Home | History | Annotate | Download | only in Lex
      1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the NumericLiteralParser, CharLiteralParser, and
     11 // StringLiteralParser interfaces.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Lex/LiteralSupport.h"
     16 #include "clang/Basic/CharInfo.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Lex/LexDiagnostic.h"
     19 #include "clang/Lex/Preprocessor.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/Support/ConvertUTF.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 
     24 using namespace clang;
     25 
     26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
     27   switch (kind) {
     28   default: llvm_unreachable("Unknown token type!");
     29   case tok::char_constant:
     30   case tok::string_literal:
     31   case tok::utf8_char_constant:
     32   case tok::utf8_string_literal:
     33     return Target.getCharWidth();
     34   case tok::wide_char_constant:
     35   case tok::wide_string_literal:
     36     return Target.getWCharWidth();
     37   case tok::utf16_char_constant:
     38   case tok::utf16_string_literal:
     39     return Target.getChar16Width();
     40   case tok::utf32_char_constant:
     41   case tok::utf32_string_literal:
     42     return Target.getChar32Width();
     43   }
     44 }
     45 
     46 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
     47                                            FullSourceLoc TokLoc,
     48                                            const char *TokBegin,
     49                                            const char *TokRangeBegin,
     50                                            const char *TokRangeEnd) {
     51   SourceLocation Begin =
     52     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     53                                    TokLoc.getManager(), Features);
     54   SourceLocation End =
     55     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
     56                                    TokLoc.getManager(), Features);
     57   return CharSourceRange::getCharRange(Begin, End);
     58 }
     59 
     60 /// \brief Produce a diagnostic highlighting some portion of a literal.
     61 ///
     62 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
     63 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
     64 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
     65 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
     66                               const LangOptions &Features, FullSourceLoc TokLoc,
     67                               const char *TokBegin, const char *TokRangeBegin,
     68                               const char *TokRangeEnd, unsigned DiagID) {
     69   SourceLocation Begin =
     70     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     71                                    TokLoc.getManager(), Features);
     72   return Diags->Report(Begin, DiagID) <<
     73     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
     74 }
     75 
     76 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
     77 /// either a character or a string literal.
     78 static unsigned ProcessCharEscape(const char *ThisTokBegin,
     79                                   const char *&ThisTokBuf,
     80                                   const char *ThisTokEnd, bool &HadError,
     81                                   FullSourceLoc Loc, unsigned CharWidth,
     82                                   DiagnosticsEngine *Diags,
     83                                   const LangOptions &Features) {
     84   const char *EscapeBegin = ThisTokBuf;
     85 
     86   // Skip the '\' char.
     87   ++ThisTokBuf;
     88 
     89   // We know that this character can't be off the end of the buffer, because
     90   // that would have been \", which would not have been the end of string.
     91   unsigned ResultChar = *ThisTokBuf++;
     92   switch (ResultChar) {
     93   // These map to themselves.
     94   case '\\': case '\'': case '"': case '?': break;
     95 
     96     // These have fixed mappings.
     97   case 'a':
     98     // TODO: K&R: the meaning of '\\a' is different in traditional C
     99     ResultChar = 7;
    100     break;
    101   case 'b':
    102     ResultChar = 8;
    103     break;
    104   case 'e':
    105     if (Diags)
    106       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    107            diag::ext_nonstandard_escape) << "e";
    108     ResultChar = 27;
    109     break;
    110   case 'E':
    111     if (Diags)
    112       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    113            diag::ext_nonstandard_escape) << "E";
    114     ResultChar = 27;
    115     break;
    116   case 'f':
    117     ResultChar = 12;
    118     break;
    119   case 'n':
    120     ResultChar = 10;
    121     break;
    122   case 'r':
    123     ResultChar = 13;
    124     break;
    125   case 't':
    126     ResultChar = 9;
    127     break;
    128   case 'v':
    129     ResultChar = 11;
    130     break;
    131   case 'x': { // Hex escape.
    132     ResultChar = 0;
    133     if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    134       if (Diags)
    135         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    136              diag::err_hex_escape_no_digits) << "x";
    137       HadError = 1;
    138       break;
    139     }
    140 
    141     // Hex escapes are a maximal series of hex digits.
    142     bool Overflow = false;
    143     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
    144       int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    145       if (CharVal == -1) break;
    146       // About to shift out a digit?
    147       if (ResultChar & 0xF0000000)
    148         Overflow = true;
    149       ResultChar <<= 4;
    150       ResultChar |= CharVal;
    151     }
    152 
    153     // See if any bits will be truncated when evaluated as a character.
    154     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    155       Overflow = true;
    156       ResultChar &= ~0U >> (32-CharWidth);
    157     }
    158 
    159     // Check for overflow.
    160     if (Overflow && Diags)   // Too many digits to fit in
    161       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    162            diag::err_hex_escape_too_large);
    163     break;
    164   }
    165   case '0': case '1': case '2': case '3':
    166   case '4': case '5': case '6': case '7': {
    167     // Octal escapes.
    168     --ThisTokBuf;
    169     ResultChar = 0;
    170 
    171     // Octal escapes are a series of octal digits with maximum length 3.
    172     // "\0123" is a two digit sequence equal to "\012" "3".
    173     unsigned NumDigits = 0;
    174     do {
    175       ResultChar <<= 3;
    176       ResultChar |= *ThisTokBuf++ - '0';
    177       ++NumDigits;
    178     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
    179              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
    180 
    181     // Check for overflow.  Reject '\777', but not L'\777'.
    182     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    183       if (Diags)
    184         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    185              diag::err_octal_escape_too_large);
    186       ResultChar &= ~0U >> (32-CharWidth);
    187     }
    188     break;
    189   }
    190 
    191     // Otherwise, these are not valid escapes.
    192   case '(': case '{': case '[': case '%':
    193     // GCC accepts these as extensions.  We warn about them as such though.
