Home | History | Annotate | Download | only in Scalar
      1 //===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Bit-Tracking Dead Code Elimination pass. Some
     11 // instructions (shifts, some ands, ors, etc.) kill some of their input bits.
     12 // We track these dead bits and remove instructions that compute only these
     13 // dead bits.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Transforms/Scalar.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/DepthFirstIterator.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/AssumptionCache.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/IR/BasicBlock.h"
     26 #include "llvm/IR/CFG.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/Dominators.h"
     29 #include "llvm/IR/InstIterator.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/Module.h"
     33 #include "llvm/IR/Operator.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 
     38 using namespace llvm;
     39 
     40 #define DEBUG_TYPE "bdce"
     41 
     42 STATISTIC(NumRemoved, "Number of instructions removed (unused)");
     43 STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)");
     44 
     45 namespace {
     46 struct BDCE : public FunctionPass {
     47   static char ID; // Pass identification, replacement for typeid
     48   BDCE() : FunctionPass(ID) {
     49     initializeBDCEPass(*PassRegistry::getPassRegistry());
     50   }
     51 
     52   bool runOnFunction(Function& F) override;
     53 
     54   void getAnalysisUsage(AnalysisUsage& AU) const override {
     55     AU.setPreservesCFG();
     56     AU.addRequired<AssumptionCacheTracker>();
     57     AU.addRequired<DominatorTreeWrapperPass>();
     58   }
     59 
     60   void determineLiveOperandBits(const Instruction *UserI,
     61                                 const Instruction *I, unsigned OperandNo,
     62                                 const APInt &AOut, APInt &AB,
     63                                 APInt &KnownZero, APInt &KnownOne,
     64                                 APInt &KnownZero2, APInt &KnownOne2);
     65 
     66   AssumptionCache *AC;
     67   DominatorTree *DT;
     68 };
     69 }
     70 
     71 char BDCE::ID = 0;
     72 INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
     73                       false, false)
     74 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
     75 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     76 INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
     77                     false, false)
     78 
     79 static bool isAlwaysLive(Instruction *I) {
     80   return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
     81          isa<LandingPadInst>(I) || I->mayHaveSideEffects();
     82 }
     83 
     84 void BDCE::determineLiveOperandBits(const Instruction *UserI,
     85                                     const Instruction *I, unsigned OperandNo,
     86                                     const APInt &AOut, APInt &AB,
     87                                     APInt &KnownZero, APInt &KnownOne,
     88                                     APInt &KnownZero2, APInt &KnownOne2) {
     89   unsigned BitWidth = AB.getBitWidth();
     90 
     91   // We're called once per operand, but for some instructions, we need to
     92   // compute known bits of both operands in order to determine the live bits of
     93   // either (when both operands are instructions themselves). We don't,
     94   // however, want to do this twice, so we cache the result in APInts that live
     95   // in the caller. For the two-relevant-operands case, both operand values are
     96   // provided here.
     97   auto ComputeKnownBits =
     98       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
     99         const DataLayout &DL = I->getModule()->getDataLayout();
    100         KnownZero = APInt(BitWidth, 0);
    101         KnownOne = APInt(BitWidth, 0);
    102         computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
    103                          AC, UserI, DT);
    104 
    105         if (V2) {
    106           KnownZero2 = APInt(BitWidth, 0);
    107           KnownOne2 = APInt(BitWidth, 0);
    108           computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
    109                            0, AC, UserI, DT);
    110         }
    111       };
    112 
    113   switch (UserI->getOpcode()) {
    114   default: break;
    115   case Instruction::Call:
    116   case Instruction::Invoke:
    117     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
    118       switch (II->getIntrinsicID()) {
    119       default: break;
    120       case Intrinsic::bswap:
    121         // The alive bits of the input are the swapped alive bits of
    122         // the output.
    123         AB = AOut.byteSwap();
    124         break;
    125       case Intrinsic::ctlz:
    126         if (OperandNo == 0) {
    127           // We need some output bits, so we need all bits of the
    128           // input to the left of, and including, the leftmost bit
    129           // known to be one.
    130           ComputeKnownBits(BitWidth, I, nullptr);
    131           AB = APInt::getHighBitsSet(BitWidth,
    132                  std::min(BitWidth, KnownOne.countLeadingZeros()+1));
    133         }
    134         break;
    135       case Intrinsic::cttz:
    136         if (OperandNo == 0) {
    137           // We need some output bits, so we need all bits of the
    138           // input to the right of, and including, the rightmost bit
    139           // known to be one.
