Home | History | Annotate | Download | only in ADT
      1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines classes to implement an intrusive doubly linked list class
     11 // (i.e. each node of the list must contain a next and previous field for the
     12 // list.
     13 //
     14 // The ilist_traits trait class is used to gain access to the next and previous
     15 // fields of the node type that the list is instantiated with.  If it is not
     16 // specialized, the list defaults to using the getPrev(), getNext() method calls
     17 // to get the next and previous pointers.
     18 //
     19 // The ilist class itself, should be a plug in replacement for list, assuming
     20 // that the nodes contain next/prev pointers.  This list replacement does not
     21 // provide a constant time size() method, so be careful to use empty() when you
     22 // really want to know if it's empty.
     23 //
     24 // The ilist class is implemented by allocating a 'tail' node when the list is
     25 // created (using ilist_traits<>::createSentinel()).  This tail node is
     26 // absolutely required because the user must be able to compute end()-1. Because
     27 // of this, users of the direct next/prev links will see an extra link on the
     28 // end of the list, which should be ignored.
     29 //
     30 // Requirements for a user of this list:
     31 //
     32 //   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
     33 //      ilist_traits to provide an alternate way of getting and setting next and
     34 //      prev links.
     35 //
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_ADT_ILIST_H
     39 #define LLVM_ADT_ILIST_H
     40 
     41 #include "llvm/Support/Compiler.h"
     42 #include <algorithm>
     43 #include <cassert>
     44 #include <cstddef>
     45 #include <iterator>
     46 
     47 namespace llvm {
     48 
     49 template<typename NodeTy, typename Traits> class iplist;
     50 template<typename NodeTy> class ilist_iterator;
     51 
     52 /// ilist_nextprev_traits - A fragment for template traits for intrusive list
     53 /// that provides default next/prev implementations for common operations.
     54 ///
     55 template<typename NodeTy>
     56 struct ilist_nextprev_traits {
     57   static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
     58   static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
     59   static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
     60   static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
     61 
     62   static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
     63   static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
     64 };
     65 
     66 template<typename NodeTy>
     67 struct ilist_traits;
     68 
     69 /// ilist_sentinel_traits - A fragment for template traits for intrusive list
     70 /// that provides default sentinel implementations for common operations.
     71 ///
     72 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
     73 /// strategy. The sentinel is stored in the prev field of ilist's Head.
     74 ///
     75 template<typename NodeTy>
     76 struct ilist_sentinel_traits {
     77   /// createSentinel - create the dynamic sentinel
     78   static NodeTy *createSentinel() { return new NodeTy(); }
     79 
     80   /// destroySentinel - deallocate the dynamic sentinel
     81   static void destroySentinel(NodeTy *N) { delete N; }
     82 
     83   /// provideInitialHead - when constructing an ilist, provide a starting
     84   /// value for its Head
     85   /// @return null node to indicate that it needs to be allocated later
     86   static NodeTy *provideInitialHead() { return nullptr; }
     87 
     88   /// ensureHead - make sure that Head is either already
     89   /// initialized or assigned a fresh sentinel
     90   /// @return the sentinel
     91   static NodeTy *ensureHead(NodeTy *&Head) {
     92     if (!Head) {
     93       Head = ilist_traits<NodeTy>::createSentinel();
     94       ilist_traits<NodeTy>::noteHead(Head, Head);
     95       ilist_traits<NodeTy>::setNext(Head, nullptr);
     96       return Head;
     97     }
     98     return ilist_traits<NodeTy>::getPrev(Head);
     99   }
    100 
    101   /// noteHead - stash the sentinel into its default location
    102   static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
    103     ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
    104   }
    105 };
    106 
    107 /// ilist_node_traits - A fragment for template traits for intrusive list
    108 /// that provides default node related operations.
