Home | History | Annotate | Download | only in AArch64
      1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // For best-case performance on Cortex-A57, we should try to use a balanced
     10 // mix of odd and even D-registers when performing a critical sequence of
     11 // independent, non-quadword FP/ASIMD floating-point multiply or
     12 // multiply-accumulate operations.
     13 //
     14 // This pass attempts to detect situations where the register allocation may
     15 // adversely affect this load balancing and to change the registers used so as
     16 // to better utilize the CPU.
     17 //
     18 // Ideally we'd just take each multiply or multiply-accumulate in turn and
     19 // allocate it alternating even or odd registers. However, multiply-accumulates
     20 // are most efficiently performed in the same functional unit as their
     21 // accumulation operand. Therefore this pass tries to find maximal sequences
     22 // ("Chains") of multiply-accumulates linked via their accumulation operand,
     23 // and assign them all the same "color" (oddness/evenness).
     24 //
     25 // This optimization affects S-register and D-register floating point
     26 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
     27 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
     28 // not affected.
     29 //===----------------------------------------------------------------------===//
     30 
     31 #include "AArch64.h"
     32 #include "AArch64InstrInfo.h"
     33 #include "AArch64Subtarget.h"
     34 #include "llvm/ADT/BitVector.h"
     35 #include "llvm/ADT/EquivalenceClasses.h"
     36 #include "llvm/CodeGen/MachineFunction.h"
     37 #include "llvm/CodeGen/MachineFunctionPass.h"
     38 #include "llvm/CodeGen/MachineInstr.h"
     39 #include "llvm/CodeGen/MachineInstrBuilder.h"
     40 #include "llvm/CodeGen/MachineRegisterInfo.h"
     41 #include "llvm/CodeGen/RegisterClassInfo.h"
     42 #include "llvm/CodeGen/RegisterScavenging.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include <list>
     47 using namespace llvm;
     48 
     49 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
     50 
     51 // Enforce the algorithm to use the scavenged register even when the original
     52 // destination register is the correct color. Used for testing.
     53 static cl::opt<bool>
     54 TransformAll("aarch64-a57-fp-load-balancing-force-all",
     55              cl::desc("Always modify dest registers regardless of color"),
     56              cl::init(false), cl::Hidden);
     57 
     58 // Never use the balance information obtained from chains - return a specific
     59 // color always. Used for testing.
     60 static cl::opt<unsigned>
     61 OverrideBalance("aarch64-a57-fp-load-balancing-override",
     62               cl::desc("Ignore balance information, always return "
     63                        "(1: Even, 2: Odd)."),
     64               cl::init(0), cl::Hidden);
     65 
     66 //===----------------------------------------------------------------------===//
     67 // Helper functions
     68 
     69 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
     70 static bool isMul(MachineInstr *MI) {
     71   switch (MI->getOpcode()) {
     72   case AArch64::FMULSrr:
     73   case AArch64::FNMULSrr:
     74   case AArch64::FMULDrr:
     75   case AArch64::FNMULDrr:
     76     return true;
     77   default:
     78     return false;
     79   }
     80 }
     81 
     82 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
     83 static bool isMla(MachineInstr *MI) {
     84   switch (MI->getOpcode()) {
     85   case AArch64::FMSUBSrrr:
     86   case AArch64::FMADDSrrr:
     87   case AArch64::FNMSUBSrrr:
     88   case AArch64::FNMADDSrrr:
     89   case AArch64::FMSUBDrrr:
     90   case AArch64::FMADDDrrr:
     91   case AArch64::FNMSUBDrrr:
     92   case AArch64::FNMADDDrrr:
     93     return true;
     94   default:
     95     return false;
     96   }
     97 }
     98 
     99 namespace llvm {
    100 static void initializeAArch64A57FPLoadBalancingPass(PassRegistry &);
    101 }
    102 
    103 //===----------------------------------------------------------------------===//
    104 
    105 namespace {
    106 /// A "color", which is either even or odd. Yes, these aren't really colors
    107 /// but the algorithm is conceptually doing two-color graph coloring.
