Home | History | Annotate | Download | only in NVPTX
      1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Convert generic global variables into either .global or .const access based
     11 // on the variable's "constant" qualifier.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "NVPTX.h"
     16 #include "MCTargetDesc/NVPTXBaseInfo.h"
     17 #include "NVPTXUtilities.h"
     18 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
     19 #include "llvm/CodeGen/ValueTypes.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/IRBuilder.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/Intrinsics.h"
     25 #include "llvm/IR/LegacyPassManager.h"
     26 #include "llvm/IR/Module.h"
     27 #include "llvm/IR/Operator.h"
     28 #include "llvm/IR/ValueMap.h"
     29 #include "llvm/Transforms/Utils/ValueMapper.h"
     30 
     31 using namespace llvm;
     32 
     33 namespace llvm {
     34 void initializeGenericToNVVMPass(PassRegistry &);
     35 }
     36 
     37 namespace {
     38 class GenericToNVVM : public ModulePass {
     39 public:
     40   static char ID;
     41 
     42   GenericToNVVM() : ModulePass(ID) {}
     43 
     44   bool runOnModule(Module &M) override;
     45 
     46   void getAnalysisUsage(AnalysisUsage &AU) const override {}
     47 
     48 private:
     49   Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
     50                          IRBuilder<> &Builder);
     51   Value *remapConstant(Module *M, Function *F, Constant *C,
     52                        IRBuilder<> &Builder);
     53   Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
     54                                                 Constant *C,
     55                                                 IRBuilder<> &Builder);
     56   Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
     57                            IRBuilder<> &Builder);
     58   void remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N);
     59 
     60   typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
     61   typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
     62   GVMapTy GVMap;
     63   ConstantToValueMapTy ConstantToValueMap;
     64 };
     65 } // end namespace
     66 
     67 char GenericToNVVM::ID = 0;
     68 
     69 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
     70 
     71 INITIALIZE_PASS(
     72     GenericToNVVM, "generic-to-nvvm",
     73     "Ensure that the global variables are in the global address space", false,
     74     false)
     75 
     76 bool GenericToNVVM::runOnModule(Module &M) {
     77   // Create a clone of each global variable that has the default address space.
     78   // The clone is created with the global address space  specifier, and the pair
     79   // of original global variable and its clone is placed in the GVMap for later
     80   // use.
     81 
     82   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
     83        I != E;) {
     84     GlobalVariable *GV = I++;
     85     if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
     86         !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
     87         !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
     88       GlobalVariable *NewGV = new GlobalVariable(
     89           M, GV->getType()->getElementType(), GV->isConstant(),
     90           GV->getLinkage(),
     91           GV->hasInitializer() ? GV->getInitializer() : nullptr,
     92           "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
     93       NewGV->copyAttributesFrom(GV);
     94       GVMap[GV] = NewGV;
     95     }
     96   }
     97 
     98   // Return immediately, if every global variable has a specific address space
     99   // specifier.
    100   if (GVMap.empty()) {
    101     return false;
    102   }
    103 
    104   // Walk through the instructions in function defitinions, and replace any use
    105   // of original global variables in GVMap with a use of the corresponding
    106   // copies in GVMap.  If necessary, promote constants to instructions.
    107   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    108     if (I->isDeclaration()) {
    109       continue;
    110     }
    111     IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
    112     for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
    113          ++BBI) {
    114       for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
    115            ++II) {
    116         for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
    117           Value *Operand = II->getOperand(i);
    118           if (isa<Constant>(Operand)) {
    119             II->setOperand(
    120                 i, remapConstant(&M, I, cast<Constant>(Operand), Builder));
    121           }
    122         }
    123       }
    124     }
    125     ConstantToValueMap.clear();
    126   }
    127 
    128   // Copy GVMap over to a standard value map.
    129   ValueToValueMapTy VM;
    130   for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
    131     VM[I->first] = I->second;
    132 
    133   // Walk through the metadata section and update the debug information
    134   // associated with the global variables in the default address space.
    135   for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    136                                        E = M.named_metadata_end();
    137        I != E; I++) {
    138     remapNamedMDNode(VM, I);
    139   }
    140 
    141   // Walk through the global variable  initializers, and replace any use of
    142   // original global variables in GVMap with a use of the corresponding copies
    143   // in GVMap.  The copies need to be bitcast to the original global variable
    144   // types, as we cannot use cvta in global variable initializers.
    145   for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
    146     GlobalVariable *GV = I->first;
    147     GlobalVariable *NewGV = I->second;
    148 
    149     // Remove GV from the map so that it can be RAUWed.  Note that
    150     // DenseMap::erase() won't invalidate any iterators but this one.
