1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // SSE2 version of some decoding functions (idct, loop filtering). 11 // 12 // Author: somnath (at) google.com (Somnath Banerjee) 13 // cduvivier (at) google.com (Christian Duvivier) 14 15 #include "./dsp.h" 16 17 #if defined(WEBP_USE_SSE2) 18 19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C 20 // one it seems => disable it by default. Uncomment the following to enable: 21 // #define USE_TRANSFORM_AC3 22 23 #include <emmintrin.h> 24 #include "../dec/vp8i.h" 25 26 //------------------------------------------------------------------------------ 27 // Transforms (Paragraph 14.4) 28 29 static void Transform(const int16_t* in, uint8_t* dst, int do_two) { 30 // This implementation makes use of 16-bit fixed point versions of two 31 // multiply constants: 32 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 33 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 34 // 35 // To be able to use signed 16-bit integers, we use the following trick to 36 // have constants within range: 37 // - Associated constants are obtained by subtracting the 16-bit fixed point 38 // version of one: 39 // k = K - (1 << 16) => K = k + (1 << 16) 40 // K1 = 85267 => k1 = 20091 41 // K2 = 35468 => k2 = -30068 42 // - The multiplication of a variable by a constant become the sum of the 43 // variable and the multiplication of that variable by the associated 44 // constant: 45 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x 46 const __m128i k1 = _mm_set1_epi16(20091); 47 const __m128i k2 = _mm_set1_epi16(-30068); 48 __m128i T0, T1, T2, T3; 49 50 // Load and concatenate the transform coefficients (we'll do two transforms 51 // in parallel). In the case of only one transform, the second half of the 52 // vectors will just contain random value we'll never use nor store. 53 __m128i in0, in1, in2, in3; 54 { 55 in0 = _mm_loadl_epi64((__m128i*)&in[0]); 56 in1 = _mm_loadl_epi64((__m128i*)&in[4]); 57 in2 = _mm_loadl_epi64((__m128i*)&in[8]); 58 in3 = _mm_loadl_epi64((__m128i*)&in[12]); 59 // a00 a10 a20 a30 x x x x 60 // a01 a11 a21 a31 x x x x 61 // a02 a12 a22 a32 x x x x 62 // a03 a13 a23 a33 x x x x 63 if (do_two) { 64 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); 65 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); 66 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); 67 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); 68 in0 = _mm_unpacklo_epi64(in0, inB0); 69 in1 = _mm_unpacklo_epi64(in1, inB1); 70 in2 = _mm_unpacklo_epi64(in2, inB2); 71 in3 = _mm_unpacklo_epi64(in3, inB3); 72 // a00 a10 a20 a30 b00 b10 b20 b30 73 // a01 a11 a21 a31 b01 b11 b21 b31 74 // a02 a12 a22 a32 b02 b12 b22 b32 75 // a03 a13 a23 a33 b03 b13 b23 b33 76 } 77 } 78 79 // Vertical pass and subsequent transpose. 80 { 81 // First pass, c and d calculations are longer because of the "trick" 82 // multiplications. 83 const __m128i a = _mm_add_epi16(in0, in2); 84 const __m128i b = _mm_sub_epi16(in0, in2); 85 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 86 const __m128i c1 = _mm_mulhi_epi16(in1, k2); 87 const __m128i c2 = _mm_mulhi_epi16(in3, k1); 88 const __m128i c3 = _mm_sub_epi16(in1, in3); 89 const __m128i c4 = _mm_sub_epi16(c1, c2); 90 const __m128i c = _mm_add_epi16(c3, c4); 91 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 92 const __m128i d1 = _mm_mulhi_epi16(in1, k1); 93 const __m128i d2 = _mm_mulhi_epi16(in3, k2); 94 const __m128i d3 = _mm_add_epi16(in1, in3); 95 const __m128i d4 = _mm_add_epi16(d1, d2); 96 const __m128i d = _mm_add_epi16(d3, d4); 97 98 // Second pass. 99 const __m128i tmp0 = _mm_add_epi16(a, d); 100 const __m128i tmp1 = _mm_add_epi16(b, c); 101 const __m128i tmp2 = _mm_sub_epi16(b, c); 102 const __m128i tmp3 = _mm_sub_epi16(a, d); 103 104 // Transpose the two 4x4. 105 // a00 a01 a02 a03 b00 b01 b02 b03 106 // a10 a11 a12 a13 b10 b11 b12 b13 107 // a20 a21 a22 a23 b20 b21 b22 b23 108 // a30 a31 a32 a33 b30 b31 b32 b33 109 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); 110 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); 111 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); 112 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); 113 // a00 a10 a01 a11 a02 a12 a03 a13 114 // a20 a30 a21 a31 a22 a32 a23 a33 115 // b00 b10 b01 b11 b02 b12 b03 b13 116 // b20 b30 b21 b31 b22 b32 b23 b33 117 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 118 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 119 