    108 enum class Color { Even, Odd };
    109 #ifndef NDEBUG
    110 static const char *ColorNames[2] = { "Even", "Odd" };
    111 #endif
    112 
    113 class Chain;
    114 
    115 class AArch64A57FPLoadBalancing : public MachineFunctionPass {
    116   MachineRegisterInfo *MRI;
    117   const TargetRegisterInfo *TRI;
    118   RegisterClassInfo RCI;
    119 
    120 public:
    121   static char ID;
    122   explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
    123     initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
    124   }
    125 
    126   bool runOnMachineFunction(MachineFunction &F) override;
    127 
    128   const char *getPassName() const override {
    129     return "A57 FP Anti-dependency breaker";
    130   }
    131 
    132   void getAnalysisUsage(AnalysisUsage &AU) const override {
    133     AU.setPreservesCFG();
    134     MachineFunctionPass::getAnalysisUsage(AU);
    135   }
    136 
    137 private:
    138   bool runOnBasicBlock(MachineBasicBlock &MBB);
    139   bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
    140                      int &Balance);
    141   bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
    142   int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
    143   void scanInstruction(MachineInstr *MI, unsigned Idx,
    144                        std::map<unsigned, Chain*> &Active,
    145                        std::vector<std::unique_ptr<Chain>> &AllChains);
    146   void maybeKillChain(MachineOperand &MO, unsigned Idx,
    147                       std::map<unsigned, Chain*> &RegChains);
    148   Color getColor(unsigned Register);
    149   Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
    150 };
    151 }
    152 
    153 char AArch64A57FPLoadBalancing::ID = 0;
    154 
    155 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
    156                       "AArch64 A57 FP Load-Balancing", false, false)
    157 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
    158                     "AArch64 A57 FP Load-Balancing", false, false)
    159 
    160 namespace {
    161 /// A Chain is a sequence of instructions that are linked together by
    162 /// an accumulation operand. For example:
    163 ///
    164 ///   fmul d0<def>, ?
    165 ///   fmla d1<def>, ?, ?, d0<kill>
    166 ///   fmla d2<def>, ?, ?, d1<kill>
    167 ///
    168 /// There may be other instructions interleaved in the sequence that
    169 /// do not belong to the chain. These other instructions must not use
    170 /// the "chain" register at any point.
    171 ///
    172 /// We currently only support chains where the "chain" operand is killed
    173 /// at each link in the chain for simplicity.
    174 /// A chain has three important instructions - Start, Last and Kill.
    175 ///   * The start instruction is the first instruction in the chain.
    176 ///   * Last is the final instruction in the chain.
    177 ///   * Kill may or may not be defined. If defined, Kill is the instruction
    178 ///     where the outgoing value of the Last instruction is killed.
    179 ///     This information is important as if we know the outgoing value is
    180 ///     killed with no intervening uses, we can safely change its register.
    181 ///
    182 /// Without a kill instruction, we must assume the outgoing value escapes
    183 /// beyond our model and either must not change its register or must
    184 /// create a fixup FMOV to keep the old register value consistent.
    185 ///
    186 class Chain {
    187 public:
    188   /// The important (marker) instructions.
    189   MachineInstr *StartInst, *LastInst, *KillInst;
    190   /// The index, from the start of the basic block, that each marker
    191   /// appears. These are stored so we can do quick interval tests.
    192   unsigned StartInstIdx, LastInstIdx, KillInstIdx;
    193   /// All instructions in the chain.
    194   std::set<MachineInstr*> Insts;
    195   /// True if KillInst cannot be modified. If this is true,
    196   /// we cannot change LastInst's outgoing register.
    197   /// This will be true for tied values and regmasks.
    198   bool KillIsImmutable;
    199   /// The "color" of LastInst. This will be the preferred chain color,
    200   /// as changing intermediate nodes is easy but changing the last
    201   /// instruction can be more tricky.
    202   Color LastColor;
    203 
    204   Chain(MachineInstr *MI, unsigned Idx, Color C)
    205       : StartInst(MI), LastInst(MI), KillInst(nullptr),
    206         StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
    207         LastColor(C) {
    208     Insts.insert(MI);
    209   }
    210 
    211   /// Add a new instruction into the chain. The instruction's dest operand
    212   /// has the given color.
    213   void add(MachineInstr *MI, unsigned Idx, Color C) {
    214     LastInst = MI;
    215     LastInstIdx = Idx;
    216     LastColor = C;
    217     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
    218            "Chain: broken invariant. A Chain can only be killed after its last "
    219            "def");
    220 
    221     Insts.insert(MI);
    222   }
    223 
    224   /// Return true if MI is a member of the chain.
    225   bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; }
    226 
    227   /// Return the number of instructions in the chain.
    228   unsigned size() const {
    229     return Insts.size();
    230   }
    231 
    232   /// Inform the chain that its last active register (the dest register of
    233   /// LastInst) is killed by MI with no intervening uses or defs.
