Home | History | Annotate | Download | only in dsp
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 version of some decoding functions (idct, loop filtering).
     11 //
     12 // Author: somnath (at) google.com (Somnath Banerjee)
     13 //         cduvivier (at) google.com (Christian Duvivier)
     14 
     15 #include "./dsp.h"
     16 
     17 #if defined(WEBP_USE_SSE2)
     18 
     19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
     20 // one it seems => disable it by default. Uncomment the following to enable:
     21 // #define USE_TRANSFORM_AC3
     22 
     23 #include <emmintrin.h>
     24 #include "../dec/vp8i.h"
     25 
     26 //------------------------------------------------------------------------------
     27 // Transforms (Paragraph 14.4)
     28 
     29 static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
     30   // This implementation makes use of 16-bit fixed point versions of two
     31   // multiply constants:
     32   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
     33   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
     34   //
     35   // To be able to use signed 16-bit integers, we use the following trick to
     36   // have constants within range:
     37   // - Associated constants are obtained by subtracting the 16-bit fixed point
     38   //   version of one:
     39   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
     40   //      K1 = 85267  =>  k1 =  20091
     41   //      K2 = 35468  =>  k2 = -30068
     42   // - The multiplication of a variable by a constant become the sum of the
     43   //   variable and the multiplication of that variable by the associated
     44   //   constant:
     45   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
     46   const __m128i k1 = _mm_set1_epi16(20091);
     47   const __m128i k2 = _mm_set1_epi16(-30068);
     48   __m128i T0, T1, T2, T3;
     49 
     50   // Load and concatenate the transform coefficients (we'll do two transforms
     51   // in parallel). In the case of only one transform, the second half of the
     52   // vectors will just contain random value we'll never use nor store.
     53   __m128i in0, in1, in2, in3;
     54   {
     55     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
     56     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
     57     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
     58     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
     59     // a00 a10 a20 a30   x x x x
     60     // a01 a11 a21 a31   x x x x
     61     // a02 a12 a22 a32   x x x x
     62     // a03 a13 a23 a33   x x x x
     63     if (do_two) {
     64       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
     65       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
     66       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
     67       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
     68       in0 = _mm_unpacklo_epi64(in0, inB0);
     69       in1 = _mm_unpacklo_epi64(in1, inB1);
     70       in2 = _mm_unpacklo_epi64(in2, inB2);
     71       in3 = _mm_unpacklo_epi64(in3, inB3);
     72       // a00 a10 a20 a30   b00 b10 b20 b30
     73       // a01 a11 a21 a31   b01 b11 b21 b31
     74       // a02 a12 a22 a32   b02 b12 b22 b32
     75       // a03 a13 a23 a33   b03 b13 b23 b33
     76     }
     77   }
     78 
     79   // Vertical pass and subsequent transpose.
     80   {
     81     // First pass, c and d calculations are longer because of the "trick"
     82     // multiplications.
     83     const __m128i a = _mm_add_epi16(in0, in2);
     84     const __m128i b = _mm_sub_epi16(in0, in2);
     85     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
     86     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
     87     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
     88     const __m128i c3 = _mm_sub_epi16(in1, in3);
     89     const __m128i c4 = _mm_sub_epi16(c1, c2);
     90     const __m128i c = _mm_add_epi16(c3, c4);
     91     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
     92     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
     93     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
     94     const __m128i d3 = _mm_add_epi16(in1, in3);
     95     const __m128i d4 = _mm_add_epi16(d1, d2);
     96     const __m128i d = _mm_add_epi16(d3, d4);
     97 
     98     // Second pass.
     99     const __m128i tmp0 = _mm_add_epi16(a, d);
    100     const __m128i tmp1 = _mm_add_epi16(b, c);
    101     const __m128i tmp2 = _mm_sub_epi16(b, c);
    102     const __m128i tmp3 = _mm_sub_epi16(a, d);
    103 
    104     // Transpose the two 4x4.
