
    621           for (unsigned i = 0; i != RetCount; ++i) {
    622             if (RetValLiveness[i] != Live)
    623               MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
    624                                          MaybeLiveAggregateUses.end());
    625           }
    626         }
    627       }
    628     }
    629   }
    630 
    631   // Now we've inspected all callers, record the liveness of our return values.
    632   for (unsigned i = 0; i != RetCount; ++i)
    633     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
    634 
    635   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
    636 
    637   // Now, check all of our arguments.
    638   unsigned i = 0;
    639   UseVector MaybeLiveArgUses;
    640   for (Function::const_arg_iterator AI = F.arg_begin(),
    641        E = F.arg_end(); AI != E; ++AI, ++i) {
    642     Liveness Result;
    643     if (F.getFunctionType()->isVarArg()) {
    644       // Variadic functions will already have a va_arg function expanded inside
    645       // them, making them potentially very sensitive to ABI changes resulting
    646       // from removing arguments entirely, so don't. For example AArch64 handles
    647       // register and stack HFAs very differently, and this is reflected in the
    648       // IR which has already been generated.
    649       Result = Live;
    650     } else {
    651       // See what the effect of this use is (recording any uses that cause
    652       // MaybeLive in MaybeLiveArgUses).
    653       Result = SurveyUses(AI, MaybeLiveArgUses);
    654     }
    655 
    656     // Mark the result.
    657     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    658     // Clear the vector again for the next iteration.
    659     MaybeLiveArgUses.clear();
    660   }
    661 }
    662 
    663 /// MarkValue - This function marks the liveness of RA depending on L. If L is
    664 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
    665 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
    666 /// live later on.
    667 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
    668                     const UseVector &MaybeLiveUses) {
    669   switch (L) {
    670     case Live: MarkLive(RA); break;
    671     case MaybeLive:
    672     {
    673       // Note any uses of this value, so this return value can be
    674       // marked live whenever one of the uses becomes live.
    675       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
    676            UE = MaybeLiveUses.end(); UI != UE; ++UI)
    677         Uses.insert(std::make_pair(*UI, RA));
    678       break;
    679     }
    680   }
    681 }
    682 
    683 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
    684 /// changed in any way. Additionally,
    685 /// mark any values that are used as this function's parameters or by its return
    686 /// values (according to Uses) live as well.
    687 void DAE::MarkLive(const Function &F) {
    688   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
    689   // Mark the function as live.
    690   LiveFunctions.insert(&F);
    691   // Mark all arguments as live.
    692   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    693     PropagateLiveness(CreateArg(&F, i));
    694   // Mark all return values as live.
    695   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    696     PropagateLiveness(CreateRet(&F, i));
    697 }
    698 
    699 /// MarkLive - Mark the given return value or argument as live. Additionally,
    700 /// mark any values that are used by this value (according to Uses) live as
    701 /// well.
    702 void DAE::MarkLive(const RetOrArg &RA) {
    703   if (LiveFunctions.count(RA.F))
    704     return; // Function was already marked Live.
    705 
    706   if (!LiveValues.insert(RA).second)
    707     return; // We were already marked Live.
    708 
    709   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
    710   PropagateLiveness(RA);
    711 }
    712 
    713 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
    714 /// to any other values it uses (according to Uses).
    715 void DAE::PropagateLiveness(const RetOrArg &RA) {
    716   // We don't use upper_bound (or equal_range) here, because our recursive call
    717   // to ourselves is likely to cause the upper_bound (which is the first value
    718   // not belonging to RA) to become erased and the iterator invalidated.
    719   UseMap::iterator Begin = Uses.lower_bound(RA);
    720   UseMap::iterator E = Uses.end();
    721   UseMap::iterator I;
    722   for (I = Begin; I != E && I->first == RA; ++I)
    723     MarkLive(I->second);
    724 
    725   // Erase RA from the Uses map (from the lower bound to wherever we ended up
    726   // after the loop).