    109 ///
    110 template<typename NodeTy>
    111 struct ilist_node_traits {
    112   static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
    113   static void deleteNode(NodeTy *V) { delete V; }
    114 
    115   void addNodeToList(NodeTy *) {}
    116   void removeNodeFromList(NodeTy *) {}
    117   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
    118                              ilist_iterator<NodeTy> /*first*/,
    119                              ilist_iterator<NodeTy> /*last*/) {}
    120 };
    121 
    122 /// ilist_default_traits - Default template traits for intrusive list.
    123 /// By inheriting from this, you can easily use default implementations
    124 /// for all common operations.
    125 ///
    126 template<typename NodeTy>
    127 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
    128                               public ilist_sentinel_traits<NodeTy>,
    129                               public ilist_node_traits<NodeTy> {
    130 };
    131 
    132 // Template traits for intrusive list.  By specializing this template class, you
    133 // can change what next/prev fields are used to store the links...
    134 template<typename NodeTy>
    135 struct ilist_traits : public ilist_default_traits<NodeTy> {};
    136 
    137 // Const traits are the same as nonconst traits...
    138 template<typename Ty>
    139 struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
    140 
    141 //===----------------------------------------------------------------------===//
    142 // ilist_iterator<Node> - Iterator for intrusive list.
    143 //
    144 template<typename NodeTy>
    145 class ilist_iterator
    146   : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
    147 
    148 public:
    149   typedef ilist_traits<NodeTy> Traits;
    150   typedef std::iterator<std::bidirectional_iterator_tag,
    151                         NodeTy, ptrdiff_t> super;
    152 
    153   typedef typename super::value_type value_type;
    154   typedef typename super::difference_type difference_type;
    155   typedef typename super::pointer pointer;
    156   typedef typename super::reference reference;
    157 private:
    158   pointer NodePtr;
    159 
    160   // ilist_iterator is not a random-access iterator, but it has an
    161   // implicit conversion to pointer-type, which is. Declare (but
    162   // don't define) these functions as private to help catch
    163   // accidental misuse.
    164   void operator[](difference_type) const;
    165   void operator+(difference_type) const;
    166   void operator-(difference_type) const;
    167   void operator+=(difference_type) const;
    168   void operator-=(difference_type) const;
    169   template<class T> void operator<(T) const;
    170   template<class T> void operator<=(T) const;
    171   template<class T> void operator>(T) const;
    172   template<class T> void operator>=(T) const;
    173   template<class T> void operator-(T) const;
    174 public:
    175 
    176   ilist_iterator(pointer NP) : NodePtr(NP) {}
    177   ilist_iterator(reference NR) : NodePtr(&NR) {}
    178   ilist_iterator() : NodePtr(nullptr) {}
    179 
    180   // This is templated so that we can allow constructing a const iterator from
    181   // a nonconst iterator...
    182   template<class node_ty>
    183   ilist_iterator(const ilist_iterator<node_ty> &RHS)
    184     : NodePtr(RHS.getNodePtrUnchecked()) {}
    185 
    186   // This is templated so that we can allow assigning to a const iterator from
    187   // a nonconst iterator...
    188   template<class node_ty>
    189   const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
    190     NodePtr = RHS.getNodePtrUnchecked();
    191     return *this;
    192   }
    193 
    194   // Accessors...
    195   operator pointer() const {
    196     return NodePtr;
    197   }
    198 
    199   reference operator*() const {
    200     return *NodePtr;
    201   }
    202   pointer operator->() const { return &operator*(); }
    203 
    204   // Comparison operators
    205   bool operator==(const ilist_iterator &RHS) const {
    206     return NodePtr == RHS.NodePtr;
    207   }
    208   bool operator!=(const ilist_iterator &RHS) const {
    209     return NodePtr != RHS.NodePtr;
    210   }
    211 
    212   // Increment and decrement operators...
    213   ilist_iterator &operator--() {      // predecrement - Back up
    214     NodePtr = Traits::getPrev(NodePtr);
    215     assert(NodePtr && "--'d off the beginning of an ilist!");
    216     return *this;
    217   }
    218   ilist_iterator &operator++() {      // preincrement - Advance
    219     NodePtr = Traits::getNext(NodePtr);
    220     return *this;
    221   }
    222   ilist_iterator operator--(int) {    // postdecrement operators...