    105     // a00 a01 a02 a03   b00 b01 b02 b03
    106     // a10 a11 a12 a13   b10 b11 b12 b13
    107     // a20 a21 a22 a23   b20 b21 b22 b23
    108     // a30 a31 a32 a33   b30 b31 b32 b33
    109     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
    110     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
    111     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
    112     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
    113     // a00 a10 a01 a11   a02 a12 a03 a13
    114     // a20 a30 a21 a31   a22 a32 a23 a33
    115     // b00 b10 b01 b11   b02 b12 b03 b13
    116     // b20 b30 b21 b31   b22 b32 b23 b33
    117     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    118     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    119     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    120     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    121     // a00 a10 a20 a30 a01 a11 a21 a31
    122     // b00 b10 b20 b30 b01 b11 b21 b31
    123     // a02 a12 a22 a32 a03 a13 a23 a33
    124     // b02 b12 a22 b32 b03 b13 b23 b33
    125     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    126     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    127     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    128     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    129     // a00 a10 a20 a30   b00 b10 b20 b30
    130     // a01 a11 a21 a31   b01 b11 b21 b31
    131     // a02 a12 a22 a32   b02 b12 b22 b32
    132     // a03 a13 a23 a33   b03 b13 b23 b33
    133   }
    134 
    135   // Horizontal pass and subsequent transpose.
    136   {
    137     // First pass, c and d calculations are longer because of the "trick"
    138     // multiplications.
    139     const __m128i four = _mm_set1_epi16(4);
    140     const __m128i dc = _mm_add_epi16(T0, four);
    141     const __m128i a =  _mm_add_epi16(dc, T2);
    142     const __m128i b =  _mm_sub_epi16(dc, T2);
    143     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    144     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    145     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    146     const __m128i c3 = _mm_sub_epi16(T1, T3);
    147     const __m128i c4 = _mm_sub_epi16(c1, c2);
    148     const __m128i c = _mm_add_epi16(c3, c4);
    149     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    150     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    151     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    152     const __m128i d3 = _mm_add_epi16(T1, T3);
    153     const __m128i d4 = _mm_add_epi16(d1, d2);
    154     const __m128i d = _mm_add_epi16(d3, d4);
    155 
    156     // Second pass.
    157     const __m128i tmp0 = _mm_add_epi16(a, d);
    158     const __m128i tmp1 = _mm_add_epi16(b, c);
    159     const __m128i tmp2 = _mm_sub_epi16(b, c);
    160     const __m128i tmp3 = _mm_sub_epi16(a, d);
    161     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    162     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    163     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    164     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    165 
    166     // Transpose the two 4x4.
    167     // a00 a01 a02 a03   b00 b01 b02 b03
    168     // a10 a11 a12 a13   b10 b11 b12 b13
    169     // a20 a21 a22 a23   b20 b21 b22 b23
    170     // a30 a31 a32 a33   b30 b31 b32 b33
    171     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
    172     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
    173     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
    174     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
    175     // a00 a10 a01 a11   a02 a12 a03 a13
    176     // a20 a30 a21 a31   a22 a32 a23 a33
    177     // b00 b10 b01 b11   b02 b12 b03 b13
    178     // b20 b30 b21 b31   b22 b32 b23 b33
    179     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    180     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    181     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    182     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    183     // a00 a10 a20 a30 a01 a11 a21 a31
    184     // b00 b10 b20 b30 b01 b11 b21 b31
    185     // a02 a12 a22 a32 a03 a13 a23 a33
    186     // b02 b12 a22 b32 b03 b13 b23 b33
    187     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    188     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    189     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    190     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    191     // a00 a10 a20 a30   b00 b10 b20 b30
    192     // a01 a11 a21 a31   b01 b11 b21 b31
    193     // a02 a12 a22 a32   b02 b12 b22 b32
    194     // a03 a13 a23 a33   b03 b13 b23 b33
    195   }
    196 
    197   // Add inverse transform to 'dst' and store.
    198   {
    199     const __m128i zero = _mm_setzero_si128();
    200     // Load the reference(s).
    201     __m128i dst0, dst1, dst2, dst3;
    202     if (do_two) {
    203       // Load eight bytes/pixels per line.
    204       dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
    205       dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
    206       dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
    207       dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
    208     } else {
    209       // Load four bytes/pixels per line.
    210       dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS));
    211       dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS));
    212       dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS));
    213       dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS));
    214     }
    215     // Convert to 16b.
    216     dst0 = _mm_unpacklo_epi8(dst0, zero);
    217     dst1 = _mm_unpacklo_epi8(dst1, zero);
    218     dst2 = _mm_unpacklo_epi8(dst2, zero);
    219     dst3 = _mm_unpacklo_epi8(dst3, zero);
    220     // Add the inverse transform(s).
    221     dst0 = _mm_add_epi16(dst0, T0);
    222     dst1 = _mm_add_epi16(dst1, T1);
    223     dst2 = _mm_add_epi16(dst2, T2);
    224     dst3 = _mm_add_epi16(dst3, T3);
    225     // Unsigned saturate to 8b.