    727   Uses.erase(Begin, I);
    728 }
    729 
    730 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
    731 // that are not in LiveValues. Transform the function and all of the callees of
    732 // the function to not have these arguments and return values.
    733 //
    734 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
    735   // Don't modify fully live functions
    736   if (LiveFunctions.count(F))
    737     return false;
    738 
    739   // Start by computing a new prototype for the function, which is the same as
    740   // the old function, but has fewer arguments and a different return type.
    741   FunctionType *FTy = F->getFunctionType();
    742   std::vector<Type*> Params;
    743 
    744   // Keep track of if we have a live 'returned' argument
    745   bool HasLiveReturnedArg = false;
    746 
    747   // Set up to build a new list of parameter attributes.
    748   SmallVector<AttributeSet, 8> AttributesVec;
    749   const AttributeSet &PAL = F->getAttributes();
    750 
    751   // Remember which arguments are still alive.
    752   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
    753   // Construct the new parameter list from non-dead arguments. Also construct
    754   // a new set of parameter attributes to correspond. Skip the first parameter
    755   // attribute, since that belongs to the return value.
    756   unsigned i = 0;
    757   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    758        I != E; ++I, ++i) {
    759     RetOrArg Arg = CreateArg(F, i);
    760     if (LiveValues.erase(Arg)) {
    761       Params.push_back(I->getType());
    762       ArgAlive[i] = true;
    763 
    764       // Get the original parameter attributes (skipping the first one, that is
    765       // for the return value.
    766       if (PAL.hasAttributes(i + 1)) {
    767         AttrBuilder B(PAL, i + 1);
    768         if (B.contains(Attribute::Returned))
    769           HasLiveReturnedArg = true;
    770         AttributesVec.
    771           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
    772       }
    773     } else {
    774       ++NumArgumentsEliminated;
    775       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
    776             << ") from " << F->getName() << "\n");
    777     }
    778   }
    779 
    780   // Find out the new return value.
    781   Type *RetTy = FTy->getReturnType();
    782   Type *NRetTy = nullptr;
    783   unsigned RetCount = NumRetVals(F);
    784 
    785   // -1 means unused, other numbers are the new index
    786   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
    787   std::vector<Type*> RetTypes;
    788 
    789   // If there is a function with a live 'returned' argument but a dead return
    790   // value, then there are two possible actions:
    791   // 1) Eliminate the return value and take off the 'returned' attribute on the
    792   //    argument.
    793   // 2) Retain the 'returned' attribute and treat the return value (but not the
    794   //    entire function) as live so that it is not eliminated.
    795   //
    796   // It's not clear in the general case which option is more profitable because,
    797   // even in the absence of explicit uses of the return value, code generation
    798   // is free to use the 'returned' attribute to do things like eliding
    799   // save/restores of registers across calls. Whether or not this happens is
    800   // target and ABI-specific as well as depending on the amount of register
    801   // pressure, so there's no good way for an IR-level pass to figure this out.
    802   //
    803   // Fortunately, the only places where 'returned' is currently generated by
    804   // the FE are places where 'returned' is basically free and almost always a
    805   // performance win, so the second option can just be used always for now.
    806   //
    807   // This should be revisited if 'returned' is ever applied more liberally.
    808   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
    809     NRetTy = RetTy;
    810   } else {
    811     // Look at each of the original return values individually.
    812     for (unsigned i = 0; i != RetCount; ++i) {
    813       RetOrArg Ret = CreateRet(F, i);
    814       if (LiveValues.erase(Ret)) {
    815         RetTypes.push_back(getRetComponentType(F, i));
    816         NewRetIdxs[i] = RetTypes.size() - 1;
    817       } else {
    818         ++NumRetValsEliminated;
    819         DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
    820               << F->getName() << "\n");
    821       }
    822     }
    823     if (RetTypes.size() > 1) {
    824       // More than one return type? Reduce it down to size.