    194     if (Diags)
    195       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    196            diag::ext_nonstandard_escape)
    197         << std::string(1, ResultChar);
    198     break;
    199   default:
    200     if (!Diags)
    201       break;
    202 
    203     if (isPrintable(ResultChar))
    204       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    205            diag::ext_unknown_escape)
    206         << std::string(1, ResultChar);
    207     else
    208       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    209            diag::ext_unknown_escape)
    210         << "x" + llvm::utohexstr(ResultChar);
    211     break;
    212   }
    213 
    214   return ResultChar;
    215 }
    216 
    217 static void appendCodePoint(unsigned Codepoint,
    218                             llvm::SmallVectorImpl<char> &Str) {
    219   char ResultBuf[4];
    220   char *ResultPtr = ResultBuf;
    221   bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
    222   (void)Res;
    223   assert(Res && "Unexpected conversion failure");
    224   Str.append(ResultBuf, ResultPtr);
    225 }
    226 
    227 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
    228   for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
    229     if (*I != '\\') {
    230       Buf.push_back(*I);
    231       continue;
    232     }
    233 
    234     ++I;
    235     assert(*I == 'u' || *I == 'U');
    236 
    237     unsigned NumHexDigits;
    238     if (*I == 'u')
    239       NumHexDigits = 4;
    240     else
    241       NumHexDigits = 8;
    242 
    243     assert(I + NumHexDigits <= E);
    244 
    245     uint32_t CodePoint = 0;
    246     for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
    247       unsigned Value = llvm::hexDigitValue(*I);
    248       assert(Value != -1U);
    249 
    250       CodePoint <<= 4;
    251       CodePoint += Value;
    252     }
    253 
    254     appendCodePoint(CodePoint, Buf);
    255     --I;
    256   }
    257 }
    258 
    259 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
    260 /// return the UTF32.
    261 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    262                              const char *ThisTokEnd,
    263                              uint32_t &UcnVal, unsigned short &UcnLen,
    264                              FullSourceLoc Loc, DiagnosticsEngine *Diags,
    265                              const LangOptions &Features,
    266                              bool in_char_string_literal = false) {
    267   const char *UcnBegin = ThisTokBuf;
    268 
    269   // Skip the '\u' char's.
    270   ThisTokBuf += 2;
    271 
    272   if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    273     if (Diags)
    274       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    275            diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
    276     return false;
    277   }
    278   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
    279   unsigned short UcnLenSave = UcnLen;
    280   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
    281     int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    282     if (CharVal == -1) break;
    283     UcnVal <<= 4;
    284     UcnVal |= CharVal;
    285   }
    286   // If we didn't consume the proper number of digits, there is a problem.
    287   if (UcnLenSave) {
    288     if (Diags)
    289       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    290            diag::err_ucn_escape_incomplete);
    291     return false;
    292   }
    293 
    294   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
    295   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
    296       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
    297     if (Diags)
    298       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    299            diag::err_ucn_escape_invalid);
    300     return false;
    301   }
    302 
    303   // C++11 allows UCNs that refer to control characters and basic source
    304   // characters inside character and string literals
    305   if (UcnVal < 0xa0 &&
    306       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
    307     bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
    308     if (Diags) {
    309       char BasicSCSChar = UcnVal;
    310       if (UcnVal >= 0x20 && UcnVal < 0x7f)
    311         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    312              IsError ? diag::err_ucn_escape_basic_scs :
    313                        diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
    314             << StringRef(&BasicSCSChar, 1);
    315       else
    316         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    317              IsError ? diag::err_ucn_control_character :
    318                        diag::warn_cxx98_compat_literal_ucn_control_character);
    319     }
    320     if (IsError)
    321       return false;
    322   }
    323 
    324   if (!Features.CPlusPlus && !Features.C99 && Diags)
    325     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    326          diag::warn_ucn_not_valid_in_c89_literal);
    327 
    328   return true;
    329 }
    330 
    331 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
    332 /// which this UCN will occupy.
    333 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    334                             const char *ThisTokEnd, unsigned CharByteWidth,
    335                             const LangOptions &Features, bool &HadError) {
    336   // UTF-32: 4 bytes per escape.
    337   if (CharByteWidth == 4)
    338     return 4;
    339 
    340   uint32_t UcnVal = 0;
    341   unsigned short UcnLen = 0;
    342   FullSourceLoc Loc;
    343 
    344   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
    345                         UcnLen, Loc, nullptr, Features, true)) {
    346     HadError = true;
    347     return 0;
    348   }
    349 
    350   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
    351   if (CharByteWidth == 2)
    352     return UcnVal <= 0xFFFF ? 2 : 4;
    353 
    354   // UTF-8.
    355   if (UcnVal < 0x80)
    356     return 1;
    357   if (UcnVal < 0x800)
    358     return 2;
    359   if (UcnVal < 0x10000)
    360     return 3;
    361   return 4;
    362 }
    363 
    364 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
    365 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
    366 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
    367 /// we will likely rework our support for UCN's.
    368 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    369                             const char *ThisTokEnd,
    370                             char *&ResultBuf, bool &HadError,
    371                             FullSourceLoc Loc, unsigned CharByteWidth,
    372                             DiagnosticsEngine *Diags,
    373                             const LangOptions &Features) {
    374   typedef uint32_t UTF32;
    375   UTF32 UcnVal = 0;
    376   unsigned short UcnLen = 0;
    377   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
    378                         Loc, Diags, Features, true)) {
    379     HadError = true;
    380     return;
    381   }
    382 
    383   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
    384          "only character widths of 1, 2, or 4 bytes supported");
    385 
    386   (void)UcnLen;
    387   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
    388 
    389   if (CharByteWidth == 4) {
    390     // FIXME: Make the type of the result buffer correct instead of
    391     // using reinterpret_cast.
    392     UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
    393     *ResultPtr = UcnVal;
    394     ResultBuf += 4;
    395     return;
    396   }
    397 
    398   if (CharByteWidth == 2) {
    399     // FIXME: Make the type of the result buffer correct instead of
    400     // using reinterpret_cast.
    401     UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
    402 
    403     if (UcnVal <= (UTF32)0xFFFF) {
    404       *ResultPtr = UcnVal;
    405       ResultBuf += 2;
    406       return;
    407     }
    408 
    409     // Convert to UTF16.
    410     UcnVal -= 0x10000;
    411     *ResultPtr     = 0xD800 + (UcnVal >> 10);
    412     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
    413     ResultBuf += 4;
    414     return;
    415   }
    416 
    417   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
    418 
    419   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
    420   // The conversion below was inspired by:
    421   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
    422   // First, we determine how many bytes the result will require.
    423   typedef uint8_t UTF8;
    424 
    425   unsigned short bytesToWrite = 0;
    426   if (UcnVal < (UTF32)0x80)
    427     bytesToWrite = 1;
    428   else if (UcnVal < (UTF32)0x800)
    429     bytesToWrite = 2;
    430   else if (UcnVal < (UTF32)0x10000)
    431     bytesToWrite = 3;
    432   else
    433     bytesToWrite = 4;
    434 
    435   const unsigned byteMask = 0xBF;
    436   const unsigned byteMark = 0x80;
    437 
    438   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
    439   // into the first byte, depending on how many bytes follow.
    440   static const UTF8 firstByteMark[5] = {
    441     0x00, 0x00, 0xC0, 0xE0, 0xF0
    442   };
    443   // Finally, we write the bytes into ResultBuf.
    444   ResultBuf += bytesToWrite;
    445   switch (bytesToWrite) { // note: everything falls through.
    446   case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    447   case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    448   case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    449   case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
    450   }
    451   // Update the buffer.
