Home | History | Annotate | Download | only in rtl
      1 //===-- tsan_interceptors.cc ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 // FIXME: move as many interceptors as possible into
     13 // sanitizer_common/sanitizer_common_interceptors.inc
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "sanitizer_common/sanitizer_atomic.h"
     17 #include "sanitizer_common/sanitizer_libc.h"
     18 #include "sanitizer_common/sanitizer_linux.h"
     19 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
     20 #include "sanitizer_common/sanitizer_placement_new.h"
     21 #include "sanitizer_common/sanitizer_stacktrace.h"
     22 #include "interception/interception.h"
     23 #include "tsan_interface.h"
     24 #include "tsan_platform.h"
     25 #include "tsan_suppressions.h"
     26 #include "tsan_rtl.h"
     27 #include "tsan_mman.h"
     28 #include "tsan_fd.h"
     29 
     30 using namespace __tsan;  // NOLINT
     31 
     32 #if SANITIZER_FREEBSD
     33 #define __errno_location __error
     34 #define __libc_malloc __malloc
     35 #define __libc_realloc __realloc
     36 #define __libc_calloc __calloc
     37 #define __libc_free __free
     38 #define stdout __stdoutp
     39 #define stderr __stderrp
     40 #endif
     41 
     42 #ifdef __mips__
     43 const int kSigCount = 129;
     44 #else
     45 const int kSigCount = 65;
     46 #endif
     47 
     48 struct my_siginfo_t {
     49   // The size is determined by looking at sizeof of real siginfo_t on linux.
     50   u64 opaque[128 / sizeof(u64)];
     51 };
     52 
     53 #ifdef __mips__
     54 struct ucontext_t {
     55   u64 opaque[768 / sizeof(u64) + 1];
     56 };
     57 #else
     58 struct ucontext_t {
     59   // The size is determined by looking at sizeof of real ucontext_t on linux.
     60   u64 opaque[936 / sizeof(u64) + 1];
     61 };
     62 #endif
     63 
     64 extern "C" int pthread_attr_init(void *attr);
     65 extern "C" int pthread_attr_destroy(void *attr);
     66 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
     67 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
     68 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
     69 extern "C" int pthread_setspecific(unsigned key, const void *v);
     70 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
     71 extern "C" int pthread_yield();
     72 extern "C" int pthread_sigmask(int how, const __sanitizer_sigset_t *set,
     73                                __sanitizer_sigset_t *oldset);
     74 // REAL(sigfillset) defined in common interceptors.
     75 DECLARE_REAL(int, sigfillset, __sanitizer_sigset_t *set)
     76 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
     77 extern "C" void *pthread_self();
     78 extern "C" void _exit(int status);
     79 extern "C" int *__errno_location();
     80 extern "C" int fileno_unlocked(void *stream);
     81 extern "C" void *__libc_malloc(uptr size);
     82 extern "C" void *__libc_calloc(uptr size, uptr n);
     83 extern "C" void *__libc_realloc(void *ptr, uptr size);
     84 extern "C" void __libc_free(void *ptr);
     85 extern "C" int dirfd(void *dirp);
     86 #if !SANITIZER_FREEBSD
     87 extern "C" int mallopt(int param, int value);
     88 #endif
     89 extern __sanitizer_FILE *stdout, *stderr;
     90 const int PTHREAD_MUTEX_RECURSIVE = 1;
     91 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
     92 const int EINVAL = 22;
     93 const int EBUSY = 16;
     94 const int EOWNERDEAD = 130;
     95 const int EPOLL_CTL_ADD = 1;
     96 const int SIGILL = 4;
     97 const int SIGABRT = 6;
     98 const int SIGFPE = 8;
     99 const int SIGSEGV = 11;
    100 const int SIGPIPE = 13;
    101 const int SIGTERM = 15;
    102 #ifdef __mips__
    103 const int SIGBUS = 10;
    104 const int SIGSYS = 12;
    105 #else
    106 const int SIGBUS = 7;
    107 const int SIGSYS = 31;
    108 #endif
    109 void *const MAP_FAILED = (void*)-1;
    110 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
    111 const int MAP_FIXED = 0x10;
    112 typedef long long_t;  // NOLINT
    113 
    114 // From /usr/include/unistd.h
    115 # define F_ULOCK 0      /* Unlock a previously locked region.  */
    116 # define F_LOCK  1      /* Lock a region for exclusive use.  */
    117 # define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
    118 # define F_TEST  3      /* Test a region for other processes locks.  */
    119 
    120 #define errno (*__errno_location())
    121 
    122 typedef void (*sighandler_t)(int sig);
    123 typedef void (*sigactionhandler_t)(int sig, my_siginfo_t *siginfo, void *uctx);
    124 
    125 struct sigaction_t {
    126 #ifdef __mips__
    127   u32 sa_flags;
    128 #endif
    129   union {
    130     sighandler_t sa_handler;
    131     sigactionhandler_t sa_sigaction;
    132   };
    133 #if SANITIZER_FREEBSD
    134   int sa_flags;
    135   __sanitizer_sigset_t sa_mask;
    136 #else
    137   __sanitizer_sigset_t sa_mask;
    138 #ifndef __mips__
    139   int sa_flags;
    140 #endif
    141   void (*sa_restorer)();
    142 #endif
    143 };
    144 
    145 const sighandler_t SIG_DFL = (sighandler_t)0;
    146 const sighandler_t SIG_IGN = (sighandler_t)1;
    147 const sighandler_t SIG_ERR = (sighandler_t)-1;
    148 #if SANITIZER_FREEBSD
    149 const int SA_SIGINFO = 0x40;
    150 const int SIG_SETMASK = 3;
    151 #elif defined(__mips__)
    152 const int SA_SIGINFO = 8;
    153 const int SIG_SETMASK = 3;
    154 #else
    155 const int SA_SIGINFO = 4;
    156 const int SIG_SETMASK = 2;
    157 #endif
    158 
    159 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
    160   (!cur_thread()->is_inited)
    161 
    162 namespace std {
    163 struct nothrow_t {};
    164 }  // namespace std
    165 
    166 static sigaction_t sigactions[kSigCount];
    167 
    168 namespace __tsan {
    169 struct SignalDesc {
    170   bool armed;
    171   bool sigaction;
    172   my_siginfo_t siginfo;
    173   ucontext_t ctx;
    174 };
    175 
    176 struct ThreadSignalContext {
    177   int int_signal_send;
    178   atomic_uintptr_t in_blocking_func;
    179   atomic_uintptr_t have_pending_signals;
    180   SignalDesc pending_signals[kSigCount];
    181 };
    182 
    183 // The object is 64-byte aligned, because we want hot data to be located in
    184 // a single cache line if possible (it's accessed in every interceptor).
    185 static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)];
    186 static LibIgnore *libignore() {
    187   return reinterpret_cast<LibIgnore*>(&libignore_placeholder[0]);
    188 }
    189 
    190 void InitializeLibIgnore() {
    191   const SuppressionContext &supp = *Suppressions();
    192   const uptr n = supp.SuppressionCount();
    193   for (uptr i = 0; i < n; i++) {
    194     const Suppression *s = supp.SuppressionAt(i);
    195     if (0 == internal_strcmp(s->type, kSuppressionLib))
    196       libignore()->AddIgnoredLibrary(s->templ);
    197   }
    198   libignore()->OnLibraryLoaded(0);
    199 }
    200 
    201 }  // namespace __tsan
    202 
    203 static ThreadSignalContext *SigCtx(ThreadState *thr) {
    204   ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
    205   if (ctx == 0 && !thr->is_dead) {
    206     ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
    207     MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
    208     thr->signal_ctx = ctx;
    209   }
    210   return ctx;
    211 }
    212 
    213 static unsigned g_thread_finalize_key;
    214 
    215 class ScopedInterceptor {
    216  public:
    217   ScopedInterceptor(ThreadState *thr, const char *fname, uptr pc);
    218   ~ScopedInterceptor();
    219  private:
    220   ThreadState *const thr_;
    221   const uptr pc_;
    222   bool in_ignored_lib_;
    223 };
    224 
    225 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
    226                                      uptr pc)
    227     : thr_(thr)
    228     , pc_(pc)
    229     , in_ignored_lib_(false) {
    230   if (!thr_->ignore_interceptors) {
    231     Initialize(thr);
    232     FuncEntry(thr, pc);
    233   }
    234   DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
    235   if (!thr_->in_ignored_lib && libignore()->IsIgnored(pc)) {
    236     in_ignored_lib_ = true;
    237     thr_->in_ignored_lib = true;
    238     ThreadIgnoreBegin(thr_, pc_);
    239   }
    240 }
    241 
    242 ScopedInterceptor::~ScopedInterceptor() {
    243   if (in_ignored_lib_) {
    244     thr_->in_ignored_lib = false;
    245     ThreadIgnoreEnd(thr_, pc_);
    246   }
    247   if (!thr_->ignore_interceptors) {
    248     ProcessPendingSignals(thr_);
    249     FuncExit(thr_);
    250     CheckNoLocks(thr_);
    251   }
    252 }
    253 
    254 #define SCOPED_INTERCEPTOR_RAW(func, ...) \
    255     ThreadState *thr = cur_thread(); \
    256     const uptr caller_pc = GET_CALLER_PC(); \
    257     ScopedInterceptor si(thr, #func, caller_pc); \
    258     const uptr pc = StackTrace::GetCurrentPc(); \
    259     (void)pc; \
    260 /**/
    261 
    262 #define SCOPED_TSAN_INTERCEPTOR(func, ...) \
    263     SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
    264     if (REAL(func) == 0) { \
    265       Report("FATAL: ThreadSanitizer: failed to intercept %s\n", #func); \
    266       Die(); \
    267     }                                                    \
    268     if (thr->ignore_interceptors || thr->in_ignored_lib) \
    269       return REAL(func)(__VA_ARGS__); \
    270 /**/
    271 
    272 #define TSAN_INTERCEPTOR(ret, func, ...) INTERCEPTOR(ret, func, __VA_ARGS__)
    273 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
    274 #if SANITIZER_FREEBSD
    275 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
    276 #else
    277 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
    278 #endif
    279 
    280 #define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
    281   MemoryAccessRange((thr), (pc), (uptr)(s),                         \
    282     common_flags()->strict_string_checks ? (len) + 1 : (n), false)
    283 
    284 #define READ_STRING(thr, pc, s, n)                             \
    285     READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
    286 
    287 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
    288 
    289 struct BlockingCall {
    290   explicit BlockingCall(ThreadState *thr)
    291       : thr(thr)
    292       , ctx(SigCtx(thr)) {
    293     for (;;) {
    294       atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
    295       if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
    296         break;
    297       atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
    298       ProcessPendingSignals(thr);
    299     }
    300     // When we are in a "blocking call", we process signals asynchronously
    301     // (right when they arrive). In this context we do not expect to be
    302     // executing any user/runtime code. The known interceptor sequence when
    303     // this is not true is: pthread_join -> munmap(stack). It's fine
    304     // to ignore munmap in this case -- we handle stack shadow separately.
    305     thr->ignore_interceptors++;
    306   }
    307 
    308   ~BlockingCall() {
    309     thr->ignore_interceptors--;
    310     atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
    311   }
    312 
    313   ThreadState *thr;
    314   ThreadSignalContext *ctx;
    315 };
    316 
    317 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
    318   SCOPED_TSAN_INTERCEPTOR(sleep, sec);
    319   unsigned res = BLOCK_REAL(sleep)(sec);
    320   AfterSleep(thr, pc);
    321   return res;
    322 }
    323 
    324 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
    325   SCOPED_TSAN_INTERCEPTOR(usleep, usec);
    326   int res = BLOCK_REAL(usleep)(usec);
    327   AfterSleep(thr, pc);
    328   return res;
    329 }
    330 
    331 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
    332   SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
    333   int res = BLOCK_REAL(nanosleep)(req, rem);
    334   AfterSleep(thr, pc);
    335   return res;
    336 }
    337 
    338 // The sole reason tsan wraps atexit callbacks is to establish synchronization
    339 // between callback setup and callback execution.
    340 struct AtExitCtx {
    341   void (*f)();
    342   void *arg;
    343 };
    344 
    345 static void at_exit_wrapper(void *arg) {
    346   ThreadState *thr = cur_thread();
    347   uptr pc = 0;
    348   Acquire(thr, pc, (uptr)arg);
    349   AtExitCtx *ctx = (AtExitCtx*)arg;
    350   ((void(*)(void *arg))ctx->f)(ctx->arg);
    351   __libc_free(ctx);
    352 }
    353 
    354 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
    355       void *arg, void *dso);
    356 
    357 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
    358   if (cur_thread()->in_symbolizer)
    359     return 0;
    360   // We want to setup the atexit callback even if we are in ignored lib
    361   // or after fork.