    226     dst0 = _mm_packus_epi16(dst0, dst0);
    227     dst1 = _mm_packus_epi16(dst1, dst1);
    228     dst2 = _mm_packus_epi16(dst2, dst2);
    229     dst3 = _mm_packus_epi16(dst3, dst3);
    230     // Store the results.
    231     if (do_two) {
    232       // Store eight bytes/pixels per line.
    233       _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
    234       _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
    235       _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
    236       _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
    237     } else {
    238       // Store four bytes/pixels per line.
    239       *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0);
    240       *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1);
    241       *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2);
    242       *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3);
    243     }
    244   }
    245 }
    246 
    247 #if defined(USE_TRANSFORM_AC3)
    248 #define MUL(a, b) (((a) * (b)) >> 16)
    249 static void TransformAC3(const int16_t* in, uint8_t* dst) {
    250   static const int kC1 = 20091 + (1 << 16);
    251   static const int kC2 = 35468;
    252   const __m128i A = _mm_set1_epi16(in[0] + 4);
    253   const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
    254   const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
    255   const int c1 = MUL(in[1], kC2);
    256   const int d1 = MUL(in[1], kC1);
    257   const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
    258   const __m128i B = _mm_adds_epi16(A, CD);
    259   const __m128i m0 = _mm_adds_epi16(B, d4);
    260   const __m128i m1 = _mm_adds_epi16(B, c4);
    261   const __m128i m2 = _mm_subs_epi16(B, c4);
    262   const __m128i m3 = _mm_subs_epi16(B, d4);
    263   const __m128i zero = _mm_setzero_si128();
    264   // Load the source pixels.
    265   __m128i dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS));
    266   __m128i dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS));
    267   __m128i dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS));
    268   __m128i dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS));
    269   // Convert to 16b.
    270   dst0 = _mm_unpacklo_epi8(dst0, zero);
    271   dst1 = _mm_unpacklo_epi8(dst1, zero);
    272   dst2 = _mm_unpacklo_epi8(dst2, zero);
    273   dst3 = _mm_unpacklo_epi8(dst3, zero);
    274   // Add the inverse transform.
    275   dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
    276   dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
    277   dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
    278   dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
    279   // Unsigned saturate to 8b.
    280   dst0 = _mm_packus_epi16(dst0, dst0);
    281   dst1 = _mm_packus_epi16(dst1, dst1);
    282   dst2 = _mm_packus_epi16(dst2, dst2);
    283   dst3 = _mm_packus_epi16(dst3, dst3);
    284   // Store the results.
    285   *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0);
    286   *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1);
    287   *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2);
    288   *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3);
    289 }
    290 #undef MUL
    291 #endif   // USE_TRANSFORM_AC3
    292 
    293 //------------------------------------------------------------------------------
    294 // Loop Filter (Paragraph 15)
    295 
    296 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
    297 #define MM_ABS(p, q)  _mm_or_si128(                                            \
    298     _mm_subs_epu8((q), (p)),                                                   \
    299     _mm_subs_epu8((p), (q)))
    300 
    301 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
    302 static WEBP_INLINE void SignedShift8b(__m128i* const x) {
    303   const __m128i zero = _mm_setzero_si128();
    304   const __m128i signs = _mm_cmpgt_epi8(zero, *x);
    305   const __m128i lo_0 = _mm_unpacklo_epi8(*x, signs);  // s8 -> s16 sign extend
    306   const __m128i hi_0 = _mm_unpackhi_epi8(*x, signs);
    307   const __m128i lo_1 = _mm_srai_epi16(lo_0, 3);
    308   const __m128i hi_1 = _mm_srai_epi16(hi_0, 3);
    309   *x = _mm_packs_epi16(lo_1, hi_1);
    310 }
    311 
    312 #define FLIP_SIGN_BIT2(a, b) {                                                 \
    313   a = _mm_xor_si128(a, sign_bit);                                              \
    314   b = _mm_xor_si128(b, sign_bit);                                              \
    315 }
    316 
    317 #define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
    318   FLIP_SIGN_BIT2(a, b);                                                        \
    319   FLIP_SIGN_BIT2(c, d);                                                        \
    320 }
    321 
    322 // input/output is uint8_t
    323 static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
    324                                   const __m128i* const p0,
    325                                   const __m128i* const q0,
    326                                   const __m128i* const q1,
    327                                   int hev_thresh, __m128i* const not_hev) {
    328   const __m128i zero = _mm_setzero_si128();
    329   const __m128i t_1 = MM_ABS(*p1, *p0);
    330   const __m128i t_2 = MM_ABS(*q1, *q0);
    331 
    332   const __m128i h = _mm_set1_epi8(hev_thresh);
    333   const __m128i t_3 = _mm_subs_epu8(t_1, h);  // abs(p1 - p0) - hev_tresh
    334   const __m128i t_4 = _mm_subs_epu8(t_2, h);  // abs(q1 - q0) - hev_tresh
    335 
    336   *not_hev = _mm_or_si128(t_3, t_4);
    337   *not_hev = _mm_cmpeq_epi8(*not_hev, zero);  // not_hev <= t1 && not_hev <= t2
    338 }
    339 
    340 // input pixels are int8_t
    341 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
    342                                      const __m128i* const p0,
    343                                      const __m128i* const q0,
    344                                      const __m128i* const q1,
    345                                      __m128i* const delta) {
    346   // beware of addition order, for saturation!