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 120 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 121 // a00 a10 a20 a30 a01 a11 a21 a31 122 // b00 b10 b20 b30 b01 b11 b21 b31 123 // a02 a12 a22 a32 a03 a13 a23 a33 124 // b02 b12 a22 b32 b03 b13 b23 b33 125 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 126 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 127 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 128 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 129 // a00 a10 a20 a30 b00 b10 b20 b30 130 // a01 a11 a21 a31 b01 b11 b21 b31 131 // a02 a12 a22 a32 b02 b12 b22 b32 132 // a03 a13 a23 a33 b03 b13 b23 b33 133 } 134 135 // Horizontal pass and subsequent transpose. 136 { 137 // First pass, c and d calculations are longer because of the "trick" 138 // multiplications. 139 const __m128i four = _mm_set1_epi16(4); 140 const __m128i dc = _mm_add_epi16(T0, four); 141 const __m128i a = _mm_add_epi16(dc, T2); 142 const __m128i b = _mm_sub_epi16(dc, T2); 143 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 144 const __m128i c1 = _mm_mulhi_epi16(T1, k2); 145 const __m128i c2 = _mm_mulhi_epi16(T3, k1); 146 const __m128i c3 = _mm_sub_epi16(T1, T3); 147 const __m128i c4 = _mm_sub_epi16(c1, c2); 148 const __m128i c = _mm_add_epi16(c3, c4); 149 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 150 const __m128i d1 = _mm_mulhi_epi16(T1, k1); 151 const __m128i d2 = _mm_mulhi_epi16(T3, k2); 152 const __m128i d3 = _mm_add_epi16(T1, T3); 153 const __m128i d4 = _mm_add_epi16(d1, d2); 154 const __m128i d = _mm_add_epi16(d3, d4); 155 156 // Second pass. 157 const __m128i tmp0 = _mm_add_epi16(a, d); 158 const __m128i tmp1 = _mm_add_epi16(b, c); 159 const __m128i tmp2 = _mm_sub_epi16(b, c); 160 const __m128i tmp3 = _mm_sub_epi16(a, d); 161 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); 162 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); 163 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); 164 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); 165 166 // Transpose the two 4x4. 167 // a00 a01 a02 a03 b00 b01 b02 b03 168 // a10 a11 a12 a13 b10 b11 b12 b13 169 // a20 a21 a22 a23 b20 b21 b22 b23 170 // a30 a31 a32 a33 b30 b31 b32 b33 171 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); 172 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); 173 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); 174 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); 175 // a00 a10 a01 a11 a02 a12 a03 a13 176 // a20 a30 a21 a31 a22 a32 a23 a33 177 // b00 b10 b01 b11 b02 b12 b03 b13 178 // b20 b30 b21 b31 b22 b32 b23 b33 179 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 180 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 181 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 182 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 183 // a00 a10 a20 a30 a01 a11 a21 a31 184 // b00 b10 b20 b30 b01 b11 b21 b31 185 // a02 a12 a22 a32 a03 a13 a23 a33 186 // b02 b12 a22 b32 b03 b13 b23 b33 187 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 188 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 189 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 190 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 191 // a00 a10 a20 a30 b00 b10 b20 b30 192 // a01 a11 a21 a31 b01 b11 b21 b31 193 // a02 a12 a22 a32 b02 b12 b22 b32 194 // a03 a13 a23 a33 b03 b13 b23 b33 195 } 196 197 // Add inverse transform to 'dst' and store. 198 { 199 const __m128i zero = _mm_setzero_si128(); 200 // Load the reference(s). 201 __m128i dst0, dst1, dst2, dst3; 202 if (do_two) { 203 // Load eight bytes/pixels per line. 204 dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); 205 dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); 206 dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); 207 dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); 208 } else { 209 // Load four bytes/pixels per line. 210 dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS)); 211 dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS)); 212 dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS)); 213 dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS)); 214 } 215 // Convert to 16b. 216 dst0 = _mm_unpacklo_epi8(dst0, zero); 217 dst1 = _mm_unpacklo_epi8(dst1, zero); 218 dst2 = _mm_unpacklo_epi8(dst2, zero); 219 dst3 = _mm_unpacklo_epi8(dst3, zero); 220 // Add the inverse transform(s). 