    362   SCOPED_INTERCEPTOR_RAW(atexit, f);
    363   return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
    364 }
    365 
    366 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
    367   if (cur_thread()->in_symbolizer)
    368     return 0;
    369   SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
    370   return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
    371 }
    372 
    373 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
    374       void *arg, void *dso) {
    375   AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
    376   ctx->f = f;
    377   ctx->arg = arg;
    378   Release(thr, pc, (uptr)ctx);
    379   // Memory allocation in __cxa_atexit will race with free during exit,
    380   // because we do not see synchronization around atexit callback list.
    381   ThreadIgnoreBegin(thr, pc);
    382   int res = REAL(__cxa_atexit)(at_exit_wrapper, ctx, dso);
    383   ThreadIgnoreEnd(thr, pc);
    384   return res;
    385 }
    386 
    387 static void on_exit_wrapper(int status, void *arg) {
    388   ThreadState *thr = cur_thread();
    389   uptr pc = 0;
    390   Acquire(thr, pc, (uptr)arg);
    391   AtExitCtx *ctx = (AtExitCtx*)arg;
    392   ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
    393   __libc_free(ctx);
    394 }
    395 
    396 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
    397   if (cur_thread()->in_symbolizer)
    398     return 0;
    399   SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
    400   AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
    401   ctx->f = (void(*)())f;
    402   ctx->arg = arg;
    403   Release(thr, pc, (uptr)ctx);
    404   // Memory allocation in __cxa_atexit will race with free during exit,
    405   // because we do not see synchronization around atexit callback list.
    406   ThreadIgnoreBegin(thr, pc);
    407   int res = REAL(on_exit)(on_exit_wrapper, ctx);
    408   ThreadIgnoreEnd(thr, pc);
    409   return res;
    410 }
    411 
    412 // Cleanup old bufs.
    413 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
    414   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
    415     JmpBuf *buf = &thr->jmp_bufs[i];
    416     if (buf->sp <= sp) {
    417       uptr sz = thr->jmp_bufs.Size();
    418       thr->jmp_bufs[i] = thr->jmp_bufs[sz - 1];
    419       thr->jmp_bufs.PopBack();
    420       i--;
    421     }
    422   }
    423 }
    424 
    425 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
    426   if (!thr->is_inited)  // called from libc guts during bootstrap
    427     return;
    428   // Cleanup old bufs.
    429   JmpBufGarbageCollect(thr, sp);
    430   // Remember the buf.
    431   JmpBuf *buf = thr->jmp_bufs.PushBack();
    432   buf->sp = sp;
    433   buf->mangled_sp = mangled_sp;
    434   buf->shadow_stack_pos = thr->shadow_stack_pos;
    435   ThreadSignalContext *sctx = SigCtx(thr);
    436   buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
    437   buf->in_blocking_func = sctx ?
    438       atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
    439       false;
    440   buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
    441       memory_order_relaxed);
    442 }
    443 
    444 static void LongJmp(ThreadState *thr, uptr *env) {
    445 #if SANITIZER_FREEBSD
    446   uptr mangled_sp = env[2];
    447 #else
    448   uptr mangled_sp = env[6];
    449 #endif  // SANITIZER_FREEBSD
    450   // Find the saved buf by mangled_sp.
    451   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
    452     JmpBuf *buf = &thr->jmp_bufs[i];
    453     if (buf->mangled_sp == mangled_sp) {
    454       CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
    455       // Unwind the stack.
    456       while (thr->shadow_stack_pos > buf->shadow_stack_pos)
    457         FuncExit(thr);
    458       ThreadSignalContext *sctx = SigCtx(thr);
    459       if (sctx) {
    460         sctx->int_signal_send = buf->int_signal_send;
    461         atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
    462             memory_order_relaxed);
    463       }
    464       atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
    465           memory_order_relaxed);
    466       JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
    467       return;
    468     }
    469   }
    470   Printf("ThreadSanitizer: can't find longjmp buf\n");
    471   CHECK(0);
    472 }
    473 
    474 // FIXME: put everything below into a common extern "C" block?
    475 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
    476   SetJmp(cur_thread(), sp, mangled_sp);
    477 }
    478 
    479 // Not called.  Merely to satisfy TSAN_INTERCEPT().
    480 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    481 int __interceptor_setjmp(void *env);
    482 extern "C" int __interceptor_setjmp(void *env) {
    483   CHECK(0);
    484   return 0;
    485 }
    486 
    487 // FIXME: any reason to have a separate declaration?
    488 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    489 int __interceptor__setjmp(void *env);
    490 extern "C" int __interceptor__setjmp(void *env) {
    491   CHECK(0);
    492   return 0;
    493 }
    494 
    495 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    496 int __interceptor_sigsetjmp(void *env);
    497 extern "C" int __interceptor_sigsetjmp(void *env) {
    498   CHECK(0);
    499   return 0;
    500 }
    501 
    502 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    503 int __interceptor___sigsetjmp(void *env);
    504 extern "C" int __interceptor___sigsetjmp(void *env) {
    505   CHECK(0);
    506   return 0;
    507 }
    508 
    509 extern "C" int setjmp(void *env);
    510 extern "C" int _setjmp(void *env);
    511 extern "C" int sigsetjmp(void *env);
    512 extern "C" int __sigsetjmp(void *env);
    513 DEFINE_REAL(int, setjmp, void *env)
    514 DEFINE_REAL(int, _setjmp, void *env)
    515 DEFINE_REAL(int, sigsetjmp, void *env)
    516 DEFINE_REAL(int, __sigsetjmp, void *env)
    517 
    518 TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) {
    519   {
    520     SCOPED_TSAN_INTERCEPTOR(longjmp, env, val);
    521   }
    522   LongJmp(cur_thread(), env);
    523   REAL(longjmp)(env, val);
    524 }
    525 
    526 TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) {
    527   {
    528     SCOPED_TSAN_INTERCEPTOR(siglongjmp, env, val);
    529   }
    530   LongJmp(cur_thread(), env);
    531   REAL(siglongjmp)(env, val);
    532 }
    533 
    534 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
    535   if (cur_thread()->in_symbolizer)
    536     return __libc_malloc(size);
    537   void *p = 0;
    538   {
    539     SCOPED_INTERCEPTOR_RAW(malloc, size);
    540     p = user_alloc(thr, pc, size);
    541   }
    542   invoke_malloc_hook(p, size);
    543   return p;
    544 }
    545 
    546 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
    547   SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
    548   return user_alloc(thr, pc, sz, align);
    549 }
    550 
    551 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
    552   if (cur_thread()->in_symbolizer)
    553     return __libc_calloc(size, n);
    554   void *p = 0;
    555   {
    556     SCOPED_INTERCEPTOR_RAW(calloc, size, n);
    557     p = user_calloc(thr, pc, size, n);
    558   }
    559   invoke_malloc_hook(p, n * size);
    560   return p;
    561 }
    562 
    563 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
    564   if (cur_thread()->in_symbolizer)
    565     return __libc_realloc(p, size);
    566   if (p)
    567     invoke_free_hook(p);
    568   {
    569     SCOPED_INTERCEPTOR_RAW(realloc, p, size);
    570     p = user_realloc(thr, pc, p, size);
    571   }
    572   invoke_malloc_hook(p, size);
    573   return p;
    574 }
    575 
    576 TSAN_INTERCEPTOR(void, free, void *p) {
    577   if (p == 0)
    578     return;
    579   if (cur_thread()->in_symbolizer)
    580     return __libc_free(p);
    581   invoke_free_hook(p);
    582   SCOPED_INTERCEPTOR_RAW(free, p);
    583   user_free(thr, pc, p);
    584 }
    585 
    586 TSAN_INTERCEPTOR(void, cfree, void *p) {
    587   if (p == 0)
    588     return;
    589   if (cur_thread()->in_symbolizer)
    590     return __libc_free(p);
    591   invoke_free_hook(p);
    592   SCOPED_INTERCEPTOR_RAW(cfree, p);
    593   user_free(thr, pc, p);
    594 }
    595 
    596 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
    597   SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
    598   return user_alloc_usable_size(p);
    599 }
    600 
    601 #define OPERATOR_NEW_BODY(mangled_name) \
    602   if (cur_thread()->in_symbolizer) \
    603     return __libc_malloc(size); \
    604   void *p = 0; \
    605   {  \
    606     SCOPED_INTERCEPTOR_RAW(mangled_name, size); \
    607     p = user_alloc(thr, pc, size); \
    608   }  \
    609   invoke_malloc_hook(p, size);  \
    610   return p;
    611 
    612 SANITIZER_INTERFACE_ATTRIBUTE
    613 void *operator new(__sanitizer::uptr size);
    614 void *operator new(__sanitizer::uptr size) {
    615   OPERATOR_NEW_BODY(_Znwm);
    616 }
    617 
    618 SANITIZER_INTERFACE_ATTRIBUTE
    619 void *operator new[](__sanitizer::uptr size);
    620 void *operator new[](__sanitizer::uptr size) {
    621   OPERATOR_NEW_BODY(_Znam);
    622 }
    623 
    624 SANITIZER_INTERFACE_ATTRIBUTE
    625 void *operator new(__sanitizer::uptr size, std::nothrow_t const&);
    626 void *operator new(__sanitizer::uptr size, std::nothrow_t const&) {
    627   OPERATOR_NEW_BODY(_ZnwmRKSt9nothrow_t);
    628 }
    629 
    630 SANITIZER_INTERFACE_ATTRIBUTE
    631 void *operator new[](__sanitizer::uptr size, std::nothrow_t const&);
    632 void *operator new[](__sanitizer::uptr size, std::nothrow_t const&) {
    633   OPERATOR_NEW_BODY(_ZnamRKSt9nothrow_t);
    634 }
    635 
    636 #define OPERATOR_DELETE_BODY(mangled_name) \
    637   if (ptr == 0) return;  \
    638   if (cur_thread()->in_symbolizer) \
    639     return __libc_free(ptr); \
    640   invoke_free_hook(ptr);  \
    641   SCOPED_INTERCEPTOR_RAW(mangled_name, ptr);  \
    642   user_free(thr, pc, ptr);
    643 
    644 SANITIZER_INTERFACE_ATTRIBUTE
    645 void operator delete(void *ptr) throw();
    646 void operator delete(void *ptr) throw() {
    647   OPERATOR_DELETE_BODY(_ZdlPv);
    648 }
    649 
    650 SANITIZER_INTERFACE_ATTRIBUTE
    651 void operator delete[](void *ptr) throw();
    652 void operator delete[](void *ptr) throw() {
    653   OPERATOR_DELETE_BODY(_ZdaPv);
    654 }
    655 
    656 SANITIZER_INTERFACE_ATTRIBUTE
    657 void operator delete(void *ptr, std::nothrow_t const&);
    658 void operator delete(void *ptr, std::nothrow_t const&) {
    659   OPERATOR_DELETE_BODY(_ZdlPvRKSt9nothrow_t);
    660 }
    661 
    662 SANITIZER_INTERFACE_ATTRIBUTE
    663 void operator delete[](void *ptr, std::nothrow_t const&);
    664 void operator delete[](void *ptr, std::nothrow_t const&) {
    665   OPERATOR_DELETE_BODY(_ZdaPvRKSt9nothrow_t);
    666 }
    667 
    668 TSAN_INTERCEPTOR(uptr, strlen, const char *s) {
    669   SCOPED_TSAN_INTERCEPTOR(strlen, s);
    670   uptr len = internal_strlen(s);
    671   MemoryAccessRange(thr, pc, (uptr)s, len + 1, false);
    672   return len;
    673 }
    674 
    675 TSAN_INTERCEPTOR(void*, memset, void *dst, int v, uptr size) {
    676   // On FreeBSD we get here from libthr internals on thread initialization.
    677   if (!COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) {
    678     SCOPED_TSAN_INTERCEPTOR(memset, dst, v, size);
    679     MemoryAccessRange(thr, pc, (uptr)dst, size, true);
    680   }
    681   return internal_memset(dst, v, size);
    682 }
    683 
    684 TSAN_INTERCEPTOR(void*, memcpy, void *dst, const void *src, uptr size) {
    685   // On FreeBSD we get here from libthr internals on thread initialization.