    223     ilist_iterator tmp = *this;
    224     --*this;
    225     return tmp;
    226   }
    227   ilist_iterator operator++(int) {    // postincrement operators...
    228     ilist_iterator tmp = *this;
    229     ++*this;
    230     return tmp;
    231   }
    232 
    233   // Internal interface, do not use...
    234   pointer getNodePtrUnchecked() const { return NodePtr; }
    235 };
    236 
    237 // These are to catch errors when people try to use them as random access
    238 // iterators.
    239 template<typename T>
    240 void operator-(int, ilist_iterator<T>) = delete;
    241 template<typename T>
    242 void operator-(ilist_iterator<T>,int) = delete;
    243 
    244 template<typename T>
    245 void operator+(int, ilist_iterator<T>) = delete;
    246 template<typename T>
    247 void operator+(ilist_iterator<T>,int) = delete;
    248 
    249 // operator!=/operator== - Allow mixed comparisons without dereferencing
    250 // the iterator, which could very likely be pointing to end().
    251 template<typename T>
    252 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
    253   return LHS != RHS.getNodePtrUnchecked();
    254 }
    255 template<typename T>
    256 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
    257   return LHS == RHS.getNodePtrUnchecked();
    258 }
    259 template<typename T>
    260 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
    261   return LHS != RHS.getNodePtrUnchecked();
    262 }
    263 template<typename T>
    264 bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
    265   return LHS == RHS.getNodePtrUnchecked();
    266 }
    267 
    268 
    269 // Allow ilist_iterators to convert into pointers to a node automatically when
    270 // used by the dyn_cast, cast, isa mechanisms...
    271 
    272 template<typename From> struct simplify_type;
    273 
    274 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
    275   typedef NodeTy* SimpleType;
    276 
    277   static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) {
    278     return &*Node;
    279   }
    280 };
    281 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
    282   typedef /*const*/ NodeTy* SimpleType;
    283 
    284   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
    285     return &*Node;
    286   }
    287 };
    288 
    289 
    290 //===----------------------------------------------------------------------===//
    291 //
    292 /// iplist - The subset of list functionality that can safely be used on nodes
    293 /// of polymorphic types, i.e. a heterogeneous list with a common base class that
    294 /// holds the next/prev pointers.  The only state of the list itself is a single
    295 /// pointer to the head of the list.
    296 ///
    297 /// This list can be in one of three interesting states:
    298 /// 1. The list may be completely unconstructed.  In this case, the head
    299 ///    pointer is null.  When in this form, any query for an iterator (e.g.
    300 ///    begin() or end()) causes the list to transparently change to state #2.
    301 /// 2. The list may be empty, but contain a sentinel for the end iterator. This
    302 ///    sentinel is created by the Traits::createSentinel method and is a link
    303 ///    in the list.  When the list is empty, the pointer in the iplist points
    304 ///    to the sentinel.  Once the sentinel is constructed, it
    305 ///    is not destroyed until the list is.
    306 /// 3. The list may contain actual objects in it, which are stored as a doubly
    307 ///    linked list of nodes.  One invariant of the list is that the predecessor
    308 ///    of the first node in the list always points to the last node in the list,
    309 ///    and the successor pointer for the sentinel (which always stays at the
    310 ///    end of the list) is always null.
    311 ///
    312 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
    313 class iplist : public Traits {
    314   mutable NodeTy *Head;
    315 
    316   // Use the prev node pointer of 'head' as the tail pointer.  This is really a
    317   // circularly linked list where we snip the 'next' link from the sentinel node
    318   // back to the first node in the list (to preserve assertions about going off
    319   // the end of the list).
    320   NodeTy *getTail() { return this->ensureHead(Head); }
    321   const NodeTy *getTail() const { return this->ensureHead(Head); }
    322   void setTail(NodeTy *N) const { this->noteHead(Head, N); }
    323 
    324   /// CreateLazySentinel - This method verifies whether the sentinel for the
    325   /// list has been created and lazily makes it if not.