221 dst0 = _mm_add_epi16(dst0, T0); 222 dst1 = _mm_add_epi16(dst1, T1); 223 dst2 = _mm_add_epi16(dst2, T2); 224 dst3 = _mm_add_epi16(dst3, T3); 225 // Unsigned saturate to 8b. 226 dst0 = _mm_packus_epi16(dst0, dst0); 227 dst1 = _mm_packus_epi16(dst1, dst1); 228 dst2 = _mm_packus_epi16(dst2, dst2); 229 dst3 = _mm_packus_epi16(dst3, dst3); 230 // Store the results. 231 if (do_two) { 232 // Store eight bytes/pixels per line. 233 _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); 234 _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); 235 _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); 236 _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); 237 } else { 238 // Store four bytes/pixels per line. 239 *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0); 240 *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1); 241 *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2); 242 *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3); 243 } 244 } 245 } 246 247 #if defined(USE_TRANSFORM_AC3) 248 #define MUL(a, b) (((a) * (b)) >> 16) 249 static void TransformAC3(const int16_t* in, uint8_t* dst) { 250 static const int kC1 = 20091 + (1 << 16); 251 static const int kC2 = 35468; 252 const __m128i A = _mm_set1_epi16(in[0] + 4); 253 const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); 254 const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); 255 const int c1 = MUL(in[1], kC2); 256 const int d1 = MUL(in[1], kC1); 257 const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); 258 const __m128i B = _mm_adds_epi16(A, CD); 259 const __m128i m0 = _mm_adds_epi16(B, d4); 260 const __m128i m1 = _mm_adds_epi16(B, c4); 261 const __m128i m2 = _mm_subs_epi16(B, c4); 262 const __m128i m3 = _mm_subs_epi16(B, d4); 263 const __m128i zero = _mm_setzero_si128(); 264 // Load the source pixels. 265 __m128i dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS)); 266 __m128i dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS)); 267 __m128i dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS)); 268 __m128i dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS)); 269 // Convert to 16b. 270 dst0 = _mm_unpacklo_epi8(dst0, zero); 271 dst1 = _mm_unpacklo_epi8(dst1, zero); 272 dst2 = _mm_unpacklo_epi8(dst2, zero); 273 dst3 = _mm_unpacklo_epi8(dst3, zero); 274 // Add the inverse transform. 275 dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); 276 dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); 277 dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); 278 dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); 279 // Unsigned saturate to 8b. 280 dst0 = _mm_packus_epi16(dst0, dst0); 281 dst1 = _mm_packus_epi16(dst1, dst1); 282 dst2 = _mm_packus_epi16(dst2, dst2); 283 dst3 = _mm_packus_epi16(dst3, dst3); 284 // Store the results. 285 *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0); 286 *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1); 287 *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2); 288 *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3); 289 } 290 #undef MUL 291 #endif // USE_TRANSFORM_AC3 292 293 //------------------------------------------------------------------------------ 294 // Loop Filter (Paragraph 15) 295 296 // Compute abs(p - q) = subs(p - q) OR subs(q - p) 297 #define MM_ABS(p, q) _mm_or_si128( \ 298 _mm_subs_epu8((q), (p)), \ 299 _mm_subs_epu8((p), (q))) 300 301 // Shift each byte of "x" by 3 bits while preserving by the sign bit. 302 static WEBP_INLINE void SignedShift8b(__m128i* const x) { 303 const __m128i zero = _mm_setzero_si128(); 304 const __m128i signs = _mm_cmpgt_epi8(zero, *x); 305 const __m128i lo_0 = _mm_unpacklo_epi8(*x, signs); // s8 -> s16 sign extend 306 const __m128i hi_0 = _mm_unpackhi_epi8(*x, signs); 307 const __m128i lo_1 = _mm_srai_epi16(lo_0, 3); 308 const __m128i hi_1 = _mm_srai_epi16(hi_0, 3); 309 *x = _mm_packs_epi16(lo_1, hi_1); 310 } 311 312 #define FLIP_SIGN_BIT2(a, b) { \ 313 a = _mm_xor_si128(a, sign_bit); \ 314 b = _mm_xor_si128(b, sign_bit); \ 315 } 316 317 #define FLIP_SIGN_BIT4(a, b, c, d) { \ 318 FLIP_SIGN_BIT2(a, b); \ 319 FLIP_SIGN_BIT2(c, d); \ 320 } 321 322 // input/output is uint8_t 323 static WEBP_INLINE void GetNotHEV(const __m128i* const p1, 324 const __m128i* const p0, 325 const __m128i* const q0, 326 const __m128i* const q1, 327 int hev_thresh, __m128i* const not_hev) { 328 const __m128i zero = _mm_setzero_si128(); 329 const __m128i t_1 = MM_ABS(*p1, *p0); 330 const __m128i t_2 = MM_ABS(*q1, *q0); 331 332 const __m128i h = _mm_set1_epi8(hev_thresh); 333 const __m128i t_3 = _mm_subs_epu8(t_1, h); // abs(p1 - p0) - hev_tresh 334 const __m128i t_4 = _mm_subs_epu8(t_2, h); // abs(q1 - q0) - hev_tresh 335 336 *not_hev = _mm_or_si128(t_3, t_4); 337 *not_hev = _mm_cmpeq_epi8(*not_hev, zero); // not_hev <= t1 && not_hev <= t2 338 } 339 340 // input pixels are int8_t 341 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1, 342 const __m128i* const p0, 343 const __m128i* const q0, 344 const __m128i* const q1, 345 __m128i* const delta) { 346 // beware of addition order, for saturation! 