    452   ResultBuf += bytesToWrite;
    453 }
    454 
    455 
    456 ///       integer-constant: [C99 6.4.4.1]
    457 ///         decimal-constant integer-suffix
    458 ///         octal-constant integer-suffix
    459 ///         hexadecimal-constant integer-suffix
    460 ///         binary-literal integer-suffix [GNU, C++1y]
    461 ///       user-defined-integer-literal: [C++11 lex.ext]
    462 ///         decimal-literal ud-suffix
    463 ///         octal-literal ud-suffix
    464 ///         hexadecimal-literal ud-suffix
    465 ///         binary-literal ud-suffix [GNU, C++1y]
    466 ///       decimal-constant:
    467 ///         nonzero-digit
    468 ///         decimal-constant digit
    469 ///       octal-constant:
    470 ///         0
    471 ///         octal-constant octal-digit
    472 ///       hexadecimal-constant:
    473 ///         hexadecimal-prefix hexadecimal-digit
    474 ///         hexadecimal-constant hexadecimal-digit
    475 ///       hexadecimal-prefix: one of
    476 ///         0x 0X
    477 ///       binary-literal:
    478 ///         0b binary-digit
    479 ///         0B binary-digit
    480 ///         binary-literal binary-digit
    481 ///       integer-suffix:
    482 ///         unsigned-suffix [long-suffix]
    483 ///         unsigned-suffix [long-long-suffix]
    484 ///         long-suffix [unsigned-suffix]
    485 ///         long-long-suffix [unsigned-sufix]
    486 ///       nonzero-digit:
    487 ///         1 2 3 4 5 6 7 8 9
    488 ///       octal-digit:
    489 ///         0 1 2 3 4 5 6 7
    490 ///       hexadecimal-digit:
    491 ///         0 1 2 3 4 5 6 7 8 9
    492 ///         a b c d e f
    493 ///         A B C D E F
    494 ///       binary-digit:
    495 ///         0
    496 ///         1
    497 ///       unsigned-suffix: one of
    498 ///         u U
    499 ///       long-suffix: one of
    500 ///         l L
    501 ///       long-long-suffix: one of
    502 ///         ll LL
    503 ///
    504 ///       floating-constant: [C99 6.4.4.2]
    505 ///         TODO: add rules...
    506 ///
    507 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
    508                                            SourceLocation TokLoc,
    509                                            Preprocessor &PP)
    510   : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
    511 
    512   // This routine assumes that the range begin/end matches the regex for integer
    513   // and FP constants (specifically, the 'pp-number' regex), and assumes that
    514   // the byte at "*end" is both valid and not part of the regex.  Because of
    515   // this, it doesn't have to check for 'overscan' in various places.
    516   assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
    517 
    518   s = DigitsBegin = ThisTokBegin;
    519   saw_exponent = false;
    520   saw_period = false;
    521   saw_ud_suffix = false;
    522   isLong = false;
    523   isUnsigned = false;
    524   isLongLong = false;
    525   isFloat = false;
    526   isImaginary = false;
    527   MicrosoftInteger = 0;
    528   hadError = false;
    529 
    530   if (*s == '0') { // parse radix
    531     ParseNumberStartingWithZero(TokLoc);
    532     if (hadError)
    533       return;
    534   } else { // the first digit is non-zero
    535     radix = 10;
    536     s = SkipDigits(s);
    537     if (s == ThisTokEnd) {
    538       // Done.
    539     } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
    540       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    541               diag::err_invalid_decimal_digit) << StringRef(s, 1);
    542       hadError = true;
    543       return;
    544     } else if (*s == '.') {
    545       checkSeparator(TokLoc, s, CSK_AfterDigits);
    546       s++;
    547       saw_period = true;
    548       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    549       s = SkipDigits(s);
    550     }
    551     if ((*s == 'e' || *s == 'E')) { // exponent
    552       checkSeparator(TokLoc, s, CSK_AfterDigits);
    553       const char *Exponent = s;
    554       s++;
    555       saw_exponent = true;
    556       if (*s == '+' || *s == '-')  s++; // sign
    557       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    558       const char *first_non_digit = SkipDigits(s);
    559       if (first_non_digit != s) {
    560         s = first_non_digit;
    561       } else {
    562         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
    563                 diag::err_exponent_has_no_digits);
    564         hadError = true;
    565         return;
    566       }
    567     }
    568   }
    569 
    570   SuffixBegin = s;
    571   checkSeparator(TokLoc, s, CSK_AfterDigits);
    572 
    573   // Parse the suffix.  At this point we can classify whether we have an FP or
    574   // integer constant.
    575   bool isFPConstant = isFloatingLiteral();
    576   const char *ImaginarySuffixLoc = nullptr;
    577 
    578   // Loop over all of the characters of the suffix.  If we see something bad,
    579   // we break out of the loop.
    580   for (; s != ThisTokEnd; ++s) {
    581     switch (*s) {
    582     case 'f':      // FP Suffix for "float"
    583     case 'F':
    584       if (!isFPConstant) break;  // Error for integer constant.
    585       if (isFloat || isLong) break; // FF, LF invalid.
    586       isFloat = true;
    587       continue;  // Success.
    588     case 'u':
    589     case 'U':
    590       if (isFPConstant) break;  // Error for floating constant.
    591       if (isUnsigned) break;    // Cannot be repeated.
    592       isUnsigned = true;
    593       continue;  // Success.
    594     case 'l':
    595     case 'L':
    596       if (isLong || isLongLong) break;  // Cannot be repeated.
    597       if (isFloat) break;               // LF invalid.
    598 
    599       // Check for long long.  The L's need to be adjacent and the same case.
    600       if (s[1] == s[0]) {
    601         assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
    602         if (isFPConstant) break;        // long long invalid for floats.
    603         isLongLong = true;
    604         ++s;  // Eat both of them.
    605       } else {
    606         isLong = true;
    607       }
    608       continue;  // Success.
    609     case 'i':
    610     case 'I':
    611       if (PP.getLangOpts().MicrosoftExt) {
    612         if (isLong || isLongLong || MicrosoftInteger)
    613           break;
    614 
    615         if (!isFPConstant) {
    616           // Allow i8, i16, i32, i64, and i128.