    326   void CreateLazySentinel() const {
    327     this->ensureHead(Head);
    328   }
    329 
    330   static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
    331   static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
    332 
    333   // No fundamental reason why iplist can't be copyable, but the default
    334   // copy/copy-assign won't do.
    335   iplist(const iplist &) = delete;
    336   void operator=(const iplist &) = delete;
    337 
    338 public:
    339   typedef NodeTy *pointer;
    340   typedef const NodeTy *const_pointer;
    341   typedef NodeTy &reference;
    342   typedef const NodeTy &const_reference;
    343   typedef NodeTy value_type;
    344   typedef ilist_iterator<NodeTy> iterator;
    345   typedef ilist_iterator<const NodeTy> const_iterator;
    346   typedef size_t size_type;
    347   typedef ptrdiff_t difference_type;
    348   typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
    349   typedef std::reverse_iterator<iterator>  reverse_iterator;
    350 
    351   iplist() : Head(this->provideInitialHead()) {}
    352   ~iplist() {
    353     if (!Head) return;
    354     clear();
    355     Traits::destroySentinel(getTail());
    356   }
    357 
    358   // Iterator creation methods.
    359   iterator begin() {
    360     CreateLazySentinel();
    361     return iterator(Head);
    362   }
    363   const_iterator begin() const {
    364     CreateLazySentinel();
    365     return const_iterator(Head);
    366   }
    367   iterator end() {
    368     CreateLazySentinel();
    369     return iterator(getTail());
    370   }
    371   const_iterator end() const {
    372     CreateLazySentinel();
    373     return const_iterator(getTail());
    374   }
    375 
    376   // reverse iterator creation methods.
    377   reverse_iterator rbegin()            { return reverse_iterator(end()); }
    378   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
    379   reverse_iterator rend()              { return reverse_iterator(begin()); }
    380   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
    381 
    382 
    383   // Miscellaneous inspection routines.
    384   size_type max_size() const { return size_type(-1); }
    385   bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
    386     return !Head || Head == getTail();
    387   }
    388 
    389   // Front and back accessor functions...
    390   reference front() {
    391     assert(!empty() && "Called front() on empty list!");
    392     return *Head;
    393   }
    394   const_reference front() const {
    395     assert(!empty() && "Called front() on empty list!");
    396     return *Head;
    397   }
    398   reference back() {
    399     assert(!empty() && "Called back() on empty list!");
    400     return *this->getPrev(getTail());
    401   }
    402   const_reference back() const {
    403     assert(!empty() && "Called back() on empty list!");
    404     return *this->getPrev(getTail());
    405   }
    406 
    407   void swap(iplist &RHS) {
    408     assert(0 && "Swap does not use list traits callback correctly yet!");
    409     std::swap(Head, RHS.Head);
    410   }
    411 
    412   iterator insert(iterator where, NodeTy *New) {
    413     NodeTy *CurNode = where.getNodePtrUnchecked();
    414     NodeTy *PrevNode = this->getPrev(CurNode);
    415     this->setNext(New, CurNode);
    416     this->setPrev(New, PrevNode);
    417 
    418     if (CurNode != Head)  // Is PrevNode off the beginning of the list?
    419       this->setNext(PrevNode, New);
    420     else
    421       Head = New;
    422     this->setPrev(CurNode, New);
    423 
    424     this->addNodeToList(New);  // Notify traits that we added a node...
    425     return New;
    426   }
    427 
    428   iterator insertAfter(iterator where, NodeTy *New) {
    429     if (empty())
    430       return insert(begin(), New);
    431     else
    432       return insert(++where, New);
    433   }
    434 
    435   NodeTy *remove(iterator &IT) {
    436     assert(IT != end() && "Cannot remove end of list!");
    437     NodeTy *Node = &*IT;
    438     NodeTy *NextNode = this->getNext(Node);
    439     NodeTy *PrevNode = this->getPrev(Node);
    440 
    441     if (Node != Head)  // Is PrevNode off the beginning of the list?