    686   if (!COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) {
    687     SCOPED_TSAN_INTERCEPTOR(memcpy, dst, src, size);
    688     MemoryAccessRange(thr, pc, (uptr)dst, size, true);
    689     MemoryAccessRange(thr, pc, (uptr)src, size, false);
    690   }
    691   return internal_memcpy(dst, src, size);
    692 }
    693 
    694 TSAN_INTERCEPTOR(int, memcmp, const void *s1, const void *s2, uptr n) {
    695   SCOPED_TSAN_INTERCEPTOR(memcmp, s1, s2, n);
    696   int res = 0;
    697   uptr len = 0;
    698   for (; len < n; len++) {
    699     if ((res = ((const unsigned char *)s1)[len] -
    700                ((const unsigned char *)s2)[len]))
    701       break;
    702   }
    703   MemoryAccessRange(thr, pc, (uptr)s1, len < n ? len + 1 : n, false);
    704   MemoryAccessRange(thr, pc, (uptr)s2, len < n ? len + 1 : n, false);
    705   return res;
    706 }
    707 
    708 TSAN_INTERCEPTOR(void*, memmove, void *dst, void *src, uptr n) {
    709   SCOPED_TSAN_INTERCEPTOR(memmove, dst, src, n);
    710   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
    711   MemoryAccessRange(thr, pc, (uptr)src, n, false);
    712   return REAL(memmove)(dst, src, n);
    713 }
    714 
    715 TSAN_INTERCEPTOR(char*, strchr, char *s, int c) {
    716   SCOPED_TSAN_INTERCEPTOR(strchr, s, c);
    717   char *res = REAL(strchr)(s, c);
    718   uptr len = internal_strlen(s);
    719   uptr n = res ? (char*)res - (char*)s + 1 : len + 1;
    720   READ_STRING_OF_LEN(thr, pc, s, len, n);
    721   return res;
    722 }
    723 
    724 TSAN_INTERCEPTOR(char*, strchrnul, char *s, int c) {
    725   SCOPED_TSAN_INTERCEPTOR(strchrnul, s, c);
    726   char *res = REAL(strchrnul)(s, c);
    727   uptr len = (char*)res - (char*)s + 1;
    728   READ_STRING(thr, pc, s, len);
    729   return res;
    730 }
    731 
    732 TSAN_INTERCEPTOR(char*, strrchr, char *s, int c) {
    733   SCOPED_TSAN_INTERCEPTOR(strrchr, s, c);
    734   MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s) + 1, false);
    735   return REAL(strrchr)(s, c);
    736 }
    737 
    738 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) {  // NOLINT
    739   SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);  // NOLINT
    740   uptr srclen = internal_strlen(src);
    741   MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
    742   MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
    743   return REAL(strcpy)(dst, src);  // NOLINT
    744 }
    745 
    746 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
    747   SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
    748   uptr srclen = internal_strnlen(src, n);
    749   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
    750   MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
    751   return REAL(strncpy)(dst, src, n);
    752 }
    753 
    754 TSAN_INTERCEPTOR(const char*, strstr, const char *s1, const char *s2) {
    755   SCOPED_TSAN_INTERCEPTOR(strstr, s1, s2);
    756   const char *res = REAL(strstr)(s1, s2);
    757   uptr len1 = internal_strlen(s1);
    758   uptr len2 = internal_strlen(s2);
    759   MemoryAccessRange(thr, pc, (uptr)s1, len1 + 1, false);
    760   MemoryAccessRange(thr, pc, (uptr)s2, len2 + 1, false);
    761   return res;
    762 }
    763 
    764 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
    765   SCOPED_TSAN_INTERCEPTOR(strdup, str);
    766   // strdup will call malloc, so no instrumentation is required here.
    767   return REAL(strdup)(str);
    768 }
    769 
    770 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
    771   if (*addr) {
    772     if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
    773       if (flags & MAP_FIXED) {
    774         errno = EINVAL;
    775         return false;
    776       } else {
    777         *addr = 0;
    778       }
    779     }
    780   }
    781   return true;
    782 }
    783 
    784 TSAN_INTERCEPTOR(void*, mmap, void *addr, long_t sz, int prot,
    785                          int flags, int fd, unsigned off) {
    786   SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
    787   if (!fix_mmap_addr(&addr, sz, flags))
    788     return MAP_FAILED;
    789   void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
    790   if (res != MAP_FAILED) {
    791     if (fd > 0)
    792       FdAccess(thr, pc, fd);
    793     MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
    794   }
    795   return res;
    796 }
    797 
    798 #if !SANITIZER_FREEBSD
    799 TSAN_INTERCEPTOR(void*, mmap64, void *addr, long_t sz, int prot,
    800                            int flags, int fd, u64 off) {
    801   SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
    802   if (!fix_mmap_addr(&addr, sz, flags))
    803     return MAP_FAILED;
    804   void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
    805   if (res != MAP_FAILED) {
    806     if (fd > 0)
    807       FdAccess(thr, pc, fd);
    808     MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
    809   }
    810   return res;
    811 }
    812 #define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
    813 #else
    814 #define TSAN_MAYBE_INTERCEPT_MMAP64
    815 #endif
    816 
    817 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
    818   SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
    819   if (sz != 0) {
    820     // If sz == 0, munmap will return EINVAL and don't unmap any memory.
    821     DontNeedShadowFor((uptr)addr, sz);
    822     ctx->metamap.ResetRange(thr, pc, (uptr)addr, (uptr)sz);
    823   }
    824   int res = REAL(munmap)(addr, sz);
    825   return res;
    826 }
    827 
    828 #if !SANITIZER_FREEBSD
    829 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
    830   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
    831   return user_alloc(thr, pc, sz, align);
    832 }
    833 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
    834 #else
    835 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
    836 #endif
    837 
    838 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
    839   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
    840   return user_alloc(thr, pc, sz, align);
    841 }
    842 
    843 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
    844   SCOPED_INTERCEPTOR_RAW(valloc, sz);
    845   return user_alloc(thr, pc, sz, GetPageSizeCached());
    846 }
    847 
    848 #if !SANITIZER_FREEBSD
    849 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
    850   SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
    851   sz = RoundUp(sz, GetPageSizeCached());
    852   return user_alloc(thr, pc, sz, GetPageSizeCached());
    853 }
    854 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
    855 #else
    856 #define TSAN_MAYBE_INTERCEPT_PVALLOC
    857 #endif
    858 
    859 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
    860   SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
    861   *memptr = user_alloc(thr, pc, sz, align);
    862   return 0;
    863 }
    864 
    865 // Used in thread-safe function static initialization.
    866 extern "C" int INTERFACE_ATTRIBUTE __cxa_guard_acquire(atomic_uint32_t *g) {
    867   SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
    868   for (;;) {
    869     u32 cmp = atomic_load(g, memory_order_acquire);
    870     if (cmp == 0) {
    871       if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
    872         return 1;
    873     } else if (cmp == 1) {
    874       Acquire(thr, pc, (uptr)g);
    875       return 0;
    876     } else {
    877       internal_sched_yield();
    878     }
    879   }
    880 }
    881 
    882 extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_release(atomic_uint32_t *g) {
    883   SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
    884   Release(thr, pc, (uptr)g);
    885   atomic_store(g, 1, memory_order_release);
    886 }
    887 
    888 extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_abort(atomic_uint32_t *g) {
    889   SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
    890   atomic_store(g, 0, memory_order_relaxed);
    891 }
    892 
    893 static void thread_finalize(void *v) {
    894   uptr iter = (uptr)v;
    895   if (iter > 1) {
    896     if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
    897       Printf("ThreadSanitizer: failed to set thread key\n");
    898       Die();
    899     }
    900     return;
    901   }
    902   {
    903     ThreadState *thr = cur_thread();
    904     ThreadFinish(thr);
    905     ThreadSignalContext *sctx = thr->signal_ctx;
    906     if (sctx) {
    907       thr->signal_ctx = 0;
    908       UnmapOrDie(sctx, sizeof(*sctx));
    909     }
    910   }
    911 }
    912 
    913 
    914 struct ThreadParam {
    915   void* (*callback)(void *arg);
    916   void *param;
    917   atomic_uintptr_t tid;
    918 };
    919 
    920 extern "C" void *__tsan_thread_start_func(void *arg) {
    921   ThreadParam *p = (ThreadParam*)arg;
    922   void* (*callback)(void *arg) = p->callback;
    923   void *param = p->param;
    924   int tid = 0;
    925   {
    926     ThreadState *thr = cur_thread();
    927     // Thread-local state is not initialized yet.
    928     ScopedIgnoreInterceptors ignore;
    929     ThreadIgnoreBegin(thr, 0);
    930     if (pthread_setspecific(g_thread_finalize_key,
    931                             (void *)kPthreadDestructorIterations)) {
    932       Printf("ThreadSanitizer: failed to set thread key\n");
    933       Die();
    934     }
    935     ThreadIgnoreEnd(thr, 0);
    936     while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
    937       pthread_yield();
    938     atomic_store(&p->tid, 0, memory_order_release);
    939     ThreadStart(thr, tid, GetTid());
    940   }
    941   void *res = callback(param);
    942   // Prevent the callback from being tail called,
    943   // it mixes up stack traces.
    944   volatile int foo = 42;
    945   foo++;
    946   return res;
    947 }
    948 
    949 TSAN_INTERCEPTOR(int, pthread_create,
    950     void *th, void *attr, void *(*callback)(void*), void * param) {
    951   SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
    952   if (ctx->after_multithreaded_fork) {
    953     if (flags()->die_after_fork) {
    954       Report("ThreadSanitizer: starting new threads after multi-threaded "
    955           "fork is not supported. Dying (set die_after_fork=0 to override)\n");
    956       Die();
    957     } else {
    958       VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
    959           "fork is not supported (pid %d). Continuing because of "
    960           "die_after_fork=0, but you are on your own\n", internal_getpid());
    961     }
    962   }
    963   __sanitizer_pthread_attr_t myattr;
    964   if (attr == 0) {
    965     pthread_attr_init(&myattr);
    966     attr = &myattr;
    967   }
    968   int detached = 0;
    969   REAL(pthread_attr_getdetachstate)(attr, &detached);
    970   AdjustStackSize(attr);
    971 
    972   ThreadParam p;
    973   p.callback = callback;
    974   p.param = param;
    975   atomic_store(&p.tid, 0, memory_order_relaxed);
    976   int res = -1;
    977   {
    978     // Otherwise we see false positives in pthread stack manipulation.
    979     ScopedIgnoreInterceptors ignore;
    980     ThreadIgnoreBegin(thr, pc);
    981     res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
    982     ThreadIgnoreEnd(thr, pc);
    983   }
    984   if (res == 0) {
    985     int tid = ThreadCreate(thr, pc, *(uptr*)th, detached);
    986     CHECK_NE(tid, 0);
    987     atomic_store(&p.tid, tid, memory_order_release);
    988     while (atomic_load(&p.tid, memory_order_acquire) != 0)
    989       pthread_yield();
    990   }
    991   if (attr == &myattr)
    992     pthread_attr_destroy(&myattr);
    993   return res;
    994 }
    995 
    996 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
    997   SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
    998   int tid = ThreadTid(thr, pc, (uptr)th);
    999   ThreadIgnoreBegin(thr, pc);
   1000   int res = BLOCK_REAL(pthread_join)(th, ret);
   1001   ThreadIgnoreEnd(thr, pc);
   1002   if (res == 0) {
   1003     ThreadJoin(thr, pc, tid);
   1004   }
   1005   return res;
   1006 }
   1007 
   1008 DEFINE_REAL_PTHREAD_FUNCTIONS
   1009 
   1010 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
   1011   SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
   1012   int tid = ThreadTid(thr, pc, (uptr)th);
   1013   int res = REAL(pthread_detach)(th);
   1014   if (res == 0) {
   1015     ThreadDetach(thr, pc, tid);
   1016   }
   1017   return res;
   1018 }
   1019 
   1020 // Problem:
   1021 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
   1022 // pthread_cond_t has different size in the different versions.
   1023 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
   1024 // after pthread_cond_t (old cond is smaller).
   1025 // If we call old REAL functions for new pthread_cond_t, we will lose  some
   1026 // functionality (e.g. old functions do not support waiting against
   1027 // CLOCK_REALTIME).
   1028 // Proper handling would require to have 2 versions of interceptors as well.
   1029 // But this is messy, in particular requires linker scripts when sanitizer
   1030 // runtime is linked into a shared library.
   1031 // Instead we assume we don't have dynamic libraries built against old
   1032 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
   1033 // that allows to work with old libraries (but this mode does not support
   1034 // some features, e.g. pthread_condattr_getpshared).