    347   const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
    348   const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
    349   const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
    350   const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
    351   const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
    352   *delta = s3;
    353 }
    354 
    355 // input and output are int8_t
    356 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0,
    357                                        const __m128i* const fl) {
    358   const __m128i k3 = _mm_set1_epi8(3);
    359   const __m128i k4 = _mm_set1_epi8(4);
    360   __m128i v3 = _mm_adds_epi8(*fl, k3);
    361   __m128i v4 = _mm_adds_epi8(*fl, k4);
    362 
    363   SignedShift8b(&v4);                  // v4 >> 3
    364   SignedShift8b(&v3);                  // v3 >> 3
    365   *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
    366   *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
    367 }
    368 
    369 // Updates values of 2 pixels at MB edge during complex filtering.
    370 // Update operations:
    371 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
    372 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
    373 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi,
    374                                       const __m128i* const a0_lo,
    375                                       const __m128i* const a0_hi) {
    376   const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
    377   const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
    378   const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
    379   const __m128i sign_bit = _mm_set1_epi8(0x80);
    380   *pi = _mm_adds_epi8(*pi, delta);
    381   *qi = _mm_subs_epi8(*qi, delta);
    382   FLIP_SIGN_BIT2(*pi, *qi);
    383 }
    384 
    385 // input pixels are uint8_t
    386 static WEBP_INLINE void NeedsFilter(const __m128i* const p1,
    387                                     const __m128i* const p0,
    388                                     const __m128i* const q0,
    389                                     const __m128i* const q1,
    390                                     int thresh, __m128i* const mask) {
    391   const __m128i m_thresh = _mm_set1_epi8(thresh);
    392   const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
    393   const __m128i kFE = _mm_set1_epi8(0xFE);
    394   const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
    395   const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
    396 
    397   const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
    398   const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
    399   const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
    400 
    401   const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
    402   *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
    403 }
    404 
    405 //------------------------------------------------------------------------------
    406 // Edge filtering functions
    407 
    408 // Applies filter on 2 pixels (p0 and q0)
    409 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0,
    410                                   __m128i* const q0, __m128i* const q1,
    411                                   int thresh) {
    412   __m128i a, mask;
    413   const __m128i sign_bit = _mm_set1_epi8(0x80);
    414   // convert p1/q1 to int8_t (for GetBaseDelta)
    415   const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
    416   const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
    417 
    418   NeedsFilter(p1, p0, q0, q1, thresh, &mask);
    419 
    420   FLIP_SIGN_BIT2(*p0, *q0);
    421   GetBaseDelta(&p1s, p0, q0, &q1s, &a);
    422   a = _mm_and_si128(a, mask);     // mask filter values we don't care about
    423   DoSimpleFilter(p0, q0, &a);
    424   FLIP_SIGN_BIT2(*p0, *q0);
    425 }
    426 
    427 // Applies filter on 4 pixels (p1, p0, q0 and q1)
    428 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
    429                                   __m128i* const q0, __m128i* const q1,
    430                                   const __m128i* const mask, int hev_thresh) {
    431   const __m128i sign_bit = _mm_set1_epi8(0x80);
    432   const __m128i k64 = _mm_set1_epi8(0x40);
    433   const __m128i zero = _mm_setzero_si128();
    434   __m128i not_hev;
    435   __m128i t1, t2, t3;
    436 
    437   // compute hev mask
    438   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
    439 
    440   // convert to signed values
    441   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
    442 
    443   t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
    444   t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
    445   t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
    446   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
    447   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
    448   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
    449   t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
    450 
    451   t2 = _mm_set1_epi8(3);
    452   t3 = _mm_set1_epi8(4);
    453   t2 = _mm_adds_epi8(t1, t2);        // 3 * (q0 - p0) + (p1 - q1) + 3
    454   t3 = _mm_adds_epi8(t1, t3);        // 3 * (q0 - p0) + (p1 - q1) + 4
    455   SignedShift8b(&t2);                // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
    456   SignedShift8b(&t3);                // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