    825       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
    826         // Make the new struct packed if we used to return a packed struct
    827         // already.
    828         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    829       } else {
    830         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
    831         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
    832       }
    833     } else if (RetTypes.size() == 1)
    834       // One return type? Just a simple value then, but only if we didn't use to
    835       // return a struct with that simple value before.
    836       NRetTy = RetTypes.front();
    837     else if (RetTypes.size() == 0)
    838       // No return types? Make it void, but only if we didn't use to return {}.
    839       NRetTy = Type::getVoidTy(F->getContext());
    840   }
    841 
    842   assert(NRetTy && "No new return type found?");
    843 
    844   // The existing function return attributes.
    845   AttributeSet RAttrs = PAL.getRetAttributes();
    846 
    847   // Remove any incompatible attributes, but only if we removed all return
    848   // values. Otherwise, ensure that we don't have any conflicting attributes
    849   // here. Currently, this should not be possible, but special handling might be
    850   // required when new return value attributes are added.
    851   if (NRetTy->isVoidTy())
    852     RAttrs =
    853       AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
    854                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    855          removeAttributes(AttributeFuncs::
    856                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
    857                           AttributeSet::ReturnIndex));
    858   else
    859     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    860              hasAttributes(AttributeFuncs::
    861                            typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
    862                            AttributeSet::ReturnIndex) &&
    863            "Return attributes no longer compatible?");
    864 
    865   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    866     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
    867 
    868   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    869     AttributesVec.push_back(AttributeSet::get(F->getContext(),
    870                                               PAL.getFnAttributes()));
    871 
    872   // Reconstruct the AttributesList based on the vector we constructed.
    873   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
    874 
    875   // Create the new function type based on the recomputed parameters.
    876   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
    877 
    878   // No change?
    879   if (NFTy == FTy)
    880     return false;
    881 
    882   // Create the new function body and insert it into the module...
    883   Function *NF = Function::Create(NFTy, F->getLinkage());
    884   NF->copyAttributesFrom(F);
    885   NF->setAttributes(NewPAL);
    886   // Insert the new function before the old function, so we won't be processing
    887   // it again.
    888   F->getParent()->getFunctionList().insert(F, NF);
    889   NF->takeName(F);
    890 
    891   // Loop over all of the callers of the function, transforming the call sites
    892   // to pass in a smaller number of arguments into the new function.
    893   //
    894   std::vector<Value*> Args;
    895   while (!F->use_empty()) {
    896     CallSite CS(F->user_back());
    897     Instruction *Call = CS.getInstruction();
    898 
    899     AttributesVec.clear();
    900     const AttributeSet &CallPAL = CS.getAttributes();
    901 
    902     // The call return attributes.
    903     AttributeSet RAttrs = CallPAL.getRetAttributes();
    904 
    905     // Adjust in case the function was changed to return void.
    906     RAttrs =
    907       AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
    908                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    909         removeAttributes(AttributeFuncs::
    910                          typeIncompatible(NF->getReturnType(),
    911                                           AttributeSet::ReturnIndex),
    912                          AttributeSet::ReturnIndex));
    913     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    914       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
    915 
    916     // Declare these outside of the loops, so we can reuse them for the second
    917     // loop, which loops the varargs.
    918     CallSite::arg_iterator I = CS.arg_begin();
    919     unsigned i = 0;
    920     // Loop over those operands, corresponding to the normal arguments to the
    921     // original function, and add those that are still alive.
    922     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
    923       if (ArgAlive[i]) {
    924         Args.push_back(*I);
    925         // Get original parameter attributes, but skip return attributes.
    926         if (CallPAL.hasAttributes(i + 1)) {
    927           AttrBuilder B(CallPAL, i + 1);
    928           // If the return type has changed, then get rid of 'returned' on the
    929           // call site. The alternative is to make all 'returned' attributes on
    930           // call sites keep the return value alive just like 'returned'
    931           // attributes on function declaration but it's less clearly a win
    932           // and this is not an expected case anyway
    933           if (NRetTy != RetTy && B.contains(Attribute::Returned))
    934             B.removeAttribute(Attribute::Returned);
    935           AttributesVec.
    936             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    937         }
    938       }
    939 
    940     // Push any varargs arguments on the list. Don't forget their attributes.