347 const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 348 const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0 349 const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0) 350 const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0) 351 const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0) 352 *delta = s3; 353 } 354 355 // input and output are int8_t 356 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0, 357 const __m128i* const fl) { 358 const __m128i k3 = _mm_set1_epi8(3); 359 const __m128i k4 = _mm_set1_epi8(4); 360 __m128i v3 = _mm_adds_epi8(*fl, k3); 361 __m128i v4 = _mm_adds_epi8(*fl, k4); 362 363 SignedShift8b(&v4); // v4 >> 3 364 SignedShift8b(&v3); // v3 >> 3 365 *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4 366 *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3 367 } 368 369 // Updates values of 2 pixels at MB edge during complex filtering. 370 // Update operations: 371 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] 372 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip). 373 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi, 374 const __m128i* const a0_lo, 375 const __m128i* const a0_hi) { 376 const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7); 377 const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7); 378 const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi); 379 const __m128i sign_bit = _mm_set1_epi8(0x80); 380 *pi = _mm_adds_epi8(*pi, delta); 381 *qi = _mm_subs_epi8(*qi, delta); 382 FLIP_SIGN_BIT2(*pi, *qi); 383 } 384 385 // input pixels are uint8_t 386 static WEBP_INLINE void NeedsFilter(const __m128i* const p1, 387 const __m128i* const p0, 388 const __m128i* const q0, 389 const __m128i* const q1, 390 int thresh, __m128i* const mask) { 391 const __m128i m_thresh = _mm_set1_epi8(thresh); 392 const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) 393 const __m128i kFE = _mm_set1_epi8(0xFE); 394 const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero 395 const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2 396 397 const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0) 398 const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2 399 const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2 400 401 const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh 402 *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128()); 403 } 404 405 //------------------------------------------------------------------------------ 406 // Edge filtering functions 407 408 // Applies filter on 2 pixels (p0 and q0) 409 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0, 410 __m128i* const q0, __m128i* const q1, 411 int thresh) { 412 __m128i a, mask; 413 const __m128i sign_bit = _mm_set1_epi8(0x80); 414 // convert p1/q1 to int8_t (for GetBaseDelta) 415 const __m128i p1s = _mm_xor_si128(*p1, sign_bit); 416 const __m128i q1s = _mm_xor_si128(*q1, sign_bit); 417 418 NeedsFilter(p1, p0, q0, q1, thresh, &mask); 419 420 FLIP_SIGN_BIT2(*p0, *q0); 421 GetBaseDelta(&p1s, p0, q0, &q1s, &a); 422 a = _mm_and_si128(a, mask); // mask filter values we don't care about 423 DoSimpleFilter(p0, q0, &a); 424 FLIP_SIGN_BIT2(*p0, *q0); 425 } 426 427 // Applies filter on 4 pixels (p1, p0, q0 and q1) 428 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0, 429 __m128i* const q0, __m128i* const q1, 430 const __m128i* const mask, int hev_thresh) { 431 const __m128i sign_bit = _mm_set1_epi8(0x80); 432 const __m128i k64 = _mm_set1_epi8(0x40); 433 const __m128i zero = _mm_setzero_si128(); 434 __m128i not_hev; 435 __m128i t1, t2, t3; 436 437 // compute hev mask 438 GetNotHEV(p1, p0, q0, q1, hev_thresh, ¬_hev); 439 440 // convert to signed values 441 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 442 443 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 444 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) 445 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 446 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) 