    151     auto Next = std::next(I);
    152     GVMap.erase(I);
    153     I = Next;
    154 
    155     Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
    156     // At this point, the remaining uses of GV should be found only in global
    157     // variable initializers, as other uses have been already been removed
    158     // while walking through the instructions in function definitions.
    159     GV->replaceAllUsesWith(BitCastNewGV);
    160     std::string Name = GV->getName();
    161     GV->eraseFromParent();
    162     NewGV->setName(Name);
    163   }
    164   assert(GVMap.empty() && "Expected it to be empty by now");
    165 
    166   return true;
    167 }
    168 
    169 Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
    170                                       GlobalVariable *GV,
    171                                       IRBuilder<> &Builder) {
    172   PointerType *GVType = GV->getType();
    173   Value *CVTA = nullptr;
    174 
    175   // See if the address space conversion requires the operand to be bitcast
    176   // to i8 addrspace(n)* first.
    177   EVT ExtendedGVType = EVT::getEVT(GVType->getElementType(), true);
    178   if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
    179     // A bitcast to i8 addrspace(n)* on the operand is needed.
    180     LLVMContext &Context = M->getContext();
    181     unsigned int AddrSpace = GVType->getAddressSpace();
    182     Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
    183     CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
    184     // Insert the address space conversion.
    185     Type *ResultType =
    186         PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
    187     SmallVector<Type *, 2> ParamTypes;
    188     ParamTypes.push_back(ResultType);
    189     ParamTypes.push_back(DestTy);
    190     Function *CVTAFunction = Intrinsic::getDeclaration(
    191         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
    192     CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
    193     // Another bitcast from i8 * to <the element type of GVType> * is
    194     // required.
    195     DestTy =
    196         PointerType::get(GVType->getElementType(), llvm::ADDRESS_SPACE_GENERIC);
    197     CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
    198   } else {
    199     // A simple CVTA is enough.
    200     SmallVector<Type *, 2> ParamTypes;
    201     ParamTypes.push_back(PointerType::get(GVType->getElementType(),
    202                                           llvm::ADDRESS_SPACE_GENERIC));
    203     ParamTypes.push_back(GVType);
    204     Function *CVTAFunction = Intrinsic::getDeclaration(
    205         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
    206     CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
    207   }
    208 
    209   return CVTA;
    210 }
    211 
    212 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
    213                                     IRBuilder<> &Builder) {
    214   // If the constant C has been converted already in the given function  F, just
    215   // return the converted value.
    216   ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
    217   if (CTII != ConstantToValueMap.end()) {
    218     return CTII->second;
    219   }
    220 
    221   Value *NewValue = C;
    222   if (isa<GlobalVariable>(C)) {
    223     // If the constant C is a global variable and is found in  GVMap, generate a
    224     // set set of instructions that convert the clone of C with the global
    225     // address space specifier to a generic pointer.
    226     // The constant C cannot be used here, as it will be erased from the
    227     // module eventually.  And the clone of C with the global address space
    228     // specifier cannot be used here either, as it will affect the types of
    229     // other instructions in the function.  Hence, this address space conversion
    230     // is required.
    231     GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
    232     if (I != GVMap.end()) {
    233       NewValue = getOrInsertCVTA(M, F, I->second, Builder);
    234     }
    235   } else if (isa<ConstantVector>(C) || isa<ConstantArray>(C) ||
    236              isa<ConstantStruct>(C)) {
    237     // If any element in the constant vector or aggregate C is or uses a global
    238     // variable in GVMap, the constant C needs to be reconstructed, using a set
    239     // of instructions.
    240     NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
    241   } else if (isa<ConstantExpr>(C)) {
    242     // If any operand in the constant expression C is or uses a global variable
    243     // in GVMap, the constant expression C needs to be reconstructed, using a
    244     // set of instructions.
    245     NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
    246   }
    247 
    248   ConstantToValueMap[C] = NewValue;
    249   return NewValue;
    250 }
    251 
    252 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
    253     Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
    254   bool OperandChanged = false;
    255   SmallVector<Value *, 4> NewOperands;
    256   unsigned NumOperands = C->getNumOperands();
    257 
    258   // Check if any element is or uses a global variable in  GVMap, and thus
    259   // converted to another value.
    260   for (unsigned i = 0; i < NumOperands; ++i) {
    261     Value *Operand = C->getOperand(i);
    262     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
    263     OperandChanged |= Operand != NewOperand;
    264     NewOperands.push_back(NewOperand);
    265   }
    266 
    267   // If none of the elements has been modified, return C as it is.