    457   *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
    458   *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
    459   FLIP_SIGN_BIT2(*p0, *q0);
    460 
    461   // this is equivalent to signed (a + 1) >> 1 calculation
    462   t2 = _mm_add_epi8(t3, sign_bit);
    463   t3 = _mm_avg_epu8(t2, zero);
    464   t3 = _mm_sub_epi8(t3, k64);
    465 
    466   t3 = _mm_and_si128(not_hev, t3);   // if !hev
    467   *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
    468   *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
    469   FLIP_SIGN_BIT2(*p1, *q1);
    470 }
    471 
    472 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
    473 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1,
    474                                   __m128i* const p0, __m128i* const q0,
    475                                   __m128i* const q1, __m128i* const q2,
    476                                   const __m128i* const mask, int hev_thresh) {
    477   const __m128i zero = _mm_setzero_si128();
    478   const __m128i sign_bit = _mm_set1_epi8(0x80);
    479   __m128i a, not_hev;
    480 
    481   // compute hev mask
    482   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
    483 
    484   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
    485   FLIP_SIGN_BIT2(*p2, *q2);
    486   GetBaseDelta(p1, p0, q0, q1, &a);
    487 
    488   { // do simple filter on pixels with hev
    489     const __m128i m = _mm_andnot_si128(not_hev, *mask);
    490     const __m128i f = _mm_and_si128(a, m);
    491     DoSimpleFilter(p0, q0, &f);
    492   }
    493 
    494   { // do strong filter on pixels with not hev
    495     const __m128i k9 = _mm_set1_epi16(0x0900);
    496     const __m128i k63 = _mm_set1_epi16(63);
    497 
    498     const __m128i m = _mm_and_si128(not_hev, *mask);
    499     const __m128i f = _mm_and_si128(a, m);
    500 
    501     const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
    502     const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
    503 
    504     const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
    505     const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
    506 
    507     const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
    508     const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
    509 
    510     const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
    511     const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
    512 
    513     const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
    514     const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
    515 
    516     Update2Pixels(p2, q2, &a2_lo, &a2_hi);
    517     Update2Pixels(p1, q1, &a1_lo, &a1_hi);
    518     Update2Pixels(p0, q0, &a0_lo, &a0_hi);
    519   }
    520 }
    521 
    522 // reads 8 rows across a vertical edge.
    523 //
    524 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
    525 // two Load4x4() to avoid code duplication.
    526 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
    527                                 __m128i* const p, __m128i* const q) {
    528   __m128i t1, t2;
    529 
    530   // Load 0th, 1st, 4th and 5th rows
    531   __m128i r0 =  _mm_cvtsi32_si128(*((int*)&b[0 * stride]));  // 03 02 01 00
    532   __m128i r1 =  _mm_cvtsi32_si128(*((int*)&b[1 * stride]));  // 13 12 11 10
    533   __m128i r4 =  _mm_cvtsi32_si128(*((int*)&b[4 * stride]));  // 43 42 41 40
    534   __m128i r5 =  _mm_cvtsi32_si128(*((int*)&b[5 * stride]));  // 53 52 51 50
    535 
    536   r0 = _mm_unpacklo_epi32(r0, r4);               // 43 42 41 40 03 02 01 00
    537   r1 = _mm_unpacklo_epi32(r1, r5);               // 53 52 51 50 13 12 11 10
    538 
    539   // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
    540   t1 = _mm_unpacklo_epi8(r0, r1);
    541 
    542   // Load 2nd, 3rd, 6th and 7th rows
    543   r0 =  _mm_cvtsi32_si128(*((int*)&b[2 * stride]));          // 23 22 21 22
    544   r1 =  _mm_cvtsi32_si128(*((int*)&b[3 * stride]));          // 33 32 31 30
    545   r4 =  _mm_cvtsi32_si128(*((int*)&b[6 * stride]));          // 63 62 61 60
    546   r5 =  _mm_cvtsi32_si128(*((int*)&b[7 * stride]));          // 73 72 71 70
    547 
    548   r0 = _mm_unpacklo_epi32(r0, r4);               // 63 62 61 60 23 22 21 20
    549   r1 = _mm_unpacklo_epi32(r1, r5);               // 73 72 71 70 33 32 31 30
    550 
    551   // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
    552   t2 = _mm_unpacklo_epi8(r0, r1);
    553 
    554   // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
    555   // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
    556   r0 = t1;
    557   t1 = _mm_unpacklo_epi16(t1, t2);
    558   t2 = _mm_unpackhi_epi16(r0, t2);
    559 
    560   // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
    561   // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
    562   *p = _mm_unpacklo_epi32(t1, t2);
    563   *q = _mm_unpackhi_epi32(t1, t2);
    564 }
    565 
    566 static WEBP_INLINE void Load16x4(const uint8_t* const r0,
    567                                  const uint8_t* const r8,
    568                                  int stride,
    569                                  __m128i* const p1, __m128i* const p0,
    570                                  __m128i* const q0, __m128i* const q1) {
    571   __m128i t1, t2;
    572   // Assume the pixels around the edge (|) are numbered as follows
    573   //                00 01 | 02 03
    574   //                10 11 | 12 13
    575   //                 ...  |  ...