    617           switch (s[1]) {
    618           case '8':
    619             s += 2; // i8 suffix
    620             MicrosoftInteger = 8;
    621             break;
    622           case '1':
    623             if (s[2] == '6') {
    624               s += 3; // i16 suffix
    625               MicrosoftInteger = 16;
    626             } else if (s[2] == '2' && s[3] == '8') {
    627               s += 4; // i128 suffix
    628               MicrosoftInteger = 128;
    629             }
    630             break;
    631           case '3':
    632             if (s[2] == '2') {
    633               s += 3; // i32 suffix
    634               MicrosoftInteger = 32;
    635             }
    636             break;
    637           case '6':
    638             if (s[2] == '4') {
    639               s += 3; // i64 suffix
    640               MicrosoftInteger = 64;
    641             }
    642             break;
    643           default:
    644             break;
    645           }
    646         }
    647         if (MicrosoftInteger) {
    648           assert(s <= ThisTokEnd && "didn't maximally munch?");
    649           break;
    650         }
    651       }
    652       // "i", "if", and "il" are user-defined suffixes in C++1y.
    653       if (*s == 'i' && PP.getLangOpts().CPlusPlus14)
    654         break;
    655       // fall through.
    656     case 'j':
    657     case 'J':
    658       if (isImaginary) break;   // Cannot be repeated.
    659       isImaginary = true;
    660       ImaginarySuffixLoc = s;
    661       continue;  // Success.
    662     }
    663     // If we reached here, there was an error or a ud-suffix.
    664     break;
    665   }
    666 
    667   if (s != ThisTokEnd) {
    668     // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
    669     expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
    670     if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
    671       // Any suffix pieces we might have parsed are actually part of the
    672       // ud-suffix.
    673       isLong = false;
    674       isUnsigned = false;
    675       isLongLong = false;
    676       isFloat = false;
    677       isImaginary = false;
    678       MicrosoftInteger = 0;
    679 
    680       saw_ud_suffix = true;
    681       return;
    682     }
    683 
    684     // Report an error if there are any.
    685     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
    686             isFPConstant ? diag::err_invalid_suffix_float_constant :
    687                            diag::err_invalid_suffix_integer_constant)
    688       << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
    689     hadError = true;
    690     return;
    691   }
    692 
    693   if (isImaginary) {
    694     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
    695                                        ImaginarySuffixLoc - ThisTokBegin),
    696             diag::ext_imaginary_constant);
    697   }
    698 }
    699 
    700 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
    701 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
    702 /// treat it as an invalid suffix.
    703 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
    704                                            StringRef Suffix) {
    705   if (!LangOpts.CPlusPlus11 || Suffix.empty())
    706     return false;
    707 
    708   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
    709   if (Suffix[0] == '_')
    710     return true;
    711 
    712   // In C++11, there are no library suffixes.
    713   if (!LangOpts.CPlusPlus14)
    714     return false;
    715 
    716   // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
    717   // Per tweaked N3660, "il", "i", and "if" are also used in the library.
    718   return llvm::StringSwitch<bool>(Suffix)
    719       .Cases("h", "min", "s", true)
    720       .Cases("ms", "us", "ns", true)
    721       .Cases("il", "i", "if", true)
    722       .Default(false);
    723 }
    724 
    725 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
    726                                           const char *Pos,
    727                                           CheckSeparatorKind IsAfterDigits) {
    728   if (IsAfterDigits == CSK_AfterDigits) {
    729     if (Pos == ThisTokBegin)
    730       return;
    731     --Pos;
    732   } else if (Pos == ThisTokEnd)
    733     return;
    734 
    735   if (isDigitSeparator(*Pos))
    736     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
    737             diag::err_digit_separator_not_between_digits)
    738       << IsAfterDigits;
    739 }
    740 
    741 /// ParseNumberStartingWithZero - This method is called when the first character
    742 /// of the number is found to be a zero.  This means it is either an octal
    743 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
    744 /// a floating point number (01239.123e4).  Eat the prefix, determining the
    745 /// radix etc.
    746 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
    747   assert(s[0] == '0' && "Invalid method call");
    748   s++;
    749 
    750   int c1 = s[0];
    751 
    752   // Handle a hex number like 0x1234.
    753   if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
    754     s++;
    755     assert(s < ThisTokEnd && "didn't maximally munch?");
    756     radix = 16;
    757     DigitsBegin = s;
    758     s = SkipHexDigits(s);
    759     bool noSignificand = (s == DigitsBegin);
    760     if (s == ThisTokEnd) {
    761       // Done.
    762     } else if (*s == '.') {
    763       s++;
    764       saw_period = true;
    765       const char *floatDigitsBegin = s;
    766       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    767       s = SkipHexDigits(s);
    768       noSignificand &= (floatDigitsBegin == s);
    769     }
    770 
    771     if (noSignificand) {
    772       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    773         diag::err_hexconstant_requires_digits);
    774       hadError = true;
    775       return;
    776     }
    777 
    778     // A binary exponent can appear with or with a '.'. If dotted, the
    779     // binary exponent is required.
    780     if (*s == 'p' || *s == 'P') {
    781       checkSeparator(TokLoc, s, CSK_AfterDigits);
    782       const char *Exponent = s;
    783       s++;
    784       saw_exponent = true;
    785       if (*s == '+' || *s == '-')  s++; // sign
    786       const char *first_non_digit = SkipDigits(s);
    787       if (first_non_digit == s) {
    788         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    789                 diag::err_exponent_has_no_digits);
    790         hadError = true;
    791         return;
    792       }
    793       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    794       s = first_non_digit;
    795 
    796       if (!PP.getLangOpts().HexFloats)
    797         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
    798     } else if (saw_period) {
    799       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    800               diag::err_hexconstant_requires_exponent);
    801       hadError = true;
    802     }
    803     return;
    804   }
    805 
    806   // Handle simple binary numbers 0b01010
    807   if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
    808     // 0b101010 is a C++1y / GCC extension.
    809     PP.Diag(TokLoc,
    810             PP.getLangOpts().CPlusPlus14
    811               ? diag::warn_cxx11_compat_binary_literal
    812               : PP.getLangOpts().CPlusPlus
    813                 ? diag::ext_binary_literal_cxx14
    814                 : diag::ext_binary_literal);
    815     ++s;
    816     assert(s < ThisTokEnd && "didn't maximally munch?");
    817     radix = 2;
    818     DigitsBegin = s;
    819     s = SkipBinaryDigits(s);
    820     if (s == ThisTokEnd) {
    821       // Done.
    822     } else if (isHexDigit(*s)) {
    823       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    824               diag::err_invalid_binary_digit) << StringRef(s, 1);
    825       hadError = true;
    826     }
    827     // Other suffixes will be diagnosed by the caller.
    828     return;
    829   }
    830 
    831   // For now, the radix is set to 8. If we discover that we have a
    832   // floating point constant, the radix will change to 10. Octal floating
    833   // point constants are not permitted (only decimal and hexadecimal).
    834   radix = 8;
    835   DigitsBegin = s;
    836   s = SkipOctalDigits(s);
    837   if (s == ThisTokEnd)
    838     return; // Done, simple octal number like 01234
    839 
    840   // If we have some other non-octal digit that *is* a decimal digit, see if
    841   // this is part of a floating point number like 094.123 or 09e1.