    268   if (!OperandChanged) {
    269     return C;
    270   }
    271 
    272   // If any of the elements has been  modified, construct the equivalent
    273   // vector or aggregate value with a set instructions and the converted
    274   // elements.
    275   Value *NewValue = UndefValue::get(C->getType());
    276   if (isa<ConstantVector>(C)) {
    277     for (unsigned i = 0; i < NumOperands; ++i) {
    278       Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
    279       NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
    280     }
    281   } else {
    282     for (unsigned i = 0; i < NumOperands; ++i) {
    283       NewValue =
    284           Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
    285     }
    286   }
    287 
    288   return NewValue;
    289 }
    290 
    291 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
    292                                         IRBuilder<> &Builder) {
    293   bool OperandChanged = false;
    294   SmallVector<Value *, 4> NewOperands;
    295   unsigned NumOperands = C->getNumOperands();
    296 
    297   // Check if any operand is or uses a global variable in  GVMap, and thus
    298   // converted to another value.
    299   for (unsigned i = 0; i < NumOperands; ++i) {
    300     Value *Operand = C->getOperand(i);
    301     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
    302     OperandChanged |= Operand != NewOperand;
    303     NewOperands.push_back(NewOperand);
    304   }
    305 
    306   // If none of the operands has been modified, return C as it is.
    307   if (!OperandChanged) {
    308     return C;
    309   }
    310 
    311   // If any of the operands has been modified, construct the instruction with
    312   // the converted operands.
    313   unsigned Opcode = C->getOpcode();
    314   switch (Opcode) {
    315   case Instruction::ICmp:
    316     // CompareConstantExpr (icmp)
    317     return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
    318                               NewOperands[0], NewOperands[1]);
    319   case Instruction::FCmp:
    320     // CompareConstantExpr (fcmp)
    321     assert(false && "Address space conversion should have no effect "
    322                     "on float point CompareConstantExpr (fcmp)!");
    323     return C;
    324   case Instruction::ExtractElement:
    325     // ExtractElementConstantExpr
    326     return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
    327   case Instruction::InsertElement:
    328     // InsertElementConstantExpr
    329     return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
    330                                        NewOperands[2]);
    331   case Instruction::ShuffleVector:
    332     // ShuffleVector
    333     return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
    334                                        NewOperands[2]);
    335   case Instruction::ExtractValue:
    336     // ExtractValueConstantExpr
    337     return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
    338   case Instruction::InsertValue:
    339     // InsertValueConstantExpr
    340     return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
    341                                      C->getIndices());
    342   case Instruction::GetElementPtr:
    343     // GetElementPtrConstantExpr
    344     return cast<GEPOperator>(C)->isInBounds()
    345                ? Builder.CreateGEP(
    346                      cast<GEPOperator>(C)->getSourceElementType(),
    347                      NewOperands[0],
    348                      makeArrayRef(&NewOperands[1], NumOperands - 1))
    349                : Builder.CreateInBoundsGEP(
    350                      cast<GEPOperator>(C)->getSourceElementType(),
    351                      NewOperands[0],
    352                      makeArrayRef(&NewOperands[1], NumOperands - 1));
    353   case Instruction::Select:
    354     // SelectConstantExpr
    355     return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
    356   default:
    357     // BinaryConstantExpr
    358     if (Instruction::isBinaryOp(Opcode)) {
    359       return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
    360                                  NewOperands[0], NewOperands[1]);
    361     }
    362     // UnaryConstantExpr
    363     if (Instruction::isCast(Opcode)) {
    364       return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
    365                                 NewOperands[0], C->getType());
    366     }
    367     assert(false && "GenericToNVVM encountered an unsupported ConstantExpr");
    368     return C;
    369   }
    370 }
    371 
    372 void GenericToNVVM::remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N) {
    373 
    374   bool OperandChanged = false;
    375   SmallVector<MDNode *, 16> NewOperands;
    376   unsigned NumOperands = N->getNumOperands();
    377 
    378   // Check if any operand is or contains a global variable in  GVMap, and thus
    379   // converted to another value.
    380   for (unsigned i = 0; i < NumOperands; ++i) {
    381     MDNode *Operand = N->getOperand(i);
    382     MDNode *NewOperand = MapMetadata(Operand, VM);
    383     OperandChanged |= Operand != NewOperand;
    384     NewOperands.push_back(NewOperand);
    385   }
    386 
    387   // If none of the operands has been modified, return immediately.
    388   if (!OperandChanged) {
    389     return;
    390   }
    391 
    392   // Replace the old operands with the new operands.
    393   N->dropAllReferences();
    394   for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
    395                                            E = NewOperands.end();
    396        I != E; ++I) {
    397     N->addOperand(*I);
    398   }
    399 }
    400