    234   void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
    235     KillInst = MI;
    236     KillInstIdx = Idx;
    237     KillIsImmutable = Immutable;
    238     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
    239            "Chain: broken invariant. A Chain can only be killed after its last "
    240            "def");
    241   }
    242 
    243   /// Return the first instruction in the chain.
    244   MachineInstr *getStart() const { return StartInst; }
    245   /// Return the last instruction in the chain.
    246   MachineInstr *getLast() const { return LastInst; }
    247   /// Return the "kill" instruction (as set with setKill()) or NULL.
    248   MachineInstr *getKill() const { return KillInst; }
    249   /// Return an instruction that can be used as an iterator for the end
    250   /// of the chain. This is the maximum of KillInst (if set) and LastInst.
    251   MachineBasicBlock::iterator getEnd() const {
    252     return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
    253   }
    254 
    255   /// Can the Kill instruction (assuming one exists) be modified?
    256   bool isKillImmutable() const { return KillIsImmutable; }
    257 
    258   /// Return the preferred color of this chain.
    259   Color getPreferredColor() {
    260     if (OverrideBalance != 0)
    261       return OverrideBalance == 1 ? Color::Even : Color::Odd;
    262     return LastColor;
    263   }
    264 
    265   /// Return true if this chain (StartInst..KillInst) overlaps with Other.
    266   bool rangeOverlapsWith(const Chain &Other) const {
    267     unsigned End = KillInst ? KillInstIdx : LastInstIdx;
    268     unsigned OtherEnd = Other.KillInst ?
    269       Other.KillInstIdx : Other.LastInstIdx;
    270 
    271     return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
    272   }
    273 
    274   /// Return true if this chain starts before Other.
    275   bool startsBefore(const Chain *Other) const {
    276     return StartInstIdx < Other->StartInstIdx;
    277   }
    278 
    279   /// Return true if the group will require a fixup MOV at the end.
    280   bool requiresFixup() const {
    281     return (getKill() && isKillImmutable()) || !getKill();
    282   }
    283 
    284   /// Return a simple string representation of the chain.
    285   std::string str() const {
    286     std::string S;
    287     raw_string_ostream OS(S);
    288 
    289     OS << "{";
    290     StartInst->print(OS, /* SkipOpers= */true);
    291     OS << " -> ";
    292     LastInst->print(OS, /* SkipOpers= */true);
    293     if (KillInst) {
    294       OS << " (kill @ ";
    295       KillInst->print(OS, /* SkipOpers= */true);
    296       OS << ")";
    297     }
    298     OS << "}";
    299 
    300     return OS.str();
    301   }
    302 
    303 };
    304 
    305 } // end anonymous namespace
    306 
    307 //===----------------------------------------------------------------------===//
    308 
    309 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
    310   // Don't do anything if this isn't an A53 or A57.
    311   if (!(F.getSubtarget<AArch64Subtarget>().isCortexA53() ||
    312         F.getSubtarget<AArch64Subtarget>().isCortexA57()))
    313     return false;
    314 
    315   bool Changed = false;
    316   DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
    317 
    318   MRI = &F.getRegInfo();
    319   TRI = F.getRegInfo().getTargetRegisterInfo();
    320   RCI.runOnMachineFunction(F);
    321 
    322   for (auto &MBB : F) {
    323     Changed |= runOnBasicBlock(MBB);
    324   }
    325 
    326   return Changed;
    327 }
    328 
    329 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
    330   bool Changed = false;
    331   DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
    332 
    333   // First, scan the basic block producing a set of chains.
    334 
    335   // The currently "active" chains - chains that can be added to and haven't
    336   // been killed yet. This is keyed by register - all chains can only have one
    337   // "link" register between each inst in the chain.
    338   std::map<unsigned, Chain*> ActiveChains;
    339   std::vector<std::unique_ptr<Chain>> AllChains;
    340   unsigned Idx = 0;
    341   for (auto &MI : MBB)
    342     scanInstruction(&MI, Idx++, ActiveChains, AllChains);
    343 
    344   DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n");
    345 
    346   // Group the chains into disjoint sets based on their liveness range. This is
    347   // a poor-man's version of graph coloring. Ideally we'd create an interference
    348   // graph and perform full-on graph coloring on that, but;
    349   //   (a) That's rather heavyweight for only two colors.
    350   //   (b) We expect multiple disjoint interference regions - in practice the live
    351   //       range of chains is quite small and they are clustered between loads
    352   //       and stores.