    140           ComputeKnownBits(BitWidth, I, nullptr);
    141           AB = APInt::getLowBitsSet(BitWidth,
    142                  std::min(BitWidth, KnownOne.countTrailingZeros()+1));
    143         }
    144         break;
    145       }
    146     break;
    147   case Instruction::Add:
    148   case Instruction::Sub:
    149     // Find the highest live output bit. We don't need any more input
    150     // bits than that (adds, and thus subtracts, ripple only to the
    151     // left).
    152     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
    153     break;
    154   case Instruction::Shl:
    155     if (OperandNo == 0)
    156       if (ConstantInt *CI =
    157             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    158         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    159         AB = AOut.lshr(ShiftAmt);
    160 
    161         // If the shift is nuw/nsw, then the high bits are not dead
    162         // (because we've promised that they *must* be zero).
    163         const ShlOperator *S = cast<ShlOperator>(UserI);
    164         if (S->hasNoSignedWrap())
    165           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
    166         else if (S->hasNoUnsignedWrap())
    167           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    168       }
    169     break;
    170   case Instruction::LShr:
    171     if (OperandNo == 0)
    172       if (ConstantInt *CI =
    173             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    174         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    175         AB = AOut.shl(ShiftAmt);
    176 
    177         // If the shift is exact, then the low bits are not dead
    178         // (they must be zero).
    179         if (cast<LShrOperator>(UserI)->isExact())
    180           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    181       }
    182     break;
    183   case Instruction::AShr:
    184     if (OperandNo == 0)
    185       if (ConstantInt *CI =
    186             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    187         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    188         AB = AOut.shl(ShiftAmt);
    189         // Because the high input bit is replicated into the
    190         // high-order bits of the result, if we need any of those
    191         // bits, then we must keep the highest input bit.
    192         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
    193             .getBoolValue())
    194           AB.setBit(BitWidth-1);
    195 
    196         // If the shift is exact, then the low bits are not dead
    197         // (they must be zero).
    198         if (cast<AShrOperator>(UserI)->isExact())
    199           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    200       }
    201     break;
    202   case Instruction::And:
    203     AB = AOut;
    204 
    205     // For bits that are known zero, the corresponding bits in the
    206     // other operand are dead (unless they're both zero, in which
    207     // case they can't both be dead, so just mark the LHS bits as
    208     // dead).
    209     if (OperandNo == 0) {
    210       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
    211       AB &= ~KnownZero2;
    212     } else {
    213       if (!isa<Instruction>(UserI->getOperand(0)))
    214         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
    215       AB &= ~(KnownZero & ~KnownZero2);
    216     }
    217     break;
    218   case Instruction::Or:
    219     AB = AOut;
    220 
    221     // For bits that are known one, the corresponding bits in the
    222     // other operand are dead (unless they're both one, in which
    223     // case they can't both be dead, so just mark the LHS bits as
    224     // dead).
    225     if (OperandNo == 0) {
    226       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
    227       AB &= ~KnownOne2;
    228     } else {
    229       if (!isa<Instruction>(UserI->getOperand(0)))
    230         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
    231       AB &= ~(KnownOne & ~KnownOne2);
    232     }
    233     break;
    234   case Instruction::Xor:
    235   case Instruction::PHI:
    236     AB = AOut;
    237     break;
    238   case Instruction::Trunc:
    239     AB = AOut.zext(BitWidth);
    240     break;
    241   case Instruction::ZExt:
    242     AB = AOut.trunc(BitWidth);
    243     break;
    244   case Instruction::SExt:
    245     AB = AOut.trunc(BitWidth);
    246     // Because the high input bit is replicated into the
    247     // high-order bits of the result, if we need any of those
    248     // bits, then we must keep the highest input bit.
    249     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
    250                                       AOut.getBitWidth() - BitWidth))
    251         .getBoolValue())
    252       AB.setBit(BitWidth-1);
    253     break;
    254   case Instruction::Select:
    255     if (OperandNo != 0)
    256       AB = AOut;
    257     break;
    258   }
    259 }
    260 
    261 bool BDCE::runOnFunction(Function& F) {
    262   if (skipOptnoneFunction(F))
    263     return false;
    264 
    265   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    266   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    267 
    268   DenseMap<Instruction *, APInt> AliveBits;
    269   SmallVector<Instruction*, 128> Worklist;
    270 
    271   // The set of visited instructions (non-integer-typed only).
    272   SmallPtrSet<Instruction*, 128> Visited;
    273 
    274   // Collect the set of "root" instructions that are known live.
    275   for (Instruction &I : inst_range(F)) {
    276     if (!isAlwaysLive(&I))
    277       continue;
    278 
    279     DEBUG(dbgs() << "BDCE: Root: " << I << "\n");
    280     // For integer-valued instructions, set up an initial empty set of alive
    281     // bits and add the instruction to the work list. For other instructions
    282     // add their operands to the work list (for integer values operands, mark
    283     // all bits as live).