    842   if (isDigit(*s)) {
    843     const char *EndDecimal = SkipDigits(s);
    844     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
    845       s = EndDecimal;
    846       radix = 10;
    847     }
    848   }
    849 
    850   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
    851   // the code is using an incorrect base.
    852   if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
    853     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    854             diag::err_invalid_octal_digit) << StringRef(s, 1);
    855     hadError = true;
    856     return;
    857   }
    858 
    859   if (*s == '.') {
    860     s++;
    861     radix = 10;
    862     saw_period = true;
    863     checkSeparator(TokLoc, s, CSK_BeforeDigits);
    864     s = SkipDigits(s); // Skip suffix.
    865   }
    866   if (*s == 'e' || *s == 'E') { // exponent
    867     checkSeparator(TokLoc, s, CSK_AfterDigits);
    868     const char *Exponent = s;
    869     s++;
    870     radix = 10;
    871     saw_exponent = true;
    872     if (*s == '+' || *s == '-')  s++; // sign
    873     const char *first_non_digit = SkipDigits(s);
    874     if (first_non_digit != s) {
    875       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    876       s = first_non_digit;
    877     } else {
    878       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    879               diag::err_exponent_has_no_digits);
    880       hadError = true;
    881       return;
    882     }
    883   }
    884 }
    885 
    886 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
    887   switch (Radix) {
    888   case 2:
    889     return NumDigits <= 64;
    890   case 8:
    891     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
    892   case 10:
    893     return NumDigits <= 19; // floor(log10(2^64))
    894   case 16:
    895     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
    896   default:
    897     llvm_unreachable("impossible Radix");
    898   }
    899 }
    900 
    901 /// GetIntegerValue - Convert this numeric literal value to an APInt that
    902 /// matches Val's input width.  If there is an overflow, set Val to the low bits
    903 /// of the result and return true.  Otherwise, return false.
    904 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
    905   // Fast path: Compute a conservative bound on the maximum number of
    906   // bits per digit in this radix. If we can't possibly overflow a
    907   // uint64 based on that bound then do the simple conversion to
    908   // integer. This avoids the expensive overflow checking below, and
    909   // handles the common cases that matter (small decimal integers and
    910   // hex/octal values which don't overflow).
    911   const unsigned NumDigits = SuffixBegin - DigitsBegin;
    912   if (alwaysFitsInto64Bits(radix, NumDigits)) {
    913     uint64_t N = 0;
    914     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
    915       if (!isDigitSeparator(*Ptr))
    916         N = N * radix + llvm::hexDigitValue(*Ptr);
    917 
    918     // This will truncate the value to Val's input width. Simply check
    919     // for overflow by comparing.
    920     Val = N;
    921     return Val.getZExtValue() != N;
    922   }
    923 
    924   Val = 0;
    925   const char *Ptr = DigitsBegin;
    926 
    927   llvm::APInt RadixVal(Val.getBitWidth(), radix);
    928   llvm::APInt CharVal(Val.getBitWidth(), 0);
    929   llvm::APInt OldVal = Val;
    930 
    931   bool OverflowOccurred = false;
    932   while (Ptr < SuffixBegin) {
    933     if (isDigitSeparator(*Ptr)) {
    934       ++Ptr;
    935       continue;
    936     }
    937 
    938     unsigned C = llvm::hexDigitValue(*Ptr++);
    939 
    940     // If this letter is out of bound for this radix, reject it.
    941     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
    942 
    943     CharVal = C;
    944 
    945     // Add the digit to the value in the appropriate radix.  If adding in digits
    946     // made the value smaller, then this overflowed.
    947     OldVal = Val;
    948 
    949     // Multiply by radix, did overflow occur on the multiply?
    950     Val *= RadixVal;
    951     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
    952 
    953     // Add value, did overflow occur on the value?
    954     //   (a + b) ult b  <=> overflow
    955     Val += CharVal;
    956     OverflowOccurred |= Val.ult(CharVal);
    957   }
    958   return OverflowOccurred;
    959 }
    960 
    961 llvm::APFloat::opStatus
    962 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
    963   using llvm::APFloat;
    964 
    965   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
    966 
    967   llvm::SmallString<16> Buffer;
    968   StringRef Str(ThisTokBegin, n);
    969   if (Str.find('\'') != StringRef::npos) {
    970     Buffer.reserve(n);
    971     std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
    972                         &isDigitSeparator);
    973     Str = Buffer;
    974   }
    975 
    976   return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
    977 }
    978 
    979 
    980 /// \verbatim
    981 ///       user-defined-character-literal: [C++11 lex.ext]
    982 ///         character-literal ud-suffix
    983 ///       ud-suffix:
    984 ///         identifier
    985 ///       character-literal: [C++11 lex.ccon]
    986 ///         ' c-char-sequence '
    987 ///         u' c-char-sequence '
    988 ///         U' c-char-sequence '
    989 ///         L' c-char-sequence '
    990 ///       c-char-sequence:
    991 ///         c-char
    992 ///         c-char-sequence c-char
    993 ///       c-char:
    994 ///         any member of the source character set except the single-quote ',
    995 ///           backslash \, or new-line character
    996 ///         escape-sequence
    997 ///         universal-character-name
    998 ///       escape-sequence:
    999 ///         simple-escape-sequence
   1000 ///         octal-escape-sequence
   1001 ///         hexadecimal-escape-sequence
   1002 ///       simple-escape-sequence:
   1003 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
   1004 ///       octal-escape-sequence:
   1005 ///         \ octal-digit
   1006 ///         \ octal-digit octal-digit
   1007 ///         \ octal-digit octal-digit octal-digit
   1008 ///       hexadecimal-escape-sequence:
   1009 ///         \x hexadecimal-digit
   1010 ///         hexadecimal-escape-sequence hexadecimal-digit
   1011 ///       universal-character-name: [C++11 lex.charset]
   1012 ///         \u hex-quad
   1013 ///         \U hex-quad hex-quad
   1014 ///       hex-quad:
   1015 ///         hex-digit hex-digit hex-digit hex-digit
   1016 /// \endverbatim
   1017 ///
   1018 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
   1019                                      SourceLocation Loc, Preprocessor &PP,
   1020                                      tok::TokenKind kind) {
   1021   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
   1022   HadError = false;
   1023 
   1024   Kind = kind;
   1025 
   1026   const char *TokBegin = begin;
   1027 
   1028   // Skip over wide character determinant.
   1029   if (Kind != tok::char_constant)
   1030     ++begin;
   1031   if (Kind == tok::utf8_char_constant)
   1032     ++begin;
   1033 
   1034   // Skip over the entry quote.
   1035   assert(begin[0] == '\'' && "Invalid token lexed");
   1036   ++begin;
   1037 
   1038   // Remove an optional ud-suffix.