    442       this->setNext(PrevNode, NextNode);
    443     else
    444       Head = NextNode;
    445     this->setPrev(NextNode, PrevNode);
    446     IT = NextNode;
    447     this->removeNodeFromList(Node);  // Notify traits that we removed a node...
    448 
    449     // Set the next/prev pointers of the current node to null.  This isn't
    450     // strictly required, but this catches errors where a node is removed from
    451     // an ilist (and potentially deleted) with iterators still pointing at it.
    452     // When those iterators are incremented or decremented, they will assert on
    453     // the null next/prev pointer instead of "usually working".
    454     this->setNext(Node, nullptr);
    455     this->setPrev(Node, nullptr);
    456     return Node;
    457   }
    458 
    459   NodeTy *remove(const iterator &IT) {
    460     iterator MutIt = IT;
    461     return remove(MutIt);
    462   }
    463 
    464   // erase - remove a node from the controlled sequence... and delete it.
    465   iterator erase(iterator where) {
    466     this->deleteNode(remove(where));
    467     return where;
    468   }
    469 
    470   /// Remove all nodes from the list like clear(), but do not call
    471   /// removeNodeFromList() or deleteNode().
    472   ///
    473   /// This should only be used immediately before freeing nodes in bulk to
    474   /// avoid traversing the list and bringing all the nodes into cache.
    475   void clearAndLeakNodesUnsafely() {
    476     if (Head) {
    477       Head = getTail();
    478       this->setPrev(Head, Head);
    479     }
    480   }
    481 
    482 private:
    483   // transfer - The heart of the splice function.  Move linked list nodes from
    484   // [first, last) into position.
    485   //
    486   void transfer(iterator position, iplist &L2, iterator first, iterator last) {
    487     assert(first != last && "Should be checked by callers");
    488     // Position cannot be contained in the range to be transferred.
    489     // Check for the most common mistake.
    490     assert(position != first &&
    491            "Insertion point can't be one of the transferred nodes");
    492 
    493     if (position != last) {
    494       // Note: we have to be careful about the case when we move the first node
    495       // in the list.  This node is the list sentinel node and we can't move it.
    496       NodeTy *ThisSentinel = getTail();
    497       setTail(nullptr);
    498       NodeTy *L2Sentinel = L2.getTail();
    499       L2.setTail(nullptr);
    500 
    501       // Remove [first, last) from its old position.
    502       NodeTy *First = &*first, *Prev = this->getPrev(First);
    503       NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
    504       if (Prev)
    505         this->setNext(Prev, Next);
    506       else
    507         L2.Head = Next;
    508       this->setPrev(Next, Prev);
    509 
    510       // Splice [first, last) into its new position.
    511       NodeTy *PosNext = position.getNodePtrUnchecked();
    512       NodeTy *PosPrev = this->getPrev(PosNext);
    513 
    514       // Fix head of list...
    515       if (PosPrev)
    516         this->setNext(PosPrev, First);
    517       else
    518         Head = First;
    519       this->setPrev(First, PosPrev);
    520 
    521       // Fix end of list...
    522       this->setNext(Last, PosNext);
    523       this->setPrev(PosNext, Last);
    524 
    525       this->transferNodesFromList(L2, First, PosNext);
    526 
    527       // Now that everything is set, restore the pointers to the list sentinels.
    528       L2.setTail(L2Sentinel);
    529       setTail(ThisSentinel);
    530     }
    531   }
    532 
    533 public:
    534 
    535   //===----------------------------------------------------------------------===
    536   // Functionality derived from other functions defined above...
    537   //
    538 
    539   size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const {
    540     if (!Head) return 0; // Don't require construction of sentinel if empty.
    541     return std::distance(begin(), end());
    542   }
    543 
    544   iterator erase(iterator first, iterator last) {
    545     while (first != last)
    546       first = erase(first);
    547     return last;
    548   }
    549 
    550   void clear() { if (Head) erase(begin(), end()); }
    551 
    552   // Front and back inserters...