    576   //                e0 e1 | e2 e3
    577   //                f0 f1 | f2 f3
    578   //
    579   // r0 is pointing to the 0th row (00)
    580   // r8 is pointing to the 8th row (80)
    581 
    582   // Load
    583   // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
    584   // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
    585   // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
    586   // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
    587   Load8x4(r0, stride, p1, q0);
    588   Load8x4(r8, stride, p0, q1);
    589 
    590   t1 = *p1;
    591   t2 = *q0;
    592   // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
    593   // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
    594   // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
    595   // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
    596   *p1 = _mm_unpacklo_epi64(t1, *p0);
    597   *p0 = _mm_unpackhi_epi64(t1, *p0);
    598   *q0 = _mm_unpacklo_epi64(t2, *q1);
    599   *q1 = _mm_unpackhi_epi64(t2, *q1);
    600 }
    601 
    602 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
    603   int i;
    604   for (i = 0; i < 4; ++i, dst += stride) {
    605     *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
    606     *x = _mm_srli_si128(*x, 4);
    607   }
    608 }
    609 
    610 // Transpose back and store
    611 static WEBP_INLINE void Store16x4(const __m128i* const p1,
    612                                   const __m128i* const p0,
    613                                   const __m128i* const q0,
    614                                   const __m128i* const q1,
    615                                   uint8_t* r0, uint8_t* r8,
    616                                   int stride) {
    617   __m128i t1, p1_s, p0_s, q0_s, q1_s;
    618 
    619   // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
    620   // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
    621   t1 = *p0;
    622   p0_s = _mm_unpacklo_epi8(*p1, t1);
    623   p1_s = _mm_unpackhi_epi8(*p1, t1);
    624 
    625   // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
    626   // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
    627   t1 = *q0;
    628   q0_s = _mm_unpacklo_epi8(t1, *q1);
    629   q1_s = _mm_unpackhi_epi8(t1, *q1);
    630 
    631   // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
    632   // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
    633   t1 = p0_s;
    634   p0_s = _mm_unpacklo_epi16(t1, q0_s);
    635   q0_s = _mm_unpackhi_epi16(t1, q0_s);
    636 
    637   // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
    638   // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
    639   t1 = p1_s;
    640   p1_s = _mm_unpacklo_epi16(t1, q1_s);
    641   q1_s = _mm_unpackhi_epi16(t1, q1_s);
    642 
    643   Store4x4(&p0_s, r0, stride);
    644   r0 += 4 * stride;
    645   Store4x4(&q0_s, r0, stride);
    646 
    647   Store4x4(&p1_s, r8, stride);
    648   r8 += 4 * stride;
    649   Store4x4(&q1_s, r8, stride);
    650 }
    651 
    652 //------------------------------------------------------------------------------
    653 // Simple In-loop filtering (Paragraph 15.2)
    654 
    655 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
    656   // Load
    657   __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
    658   __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
    659   __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
    660   __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
    661 
    662   DoFilter2(&p1, &p0, &q0, &q1, thresh);
    663 
    664   // Store
    665   _mm_storeu_si128((__m128i*)&p[-stride], p0);
    666   _mm_storeu_si128((__m128i*)&p[0], q0);
    667 }
    668 
    669 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
    670   __m128i p1, p0, q0, q1;
    671 
    672   p -= 2;  // beginning of p1
    673 
    674   Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
    675   DoFilter2(&p1, &p0, &q0, &q1, thresh);
    676   Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
    677 }
    678 
    679 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
    680   int k;
    681   for (k = 3; k > 0; --k) {
    682     p += 4 * stride;
    683     SimpleVFilter16(p, stride, thresh);
    684   }
    685 }
    686 
    687 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
    688   int k;
    689   for (k = 3; k > 0; --k) {
    690     p += 4;
    691     SimpleHFilter16(p, stride, thresh);
    692   }
    693 }
    694 
    695 //------------------------------------------------------------------------------
    696 // Complex In-loop filtering (Paragraph 15.3)
    697 
    698 #define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
    699   m = MM_ABS(p1, p0);                                                          \
    700   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
    701   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
    702 } while (0)
    703 
    704 #define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