   1039   if (end[-1] != '\'') {
   1040     const char *UDSuffixEnd = end;
   1041     do {
   1042       --end;
   1043     } while (end[-1] != '\'');
   1044     // FIXME: Don't bother with this if !tok.hasUCN().
   1045     expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
   1046     UDSuffixOffset = end - TokBegin;
   1047   }
   1048 
   1049   // Trim the ending quote.
   1050   assert(end != begin && "Invalid token lexed");
   1051   --end;
   1052 
   1053   // FIXME: The "Value" is an uint64_t so we can handle char literals of
   1054   // up to 64-bits.
   1055   // FIXME: This extensively assumes that 'char' is 8-bits.
   1056   assert(PP.getTargetInfo().getCharWidth() == 8 &&
   1057          "Assumes char is 8 bits");
   1058   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
   1059          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
   1060          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
   1061   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
   1062          "Assumes sizeof(wchar) on target is <= 64");
   1063 
   1064   SmallVector<uint32_t, 4> codepoint_buffer;
   1065   codepoint_buffer.resize(end - begin);
   1066   uint32_t *buffer_begin = &codepoint_buffer.front();
   1067   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
   1068 
   1069   // Unicode escapes representing characters that cannot be correctly
   1070   // represented in a single code unit are disallowed in character literals
   1071   // by this implementation.
   1072   uint32_t largest_character_for_kind;
   1073   if (tok::wide_char_constant == Kind) {
   1074     largest_character_for_kind =
   1075         0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
   1076   } else if (tok::utf8_char_constant == Kind) {
   1077     largest_character_for_kind = 0x7F;
   1078   } else if (tok::utf16_char_constant == Kind) {
   1079     largest_character_for_kind = 0xFFFF;
   1080   } else if (tok::utf32_char_constant == Kind) {
   1081     largest_character_for_kind = 0x10FFFF;
   1082   } else {
   1083     largest_character_for_kind = 0x7Fu;
   1084   }
   1085 
   1086   while (begin != end) {
   1087     // Is this a span of non-escape characters?
   1088     if (begin[0] != '\\') {
   1089       char const *start = begin;
   1090       do {
   1091         ++begin;
   1092       } while (begin != end && *begin != '\\');
   1093 
   1094       char const *tmp_in_start = start;
   1095       uint32_t *tmp_out_start = buffer_begin;
   1096       ConversionResult res =
   1097           ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
   1098                              reinterpret_cast<UTF8 const *>(begin),
   1099                              &buffer_begin, buffer_end, strictConversion);
   1100       if (res != conversionOK) {
   1101         // If we see bad encoding for unprefixed character literals, warn and
   1102         // simply copy the byte values, for compatibility with gcc and
   1103         // older versions of clang.
   1104         bool NoErrorOnBadEncoding = isAscii();
   1105         unsigned Msg = diag::err_bad_character_encoding;
   1106         if (NoErrorOnBadEncoding)
   1107           Msg = diag::warn_bad_character_encoding;
   1108         PP.Diag(Loc, Msg);
   1109         if (NoErrorOnBadEncoding) {
   1110           start = tmp_in_start;
   1111           buffer_begin = tmp_out_start;
   1112           for (; start != begin; ++start, ++buffer_begin)
   1113             *buffer_begin = static_cast<uint8_t>(*start);
   1114         } else {
   1115           HadError = true;
   1116         }
   1117       } else {
   1118         for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
   1119           if (*tmp_out_start > largest_character_for_kind) {
   1120             HadError = true;
   1121             PP.Diag(Loc, diag::err_character_too_large);
   1122           }
   1123         }
   1124       }
   1125 
   1126       continue;
   1127     }
   1128     // Is this a Universal Character Name escape?
   1129     if (begin[1] == 'u' || begin[1] == 'U') {
   1130       unsigned short UcnLen = 0;
   1131       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
   1132                             FullSourceLoc(Loc, PP.getSourceManager()),
   1133                             &PP.getDiagnostics(), PP.getLangOpts(), true)) {
   1134         HadError = true;
   1135       } else if (*buffer_begin > largest_character_for_kind) {
   1136         HadError = true;
   1137         PP.Diag(Loc, diag::err_character_too_large);
   1138       }
   1139 
   1140       ++buffer_begin;
   1141       continue;
   1142     }
   1143     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
   1144     uint64_t result =
   1145       ProcessCharEscape(TokBegin, begin, end, HadError,
   1146                         FullSourceLoc(Loc,PP.getSourceManager()),
   1147                         CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
   1148     *buffer_begin++ = result;
   1149   }
   1150 
   1151   unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
   1152 
   1153   if (NumCharsSoFar > 1) {
   1154     if (isWide())
   1155       PP.Diag(Loc, diag::warn_extraneous_char_constant);
   1156     else if (isAscii() && NumCharsSoFar == 4)
   1157       PP.Diag(Loc, diag::ext_four_char_character_literal);
   1158     else if (isAscii())
   1159       PP.Diag(Loc, diag::ext_multichar_character_literal);
   1160     else
   1161       PP.Diag(Loc, diag::err_multichar_utf_character_literal);
   1162     IsMultiChar = true;
   1163   } else {
   1164     IsMultiChar = false;
   1165   }
   1166 
   1167   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
   1168 
   1169   // Narrow character literals act as though their value is concatenated
   1170   // in this implementation, but warn on overflow.
   1171   bool multi_char_too_long = false;
   1172   if (isAscii() && isMultiChar()) {
   1173     LitVal = 0;
   1174     for (size_t i = 0; i < NumCharsSoFar; ++i) {
   1175       // check for enough leading zeros to shift into
   1176       multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
   1177       LitVal <<= 8;
   1178       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
   1179     }
   1180   } else if (NumCharsSoFar > 0) {
   1181     // otherwise just take the last character
   1182     LitVal = buffer_begin[-1];
   1183   }
   1184 
   1185   if (!HadError && multi_char_too_long) {
   1186     PP.Diag(Loc, diag::warn_char_constant_too_large);
   1187   }
   1188 
   1189   // Transfer the value from APInt to uint64_t
   1190   Value = LitVal.getZExtValue();
   1191 
   1192   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
   1193   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
   1194   // character constants are not sign extended in the this implementation:
   1195   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
   1196   if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
   1197       PP.getLangOpts().CharIsSigned)
   1198     Value = (signed char)Value;
   1199 }
   1200 
   1201 /// \verbatim
   1202 ///       string-literal: [C++0x lex.string]
   1203 ///         encoding-prefix " [s-char-sequence] "
   1204 ///         encoding-prefix R raw-string
   1205 ///       encoding-prefix:
   1206 ///         u8
   1207 ///         u
   1208 ///         U
   1209 ///         L
   1210 ///       s-char-sequence:
   1211 ///         s-char
   1212 ///         s-char-sequence s-char
   1213 ///       s-char:
   1214 ///         any member of the source character set except the double-quote ",
   1215 ///           backslash \, or new-line character
   1216 ///         escape-sequence
   1217 ///         universal-character-name
   1218 ///       raw-string:
   1219 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
   1220 ///       r-char-sequence:
   1221 ///         r-char
   1222 ///         r-char-sequence r-char
   1223 ///       r-char:
   1224 ///         any member of the source character set, except a right parenthesis )
   1225 ///           followed by the initial d-char-sequence (which may be empty)
   1226 ///           followed by a double quote ".