   1035 static void *init_cond(void *c, bool force = false) {
   1036   // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
   1037   // So we allocate additional memory on the side large enough to hold
   1038   // any pthread_cond_t object. Always call new REAL functions, but pass
   1039   // the aux object to them.
   1040   // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
   1041   // first word of pthread_cond_t to zero.
   1042   // It's all relevant only for linux.
   1043   if (!common_flags()->legacy_pthread_cond)
   1044     return c;
   1045   atomic_uintptr_t *p = (atomic_uintptr_t*)c;
   1046   uptr cond = atomic_load(p, memory_order_acquire);
   1047   if (!force && cond != 0)
   1048     return (void*)cond;
   1049   void *newcond = WRAP(malloc)(pthread_cond_t_sz);
   1050   internal_memset(newcond, 0, pthread_cond_t_sz);
   1051   if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
   1052       memory_order_acq_rel))
   1053     return newcond;
   1054   WRAP(free)(newcond);
   1055   return (void*)cond;
   1056 }
   1057 
   1058 struct CondMutexUnlockCtx {
   1059   ScopedInterceptor *si;
   1060   ThreadState *thr;
   1061   uptr pc;
   1062   void *m;
   1063 };
   1064 
   1065 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
   1066   // pthread_cond_wait interceptor has enabled async signal delivery
   1067   // (see BlockingCall below). Disable async signals since we are running
   1068   // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
   1069   // since the thread is cancelled, so we have to manually execute them
   1070   // (the thread still can run some user code due to pthread_cleanup_push).
   1071   ThreadSignalContext *ctx = SigCtx(arg->thr);
   1072   CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
   1073   atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
   1074   MutexLock(arg->thr, arg->pc, (uptr)arg->m);
   1075   // Undo BlockingCall ctor effects.
   1076   arg->thr->ignore_interceptors--;
   1077   arg->si->~ScopedInterceptor();
   1078 }
   1079 
   1080 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
   1081   void *cond = init_cond(c, true);
   1082   SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
   1083   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
   1084   return REAL(pthread_cond_init)(cond, a);
   1085 }
   1086 
   1087 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
   1088   void *cond = init_cond(c);
   1089   SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
   1090   MutexUnlock(thr, pc, (uptr)m);
   1091   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1092   CondMutexUnlockCtx arg = {&si, thr, pc, m};
   1093   int res = 0;
   1094   // This ensures that we handle mutex lock even in case of pthread_cancel.
   1095   // See test/tsan/cond_cancel.cc.
   1096   {
   1097     // Enable signal delivery while the thread is blocked.
   1098     BlockingCall bc(thr);
   1099     res = call_pthread_cancel_with_cleanup(
   1100         (int(*)(void *c, void *m, void *abstime))REAL(pthread_cond_wait),
   1101         cond, m, 0, (void(*)(void *arg))cond_mutex_unlock, &arg);
   1102   }
   1103   if (res == errno_EOWNERDEAD)
   1104     MutexRepair(thr, pc, (uptr)m);
   1105   MutexLock(thr, pc, (uptr)m);
   1106   return res;
   1107 }
   1108 
   1109 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
   1110   void *cond = init_cond(c);
   1111   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
   1112   MutexUnlock(thr, pc, (uptr)m);
   1113   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1114   CondMutexUnlockCtx arg = {&si, thr, pc, m};
   1115   int res = 0;
   1116   // This ensures that we handle mutex lock even in case of pthread_cancel.
   1117   // See test/tsan/cond_cancel.cc.
   1118   {
   1119     BlockingCall bc(thr);
   1120     res = call_pthread_cancel_with_cleanup(
   1121         REAL(pthread_cond_timedwait), cond, m, abstime,
   1122         (void(*)(void *arg))cond_mutex_unlock, &arg);
   1123   }
   1124   if (res == errno_EOWNERDEAD)
   1125     MutexRepair(thr, pc, (uptr)m);
   1126   MutexLock(thr, pc, (uptr)m);
   1127   return res;
   1128 }
   1129 
   1130 INTERCEPTOR(int, pthread_cond_signal, void *c) {
   1131   void *cond = init_cond(c);
   1132   SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
   1133   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1134   return REAL(pthread_cond_signal)(cond);
   1135 }
   1136 
   1137 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
   1138   void *cond = init_cond(c);
   1139   SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
   1140   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1141   return REAL(pthread_cond_broadcast)(cond);
   1142 }
   1143 
   1144 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
   1145   void *cond = init_cond(c);
   1146   SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
   1147   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
   1148   int res = REAL(pthread_cond_destroy)(cond);
   1149   if (common_flags()->legacy_pthread_cond) {
   1150     // Free our aux cond and zero the pointer to not leave dangling pointers.
   1151     WRAP(free)(cond);
   1152     atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
   1153   }
   1154   return res;
   1155 }
   1156 
   1157 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
   1158   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
   1159   int res = REAL(pthread_mutex_init)(m, a);
   1160   if (res == 0) {
   1161     bool recursive = false;
   1162     if (a) {
   1163       int type = 0;
   1164       if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
   1165         recursive = (type == PTHREAD_MUTEX_RECURSIVE
   1166             || type == PTHREAD_MUTEX_RECURSIVE_NP);
   1167     }
   1168     MutexCreate(thr, pc, (uptr)m, false, recursive, false);
   1169   }
   1170   return res;
   1171 }
   1172 
   1173 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
   1174   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
   1175   int res = REAL(pthread_mutex_destroy)(m);
   1176   if (res == 0 || res == EBUSY) {
   1177     MutexDestroy(thr, pc, (uptr)m);
   1178   }
   1179   return res;
   1180 }
   1181 
   1182 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
   1183   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
   1184   int res = REAL(pthread_mutex_trylock)(m);
   1185   if (res == EOWNERDEAD)
   1186     MutexRepair(thr, pc, (uptr)m);
   1187   if (res == 0 || res == EOWNERDEAD)
   1188     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
   1189   return res;
   1190 }
   1191 
   1192 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
   1193   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
   1194   int res = REAL(pthread_mutex_timedlock)(m, abstime);
   1195   if (res == 0) {
   1196     MutexLock(thr, pc, (uptr)m);
   1197   }
   1198   return res;
   1199 }
   1200 
   1201 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
   1202   SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
   1203   int res = REAL(pthread_spin_init)(m, pshared);
   1204   if (res == 0) {
   1205     MutexCreate(thr, pc, (uptr)m, false, false, false);
   1206   }
   1207   return res;
   1208 }
   1209 
   1210 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
   1211   SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
   1212   int res = REAL(pthread_spin_destroy)(m);
   1213   if (res == 0) {
   1214     MutexDestroy(thr, pc, (uptr)m);
   1215   }
   1216   return res;
   1217 }
   1218 
   1219 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
   1220   SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
   1221   int res = REAL(pthread_spin_lock)(m);
   1222   if (res == 0) {
   1223     MutexLock(thr, pc, (uptr)m);
   1224   }
   1225   return res;
   1226 }
   1227 
   1228 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
   1229   SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
   1230   int res = REAL(pthread_spin_trylock)(m);
   1231   if (res == 0) {
   1232     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
   1233   }
   1234   return res;
   1235 }
   1236 
   1237 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
   1238   SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
   1239   MutexUnlock(thr, pc, (uptr)m);
   1240   int res = REAL(pthread_spin_unlock)(m);
   1241   return res;
   1242 }
   1243 
   1244 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
   1245   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
   1246   int res = REAL(pthread_rwlock_init)(m, a);
   1247   if (res == 0) {
   1248     MutexCreate(thr, pc, (uptr)m, true, false, false);
   1249   }
   1250   return res;
   1251 }
   1252 
   1253 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
   1254   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
   1255   int res = REAL(pthread_rwlock_destroy)(m);
   1256   if (res == 0) {
   1257     MutexDestroy(thr, pc, (uptr)m);
   1258   }
   1259   return res;
   1260 }
   1261 
   1262 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
   1263   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
   1264   int res = REAL(pthread_rwlock_rdlock)(m);
   1265   if (res == 0) {
   1266     MutexReadLock(thr, pc, (uptr)m);
   1267   }
   1268   return res;
   1269 }
   1270 
   1271 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
   1272   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
   1273   int res = REAL(pthread_rwlock_tryrdlock)(m);
   1274   if (res == 0) {
   1275     MutexReadLock(thr, pc, (uptr)m, /*try_lock=*/true);
   1276   }
   1277   return res;
   1278 }
   1279 
   1280 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
   1281   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
   1282   int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
   1283   if (res == 0) {
   1284     MutexReadLock(thr, pc, (uptr)m);
   1285   }
   1286   return res;
   1287 }
   1288 
   1289 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
   1290   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
   1291   int res = REAL(pthread_rwlock_wrlock)(m);
   1292   if (res == 0) {
   1293     MutexLock(thr, pc, (uptr)m);
   1294   }
   1295   return res;
   1296 }
   1297 
   1298 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
   1299   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
   1300   int res = REAL(pthread_rwlock_trywrlock)(m);
   1301   if (res == 0) {
   1302     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
   1303   }
   1304   return res;
   1305 }
   1306 
   1307 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
   1308   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
   1309   int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
   1310   if (res == 0) {
   1311     MutexLock(thr, pc, (uptr)m);
   1312   }
   1313   return res;
   1314 }
   1315 
   1316 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
   1317   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
   1318   MutexReadOrWriteUnlock(thr, pc, (uptr)m);
   1319   int res = REAL(pthread_rwlock_unlock)(m);
   1320   return res;
   1321 }
   1322 
   1323 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
   1324   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
   1325   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
   1326   int res = REAL(pthread_barrier_init)(b, a, count);
   1327   return res;
   1328 }
   1329 
   1330 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
   1331   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
   1332   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
   1333   int res = REAL(pthread_barrier_destroy)(b);
   1334   return res;
   1335 }
   1336 
   1337 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
   1338   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
   1339   Release(thr, pc, (uptr)b);
   1340   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
   1341   int res = REAL(pthread_barrier_wait)(b);
   1342   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
   1343   if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
   1344     Acquire(thr, pc, (uptr)b);
   1345   }
   1346   return res;
   1347 }
   1348 
   1349 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
   1350   SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
   1351   if (o == 0 || f == 0)
   1352     return EINVAL;
   1353   atomic_uint32_t *a = static_cast<atomic_uint32_t*>(o);
   1354   u32 v = atomic_load(a, memory_order_acquire);
   1355   if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
   1356                                                memory_order_relaxed)) {
   1357     (*f)();
   1358     if (!thr->in_ignored_lib)
   1359       Release(thr, pc, (uptr)o);
   1360     atomic_store(a, 2, memory_order_release);
   1361   } else {
   1362     while (v != 2) {
   1363       pthread_yield();
   1364       v = atomic_load(a, memory_order_acquire);
   1365     }
   1366     if (!thr->in_ignored_lib)
   1367       Acquire(thr, pc, (uptr)o);
   1368   }