447 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) 448 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) 449 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about 450 451 t2 = _mm_set1_epi8(3); 452 t3 = _mm_set1_epi8(4); 453 t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 3 454 t3 = _mm_adds_epi8(t1, t3); // 3 * (q0 - p0) + (p1 - q1) + 4 455 SignedShift8b(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 456 SignedShift8b(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 457 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 458 *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3 459 FLIP_SIGN_BIT2(*p0, *q0); 460 461 // this is equivalent to signed (a + 1) >> 1 calculation 462 t2 = _mm_add_epi8(t3, sign_bit); 463 t3 = _mm_avg_epu8(t2, zero); 464 t3 = _mm_sub_epi8(t3, k64); 465 466 t3 = _mm_and_si128(not_hev, t3); // if !hev 467 *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 468 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 469 FLIP_SIGN_BIT2(*p1, *q1); 470 } 471 472 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) 473 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1, 474 __m128i* const p0, __m128i* const q0, 475 __m128i* const q1, __m128i* const q2, 476 const __m128i* const mask, int hev_thresh) { 477 const __m128i zero = _mm_setzero_si128(); 478 const __m128i sign_bit = _mm_set1_epi8(0x80); 479 __m128i a, not_hev; 480 481 // compute hev mask 482 GetNotHEV(p1, p0, q0, q1, hev_thresh, ¬_hev); 483 484 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 485 FLIP_SIGN_BIT2(*p2, *q2); 486 GetBaseDelta(p1, p0, q0, q1, &a); 487 488 { // do simple filter on pixels with hev 489 const __m128i m = _mm_andnot_si128(not_hev, *mask); 490 const __m128i f = _mm_and_si128(a, m); 491 DoSimpleFilter(p0, q0, &f); 492 } 493 494 { // do strong filter on pixels with not hev 495 const __m128i k9 = _mm_set1_epi16(0x0900); 496 const __m128i k63 = _mm_set1_epi16(63); 497 498 const __m128i m = _mm_and_si128(not_hev, *mask); 499 const __m128i f = _mm_and_si128(a, m); 500 501 const __m128i f_lo = _mm_unpacklo_epi8(zero, f); 502 const __m128i f_hi = _mm_unpackhi_epi8(zero, f); 503 504 const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9 505 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9 506 507 const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63 508 const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63 509 510 const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63 511 const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63 512 513 const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63 514 const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63 515 516 Update2Pixels(p2, q2, &a2_lo, &a2_hi); 517 Update2Pixels(p1, q1, &a1_lo, &a1_hi); 518 Update2Pixels(p0, q0, &a0_lo, &a0_hi); 519 } 520 } 521 522 // reads 8 rows across a vertical edge. 523 // 524 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into 525 // two Load4x4() to avoid code duplication. 526 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride, 527 __m128i* const p, __m128i* const q) { 528 __m128i t1, t2; 529 530 // Load 0th, 1st, 4th and 5th rows 531 __m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00 532 __m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10 533 __m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40 534 __m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50 535 536 r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00 537 r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10 538 539 // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 540 t1 = _mm_unpacklo_epi8(r0, r1); 541 542 // Load 2nd, 3rd, 6th and 7th rows 543 r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22 544 r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30 545 r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60 546 r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70 547 548 r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20 549 r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30 550 551 // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 552 t2 = _mm_unpacklo_epi8(r0, r1); 553 554 // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 555 // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 556 r0 = t1; 557 t1 = _mm_unpacklo_epi16(t1, t2); 558 t2 = _mm_unpackhi_epi16(r0, t2); 559 560 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 561 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 562 *p = _mm_unpacklo_epi32(t1, t2); 563 *q = _mm_unpackhi_epi32(t1, t2); 564 } 565 566 static WEBP_INLINE void Load16x4(const uint8_t* const r0, 567 const uint8_t* const r8, 568 int stride, 569 __m128i* const p1, __m128i* const p0, 570 __m128i* const q0, __m128i* const q1) { 571 __m128i t1, t2; 572 // Assume the pixels around the edge (|) are numbered as follows 573 // 00 01 | 02 03 574 // 10 11 | 12 13 575 // ... | ... 