    353   EquivalenceClasses<Chain*> EC;
    354   for (auto &I : AllChains)
    355     EC.insert(I.get());
    356 
    357   for (auto &I : AllChains)
    358     for (auto &J : AllChains)
    359       if (I != J && I->rangeOverlapsWith(*J))
    360         EC.unionSets(I.get(), J.get());
    361   DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
    362 
    363   // Now we assume that every member of an equivalence class interferes
    364   // with every other member of that class, and with no members of other classes.
    365 
    366   // Convert the EquivalenceClasses to a simpler set of sets.
    367   std::vector<std::vector<Chain*> > V;
    368   for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
    369     std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
    370     if (Cs.empty()) continue;
    371     V.push_back(std::move(Cs));
    372   }
    373 
    374   // Now we have a set of sets, order them by start address so
    375   // we can iterate over them sequentially.
    376   std::sort(V.begin(), V.end(),
    377             [](const std::vector<Chain*> &A,
    378                const std::vector<Chain*> &B) {
    379       return A.front()->startsBefore(B.front());
    380     });
    381 
    382   // As we only have two colors, we can track the global (BB-level) balance of
    383   // odds versus evens. We aim to keep this near zero to keep both execution
    384   // units fed.
    385   // Positive means we're even-heavy, negative we're odd-heavy.
    386   //
    387   // FIXME: If chains have interdependencies, for example:
    388   //   mul r0, r1, r2
    389   //   mul r3, r0, r1
    390   // We do not model this and may color each one differently, assuming we'll
    391   // get ILP when we obviously can't. This hasn't been seen to be a problem
    392   // in practice so far, so we simplify the algorithm by ignoring it.
    393   int Parity = 0;
    394 
    395   for (auto &I : V)
    396     Changed |= colorChainSet(std::move(I), MBB, Parity);
    397 
    398   return Changed;
    399 }
    400 
    401 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
    402                                                   std::vector<Chain*> &L) {
    403   if (L.empty())
    404     return nullptr;
    405 
    406   // We try and get the best candidate from L to color next, given that our
    407   // preferred color is "PreferredColor". L is ordered from larger to smaller
    408   // chains. It is beneficial to color the large chains before the small chains,
    409   // but if we can't find a chain of the maximum length with the preferred color,
    410   // we fuzz the size and look for slightly smaller chains before giving up and
    411   // returning a chain that must be recolored.
    412 
    413   // FIXME: Does this need to be configurable?
    414   const unsigned SizeFuzz = 1;
    415   unsigned MinSize = L.front()->size() - SizeFuzz;
    416   for (auto I = L.begin(), E = L.end(); I != E; ++I) {
    417     if ((*I)->size() <= MinSize) {
    418       // We've gone past the size limit. Return the previous item.
    419       Chain *Ch = *--I;
    420       L.erase(I);
    421       return Ch;
    422     }
    423 
    424     if ((*I)->getPreferredColor() == PreferredColor) {
    425       Chain *Ch = *I;
    426       L.erase(I);
    427       return Ch;
    428     }
    429   }
    430 
    431   // Bailout case - just return the first item.
    432   Chain *Ch = L.front();
    433   L.erase(L.begin());
    434   return Ch;
    435 }
    436 
    437 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
    438                                               MachineBasicBlock &MBB,
    439                                               int &Parity) {
    440   bool Changed = false;
    441   DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
    442 
    443   // Sort by descending size order so that we allocate the most important
    444   // sets first.
    445   // Tie-break equivalent sizes by sorting chains requiring fixups before
    446   // those without fixups. The logic here is that we should look at the
    447   // chains that we cannot change before we look at those we can,
    448   // so the parity counter is updated and we know what color we should
    449   // change them to!
    450   // Final tie-break with instruction order so pass output is stable (i.e. not
    451   // dependent on malloc'd pointer values).
    452   std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
    453       if (G1->size() != G2->size())
    454         return G1->size() > G2->size();
    455       if (G1->requiresFixup() != G2->requiresFixup())
    456         return G1->requiresFixup() > G2->requiresFixup();
    457       // Make sure startsBefore() produces a stable final order.
    458       assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
    459              "Starts before not total order!");
    460       return G1->startsBefore(G2);
    461     });
    462 
    463   Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
    464   while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
    465     // Start off by assuming we'll color to our own preferred color.
    466     Color C = PreferredColor;
    467     if (Parity == 0)
    468       // But if we really don't care, use the chain's preferred color.