   1369   return 0;
   1370 }
   1371 
   1372 TSAN_INTERCEPTOR(int, sem_init, void *s, int pshared, unsigned value) {
   1373   SCOPED_TSAN_INTERCEPTOR(sem_init, s, pshared, value);
   1374   int res = REAL(sem_init)(s, pshared, value);
   1375   return res;
   1376 }
   1377 
   1378 TSAN_INTERCEPTOR(int, sem_destroy, void *s) {
   1379   SCOPED_TSAN_INTERCEPTOR(sem_destroy, s);
   1380   int res = REAL(sem_destroy)(s);
   1381   return res;
   1382 }
   1383 
   1384 TSAN_INTERCEPTOR(int, sem_wait, void *s) {
   1385   SCOPED_TSAN_INTERCEPTOR(sem_wait, s);
   1386   int res = BLOCK_REAL(sem_wait)(s);
   1387   if (res == 0) {
   1388     Acquire(thr, pc, (uptr)s);
   1389   }
   1390   return res;
   1391 }
   1392 
   1393 TSAN_INTERCEPTOR(int, sem_trywait, void *s) {
   1394   SCOPED_TSAN_INTERCEPTOR(sem_trywait, s);
   1395   int res = BLOCK_REAL(sem_trywait)(s);
   1396   if (res == 0) {
   1397     Acquire(thr, pc, (uptr)s);
   1398   }
   1399   return res;
   1400 }
   1401 
   1402 TSAN_INTERCEPTOR(int, sem_timedwait, void *s, void *abstime) {
   1403   SCOPED_TSAN_INTERCEPTOR(sem_timedwait, s, abstime);
   1404   int res = BLOCK_REAL(sem_timedwait)(s, abstime);
   1405   if (res == 0) {
   1406     Acquire(thr, pc, (uptr)s);
   1407   }
   1408   return res;
   1409 }
   1410 
   1411 TSAN_INTERCEPTOR(int, sem_post, void *s) {
   1412   SCOPED_TSAN_INTERCEPTOR(sem_post, s);
   1413   Release(thr, pc, (uptr)s);
   1414   int res = REAL(sem_post)(s);
   1415   return res;
   1416 }
   1417 
   1418 TSAN_INTERCEPTOR(int, sem_getvalue, void *s, int *sval) {
   1419   SCOPED_TSAN_INTERCEPTOR(sem_getvalue, s, sval);
   1420   int res = REAL(sem_getvalue)(s, sval);
   1421   if (res == 0) {
   1422     Acquire(thr, pc, (uptr)s);
   1423   }
   1424   return res;
   1425 }
   1426 
   1427 #if !SANITIZER_FREEBSD
   1428 TSAN_INTERCEPTOR(int, __xstat, int version, const char *path, void *buf) {
   1429   SCOPED_TSAN_INTERCEPTOR(__xstat, version, path, buf);
   1430   READ_STRING(thr, pc, path, 0);
   1431   return REAL(__xstat)(version, path, buf);
   1432 }
   1433 #define TSAN_MAYBE_INTERCEPT___XSTAT TSAN_INTERCEPT(__xstat)
   1434 #else
   1435 #define TSAN_MAYBE_INTERCEPT___XSTAT
   1436 #endif
   1437 
   1438 TSAN_INTERCEPTOR(int, stat, const char *path, void *buf) {
   1439 #if SANITIZER_FREEBSD
   1440   SCOPED_TSAN_INTERCEPTOR(stat, path, buf);
   1441   READ_STRING(thr, pc, path, 0);
   1442   return REAL(stat)(path, buf);
   1443 #else
   1444   SCOPED_TSAN_INTERCEPTOR(__xstat, 0, path, buf);
   1445   READ_STRING(thr, pc, path, 0);
   1446   return REAL(__xstat)(0, path, buf);
   1447 #endif
   1448 }
   1449 
   1450 #if !SANITIZER_FREEBSD
   1451 TSAN_INTERCEPTOR(int, __xstat64, int version, const char *path, void *buf) {
   1452   SCOPED_TSAN_INTERCEPTOR(__xstat64, version, path, buf);
   1453   READ_STRING(thr, pc, path, 0);
   1454   return REAL(__xstat64)(version, path, buf);
   1455 }
   1456 #define TSAN_MAYBE_INTERCEPT___XSTAT64 TSAN_INTERCEPT(__xstat64)
   1457 #else
   1458 #define TSAN_MAYBE_INTERCEPT___XSTAT64
   1459 #endif
   1460 
   1461 #if !SANITIZER_FREEBSD
   1462 TSAN_INTERCEPTOR(int, stat64, const char *path, void *buf) {
   1463   SCOPED_TSAN_INTERCEPTOR(__xstat64, 0, path, buf);
   1464   READ_STRING(thr, pc, path, 0);
   1465   return REAL(__xstat64)(0, path, buf);
   1466 }
   1467 #define TSAN_MAYBE_INTERCEPT_STAT64 TSAN_INTERCEPT(stat64)
   1468 #else
   1469 #define TSAN_MAYBE_INTERCEPT_STAT64
   1470 #endif
   1471 
   1472 #if !SANITIZER_FREEBSD
   1473 TSAN_INTERCEPTOR(int, __lxstat, int version, const char *path, void *buf) {
   1474   SCOPED_TSAN_INTERCEPTOR(__lxstat, version, path, buf);
   1475   READ_STRING(thr, pc, path, 0);
   1476   return REAL(__lxstat)(version, path, buf);
   1477 }
   1478 #define TSAN_MAYBE_INTERCEPT___LXSTAT TSAN_INTERCEPT(__lxstat)
   1479 #else
   1480 #define TSAN_MAYBE_INTERCEPT___LXSTAT
   1481 #endif
   1482 
   1483 TSAN_INTERCEPTOR(int, lstat, const char *path, void *buf) {
   1484 #if SANITIZER_FREEBSD
   1485   SCOPED_TSAN_INTERCEPTOR(lstat, path, buf);
   1486   READ_STRING(thr, pc, path, 0);
   1487   return REAL(lstat)(path, buf);
   1488 #else
   1489   SCOPED_TSAN_INTERCEPTOR(__lxstat, 0, path, buf);
   1490   READ_STRING(thr, pc, path, 0);
   1491   return REAL(__lxstat)(0, path, buf);
   1492 #endif
   1493 }
   1494 
   1495 #if !SANITIZER_FREEBSD
   1496 TSAN_INTERCEPTOR(int, __lxstat64, int version, const char *path, void *buf) {
   1497   SCOPED_TSAN_INTERCEPTOR(__lxstat64, version, path, buf);
   1498   READ_STRING(thr, pc, path, 0);
   1499   return REAL(__lxstat64)(version, path, buf);
   1500 }
   1501 #define TSAN_MAYBE_INTERCEPT___LXSTAT64 TSAN_INTERCEPT(__lxstat64)
   1502 #else
   1503 #define TSAN_MAYBE_INTERCEPT___LXSTAT64
   1504 #endif
   1505 
   1506 #if !SANITIZER_FREEBSD
   1507 TSAN_INTERCEPTOR(int, lstat64, const char *path, void *buf) {
   1508   SCOPED_TSAN_INTERCEPTOR(__lxstat64, 0, path, buf);
   1509   READ_STRING(thr, pc, path, 0);
   1510   return REAL(__lxstat64)(0, path, buf);
   1511 }
   1512 #define TSAN_MAYBE_INTERCEPT_LSTAT64 TSAN_INTERCEPT(lstat64)
   1513 #else
   1514 #define TSAN_MAYBE_INTERCEPT_LSTAT64
   1515 #endif
   1516 
   1517 #if !SANITIZER_FREEBSD
   1518 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
   1519   SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
   1520   if (fd > 0)
   1521     FdAccess(thr, pc, fd);
   1522   return REAL(__fxstat)(version, fd, buf);
   1523 }
   1524 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
   1525 #else
   1526 #define TSAN_MAYBE_INTERCEPT___FXSTAT
   1527 #endif
   1528 
   1529 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
   1530 #if SANITIZER_FREEBSD
   1531   SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
   1532   if (fd > 0)
   1533     FdAccess(thr, pc, fd);
   1534   return REAL(fstat)(fd, buf);
   1535 #else
   1536   SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
   1537   if (fd > 0)
   1538     FdAccess(thr, pc, fd);
   1539   return REAL(__fxstat)(0, fd, buf);
   1540 #endif
   1541 }
   1542 
   1543 #if !SANITIZER_FREEBSD
   1544 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
   1545   SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
   1546   if (fd > 0)
   1547     FdAccess(thr, pc, fd);
   1548   return REAL(__fxstat64)(version, fd, buf);
   1549 }
   1550 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
   1551 #else
   1552 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
   1553 #endif
   1554 
   1555 #if !SANITIZER_FREEBSD
   1556 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
   1557   SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
   1558   if (fd > 0)
   1559     FdAccess(thr, pc, fd);
   1560   return REAL(__fxstat64)(0, fd, buf);
   1561 }
   1562 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
   1563 #else
   1564 #define TSAN_MAYBE_INTERCEPT_FSTAT64
   1565 #endif
   1566 
   1567 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
   1568   SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
   1569   READ_STRING(thr, pc, name, 0);
   1570   int fd = REAL(open)(name, flags, mode);
   1571   if (fd >= 0)
   1572     FdFileCreate(thr, pc, fd);
   1573   return fd;
   1574 }
   1575 
   1576 #if !SANITIZER_FREEBSD
   1577 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
   1578   SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
   1579   READ_STRING(thr, pc, name, 0);
   1580   int fd = REAL(open64)(name, flags, mode);
   1581   if (fd >= 0)
   1582     FdFileCreate(thr, pc, fd);
   1583   return fd;
   1584 }
   1585 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
   1586 #else
   1587 #define TSAN_MAYBE_INTERCEPT_OPEN64
   1588 #endif
   1589 
   1590 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
   1591   SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
   1592   READ_STRING(thr, pc, name, 0);
   1593   int fd = REAL(creat)(name, mode);
   1594   if (fd >= 0)
   1595     FdFileCreate(thr, pc, fd);
   1596   return fd;
   1597 }
   1598 
   1599 #if !SANITIZER_FREEBSD
   1600 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
   1601   SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
   1602   READ_STRING(thr, pc, name, 0);
   1603   int fd = REAL(creat64)(name, mode);
   1604   if (fd >= 0)
   1605     FdFileCreate(thr, pc, fd);
   1606   return fd;
   1607 }
   1608 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
   1609 #else
   1610 #define TSAN_MAYBE_INTERCEPT_CREAT64
   1611 #endif
   1612 
   1613 TSAN_INTERCEPTOR(int, dup, int oldfd) {
   1614   SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
   1615   int newfd = REAL(dup)(oldfd);
   1616   if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
   1617     FdDup(thr, pc, oldfd, newfd);
   1618   return newfd;
   1619 }
   1620 
   1621 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
   1622   SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
   1623   int newfd2 = REAL(dup2)(oldfd, newfd);
   1624   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
   1625     FdDup(thr, pc, oldfd, newfd2);
   1626   return newfd2;
   1627 }
   1628 
   1629 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
   1630   SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
   1631   int newfd2 = REAL(dup3)(oldfd, newfd, flags);
   1632   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
   1633     FdDup(thr, pc, oldfd, newfd2);
   1634   return newfd2;
   1635 }
   1636 
   1637 #if !SANITIZER_FREEBSD
   1638 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
   1639   SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
   1640   int fd = REAL(eventfd)(initval, flags);
   1641   if (fd >= 0)
   1642     FdEventCreate(thr, pc, fd);
   1643   return fd;
   1644 }
   1645 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
   1646 #else
   1647 #define TSAN_MAYBE_INTERCEPT_EVENTFD
   1648 #endif
   1649 
   1650 #if !SANITIZER_FREEBSD
   1651 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
   1652   SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
   1653   if (fd >= 0)
   1654     FdClose(thr, pc, fd);
   1655   fd = REAL(signalfd)(fd, mask, flags);
   1656   if (fd >= 0)
   1657     FdSignalCreate(thr, pc, fd);
   1658   return fd;
   1659 }
   1660 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
   1661 #else
   1662 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
   1663 #endif
   1664 
   1665 #if !SANITIZER_FREEBSD
   1666 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
   1667   SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
   1668   int fd = REAL(inotify_init)(fake);
   1669   if (fd >= 0)
   1670     FdInotifyCreate(thr, pc, fd);
   1671   return fd;
   1672 }
   1673 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
   1674 #else
   1675 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
   1676 #endif
   1677 
   1678 #if !SANITIZER_FREEBSD
   1679 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
   1680   SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
   1681   int fd = REAL(inotify_init1)(flags);
   1682   if (fd >= 0)
   1683     FdInotifyCreate(thr, pc, fd);
   1684   return fd;
   1685 }
   1686 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
   1687 #else
   1688 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
   1689 #endif
   1690 
   1691 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
   1692   SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
   1693   int fd = REAL(socket)(domain, type, protocol);
   1694   if (fd >= 0)
   1695     FdSocketCreate(thr, pc, fd);
   1696   return fd;
   1697 }
   1698 
   1699 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
   1700   SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
   1701   int res = REAL(socketpair)(domain, type, protocol, fd);
   1702   if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
   1703     FdPipeCreate(thr, pc, fd[0], fd[1]);
   1704   return res;
   1705 }
   1706 
   1707 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
   1708   SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
   1709   FdSocketConnecting(thr, pc, fd);
   1710   int res = REAL(connect)(fd, addr, addrlen);
   1711   if (res == 0 && fd >= 0)
   1712     FdSocketConnect(thr, pc, fd);
   1713   return res;
   1714 }
   1715 
   1716 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
   1717   SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
   1718   int res = REAL(bind)(fd, addr, addrlen);
   1719   if (fd > 0 && res == 0)
   1720     FdAccess(thr, pc, fd);
   1721   return res;
   1722 }
   1723 
   1724 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
   1725   SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
   1726   int res = REAL(listen)(fd, backlog);
   1727   if (fd > 0 && res == 0)
   1728     FdAccess(thr, pc, fd);
   1729   return res;
   1730 }
   1731 
   1732 #if !SANITIZER_FREEBSD
   1733 TSAN_INTERCEPTOR(int, epoll_create, int size) {
   1734   SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
   1735   int fd = REAL(epoll_create)(size);