    941     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
    942       Args.push_back(*I);
    943       if (CallPAL.hasAttributes(i + 1)) {
    944         AttrBuilder B(CallPAL, i + 1);
    945         AttributesVec.
    946           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    947       }
    948     }
    949 
    950     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
    951       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
    952                                                 CallPAL.getFnAttributes()));
    953 
    954     // Reconstruct the AttributesList based on the vector we constructed.
    955     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
    956 
    957     Instruction *New;
    958     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    959       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    960                                Args, "", Call);
    961       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    962       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
    963     } else {
    964       New = CallInst::Create(NF, Args, "", Call);
    965       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    966       cast<CallInst>(New)->setAttributes(NewCallPAL);
    967       if (cast<CallInst>(Call)->isTailCall())
    968         cast<CallInst>(New)->setTailCall();
    969     }
    970     New->setDebugLoc(Call->getDebugLoc());
    971 
    972     Args.clear();
    973 
    974     if (!Call->use_empty()) {
    975       if (New->getType() == Call->getType()) {
    976         // Return type not changed? Just replace users then.
    977         Call->replaceAllUsesWith(New);
    978         New->takeName(Call);
    979       } else if (New->getType()->isVoidTy()) {
    980         // Our return value has uses, but they will get removed later on.
    981         // Replace by null for now.
    982         if (!Call->getType()->isX86_MMXTy())
    983           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
    984       } else {
    985         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
    986                "Return type changed, but not into a void. The old return type"
    987                " must have been a struct or an array!");
    988         Instruction *InsertPt = Call;
    989         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    990           BasicBlock::iterator IP = II->getNormalDest()->begin();
    991           while (isa<PHINode>(IP)) ++IP;
    992           InsertPt = IP;
    993         }
    994 
    995         // We used to return a struct or array. Instead of doing smart stuff
    996         // with all the uses, we will just rebuild it using extract/insertvalue
    997         // chaining and let instcombine clean that up.
    998         //
    999         // Start out building up our return value from undef
   1000         Value *RetVal = UndefValue::get(RetTy);
   1001         for (unsigned i = 0; i != RetCount; ++i)
   1002           if (NewRetIdxs[i] != -1) {
   1003             Value *V;
   1004             if (RetTypes.size() > 1)
   1005               // We are still returning a struct, so extract the value from our
   1006               // return value
   1007               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
   1008                                            InsertPt);
   1009             else
   1010               // We are now returning a single element, so just insert that
   1011               V = New;
   1012             // Insert the value at the old position
   1013             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
   1014           }
   1015         // Now, replace all uses of the old call instruction with the return
   1016         // struct we built
   1017         Call->replaceAllUsesWith(RetVal);
   1018         New->takeName(Call);
   1019       }
   1020     }
   1021 
   1022     // Finally, remove the old call from the program, reducing the use-count of
   1023     // F.
   1024     Call->eraseFromParent();
   1025   }
   1026 
   1027   // Since we have now created the new function, splice the body of the old
   1028   // function right into the new function, leaving the old rotting hulk of the
   1029   // function empty.
   1030   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
   1031 
   1032   // Loop over the argument list, transferring uses of the old arguments over to
   1033   // the new arguments, also transferring over the names as well.
   1034   i = 0;
   1035   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
   1036        I2 = NF->arg_begin(); I != E; ++I, ++i)
   1037     if (ArgAlive[i]) {
   1038       // If this is a live argument, move the name and users over to the new
   1039       // version.
   1040       I->replaceAllUsesWith(I2);
   1041       I2->takeName(I);
   1042       ++I2;
   1043     } else {
   1044       // If this argument is dead, replace any uses of it with null constants
   1045       // (these are guaranteed to become unused later on).