    284     if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
    285       if (!AliveBits.count(&I)) {
    286         AliveBits[&I] = APInt(IT->getBitWidth(), 0);
    287         Worklist.push_back(&I);
    288       }
    289 
    290       continue;
    291     }
    292 
    293     // Non-integer-typed instructions...
    294     for (Use &OI : I.operands()) {
    295       if (Instruction *J = dyn_cast<Instruction>(OI)) {
    296         if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
    297           AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
    298         Worklist.push_back(J);
    299       }
    300     }
    301     // To save memory, we don't add I to the Visited set here. Instead, we
    302     // check isAlwaysLive on every instruction when searching for dead
    303     // instructions later (we need to check isAlwaysLive for the
    304     // integer-typed instructions anyway).
    305   }
    306 
    307   // Propagate liveness backwards to operands.
    308   while (!Worklist.empty()) {
    309     Instruction *UserI = Worklist.pop_back_val();
    310 
    311     DEBUG(dbgs() << "BDCE: Visiting: " << *UserI);
    312     APInt AOut;
    313     if (UserI->getType()->isIntegerTy()) {
    314       AOut = AliveBits[UserI];
    315       DEBUG(dbgs() << " Alive Out: " << AOut);
    316     }
    317     DEBUG(dbgs() << "\n");
    318 
    319     if (!UserI->getType()->isIntegerTy())
    320       Visited.insert(UserI);
    321 
    322     APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
    323     // Compute the set of alive bits for each operand. These are anded into the
    324     // existing set, if any, and if that changes the set of alive bits, the
    325     // operand is added to the work-list.
    326     for (Use &OI : UserI->operands()) {
    327       if (Instruction *I = dyn_cast<Instruction>(OI)) {
    328         if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
    329           unsigned BitWidth = IT->getBitWidth();
    330           APInt AB = APInt::getAllOnesValue(BitWidth);
    331           if (UserI->getType()->isIntegerTy() && !AOut &&
    332               !isAlwaysLive(UserI)) {
    333             AB = APInt(BitWidth, 0);
    334           } else {
    335             // If all bits of the output are dead, then all bits of the input
    336             // Bits of each operand that are used to compute alive bits of the
    337             // output are alive, all others are dead.
    338             determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
    339                                      KnownZero, KnownOne,
    340                                      KnownZero2, KnownOne2);
    341           }
    342 
    343           // If we've added to the set of alive bits (or the operand has not
    344           // been previously visited), then re-queue the operand to be visited
    345           // again.
    346           APInt ABPrev(BitWidth, 0);
    347           auto ABI = AliveBits.find(I);
    348           if (ABI != AliveBits.end())
    349             ABPrev = ABI->second;
    350 
    351           APInt ABNew = AB | ABPrev;
    352           if (ABNew != ABPrev || ABI == AliveBits.end()) {
    353             AliveBits[I] = std::move(ABNew);
    354             Worklist.push_back(I);
    355           }
    356         } else if (!Visited.count(I)) {
    357           Worklist.push_back(I);
    358         }
    359       }
    360     }
    361   }
    362 
    363   bool Changed = false;
    364   // The inverse of the live set is the dead set.  These are those instructions
    365   // which have no side effects and do not influence the control flow or return
    366   // value of the function, and may therefore be deleted safely.
    367   // NOTE: We reuse the Worklist vector here for memory efficiency.
    368   for (Instruction &I : inst_range(F)) {
    369     // For live instructions that have all dead bits, first make them dead by
    370     // replacing all uses with something else. Then, if they don't need to
    371     // remain live (because they have side effects, etc.) we can remove them.
    372     if (I.getType()->isIntegerTy()) {
    373       auto ABI = AliveBits.find(&I);
    374       if (ABI != AliveBits.end()) {
    375         if (ABI->second.getBoolValue())
    376           continue;
    377 
    378         DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
    379         // FIXME: In theory we could substitute undef here instead of zero.
    380         // This should be reconsidered once we settle on the semantics of
    381         // undef, poison, etc.
    382         Value *Zero = ConstantInt::get(I.getType(), 0);
    383         ++NumSimplified;
    384         I.replaceAllUsesWith(Zero);
    385         Changed = true;
    386       }
    387     } else if (Visited.count(&I)) {
    388       continue;
    389     }
    390 
    391     if (isAlwaysLive(&I))
    392       continue;
    393 
    394     Worklist.push_back(&I);
    395     I.dropAllReferences();
    396     Changed = true;
    397   }
    398 
    399   for (Instruction *&I : Worklist) {
    400     ++NumRemoved;
    401     I->eraseFromParent();
    402   }
    403 
    404   return Changed;
    405 }
    406 
    407 FunctionPass *llvm::createBitTrackingDCEPass() {
    408   return new BDCE();
    409 }
    410 
    411