   1736   if (fd >= 0)
   1737     FdPollCreate(thr, pc, fd);
   1738   return fd;
   1739 }
   1740 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE TSAN_INTERCEPT(epoll_create)
   1741 #else
   1742 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE
   1743 #endif
   1744 
   1745 #if !SANITIZER_FREEBSD
   1746 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
   1747   SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
   1748   int fd = REAL(epoll_create1)(flags);
   1749   if (fd >= 0)
   1750     FdPollCreate(thr, pc, fd);
   1751   return fd;
   1752 }
   1753 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1 TSAN_INTERCEPT(epoll_create1)
   1754 #else
   1755 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1
   1756 #endif
   1757 
   1758 TSAN_INTERCEPTOR(int, close, int fd) {
   1759   SCOPED_TSAN_INTERCEPTOR(close, fd);
   1760   if (fd >= 0)
   1761     FdClose(thr, pc, fd);
   1762   return REAL(close)(fd);
   1763 }
   1764 
   1765 #if !SANITIZER_FREEBSD
   1766 TSAN_INTERCEPTOR(int, __close, int fd) {
   1767   SCOPED_TSAN_INTERCEPTOR(__close, fd);
   1768   if (fd >= 0)
   1769     FdClose(thr, pc, fd);
   1770   return REAL(__close)(fd);
   1771 }
   1772 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
   1773 #else
   1774 #define TSAN_MAYBE_INTERCEPT___CLOSE
   1775 #endif
   1776 
   1777 // glibc guts
   1778 #if !SANITIZER_FREEBSD
   1779 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
   1780   SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
   1781   int fds[64];
   1782   int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
   1783   for (int i = 0; i < cnt; i++) {
   1784     if (fds[i] > 0)
   1785       FdClose(thr, pc, fds[i]);
   1786   }
   1787   REAL(__res_iclose)(state, free_addr);
   1788 }
   1789 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
   1790 #else
   1791 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
   1792 #endif
   1793 
   1794 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
   1795   SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
   1796   int res = REAL(pipe)(pipefd);
   1797   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
   1798     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
   1799   return res;
   1800 }
   1801 
   1802 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
   1803   SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
   1804   int res = REAL(pipe2)(pipefd, flags);
   1805   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
   1806     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
   1807   return res;
   1808 }
   1809 
   1810 TSAN_INTERCEPTOR(long_t, send, int fd, void *buf, long_t len, int flags) {
   1811   SCOPED_TSAN_INTERCEPTOR(send, fd, buf, len, flags);
   1812   if (fd >= 0) {
   1813     FdAccess(thr, pc, fd);
   1814     FdRelease(thr, pc, fd);
   1815   }
   1816   int res = REAL(send)(fd, buf, len, flags);
   1817   return res;
   1818 }
   1819 
   1820 TSAN_INTERCEPTOR(long_t, sendmsg, int fd, void *msg, int flags) {
   1821   SCOPED_TSAN_INTERCEPTOR(sendmsg, fd, msg, flags);
   1822   if (fd >= 0) {
   1823     FdAccess(thr, pc, fd);
   1824     FdRelease(thr, pc, fd);
   1825   }
   1826   int res = REAL(sendmsg)(fd, msg, flags);
   1827   return res;
   1828 }
   1829 
   1830 TSAN_INTERCEPTOR(long_t, recv, int fd, void *buf, long_t len, int flags) {
   1831   SCOPED_TSAN_INTERCEPTOR(recv, fd, buf, len, flags);
   1832   if (fd >= 0)
   1833     FdAccess(thr, pc, fd);
   1834   int res = REAL(recv)(fd, buf, len, flags);
   1835   if (res >= 0 && fd >= 0) {
   1836     FdAcquire(thr, pc, fd);
   1837   }
   1838   return res;
   1839 }
   1840 
   1841 TSAN_INTERCEPTOR(int, unlink, char *path) {
   1842   SCOPED_TSAN_INTERCEPTOR(unlink, path);
   1843   Release(thr, pc, File2addr(path));
   1844   int res = REAL(unlink)(path);
   1845   return res;
   1846 }
   1847 
   1848 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
   1849   SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
   1850   void *res = REAL(tmpfile)(fake);
   1851   if (res) {
   1852     int fd = fileno_unlocked(res);
   1853     if (fd >= 0)
   1854       FdFileCreate(thr, pc, fd);
   1855   }
   1856   return res;
   1857 }
   1858 
   1859 #if !SANITIZER_FREEBSD
   1860 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
   1861   SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
   1862   void *res = REAL(tmpfile64)(fake);
   1863   if (res) {
   1864     int fd = fileno_unlocked(res);
   1865     if (fd >= 0)
   1866       FdFileCreate(thr, pc, fd);
   1867   }
   1868   return res;
   1869 }
   1870 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
   1871 #else
   1872 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
   1873 #endif
   1874 
   1875 TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
   1876   // libc file streams can call user-supplied functions, see fopencookie.
   1877   {
   1878     SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
   1879     MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
   1880   }
   1881   return REAL(fread)(ptr, size, nmemb, f);
   1882 }
   1883 
   1884 TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
   1885   // libc file streams can call user-supplied functions, see fopencookie.
   1886   {
   1887     SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
   1888     MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
   1889   }
   1890   return REAL(fwrite)(p, size, nmemb, f);
   1891 }
   1892 
   1893 static void FlushStreams() {
   1894   // Flushing all the streams here may freeze the process if a child thread is
   1895   // performing file stream operations at the same time.
   1896   REAL(fflush)(stdout);
   1897   REAL(fflush)(stderr);
   1898 }
   1899 
   1900 TSAN_INTERCEPTOR(void, abort, int fake) {
   1901   SCOPED_TSAN_INTERCEPTOR(abort, fake);
   1902   FlushStreams();
   1903   REAL(abort)(fake);
   1904 }
   1905 
   1906 TSAN_INTERCEPTOR(int, puts, const char *s) {
   1907   SCOPED_TSAN_INTERCEPTOR(puts, s);
   1908   MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
   1909   return REAL(puts)(s);
   1910 }
   1911 
   1912 TSAN_INTERCEPTOR(int, rmdir, char *path) {
   1913   SCOPED_TSAN_INTERCEPTOR(rmdir, path);
   1914   Release(thr, pc, Dir2addr(path));
   1915   int res = REAL(rmdir)(path);
   1916   return res;
   1917 }
   1918 
   1919 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
   1920   SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
   1921   int fd = dirfd(dirp);
   1922   FdClose(thr, pc, fd);
   1923   return REAL(closedir)(dirp);
   1924 }
   1925 
   1926 #if !SANITIZER_FREEBSD
   1927 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
   1928   SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
   1929   if (epfd >= 0)
   1930     FdAccess(thr, pc, epfd);
   1931   if (epfd >= 0 && fd >= 0)
   1932     FdAccess(thr, pc, fd);
   1933   if (op == EPOLL_CTL_ADD && epfd >= 0)
   1934     FdRelease(thr, pc, epfd);
   1935   int res = REAL(epoll_ctl)(epfd, op, fd, ev);
   1936   return res;
   1937 }
   1938 #define TSAN_MAYBE_INTERCEPT_EPOLL_CTL TSAN_INTERCEPT(epoll_ctl)
   1939 #else
   1940 #define TSAN_MAYBE_INTERCEPT_EPOLL_CTL
   1941 #endif
   1942 
   1943 #if !SANITIZER_FREEBSD
   1944 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
   1945   SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
   1946   if (epfd >= 0)
   1947     FdAccess(thr, pc, epfd);
   1948   int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
   1949   if (res > 0 && epfd >= 0)
   1950     FdAcquire(thr, pc, epfd);
   1951   return res;
   1952 }
   1953 #define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT TSAN_INTERCEPT(epoll_wait)
   1954 #else
   1955 #define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT
   1956 #endif
   1957 
   1958 namespace __tsan {
   1959 
   1960 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
   1961     bool sigact, int sig, my_siginfo_t *info, void *uctx) {
   1962   if (acquire)
   1963     Acquire(thr, 0, (uptr)&sigactions[sig]);
   1964   // Ensure that the handler does not spoil errno.
   1965   const int saved_errno = errno;
   1966   errno = 99;
   1967   // This code races with sigaction. Be careful to not read sa_sigaction twice.
   1968   // Also need to remember pc for reporting before the call,
   1969   // because the handler can reset it.
   1970   volatile uptr pc = sigact ?
   1971      (uptr)sigactions[sig].sa_sigaction :
   1972      (uptr)sigactions[sig].sa_handler;
   1973   if (pc != (uptr)SIG_DFL && pc != (uptr)SIG_IGN) {
   1974     if (sigact)
   1975       ((sigactionhandler_t)pc)(sig, info, uctx);
   1976     else
   1977       ((sighandler_t)pc)(sig);
   1978   }
   1979   // We do not detect errno spoiling for SIGTERM,
   1980   // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
   1981   // tsan reports false positive in such case.
   1982   // It's difficult to properly detect this situation (reraise),
   1983   // because in async signal processing case (when handler is called directly
   1984   // from rtl_generic_sighandler) we have not yet received the reraised
   1985   // signal; and it looks too fragile to intercept all ways to reraise a signal.
   1986   if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
   1987     VarSizeStackTrace stack;
   1988     // StackTrace::GetNestInstructionPc(pc) is used because return address is
   1989     // expected, OutputReport() will undo this.
   1990     ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
   1991     ThreadRegistryLock l(ctx->thread_registry);
   1992     ScopedReport rep(ReportTypeErrnoInSignal);
   1993     if (!IsFiredSuppression(ctx, rep, stack)) {
   1994       rep.AddStack(stack, true);
   1995       OutputReport(thr, rep);
   1996     }
   1997   }
   1998   errno = saved_errno;
   1999 }
   2000 
   2001 void ProcessPendingSignals(ThreadState *thr) {
   2002   ThreadSignalContext *sctx = SigCtx(thr);
   2003   if (sctx == 0 ||
   2004       atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
   2005     return;
   2006   atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
   2007   atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
   2008   // These are too big for stack.
   2009   static THREADLOCAL __sanitizer_sigset_t emptyset, oldset;
   2010   CHECK_EQ(0, REAL(sigfillset)(&emptyset));
   2011   CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &emptyset, &oldset));
   2012   for (int sig = 0; sig < kSigCount; sig++) {
   2013     SignalDesc *signal = &sctx->pending_signals[sig];
   2014     if (signal->armed) {
   2015       signal->armed = false;
   2016       CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
   2017           &signal->siginfo, &signal->ctx);
   2018     }
   2019   }
   2020   CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &oldset, 0));
   2021   atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
   2022 }
   2023 
   2024 }  // namespace __tsan
   2025 
   2026 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
   2027   return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
   2028       sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
   2029       // If we are sending signal to ourselves, we must process it now.
   2030       (sctx && sig == sctx->int_signal_send);
   2031 }
   2032 
   2033 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
   2034     my_siginfo_t *info, void *ctx) {
   2035   ThreadState *thr = cur_thread();
   2036   ThreadSignalContext *sctx = SigCtx(thr);
   2037   if (sig < 0 || sig >= kSigCount) {
   2038     VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
   2039     return;
   2040   }
   2041   // Don't mess with synchronous signals.
   2042   const bool sync = is_sync_signal(sctx, sig);
   2043   if (sync ||
   2044       // If we are in blocking function, we can safely process it now
   2045       // (but check if we are in a recursive interceptor,
   2046       // i.e. pthread_join()->munmap()).
   2047       (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
   2048     atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
   2049     if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
   2050       // We ignore interceptors in blocking functions,
   2051       // temporary enbled them again while we are calling user function.
   2052       int const i = thr->ignore_interceptors;
   2053       thr->ignore_interceptors = 0;
   2054       atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
   2055       CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
   2056       thr->ignore_interceptors = i;
   2057       atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
   2058     } else {
   2059       // Be very conservative with when we do acquire in this case.
   2060       // It's unsafe to do acquire in async handlers, because ThreadState
   2061       // can be in inconsistent state.
   2062       // SIGSYS looks relatively safe -- it's synchronous and can actually
   2063       // need some global state.