   1227 ///       d-char-sequence:
   1228 ///         d-char
   1229 ///         d-char-sequence d-char
   1230 ///       d-char:
   1231 ///         any member of the basic source character set except:
   1232 ///           space, the left parenthesis (, the right parenthesis ),
   1233 ///           the backslash \, and the control characters representing horizontal
   1234 ///           tab, vertical tab, form feed, and newline.
   1235 ///       escape-sequence: [C++0x lex.ccon]
   1236 ///         simple-escape-sequence
   1237 ///         octal-escape-sequence
   1238 ///         hexadecimal-escape-sequence
   1239 ///       simple-escape-sequence:
   1240 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
   1241 ///       octal-escape-sequence:
   1242 ///         \ octal-digit
   1243 ///         \ octal-digit octal-digit
   1244 ///         \ octal-digit octal-digit octal-digit
   1245 ///       hexadecimal-escape-sequence:
   1246 ///         \x hexadecimal-digit
   1247 ///         hexadecimal-escape-sequence hexadecimal-digit
   1248 ///       universal-character-name:
   1249 ///         \u hex-quad
   1250 ///         \U hex-quad hex-quad
   1251 ///       hex-quad:
   1252 ///         hex-digit hex-digit hex-digit hex-digit
   1253 /// \endverbatim
   1254 ///
   1255 StringLiteralParser::
   1256 StringLiteralParser(ArrayRef<Token> StringToks,
   1257                     Preprocessor &PP, bool Complain)
   1258   : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
   1259     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
   1260     MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
   1261     ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
   1262   init(StringToks);
   1263 }
   1264 
   1265 void StringLiteralParser::init(ArrayRef<Token> StringToks){
   1266   // The literal token may have come from an invalid source location (e.g. due
   1267   // to a PCH error), in which case the token length will be 0.
   1268   if (StringToks.empty() || StringToks[0].getLength() < 2)
   1269     return DiagnoseLexingError(SourceLocation());
   1270 
   1271   // Scan all of the string portions, remember the max individual token length,
   1272   // computing a bound on the concatenated string length, and see whether any
   1273   // piece is a wide-string.  If any of the string portions is a wide-string
   1274   // literal, the result is a wide-string literal [C99 6.4.5p4].
   1275   assert(!StringToks.empty() && "expected at least one token");
   1276   MaxTokenLength = StringToks[0].getLength();
   1277   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
   1278   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
   1279   Kind = StringToks[0].getKind();
   1280 
   1281   hadError = false;
   1282 
   1283   // Implement Translation Phase #6: concatenation of string literals
   1284   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
   1285   for (unsigned i = 1; i != StringToks.size(); ++i) {
   1286     if (StringToks[i].getLength() < 2)
   1287       return DiagnoseLexingError(StringToks[i].getLocation());
   1288 
   1289     // The string could be shorter than this if it needs cleaning, but this is a
   1290     // reasonable bound, which is all we need.
   1291     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
   1292     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
   1293 
   1294     // Remember maximum string piece length.
   1295     if (StringToks[i].getLength() > MaxTokenLength)
   1296       MaxTokenLength = StringToks[i].getLength();
   1297 
   1298     // Remember if we see any wide or utf-8/16/32 strings.
   1299     // Also check for illegal concatenations.
   1300     if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
   1301       if (isAscii()) {
   1302         Kind = StringToks[i].getKind();
   1303       } else {
   1304         if (Diags)
   1305           Diags->Report(StringToks[i].getLocation(),
   1306                         diag::err_unsupported_string_concat);
   1307         hadError = true;
   1308       }
   1309     }
   1310   }
   1311 
   1312   // Include space for the null terminator.
   1313   ++SizeBound;
   1314 
   1315   // TODO: K&R warning: "traditional C rejects string constant concatenation"
   1316 
   1317   // Get the width in bytes of char/wchar_t/char16_t/char32_t
   1318   CharByteWidth = getCharWidth(Kind, Target);
   1319   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
   1320   CharByteWidth /= 8;
   1321 
   1322   // The output buffer size needs to be large enough to hold wide characters.
   1323   // This is a worst-case assumption which basically corresponds to L"" "long".
   1324   SizeBound *= CharByteWidth;
   1325 
   1326   // Size the temporary buffer to hold the result string data.
   1327   ResultBuf.resize(SizeBound);
   1328 
   1329   // Likewise, but for each string piece.
   1330   SmallString<512> TokenBuf;
   1331   TokenBuf.resize(MaxTokenLength);
   1332 
   1333   // Loop over all the strings, getting their spelling, and expanding them to
   1334   // wide strings as appropriate.
   1335   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
   1336 
   1337   Pascal = false;
   1338 
   1339   SourceLocation UDSuffixTokLoc;
   1340 
   1341   for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
   1342     const char *ThisTokBuf = &TokenBuf[0];
   1343     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
   1344     // that ThisTokBuf points to a buffer that is big enough for the whole token
   1345     // and 'spelled' tokens can only shrink.
   1346     bool StringInvalid = false;
   1347     unsigned ThisTokLen =
   1348       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
   1349                          &StringInvalid);
   1350     if (StringInvalid)
   1351       return DiagnoseLexingError(StringToks[i].getLocation());
   1352 
   1353     const char *ThisTokBegin = ThisTokBuf;
   1354     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
   1355 
   1356     // Remove an optional ud-suffix.
   1357     if (ThisTokEnd[-1] != '"') {
   1358       const char *UDSuffixEnd = ThisTokEnd;
   1359       do {
   1360         --ThisTokEnd;
   1361       } while (ThisTokEnd[-1] != '"');
   1362 
   1363       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
   1364 
   1365       if (UDSuffixBuf.empty()) {
   1366         if (StringToks[i].hasUCN())
   1367           expandUCNs(UDSuffixBuf, UDSuffix);
   1368         else
   1369           UDSuffixBuf.assign(UDSuffix);
   1370         UDSuffixToken = i;
   1371         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
   1372         UDSuffixTokLoc = StringToks[i].getLocation();
   1373       } else {
   1374         SmallString<32> ExpandedUDSuffix;
   1375         if (StringToks[i].hasUCN()) {
   1376           expandUCNs(ExpandedUDSuffix, UDSuffix);
   1377           UDSuffix = ExpandedUDSuffix;
   1378         }
   1379 
   1380         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
   1381         // result of a concatenation involving at least one user-defined-string-
   1382         // literal, all the participating user-defined-string-literals shall
   1383         // have the same ud-suffix.