576 // e0 e1 | e2 e3 577 // f0 f1 | f2 f3 578 // 579 // r0 is pointing to the 0th row (00) 580 // r8 is pointing to the 8th row (80) 581 582 // Load 583 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 584 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 585 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 586 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 587 Load8x4(r0, stride, p1, q0); 588 Load8x4(r8, stride, p0, q1); 589 590 t1 = *p1; 591 t2 = *q0; 592 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 593 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 594 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 595 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 596 *p1 = _mm_unpacklo_epi64(t1, *p0); 597 *p0 = _mm_unpackhi_epi64(t1, *p0); 598 *q0 = _mm_unpacklo_epi64(t2, *q1); 599 *q1 = _mm_unpackhi_epi64(t2, *q1); 600 } 601 602 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) { 603 int i; 604 for (i = 0; i < 4; ++i, dst += stride) { 605 *((int32_t*)dst) = _mm_cvtsi128_si32(*x); 606 *x = _mm_srli_si128(*x, 4); 607 } 608 } 609 610 // Transpose back and store 611 static WEBP_INLINE void Store16x4(const __m128i* const p1, 612 const __m128i* const p0, 613 const __m128i* const q0, 614 const __m128i* const q1, 615 uint8_t* r0, uint8_t* r8, 616 int stride) { 617 __m128i t1, p1_s, p0_s, q0_s, q1_s; 618 619 // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 620 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 621 t1 = *p0; 622 p0_s = _mm_unpacklo_epi8(*p1, t1); 623 p1_s = _mm_unpackhi_epi8(*p1, t1); 624 625 // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 626 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 627 t1 = *q0; 628 q0_s = _mm_unpacklo_epi8(t1, *q1); 629 q1_s = _mm_unpackhi_epi8(t1, *q1); 630 631 // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 632 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 633 t1 = p0_s; 634 p0_s = _mm_unpacklo_epi16(t1, q0_s); 635 q0_s = _mm_unpackhi_epi16(t1, q0_s); 636 637 // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 638 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 639 t1 = p1_s; 640 p1_s = _mm_unpacklo_epi16(t1, q1_s); 641 q1_s = _mm_unpackhi_epi16(t1, q1_s); 642 643 Store4x4(&p0_s, r0, stride); 644 r0 += 4 * stride; 645 Store4x4(&q0_s, r0, stride); 646 647 Store4x4(&p1_s, r8, stride); 648 r8 += 4 * stride; 649 Store4x4(&q1_s, r8, stride); 650 } 651 652 //------------------------------------------------------------------------------ 653 // Simple In-loop filtering (Paragraph 15.2) 654 655 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) { 656 // Load 657 __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); 658 __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); 659 __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); 660 __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); 661 662 DoFilter2(&p1, &p0, &q0, &q1, thresh); 663 664 // Store 665 _mm_storeu_si128((__m128i*)&p[-stride], p0); 666 _mm_storeu_si128((__m128i*)&p[0], q0); 667 } 668 669 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) { 670 __m128i p1, p0, q0, q1; 671 672 p -= 2; // beginning of p1 673 674 Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); 675 DoFilter2(&p1, &p0, &q0, &q1, thresh); 676 Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride); 677 } 678 679 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) { 680 int k; 681 for (k = 3; k > 0; --k) { 682 p += 4 * stride; 683 SimpleVFilter16(p, stride, thresh); 684 } 685 } 686 687 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) { 688 int k; 689 for (k = 3; k > 0; --k) { 690 p += 4; 691 SimpleHFilter16(p, stride, thresh); 692 } 693 } 694 695 //------------------------------------------------------------------------------ 696 // Complex In-loop filtering (Paragraph 15.3) 697 698 #define MAX_DIFF1(p3, p2, p1, p0, m) do { \ 699 m = MM_ABS(p1, p0); \ 700 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \ 701 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \ 702 } while (0) 