    469       C = G->getPreferredColor();
    470 
    471     DEBUG(dbgs() << " - Parity=" << Parity << ", Color="
    472           << ColorNames[(int)C] << "\n");
    473 
    474     // If we'll need a fixup FMOV, don't bother. Testing has shown that this
    475     // happens infrequently and when it does it has at least a 50% chance of
    476     // slowing code down instead of speeding it up.
    477     if (G->requiresFixup() && C != G->getPreferredColor()) {
    478       C = G->getPreferredColor();
    479       DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; "
    480             "color remains " << ColorNames[(int)C] << "\n");
    481     }
    482 
    483     Changed |= colorChain(G, C, MBB);
    484 
    485     Parity += (C == Color::Even) ? G->size() : -G->size();
    486     PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
    487   }
    488 
    489   return Changed;
    490 }
    491 
    492 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
    493                                                 MachineBasicBlock &MBB) {
    494   RegScavenger RS;
    495   RS.enterBasicBlock(&MBB);
    496   RS.forward(MachineBasicBlock::iterator(G->getStart()));
    497 
    498   // Can we find an appropriate register that is available throughout the life
    499   // of the chain?
    500   unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass;
    501   BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID));
    502   for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
    503        I != E; ++I) {
    504     RS.forward(I);
    505     AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID));
    506 
    507     // Remove any registers clobbered by a regmask or any def register that is
    508     // immediately dead.
    509     for (auto J : I->operands()) {
    510       if (J.isRegMask())
    511         AvailableRegs.clearBitsNotInMask(J.getRegMask());
    512 
    513       if (J.isReg() && J.isDef() && AvailableRegs[J.getReg()]) {
    514         assert(J.isDead() && "Non-dead def should have been removed by now!");
    515         AvailableRegs.reset(J.getReg());
    516       }
    517     }
    518   }
    519 
    520   // Make sure we allocate in-order, to get the cheapest registers first.
    521   auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
    522   for (auto Reg : Ord) {
    523     if (!AvailableRegs[Reg])
    524       continue;
    525     if ((C == Color::Even && (Reg % 2) == 0) ||
    526         (C == Color::Odd && (Reg % 2) == 1))
    527       return Reg;
    528   }
    529 
    530   return -1;
    531 }
    532 
    533 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
    534                                            MachineBasicBlock &MBB) {
    535   bool Changed = false;
    536   DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
    537         << ColorNames[(int)C] << ")\n");
    538 
    539   // Try and obtain a free register of the right class. Without a register
    540   // to play with we cannot continue.
    541   int Reg = scavengeRegister(G, C, MBB);
    542   if (Reg == -1) {
    543     DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
    544     return false;
    545   }
    546   DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n");
    547 
    548   std::map<unsigned, unsigned> Substs;
    549   for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
    550        I != E; ++I) {
    551     if (!G->contains(I) &&
    552         (&*I != G->getKill() || G->isKillImmutable()))
    553       continue;
    554 
    555     // I is a member of G, or I is a mutable instruction that kills G.
    556 
    557     std::vector<unsigned> ToErase;
    558     for (auto &U : I->operands()) {
    559       if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
    560         unsigned OrigReg = U.getReg();
    561         U.setReg(Substs[OrigReg]);
    562         if (U.isKill())
    563           // Don't erase straight away, because there may be other operands
    564           // that also reference this substitution!
    565           ToErase.push_back(OrigReg);
    566       } else if (U.isRegMask()) {
    567         for (auto J : Substs) {
    568           if (U.clobbersPhysReg(J.first))
    569             ToErase.push_back(J.first);
    570         }
    571       }
    572     }
    573     // Now it's safe to remove the substs identified earlier.
    574     for (auto J : ToErase)
    575       Substs.erase(J);
    576 
    577     // Only change the def if this isn't the last instruction.
    578     if (&*I != G->getKill()) {
    579       MachineOperand &MO = I->getOperand(0);
    580 
    581       bool Change = TransformAll || getColor(MO.getReg()) != C;
    582       if (G->requiresFixup() && &*I == G->getLast())
    583         Change = false;
    584 
    585       if (Change) {
    586         Substs[MO.getReg()] = Reg;
    587         MO.setReg(Reg);
    588         MRI->setPhysRegUsed(Reg);
    589 
    590         Changed = true;
    591       }
    592     }
    593   }
    594   assert(Substs.size() == 0 && "No substitutions should be left active!");
    595 
    596   if (G->getKill()) {
    597     DEBUG(dbgs() << " - Kill instruction seen.\n");
    598   } else {
    599     // We didn't have a kill instruction, but we didn't seem to need to change
    600     // the destination register anyway.