   2064       bool acq = (sig == SIGSYS);
   2065       CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
   2066     }
   2067     atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
   2068     return;
   2069   }
   2070 
   2071   if (sctx == 0)
   2072     return;
   2073   SignalDesc *signal = &sctx->pending_signals[sig];
   2074   if (signal->armed == false) {
   2075     signal->armed = true;
   2076     signal->sigaction = sigact;
   2077     if (info)
   2078       internal_memcpy(&signal->siginfo, info, sizeof(*info));
   2079     if (ctx)
   2080       internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
   2081     atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
   2082   }
   2083 }
   2084 
   2085 static void rtl_sighandler(int sig) {
   2086   rtl_generic_sighandler(false, sig, 0, 0);
   2087 }
   2088 
   2089 static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
   2090   rtl_generic_sighandler(true, sig, info, ctx);
   2091 }
   2092 
   2093 TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
   2094   SCOPED_TSAN_INTERCEPTOR(sigaction, sig, act, old);
   2095   if (old)
   2096     internal_memcpy(old, &sigactions[sig], sizeof(*old));
   2097   if (act == 0)
   2098     return 0;
   2099   // Copy act into sigactions[sig].
   2100   // Can't use struct copy, because compiler can emit call to memcpy.
   2101   // Can't use internal_memcpy, because it copies byte-by-byte,
   2102   // and signal handler reads the sa_handler concurrently. It it can read
   2103   // some bytes from old value and some bytes from new value.
   2104   // Use volatile to prevent insertion of memcpy.
   2105   sigactions[sig].sa_handler = *(volatile sighandler_t*)&act->sa_handler;
   2106   sigactions[sig].sa_flags = *(volatile int*)&act->sa_flags;
   2107   internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
   2108       sizeof(sigactions[sig].sa_mask));
   2109 #if !SANITIZER_FREEBSD
   2110   sigactions[sig].sa_restorer = act->sa_restorer;
   2111 #endif
   2112   sigaction_t newact;
   2113   internal_memcpy(&newact, act, sizeof(newact));
   2114   REAL(sigfillset)(&newact.sa_mask);
   2115   if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
   2116     if (newact.sa_flags & SA_SIGINFO)
   2117       newact.sa_sigaction = rtl_sigaction;
   2118     else
   2119       newact.sa_handler = rtl_sighandler;
   2120   }
   2121   ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
   2122   int res = REAL(sigaction)(sig, &newact, 0);
   2123   return res;
   2124 }
   2125 
   2126 TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
   2127   sigaction_t act;
   2128   act.sa_handler = h;
   2129   REAL(memset)(&act.sa_mask, -1, sizeof(act.sa_mask));
   2130   act.sa_flags = 0;
   2131   sigaction_t old;
   2132   int res = sigaction(sig, &act, &old);
   2133   if (res)
   2134     return SIG_ERR;
   2135   return old.sa_handler;
   2136 }
   2137 
   2138 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
   2139   SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
   2140   return REAL(sigsuspend)(mask);
   2141 }
   2142 
   2143 TSAN_INTERCEPTOR(int, raise, int sig) {
   2144   SCOPED_TSAN_INTERCEPTOR(raise, sig);
   2145   ThreadSignalContext *sctx = SigCtx(thr);
   2146   CHECK_NE(sctx, 0);
   2147   int prev = sctx->int_signal_send;
   2148   sctx->int_signal_send = sig;
   2149   int res = REAL(raise)(sig);
   2150   CHECK_EQ(sctx->int_signal_send, sig);
   2151   sctx->int_signal_send = prev;
   2152   return res;
   2153 }
   2154 
   2155 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
   2156   SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
   2157   ThreadSignalContext *sctx = SigCtx(thr);
   2158   CHECK_NE(sctx, 0);
   2159   int prev = sctx->int_signal_send;
   2160   if (pid == (int)internal_getpid()) {
   2161     sctx->int_signal_send = sig;
   2162   }
   2163   int res = REAL(kill)(pid, sig);
   2164   if (pid == (int)internal_getpid()) {
   2165     CHECK_EQ(sctx->int_signal_send, sig);
   2166     sctx->int_signal_send = prev;
   2167   }
   2168   return res;
   2169 }
   2170 
   2171 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
   2172   SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
   2173   ThreadSignalContext *sctx = SigCtx(thr);
   2174   CHECK_NE(sctx, 0);
   2175   int prev = sctx->int_signal_send;
   2176   if (tid == pthread_self()) {
   2177     sctx->int_signal_send = sig;
   2178   }
   2179   int res = REAL(pthread_kill)(tid, sig);
   2180   if (tid == pthread_self()) {
   2181     CHECK_EQ(sctx->int_signal_send, sig);
   2182     sctx->int_signal_send = prev;
   2183   }
   2184   return res;
   2185 }
   2186 
   2187 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
   2188   SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
   2189   // It's intercepted merely to process pending signals.
   2190   return REAL(gettimeofday)(tv, tz);
   2191 }
   2192 
   2193 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
   2194     void *hints, void *rv) {
   2195   SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
   2196   // We miss atomic synchronization in getaddrinfo,
   2197   // and can report false race between malloc and free
   2198   // inside of getaddrinfo. So ignore memory accesses.
   2199   ThreadIgnoreBegin(thr, pc);
   2200   int res = REAL(getaddrinfo)(node, service, hints, rv);
   2201   ThreadIgnoreEnd(thr, pc);
   2202   return res;
   2203 }
   2204 
   2205 TSAN_INTERCEPTOR(int, fork, int fake) {
   2206   if (cur_thread()->in_symbolizer)
   2207     return REAL(fork)(fake);
   2208   SCOPED_INTERCEPTOR_RAW(fork, fake);
   2209   ForkBefore(thr, pc);
   2210   int pid = REAL(fork)(fake);
   2211   if (pid == 0) {
   2212     // child
   2213     ForkChildAfter(thr, pc);
   2214     FdOnFork(thr, pc);
   2215   } else if (pid > 0) {
   2216     // parent
   2217     ForkParentAfter(thr, pc);
   2218   } else {
   2219     // error
   2220     ForkParentAfter(thr, pc);
   2221   }
   2222   return pid;
   2223 }
   2224 
   2225 TSAN_INTERCEPTOR(int, vfork, int fake) {
   2226   // Some programs (e.g. openjdk) call close for all file descriptors
   2227   // in the child process. Under tsan it leads to false positives, because
   2228   // address space is shared, so the parent process also thinks that
   2229   // the descriptors are closed (while they are actually not).
   2230   // This leads to false positives due to missed synchronization.
   2231   // Strictly saying this is undefined behavior, because vfork child is not
   2232   // allowed to call any functions other than exec/exit. But this is what
   2233   // openjdk does, so we want to handle it.
   2234   // We could disable interceptors in the child process. But it's not possible
   2235   // to simply intercept and wrap vfork, because vfork child is not allowed
   2236   // to return from the function that calls vfork, and that's exactly what
   2237   // we would do. So this would require some assembly trickery as well.
   2238   // Instead we simply turn vfork into fork.
   2239   return WRAP(fork)(fake);
   2240 }
   2241 
   2242 static int OnExit(ThreadState *thr) {
   2243   int status = Finalize(thr);
   2244   FlushStreams();
   2245   return status;
   2246 }
   2247 
   2248 struct TsanInterceptorContext {
   2249   ThreadState *thr;
   2250   const uptr caller_pc;
   2251   const uptr pc;
   2252 };
   2253 
   2254 static void HandleRecvmsg(ThreadState *thr, uptr pc,
   2255     __sanitizer_msghdr *msg) {
   2256   int fds[64];
   2257   int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
   2258   for (int i = 0; i < cnt; i++)
   2259     FdEventCreate(thr, pc, fds[i]);
   2260 }
   2261 
   2262 #include "sanitizer_common/sanitizer_platform_interceptors.h"
   2263 // Causes interceptor recursion (getaddrinfo() and fopen())
   2264 #undef SANITIZER_INTERCEPT_GETADDRINFO
   2265 // There interceptors do not seem to be strictly necessary for tsan.
   2266 // But we see cases where the interceptors consume 70% of execution time.
   2267 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
   2268 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
   2269 // function "writes to" the buffer. Then, the same memory is "written to"
   2270 // twice, first as buf and then as pwbufp (both of them refer to the same
   2271 // addresses).
   2272 #undef SANITIZER_INTERCEPT_GETPWENT
   2273 #undef SANITIZER_INTERCEPT_GETPWENT_R
   2274 #undef SANITIZER_INTERCEPT_FGETPWENT
   2275 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
   2276 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
   2277 // __tls_get_addr can be called with mis-aligned stack due to:
   2278 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
   2279 // There are two potential issues:
   2280 // 1. Sanitizer code contains a MOVDQA spill (it does not seem to be the case
   2281 // right now). or 2. ProcessPendingSignal calls user handler which contains
   2282 // MOVDQA spill (this happens right now).
   2283 // Since the interceptor only initializes memory for msan, the simplest solution
   2284 // is to disable the interceptor in tsan (other sanitizers do not call
   2285 // signal handlers from COMMON_INTERCEPTOR_ENTER).
   2286 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
   2287 
   2288 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
   2289 
   2290 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
   2291   MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
   2292                     ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
   2293                     true)
   2294 
   2295 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
   2296   MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
   2297                     ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
   2298                     false)
   2299 
   2300 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
   2301   SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
   2302   TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
   2303   ctx = (void *)&_ctx;                                \
   2304   (void) ctx;
   2305 
   2306 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
   2307   SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
   2308   TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
   2309   ctx = (void *)&_ctx;                                    \
   2310   (void) ctx;
   2311 
   2312 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
   2313   Acquire(thr, pc, File2addr(path));                  \
   2314   if (file) {                                         \
   2315     int fd = fileno_unlocked(file);                   \
   2316     if (fd >= 0) FdFileCreate(thr, pc, fd);           \
   2317   }
   2318 
   2319 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
   2320   if (file) {                                    \
   2321     int fd = fileno_unlocked(file);              \
   2322     if (fd >= 0) FdClose(thr, pc, fd);           \
   2323   }
   2324 
   2325 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
   2326   libignore()->OnLibraryLoaded(filename)
   2327 
   2328 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
   2329   libignore()->OnLibraryUnloaded()
   2330 
   2331 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
   2332   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
   2333 
   2334 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
   2335   FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2336 
   2337 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
   2338   FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2339 
   2340 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
   2341   FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2342 
   2343 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
   2344   FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
   2345 
   2346 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
   2347   ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
   2348 
   2349 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
   2350   __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
   2351 
   2352 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
   2353 
   2354 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
   2355   OnExit(((TsanInterceptorContext *) ctx)->thr)
   2356 
   2357 #define COMMON_INTERCEPTOR_MUTEX_LOCK(ctx, m) \
   2358   MutexLock(((TsanInterceptorContext *)ctx)->thr, \
   2359             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2360 
   2361 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
   2362   MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
   2363             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2364 
   2365 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
   2366   MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
   2367             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2368 
   2369 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
   2370   HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
   2371       ((TsanInterceptorContext *)ctx)->pc, msg)
   2372 
   2373 #include "sanitizer_common/sanitizer_common_interceptors.inc"
   2374 
   2375 #define TSAN_SYSCALL() \
   2376   ThreadState *thr = cur_thread(); \
   2377   if (thr->ignore_interceptors) \
   2378     return; \
   2379   ScopedSyscall scoped_syscall(thr) \
   2380 /**/
   2381 
   2382 struct ScopedSyscall {
   2383   ThreadState *thr;
   2384 
   2385   explicit ScopedSyscall(ThreadState *thr)
   2386       : thr(thr) {
   2387     Initialize(thr);
   2388   }
   2389 
   2390   ~ScopedSyscall() {
   2391     ProcessPendingSignals(thr);
   2392   }
   2393 };
   2394 
   2395 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
   2396   TSAN_SYSCALL();
   2397   MemoryAccessRange(thr, pc, p, s, write);
   2398 }
   2399 
   2400 static void syscall_acquire(uptr pc, uptr addr) {
   2401   TSAN_SYSCALL();
   2402   Acquire(thr, pc, addr);
   2403   DPrintf("syscall_acquire(%p)\n", addr);
   2404 }
   2405 
   2406 static void syscall_release(uptr pc, uptr addr) {
   2407   TSAN_SYSCALL();
   2408   DPrintf("syscall_release(%p)\n", addr);
   2409   Release(thr, pc, addr);
   2410 }
   2411 
   2412 static void syscall_fd_close(uptr pc, int fd) {
   2413   TSAN_SYSCALL();
   2414   FdClose(thr, pc, fd);
   2415 }
   2416 
   2417 static USED void syscall_fd_acquire(uptr pc, int fd) {
   2418   TSAN_SYSCALL();
   2419   FdAcquire(thr, pc, fd);
   2420   DPrintf("syscall_fd_acquire(%p)\n", fd);
   2421 }
   2422 
   2423 static USED void syscall_fd_release(uptr pc, int fd) {
   2424   TSAN_SYSCALL();
   2425   DPrintf("syscall_fd_release(%p)\n", fd);
   2426   FdRelease(thr, pc, fd);
   2427 }
   2428 
   2429 static void syscall_pre_fork(uptr pc) {
   2430   TSAN_SYSCALL();
   2431   ForkBefore(thr, pc);
   2432 }
   2433 
   2434 static void syscall_post_fork(uptr pc, int pid) {
   2435   TSAN_SYSCALL();
   2436   if (pid == 0) {
   2437     // child
   2438     ForkChildAfter(thr, pc);
   2439     FdOnFork(thr, pc);
   2440   } else if (pid > 0) {
   2441     // parent
   2442     ForkParentAfter(thr, pc);
   2443   } else {
   2444     // error
   2445     ForkParentAfter(thr, pc);
   2446   }
   2447 }
   2448 
   2449 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
   2450   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
   2451 
   2452 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
   2453   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
   2454 
   2455 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
   2456   do {                                       \
   2457     (void)(p);                               \
   2458     (void)(s);                               \
   2459   } while (false)
   2460 
   2461 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
   2462   do {                                        \
   2463     (void)(p);                                \
   2464     (void)(s);                                \
   2465   } while (false)
   2466 
   2467 #define COMMON_SYSCALL_ACQUIRE(addr) \
   2468     syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
   2469 
   2470 #define COMMON_SYSCALL_RELEASE(addr) \
   2471     syscall_release(GET_CALLER_PC(), (uptr)(addr))
   2472 
   2473 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
   2474 
   2475 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
   2476 
   2477 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
   2478 
   2479 #define COMMON_SYSCALL_PRE_FORK() \
   2480   syscall_pre_fork(GET_CALLER_PC())
   2481 
   2482 #define COMMON_SYSCALL_POST_FORK(res) \
   2483   syscall_post_fork(GET_CALLER_PC(), res)
   2484 
   2485 #include "sanitizer_common/sanitizer_common_syscalls.inc"
   2486 
   2487 namespace __tsan {
   2488 
   2489 static void finalize(void *arg) {
   2490   ThreadState *thr = cur_thread();
   2491   int status = Finalize(thr);
   2492   // Make sure the output is not lost.