    553   void push_front(NodeTy *val) { insert(begin(), val); }
    554   void push_back(NodeTy *val) { insert(end(), val); }
    555   void pop_front() {
    556     assert(!empty() && "pop_front() on empty list!");
    557     erase(begin());
    558   }
    559   void pop_back() {
    560     assert(!empty() && "pop_back() on empty list!");
    561     iterator t = end(); erase(--t);
    562   }
    563 
    564   // Special forms of insert...
    565   template<class InIt> void insert(iterator where, InIt first, InIt last) {
    566     for (; first != last; ++first) insert(where, *first);
    567   }
    568 
    569   // Splice members - defined in terms of transfer...
    570   void splice(iterator where, iplist &L2) {
    571     if (!L2.empty())
    572       transfer(where, L2, L2.begin(), L2.end());
    573   }
    574   void splice(iterator where, iplist &L2, iterator first) {
    575     iterator last = first; ++last;
    576     if (where == first || where == last) return; // No change
    577     transfer(where, L2, first, last);
    578   }
    579   void splice(iterator where, iplist &L2, iterator first, iterator last) {
    580     if (first != last) transfer(where, L2, first, last);
    581   }
    582 };
    583 
    584 
    585 template<typename NodeTy>
    586 struct ilist : public iplist<NodeTy> {
    587   typedef typename iplist<NodeTy>::size_type size_type;
    588   typedef typename iplist<NodeTy>::iterator iterator;
    589 
    590   ilist() {}
    591   ilist(const ilist &right) {
    592     insert(this->begin(), right.begin(), right.end());
    593   }
    594   explicit ilist(size_type count) {
    595     insert(this->begin(), count, NodeTy());
    596   }
    597   ilist(size_type count, const NodeTy &val) {
    598     insert(this->begin(), count, val);
    599   }
    600   template<class InIt> ilist(InIt first, InIt last) {
    601     insert(this->begin(), first, last);
    602   }
    603 
    604   // bring hidden functions into scope
    605   using iplist<NodeTy>::insert;
    606   using iplist<NodeTy>::push_front;
    607   using iplist<NodeTy>::push_back;
    608 
    609   // Main implementation here - Insert for a node passed by value...
    610   iterator insert(iterator where, const NodeTy &val) {
    611     return insert(where, this->createNode(val));
    612   }
    613 
    614 
    615   // Front and back inserters...
    616   void push_front(const NodeTy &val) { insert(this->begin(), val); }
    617   void push_back(const NodeTy &val) { insert(this->end(), val); }
    618 
    619   void insert(iterator where, size_type count, const NodeTy &val) {
    620     for (; count != 0; --count) insert(where, val);
    621   }
    622 
    623   // Assign special forms...
    624   void assign(size_type count, const NodeTy &val) {
    625     iterator I = this->begin();
    626     for (; I != this->end() && count != 0; ++I, --count)
    627       *I = val;
    628     if (count != 0)
    629       insert(this->end(), val, val);
    630     else
    631       erase(I, this->end());
    632   }
    633   template<class InIt> void assign(InIt first1, InIt last1) {
    634     iterator first2 = this->begin(), last2 = this->end();
    635     for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
    636       *first1 = *first2;
    637     if (first2 == last2)
    638       erase(first1, last1);
    639     else
    640       insert(last1, first2, last2);
    641   }
    642 
    643 
    644   // Resize members...
    645   void resize(size_type newsize, NodeTy val) {
    646     iterator i = this->begin();
    647     size_type len = 0;
    648     for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
    649 
    650     if (len == newsize)
    651       erase(i, this->end());
    652     else                                          // i == end()
    653       insert(this->end(), newsize - len, val);
    654   }
    655   void resize(size_type newsize) { resize(newsize, NodeTy()); }
    656 };
    657 
    658 } // End llvm namespace
    659 
    660 namespace std {
    661   // Ensure that swap uses the fast list swap...
    662   template<class Ty>
    663   void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
    664     Left.swap(Right);
    665   }
    666 }  // End 'std' extensions...
    667 
    668 #endif // LLVM_ADT_ILIST_H
    669