    601     DEBUG(dbgs() << " - Destination register not changed.\n");
    602   }
    603   return Changed;
    604 }
    605 
    606 void AArch64A57FPLoadBalancing::scanInstruction(
    607     MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
    608     std::vector<std::unique_ptr<Chain>> &AllChains) {
    609   // Inspect "MI", updating ActiveChains and AllChains.
    610 
    611   if (isMul(MI)) {
    612 
    613     for (auto &I : MI->uses())
    614       maybeKillChain(I, Idx, ActiveChains);
    615     for (auto &I : MI->defs())
    616       maybeKillChain(I, Idx, ActiveChains);
    617 
    618     // Create a new chain. Multiplies don't require forwarding so can go on any
    619     // unit.
    620     unsigned DestReg = MI->getOperand(0).getReg();
    621 
    622     DEBUG(dbgs() << "New chain started for register "
    623           << TRI->getName(DestReg) << " at " << *MI);
    624 
    625     auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
    626     ActiveChains[DestReg] = G.get();
    627     AllChains.push_back(std::move(G));
    628 
    629   } else if (isMla(MI)) {
    630 
    631     // It is beneficial to keep MLAs on the same functional unit as their
    632     // accumulator operand.
    633     unsigned DestReg  = MI->getOperand(0).getReg();
    634     unsigned AccumReg = MI->getOperand(3).getReg();
    635 
    636     maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
    637     maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
    638     if (DestReg != AccumReg)
    639       maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
    640 
    641     if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
    642       DEBUG(dbgs() << "Chain found for accumulator register "
    643             << TRI->getName(AccumReg) << " in MI " << *MI);
    644 
    645       // For simplicity we only chain together sequences of MULs/MLAs where the
    646       // accumulator register is killed on each instruction. This means we don't
    647       // need to track other uses of the registers we want to rewrite.
    648       //
    649       // FIXME: We could extend to handle the non-kill cases for more coverage.
    650       if (MI->getOperand(3).isKill()) {
    651         // Add to chain.
    652         DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
    653         ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
    654         // Handle cases where the destination is not the same as the accumulator.
    655         if (DestReg != AccumReg) {
    656           ActiveChains[DestReg] = ActiveChains[AccumReg];
    657           ActiveChains.erase(AccumReg);
    658         }
    659         return;
    660       }
    661 
    662       DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't "
    663             << "marked <kill>!\n");
    664       maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
    665     }
    666 
    667     DEBUG(dbgs() << "Creating new chain for dest register "
    668           << TRI->getName(DestReg) << "\n");
    669     auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
    670     ActiveChains[DestReg] = G.get();
    671     AllChains.push_back(std::move(G));
    672 
    673   } else {
    674 
    675     // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
    676     // lists.
    677     for (auto &I : MI->uses())
    678       maybeKillChain(I, Idx, ActiveChains);
    679     for (auto &I : MI->defs())
    680       maybeKillChain(I, Idx, ActiveChains);
    681 
    682   }
    683 }
    684 
    685 void AArch64A57FPLoadBalancing::
    686 maybeKillChain(MachineOperand &MO, unsigned Idx,
    687                std::map<unsigned, Chain*> &ActiveChains) {
    688   // Given an operand and the set of active chains (keyed by register),
    689   // determine if a chain should be ended and remove from ActiveChains.
    690   MachineInstr *MI = MO.getParent();
    691 
    692   if (MO.isReg()) {
    693 
    694     // If this is a KILL of a current chain, record it.
    695     if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
    696       DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg())
    697             << "\n");
    698       ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
    699     }
    700     ActiveChains.erase(MO.getReg());
    701 
    702   } else if (MO.isRegMask()) {
    703 
    704     for (auto I = ActiveChains.begin(), E = ActiveChains.end();
    705          I != E;) {
    706       if (MO.clobbersPhysReg(I->first)) {
    707         DEBUG(dbgs() << "Kill (regmask) seen for chain "
    708               << TRI->getName(I->first) << "\n");
    709         I->second->setKill(MI, Idx, /*Immutable=*/true);
    710         ActiveChains.erase(I++);
    711       } else
    712         ++I;
    713     }
    714 
    715   }
    716 }
    717 
    718 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
    719   if ((TRI->getEncodingValue(Reg) % 2) == 0)
    720     return Color::Even;
    721   else
    722     return Color::Odd;
    723 }
    724 
    725 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
    726 FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
    727   return new AArch64A57FPLoadBalancing();
    728 }
    729