   2493   FlushStreams();
   2494   if (status)
   2495     REAL(_exit)(status);
   2496 }
   2497 
   2498 static void unreachable() {
   2499   Report("FATAL: ThreadSanitizer: unreachable called\n");
   2500   Die();
   2501 }
   2502 
   2503 void InitializeInterceptors() {
   2504   // We need to setup it early, because functions like dlsym() can call it.
   2505   REAL(memset) = internal_memset;
   2506   REAL(memcpy) = internal_memcpy;
   2507   REAL(memcmp) = internal_memcmp;
   2508 
   2509   // Instruct libc malloc to consume less memory.
   2510 #if !SANITIZER_FREEBSD
   2511   mallopt(1, 0);  // M_MXFAST
   2512   mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
   2513 #endif
   2514 
   2515   InitializeCommonInterceptors();
   2516 
   2517   // We can not use TSAN_INTERCEPT to get setjmp addr,
   2518   // because it does &setjmp and setjmp is not present in some versions of libc.
   2519   using __interception::GetRealFunctionAddress;
   2520   GetRealFunctionAddress("setjmp", (uptr*)&REAL(setjmp), 0, 0);
   2521   GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
   2522   GetRealFunctionAddress("sigsetjmp", (uptr*)&REAL(sigsetjmp), 0, 0);
   2523   GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
   2524 
   2525   TSAN_INTERCEPT(longjmp);
   2526   TSAN_INTERCEPT(siglongjmp);
   2527 
   2528   TSAN_INTERCEPT(malloc);
   2529   TSAN_INTERCEPT(__libc_memalign);
   2530   TSAN_INTERCEPT(calloc);
   2531   TSAN_INTERCEPT(realloc);
   2532   TSAN_INTERCEPT(free);
   2533   TSAN_INTERCEPT(cfree);
   2534   TSAN_INTERCEPT(mmap);
   2535   TSAN_MAYBE_INTERCEPT_MMAP64;
   2536   TSAN_INTERCEPT(munmap);
   2537   TSAN_MAYBE_INTERCEPT_MEMALIGN;
   2538   TSAN_INTERCEPT(valloc);
   2539   TSAN_MAYBE_INTERCEPT_PVALLOC;
   2540   TSAN_INTERCEPT(posix_memalign);
   2541 
   2542   TSAN_INTERCEPT(strlen);
   2543   TSAN_INTERCEPT(memset);
   2544   TSAN_INTERCEPT(memcpy);
   2545   TSAN_INTERCEPT(memmove);
   2546   TSAN_INTERCEPT(memcmp);
   2547   TSAN_INTERCEPT(strchr);
   2548   TSAN_INTERCEPT(strchrnul);
   2549   TSAN_INTERCEPT(strrchr);
   2550   TSAN_INTERCEPT(strcpy);  // NOLINT
   2551   TSAN_INTERCEPT(strncpy);
   2552   TSAN_INTERCEPT(strstr);
   2553   TSAN_INTERCEPT(strdup);
   2554 
   2555   TSAN_INTERCEPT(pthread_create);
   2556   TSAN_INTERCEPT(pthread_join);
   2557   TSAN_INTERCEPT(pthread_detach);
   2558 
   2559   TSAN_INTERCEPT_VER(pthread_cond_init, "GLIBC_2.3.2");
   2560   TSAN_INTERCEPT_VER(pthread_cond_signal, "GLIBC_2.3.2");
   2561   TSAN_INTERCEPT_VER(pthread_cond_broadcast, "GLIBC_2.3.2");
   2562   TSAN_INTERCEPT_VER(pthread_cond_wait, "GLIBC_2.3.2");
   2563   TSAN_INTERCEPT_VER(pthread_cond_timedwait, "GLIBC_2.3.2");
   2564   TSAN_INTERCEPT_VER(pthread_cond_destroy, "GLIBC_2.3.2");
   2565 
   2566   TSAN_INTERCEPT(pthread_mutex_init);
   2567   TSAN_INTERCEPT(pthread_mutex_destroy);
   2568   TSAN_INTERCEPT(pthread_mutex_trylock);
   2569   TSAN_INTERCEPT(pthread_mutex_timedlock);
   2570 
   2571   TSAN_INTERCEPT(pthread_spin_init);
   2572   TSAN_INTERCEPT(pthread_spin_destroy);
   2573   TSAN_INTERCEPT(pthread_spin_lock);
   2574   TSAN_INTERCEPT(pthread_spin_trylock);
   2575   TSAN_INTERCEPT(pthread_spin_unlock);
   2576 
   2577   TSAN_INTERCEPT(pthread_rwlock_init);
   2578   TSAN_INTERCEPT(pthread_rwlock_destroy);
   2579   TSAN_INTERCEPT(pthread_rwlock_rdlock);
   2580   TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
   2581   TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
   2582   TSAN_INTERCEPT(pthread_rwlock_wrlock);
   2583   TSAN_INTERCEPT(pthread_rwlock_trywrlock);
   2584   TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
   2585   TSAN_INTERCEPT(pthread_rwlock_unlock);
   2586 
   2587   TSAN_INTERCEPT(pthread_barrier_init);
   2588   TSAN_INTERCEPT(pthread_barrier_destroy);
   2589   TSAN_INTERCEPT(pthread_barrier_wait);
   2590 
   2591   TSAN_INTERCEPT(pthread_once);
   2592 
   2593   TSAN_INTERCEPT(sem_init);
   2594   TSAN_INTERCEPT(sem_destroy);
   2595   TSAN_INTERCEPT(sem_wait);
   2596   TSAN_INTERCEPT(sem_trywait);
   2597   TSAN_INTERCEPT(sem_timedwait);
   2598   TSAN_INTERCEPT(sem_post);
   2599   TSAN_INTERCEPT(sem_getvalue);
   2600 
   2601   TSAN_INTERCEPT(stat);
   2602   TSAN_MAYBE_INTERCEPT___XSTAT;
   2603   TSAN_MAYBE_INTERCEPT_STAT64;
   2604   TSAN_MAYBE_INTERCEPT___XSTAT64;
   2605   TSAN_INTERCEPT(lstat);
   2606   TSAN_MAYBE_INTERCEPT___LXSTAT;
   2607   TSAN_MAYBE_INTERCEPT_LSTAT64;
   2608   TSAN_MAYBE_INTERCEPT___LXSTAT64;
   2609   TSAN_INTERCEPT(fstat);
   2610   TSAN_MAYBE_INTERCEPT___FXSTAT;
   2611   TSAN_MAYBE_INTERCEPT_FSTAT64;
   2612   TSAN_MAYBE_INTERCEPT___FXSTAT64;
   2613   TSAN_INTERCEPT(open);
   2614   TSAN_MAYBE_INTERCEPT_OPEN64;
   2615   TSAN_INTERCEPT(creat);
   2616   TSAN_MAYBE_INTERCEPT_CREAT64;
   2617   TSAN_INTERCEPT(dup);
   2618   TSAN_INTERCEPT(dup2);
   2619   TSAN_INTERCEPT(dup3);
   2620   TSAN_MAYBE_INTERCEPT_EVENTFD;
   2621   TSAN_MAYBE_INTERCEPT_SIGNALFD;
   2622   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
   2623   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
   2624   TSAN_INTERCEPT(socket);
   2625   TSAN_INTERCEPT(socketpair);
   2626   TSAN_INTERCEPT(connect);
   2627   TSAN_INTERCEPT(bind);
   2628   TSAN_INTERCEPT(listen);
   2629   TSAN_MAYBE_INTERCEPT_EPOLL_CREATE;
   2630   TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1;
   2631   TSAN_INTERCEPT(close);
   2632   TSAN_MAYBE_INTERCEPT___CLOSE;
   2633   TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
   2634   TSAN_INTERCEPT(pipe);
   2635   TSAN_INTERCEPT(pipe2);
   2636 
   2637   TSAN_INTERCEPT(send);
   2638   TSAN_INTERCEPT(sendmsg);
   2639   TSAN_INTERCEPT(recv);
   2640 
   2641   TSAN_INTERCEPT(unlink);
   2642   TSAN_INTERCEPT(tmpfile);
   2643   TSAN_MAYBE_INTERCEPT_TMPFILE64;
   2644   TSAN_INTERCEPT(fread);
   2645   TSAN_INTERCEPT(fwrite);
   2646   TSAN_INTERCEPT(abort);
   2647   TSAN_INTERCEPT(puts);
   2648   TSAN_INTERCEPT(rmdir);
   2649   TSAN_INTERCEPT(closedir);
   2650 
   2651   TSAN_MAYBE_INTERCEPT_EPOLL_CTL;
   2652   TSAN_MAYBE_INTERCEPT_EPOLL_WAIT;
   2653 
   2654   TSAN_INTERCEPT(sigaction);
   2655   TSAN_INTERCEPT(signal);
   2656   TSAN_INTERCEPT(sigsuspend);
   2657   TSAN_INTERCEPT(raise);
   2658   TSAN_INTERCEPT(kill);
   2659   TSAN_INTERCEPT(pthread_kill);
   2660   TSAN_INTERCEPT(sleep);
   2661   TSAN_INTERCEPT(usleep);
   2662   TSAN_INTERCEPT(nanosleep);
   2663   TSAN_INTERCEPT(gettimeofday);
   2664   TSAN_INTERCEPT(getaddrinfo);
   2665 
   2666   TSAN_INTERCEPT(fork);
   2667   TSAN_INTERCEPT(vfork);
   2668   TSAN_INTERCEPT(on_exit);
   2669   TSAN_INTERCEPT(__cxa_atexit);
   2670   TSAN_INTERCEPT(_exit);
   2671 
   2672   // Need to setup it, because interceptors check that the function is resolved.
   2673   // But atexit is emitted directly into the module, so can't be resolved.
   2674   REAL(atexit) = (int(*)(void(*)()))unreachable;
   2675   if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
   2676     Printf("ThreadSanitizer: failed to setup atexit callback\n");
   2677     Die();
   2678   }
   2679 
   2680   if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
   2681     Printf("ThreadSanitizer: failed to create thread key\n");
   2682     Die();
   2683   }
   2684 
   2685   FdInit();
   2686 }
   2687 
   2688 }  // namespace __tsan
   2689