    705   m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
    706   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
    707   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
    708 } while (0)
    709 
    710 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
    711   e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
    712   e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
    713   e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
    714   e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
    715 }
    716 
    717 #define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
    718   const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
    719   const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
    720   p = _mm_unpacklo_epi64(U, V);                                                \
    721 } while (0)
    722 
    723 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
    724   LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
    725   LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
    726   LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
    727   LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
    728 }
    729 
    730 #define STOREUV(p, u, v, stride) {                                             \
    731   _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
    732   p = _mm_srli_si128(p, 8);                                                    \
    733   _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
    734 }
    735 
    736 static WEBP_INLINE void ComplexMask(const __m128i* const p1,
    737                                     const __m128i* const p0,
    738                                     const __m128i* const q0,
    739                                     const __m128i* const q1,
    740                                     int thresh, int ithresh,
    741                                     __m128i* const mask) {
    742   const __m128i it = _mm_set1_epi8(ithresh);
    743   const __m128i diff = _mm_subs_epu8(*mask, it);
    744   const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
    745   __m128i filter_mask;
    746   NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask);
    747   *mask = _mm_and_si128(thresh_mask, filter_mask);
    748 }
    749 
    750 // on macroblock edges
    751 static void VFilter16(uint8_t* p, int stride,
    752                       int thresh, int ithresh, int hev_thresh) {
    753   __m128i t1;
    754   __m128i mask;
    755   __m128i p2, p1, p0, q0, q1, q2;
    756 
    757   // Load p3, p2, p1, p0
    758   LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
    759   MAX_DIFF1(t1, p2, p1, p0, mask);
    760 
    761   // Load q0, q1, q2, q3
    762   LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
    763   MAX_DIFF2(t1, q2, q1, q0, mask);
    764 
    765   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    766   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    767 
    768   // Store
    769   _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
    770   _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
    771   _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
    772   _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
    773   _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
    774   _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
    775 }
    776 
    777 static void HFilter16(uint8_t* p, int stride,
    778                       int thresh, int ithresh, int hev_thresh) {
    779   __m128i mask;
    780   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
    781 
    782   uint8_t* const b = p - 4;
    783   Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
    784   MAX_DIFF1(p3, p2, p1, p0, mask);
    785 
    786   Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
    787   MAX_DIFF2(q3, q2, q1, q0, mask);
    788 
    789   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    790   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    791 
    792   Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
    793   Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
    794 }
    795 
    796 // on three inner edges
    797 static void VFilter16i(uint8_t* p, int stride,
    798                        int thresh, int ithresh, int hev_thresh) {
    799   int k;
    800   __m128i p3, p2, p1, p0;   // loop invariants
    801 
    802   LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
    803 
    804   for (k = 3; k > 0; --k) {
    805     __m128i mask, tmp1, tmp2;
    806     uint8_t* const b = p + 2 * stride;   // beginning of p1
    807     p += 4 * stride;
    808 
    809     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
    810     LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
    811     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
    812 
    813     // p3 and p2 are not just temporary variables here: they will be
    814     // re-used for next span. And q2/q3 will become p1/p0 accordingly.