   1046       if (!I->getType()->isX86_MMXTy())
   1047         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
   1048     }
   1049 
   1050   // If we change the return value of the function we must rewrite any return
   1051   // instructions.  Check this now.
   1052   if (F->getReturnType() != NF->getReturnType())
   1053     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
   1054       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   1055         Value *RetVal;
   1056 
   1057         if (NFTy->getReturnType()->isVoidTy()) {
   1058           RetVal = nullptr;
   1059         } else {
   1060           assert(RetTy->isStructTy() || RetTy->isArrayTy());
   1061           // The original return value was a struct or array, insert
   1062           // extractvalue/insertvalue chains to extract only the values we need
   1063           // to return and insert them into our new result.
   1064           // This does generate messy code, but we'll let it to instcombine to
   1065           // clean that up.
   1066           Value *OldRet = RI->getOperand(0);
   1067           // Start out building up our return value from undef
   1068           RetVal = UndefValue::get(NRetTy);
   1069           for (unsigned i = 0; i != RetCount; ++i)
   1070             if (NewRetIdxs[i] != -1) {
   1071               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
   1072                                                               "oldret", RI);
   1073               if (RetTypes.size() > 1) {
   1074                 // We're still returning a struct, so reinsert the value into
   1075                 // our new return value at the new index
   1076 
   1077                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
   1078                                                  "newret", RI);
   1079               } else {
   1080                 // We are now only returning a simple value, so just return the
   1081                 // extracted value.
   1082                 RetVal = EV;
   1083               }
   1084             }
   1085         }
   1086         // Replace the return instruction with one returning the new return
   1087         // value (possibly 0 if we became void).
   1088         ReturnInst::Create(F->getContext(), RetVal, RI);
   1089         BB->getInstList().erase(RI);
   1090       }
   1091 
   1092   // Patch the pointer to LLVM function in debug info descriptor.
   1093   auto DI = FunctionDIs.find(F);
   1094   if (DI != FunctionDIs.end())
   1095     DI->second->replaceFunction(NF);
   1096 
   1097   // Now that the old function is dead, delete it.
   1098   F->eraseFromParent();
   1099 
   1100   return true;
   1101 }
   1102 
   1103 bool DAE::runOnModule(Module &M) {
   1104   bool Changed = false;
   1105 
   1106   // Collect debug info descriptors for functions.
   1107   FunctionDIs = makeSubprogramMap(M);
   1108 
   1109   // First pass: Do a simple check to see if any functions can have their "..."
   1110   // removed.  We can do this if they never call va_start.  This loop cannot be
   1111   // fused with the next loop, because deleting a function invalidates
   1112   // information computed while surveying other functions.
   1113   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
   1114   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1115     Function &F = *I++;
   1116     if (F.getFunctionType()->isVarArg())
   1117       Changed |= DeleteDeadVarargs(F);
   1118   }
   1119 
   1120   // Second phase:loop through the module, determining which arguments are live.
   1121   // We assume all arguments are dead unless proven otherwise (allowing us to
   1122   // determine that dead arguments passed into recursive functions are dead).
   1123   //
   1124   DEBUG(dbgs() << "DAE - Determining liveness\n");
   1125   for (auto &F : M)
   1126     SurveyFunction(F);
   1127 
   1128   // Now, remove all dead arguments and return values from each function in
   1129   // turn.
   1130   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1131     // Increment now, because the function will probably get removed (ie.
   1132     // replaced by a new one).
   1133     Function *F = I++;
   1134     Changed |= RemoveDeadStuffFromFunction(F);
   1135   }
   1136 
   1137   // Finally, look for any unused parameters in functions with non-local
   1138   // linkage and replace the passed in parameters with undef.
   1139   for (auto &F : M)
   1140     Changed |= RemoveDeadArgumentsFromCallers(F);
   1141 
   1142   return Changed;
   1143 }
   1144