703 704 #define MAX_DIFF2(p3, p2, p1, p0, m) do { \ 705 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \ 706 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \ 707 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \ 708 } while (0) 709 710 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ 711 e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \ 712 e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \ 713 e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \ 714 e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \ 715 } 716 717 #define LOADUV_H_EDGE(p, u, v, stride) do { \ 718 const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ 719 const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \ 720 p = _mm_unpacklo_epi64(U, V); \ 721 } while (0) 722 723 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ 724 LOADUV_H_EDGE(e1, u, v, 0 * stride); \ 725 LOADUV_H_EDGE(e2, u, v, 1 * stride); \ 726 LOADUV_H_EDGE(e3, u, v, 2 * stride); \ 727 LOADUV_H_EDGE(e4, u, v, 3 * stride); \ 728 } 729 730 #define STOREUV(p, u, v, stride) { \ 731 _mm_storel_epi64((__m128i*)&u[(stride)], p); \ 732 p = _mm_srli_si128(p, 8); \ 733 _mm_storel_epi64((__m128i*)&v[(stride)], p); \ 734 } 735 736 static WEBP_INLINE void ComplexMask(const __m128i* const p1, 737 const __m128i* const p0, 738 const __m128i* const q0, 739 const __m128i* const q1, 740 int thresh, int ithresh, 741 __m128i* const mask) { 742 const __m128i it = _mm_set1_epi8(ithresh); 743 const __m128i diff = _mm_subs_epu8(*mask, it); 744 const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128()); 745 __m128i filter_mask; 746 NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask); 747 *mask = _mm_and_si128(thresh_mask, filter_mask); 748 } 749 750 // on macroblock edges 751 static void VFilter16(uint8_t* p, int stride, 752 int thresh, int ithresh, int hev_thresh) { 753 __m128i t1; 754 __m128i mask; 755 __m128i p2, p1, p0, q0, q1, q2; 756 757 // Load p3, p2, p1, p0 758 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); 759 MAX_DIFF1(t1, p2, p1, p0, mask); 760 761 // Load q0, q1, q2, q3 762 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); 763 MAX_DIFF2(t1, q2, q1, q0, mask); 764 765 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 766 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 767 768 // Store 769 _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); 770 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); 771 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); 772 _mm_storeu_si128((__m128i*)&p[+0 * stride], q0); 773 _mm_storeu_si128((__m128i*)&p[+1 * stride], q1); 774 _mm_storeu_si128((__m128i*)&p[+2 * stride], q2); 775 } 776 777 static void HFilter16(uint8_t* p, int stride, 778 int thresh, int ithresh, int hev_thresh) { 779 __m128i mask; 780 __m128i p3, p2, p1, p0, q0, q1, q2, q3; 781 782 uint8_t* const b = p - 4; 783 Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0 784 MAX_DIFF1(p3, p2, p1, p0, mask); 785 786 Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3 787 MAX_DIFF2(q3, q2, q1, q0, mask); 788 789 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 790 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 791 792 Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride); 793 Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride); 794 } 795 796 // on three inner edges 797 static void VFilter16i(uint8_t* p, int stride, 798 int thresh, int ithresh, int hev_thresh) { 799 int k; 800 __m128i p3, p2, p1, p0; // loop invariants 801 802 LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue 803 804 for (k = 3; k > 0; --k) { 805 __m128i mask, tmp1, tmp2; 806 uint8_t* const b = p + 2 * stride; // beginning of p1 807 p += 4 * stride; 808 809 MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask 810 LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2); 811 MAX_DIFF2(p3, p2, tmp1, tmp2, mask); 812 813 // p3 and p2 are not just temporary variables here: they will be 814 // re-used for next span. And q2/q3 will become p1/p0 accordingly. 