    815     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
    816     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
    817 
    818     // Store
    819     _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
    820     _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
    821     _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
    822     _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
    823 
    824     // rotate samples
    825     p1 = tmp1;
    826     p0 = tmp2;
    827   }
    828 }
    829 
    830 static void HFilter16i(uint8_t* p, int stride,
    831                        int thresh, int ithresh, int hev_thresh) {
    832   int k;
    833   __m128i p3, p2, p1, p0;   // loop invariants
    834 
    835   Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
    836 
    837   for (k = 3; k > 0; --k) {
    838     __m128i mask, tmp1, tmp2;
    839     uint8_t* const b = p + 2;   // beginning of p1
    840 
    841     p += 4;  // beginning of q0 (and next span)
    842 
    843     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
    844     Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
    845     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
    846 
    847     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
    848     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
    849 
    850     Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
    851 
    852     // rotate samples
    853     p1 = tmp1;
    854     p0 = tmp2;
    855   }
    856 }
    857 
    858 // 8-pixels wide variant, for chroma filtering
    859 static void VFilter8(uint8_t* u, uint8_t* v, int stride,
    860                      int thresh, int ithresh, int hev_thresh) {
    861   __m128i mask;
    862   __m128i t1, p2, p1, p0, q0, q1, q2;
    863 
    864   // Load p3, p2, p1, p0
    865   LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
    866   MAX_DIFF1(t1, p2, p1, p0, mask);
    867 
    868   // Load q0, q1, q2, q3
    869   LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
    870   MAX_DIFF2(t1, q2, q1, q0, mask);
    871 
    872   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    873   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    874 
    875   // Store
    876   STOREUV(p2, u, v, -3 * stride);
    877   STOREUV(p1, u, v, -2 * stride);
    878   STOREUV(p0, u, v, -1 * stride);
    879   STOREUV(q0, u, v, 0 * stride);
    880   STOREUV(q1, u, v, 1 * stride);
    881   STOREUV(q2, u, v, 2 * stride);
    882 }
    883 
    884 static void HFilter8(uint8_t* u, uint8_t* v, int stride,
    885                      int thresh, int ithresh, int hev_thresh) {
    886   __m128i mask;
    887   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
    888 
    889   uint8_t* const tu = u - 4;
    890   uint8_t* const tv = v - 4;
    891   Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
    892   MAX_DIFF1(p3, p2, p1, p0, mask);
    893 
    894   Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
    895   MAX_DIFF2(q3, q2, q1, q0, mask);
    896 
    897   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    898   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    899 
    900   Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride);
    901   Store16x4(&q0, &q1, &q2, &q3, u, v, stride);
    902 }
    903 
    904 static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
    905                       int thresh, int ithresh, int hev_thresh) {
    906   __m128i mask;
    907   __m128i t1, t2, p1, p0, q0, q1;
    908 
    909   // Load p3, p2, p1, p0
    910   LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
    911   MAX_DIFF1(t2, t1, p1, p0, mask);
    912 
    913   u += 4 * stride;
    914   v += 4 * stride;
    915 
    916   // Load q0, q1, q2, q3
    917   LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
    918   MAX_DIFF2(t2, t1, q1, q0, mask);
    919 
    920   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    921   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
    922 
    923   // Store
    924   STOREUV(p1, u, v, -2 * stride);
    925   STOREUV(p0, u, v, -1 * stride);
    926   STOREUV(q0, u, v, 0 * stride);
    927   STOREUV(q1, u, v, 1 * stride);
    928 }
    929 
    930 static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
    931                       int thresh, int ithresh, int hev_thresh) {
    932   __m128i mask;
    933   __m128i t1, t2, p1, p0, q0, q1;
    934   Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
    935   MAX_DIFF1(t2, t1, p1, p0, mask);
    936 
    937   u += 4;  // beginning of q0
    938   v += 4;
    939   Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
    940   MAX_DIFF2(t2, t1, q1, q0, mask);
    941 
    942   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    943   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
    944 
    945   u -= 2;  // beginning of p1
    946   v -= 2;
    947   Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
    948 }
    949 
    950 #endif   // WEBP_USE_SSE2
    951 
    952 //------------------------------------------------------------------------------
    953 // Entry point
    954 
    955 extern void VP8DspInitSSE2(void);
    956 
    957 void VP8DspInitSSE2(void) {
    958 #if defined(WEBP_USE_SSE2)
    959   VP8Transform = Transform;
    960 #if defined(USE_TRANSFORM_AC3)
    961   VP8TransformAC3 = TransformAC3;
    962 #endif
    963 
    964   VP8VFilter16 = VFilter16;
    965   VP8HFilter16 = HFilter16;
    966   VP8VFilter8 = VFilter8;
    967   VP8HFilter8 = HFilter8;
    968   VP8VFilter16i = VFilter16i;
    969   VP8HFilter16i = HFilter16i;
    970   VP8VFilter8i = VFilter8i;
    971   VP8HFilter8i = HFilter8i;
    972 
    973   VP8SimpleVFilter16 = SimpleVFilter16;
    974   VP8SimpleHFilter16 = SimpleHFilter16;
    975   VP8SimpleVFilter16i = SimpleVFilter16i;
    976   VP8SimpleHFilter16i = SimpleHFilter16i;
    977 #endif   // WEBP_USE_SSE2
    978 }
    979