815 ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); 816 DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh); 817 818 // Store 819 _mm_storeu_si128((__m128i*)&b[0 * stride], p1); 820 _mm_storeu_si128((__m128i*)&b[1 * stride], p0); 821 _mm_storeu_si128((__m128i*)&b[2 * stride], p3); 822 _mm_storeu_si128((__m128i*)&b[3 * stride], p2); 823 824 // rotate samples 825 p1 = tmp1; 826 p0 = tmp2; 827 } 828 } 829 830 static void HFilter16i(uint8_t* p, int stride, 831 int thresh, int ithresh, int hev_thresh) { 832 int k; 833 __m128i p3, p2, p1, p0; // loop invariants 834 835 Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue 836 837 for (k = 3; k > 0; --k) { 838 __m128i mask, tmp1, tmp2; 839 uint8_t* const b = p + 2; // beginning of p1 840 841 p += 4; // beginning of q0 (and next span) 842 843 MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask 844 Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2); 845 MAX_DIFF2(p3, p2, tmp1, tmp2, mask); 846 847 ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); 848 DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh); 849 850 Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride); 851 852 // rotate samples 853 p1 = tmp1; 854 p0 = tmp2; 855 } 856 } 857 858 // 8-pixels wide variant, for chroma filtering 859 static void VFilter8(uint8_t* u, uint8_t* v, int stride, 860 int thresh, int ithresh, int hev_thresh) { 861 __m128i mask; 862 __m128i t1, p2, p1, p0, q0, q1, q2; 863 864 // Load p3, p2, p1, p0 865 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); 866 MAX_DIFF1(t1, p2, p1, p0, mask); 867 868 // Load q0, q1, q2, q3 869 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); 870 MAX_DIFF2(t1, q2, q1, q0, mask); 871 872 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 873 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 874 875 // Store 876 STOREUV(p2, u, v, -3 * stride); 877 STOREUV(p1, u, v, -2 * stride); 878 STOREUV(p0, u, v, -1 * stride); 879 STOREUV(q0, u, v, 0 * stride); 880 STOREUV(q1, u, v, 1 * stride); 881 STOREUV(q2, u, v, 2 * stride); 882 } 883 884 static void HFilter8(uint8_t* u, uint8_t* v, int stride, 885 int thresh, int ithresh, int hev_thresh) { 886 __m128i mask; 887 __m128i p3, p2, p1, p0, q0, q1, q2, q3; 888 889 uint8_t* const tu = u - 4; 890 uint8_t* const tv = v - 4; 891 Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0 892 MAX_DIFF1(p3, p2, p1, p0, mask); 893 894 Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3 895 MAX_DIFF2(q3, q2, q1, q0, mask); 896 897 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 898 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 899 900 Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride); 901 Store16x4(&q0, &q1, &q2, &q3, u, v, stride); 902 } 903 904 static void VFilter8i(uint8_t* u, uint8_t* v, int stride, 905 int thresh, int ithresh, int hev_thresh) { 906 __m128i mask; 907 __m128i t1, t2, p1, p0, q0, q1; 908 909 // Load p3, p2, p1, p0 910 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); 911 MAX_DIFF1(t2, t1, p1, p0, mask); 912 913 u += 4 * stride; 914 v += 4 * stride; 915 916 // Load q0, q1, q2, q3 917 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); 918 MAX_DIFF2(t2, t1, q1, q0, mask); 919 920 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 921 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 922 923 // Store 924 STOREUV(p1, u, v, -2 * stride); 925 STOREUV(p0, u, v, -1 * stride); 926 STOREUV(q0, u, v, 0 * stride); 927 STOREUV(q1, u, v, 1 * stride); 928 } 929 930 static void HFilter8i(uint8_t* u, uint8_t* v, int stride, 931 int thresh, int ithresh, int hev_thresh) { 932 __m128i mask; 933 __m128i t1, t2, p1, p0, q0, q1; 934 Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 935 MAX_DIFF1(t2, t1, p1, p0, mask); 936 937 u += 4; // beginning of q0 938 v += 4; 939 Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 940 MAX_DIFF2(t2, t1, q1, q0, mask); 941 942 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 943 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 944 945 u -= 2; // beginning of p1 946 v -= 2; 947 Store16x4(&p1, &p0, &q0, &q1, u, v, stride); 948 } 949 950 #endif // WEBP_USE_SSE2 951 952 //------------------------------------------------------------------------------ 953 // Entry point 954 955 extern void VP8DspInitSSE2(void); 956 957 void VP8DspInitSSE2(void) { 958 #if defined(WEBP_USE_SSE2) 959 VP8Transform = Transform; 960 #if defined(USE_TRANSFORM_AC3) 961 VP8TransformAC3 = TransformAC3; 962 #endif 963 964 VP8VFilter16 = VFilter16; 965 VP8HFilter16 = HFilter16; 966 VP8VFilter8 = VFilter8; 967 VP8HFilter8 = HFilter8; 968 VP8VFilter16i = VFilter16i; 969 VP8HFilter16i = HFilter16i; 970 VP8VFilter8i = VFilter8i; 971 VP8HFilter8i = HFilter8i; 972 973 VP8SimpleVFilter16 = SimpleVFilter16; 974 VP8SimpleHFilter16 = SimpleHFilter16; 975 VP8SimpleVFilter16i = SimpleVFilter16i; 976 VP8SimpleHFilter16i = SimpleHFilter16i; 977 #endif // WEBP_USE_SSE2 978 } 979