   1384         if (UDSuffixBuf != UDSuffix) {
   1385           if (Diags) {
   1386             SourceLocation TokLoc = StringToks[i].getLocation();
   1387             Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
   1388               << UDSuffixBuf << UDSuffix
   1389               << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
   1390               << SourceRange(TokLoc, TokLoc);
   1391           }
   1392           hadError = true;
   1393         }
   1394       }
   1395     }
   1396 
   1397     // Strip the end quote.
   1398     --ThisTokEnd;
   1399 
   1400     // TODO: Input character set mapping support.
   1401 
   1402     // Skip marker for wide or unicode strings.
   1403     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
   1404       ++ThisTokBuf;
   1405       // Skip 8 of u8 marker for utf8 strings.
   1406       if (ThisTokBuf[0] == '8')
   1407         ++ThisTokBuf;
   1408     }
   1409 
   1410     // Check for raw string
   1411     if (ThisTokBuf[0] == 'R') {
   1412       ThisTokBuf += 2; // skip R"
   1413 
   1414       const char *Prefix = ThisTokBuf;
   1415       while (ThisTokBuf[0] != '(')
   1416         ++ThisTokBuf;
   1417       ++ThisTokBuf; // skip '('
   1418 
   1419       // Remove same number of characters from the end
   1420       ThisTokEnd -= ThisTokBuf - Prefix;
   1421       assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
   1422 
   1423       // Copy the string over
   1424       if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1425                              StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
   1426         hadError = true;
   1427     } else {
   1428       if (ThisTokBuf[0] != '"') {
   1429         // The file may have come from PCH and then changed after loading the
   1430         // PCH; Fail gracefully.
   1431         return DiagnoseLexingError(StringToks[i].getLocation());
   1432       }
   1433       ++ThisTokBuf; // skip "
   1434 
   1435       // Check if this is a pascal string
   1436       if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
   1437           ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
   1438 
   1439         // If the \p sequence is found in the first token, we have a pascal string
   1440         // Otherwise, if we already have a pascal string, ignore the first \p
   1441         if (i == 0) {
   1442           ++ThisTokBuf;
   1443           Pascal = true;
   1444         } else if (Pascal)
   1445           ThisTokBuf += 2;
   1446       }
   1447 
   1448       while (ThisTokBuf != ThisTokEnd) {
   1449         // Is this a span of non-escape characters?
   1450         if (ThisTokBuf[0] != '\\') {
   1451           const char *InStart = ThisTokBuf;
   1452           do {
   1453             ++ThisTokBuf;
   1454           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
   1455 
   1456           // Copy the character span over.
   1457           if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1458                                  StringRef(InStart, ThisTokBuf - InStart)))
   1459             hadError = true;
   1460           continue;
   1461         }
   1462         // Is this a Universal Character Name escape?
   1463         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
   1464           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
   1465                           ResultPtr, hadError,
   1466                           FullSourceLoc(StringToks[i].getLocation(), SM),
   1467                           CharByteWidth, Diags, Features);
   1468           continue;
   1469         }
   1470         // Otherwise, this is a non-UCN escape character.  Process it.
   1471         unsigned ResultChar =
   1472           ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
   1473                             FullSourceLoc(StringToks[i].getLocation(), SM),
   1474                             CharByteWidth*8, Diags, Features);
   1475 
   1476         if (CharByteWidth == 4) {
   1477           // FIXME: Make the type of the result buffer correct instead of
   1478           // using reinterpret_cast.
   1479           UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
   1480           *ResultWidePtr = ResultChar;
   1481           ResultPtr += 4;
   1482         } else if (CharByteWidth == 2) {
   1483           // FIXME: Make the type of the result buffer correct instead of
   1484           // using reinterpret_cast.
   1485           UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
   1486           *ResultWidePtr = ResultChar & 0xFFFF;
   1487           ResultPtr += 2;
   1488         } else {
   1489           assert(CharByteWidth == 1 && "Unexpected char width");
   1490           *ResultPtr++ = ResultChar & 0xFF;
   1491         }
   1492       }
   1493     }
   1494   }
   1495 
   1496   if (Pascal) {
   1497     if (CharByteWidth == 4) {
   1498       // FIXME: Make the type of the result buffer correct instead of
   1499       // using reinterpret_cast.
   1500       UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
   1501       ResultWidePtr[0] = GetNumStringChars() - 1;
   1502     } else if (CharByteWidth == 2) {
   1503       // FIXME: Make the type of the result buffer correct instead of
   1504       // using reinterpret_cast.
   1505       UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
   1506       ResultWidePtr[0] = GetNumStringChars() - 1;
   1507     } else {
   1508       assert(CharByteWidth == 1 && "Unexpected char width");
   1509       ResultBuf[0] = GetNumStringChars() - 1;
   1510     }
   1511 
   1512     // Verify that pascal strings aren't too large.
   1513     if (GetStringLength() > 256) {
   1514       if (Diags)
   1515         Diags->Report(StringToks.front().getLocation(),
   1516                       diag::err_pascal_string_too_long)
   1517           << SourceRange(StringToks.front().getLocation(),
   1518                          StringToks.back().getLocation());
   1519       hadError = true;
   1520       return;
   1521     }
   1522   } else if (Diags) {
   1523     // Complain if this string literal has too many characters.
   1524     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
   1525 
   1526     if (GetNumStringChars() > MaxChars)
   1527       Diags->Report(StringToks.front().getLocation(),
   1528                     diag::ext_string_too_long)
   1529         << GetNumStringChars() << MaxChars
   1530         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
   1531         << SourceRange(StringToks.front().getLocation(),
   1532                        StringToks.back().getLocation());
   1533   }
   1534 }
   1535 
   1536 static const char *resyncUTF8(const char *Err, const char *End) {
   1537   if (Err == End)
   1538     return End;
   1539   End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
   1540   while (++Err != End && (*Err & 0xC0) == 0x80)
   1541     ;
   1542   return Err;
   1543 }
   1544 
   1545 /// \brief This function copies from Fragment, which is a sequence of bytes
   1546 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
   1547 /// Performs widening for multi-byte characters.
   1548 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
   1549                                              const char *TokBegin,
   1550                                              StringRef Fragment) {
   1551   const UTF8 *ErrorPtrTmp;
   1552   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
   1553     return false;
   1554 
   1555   // If we see bad encoding for unprefixed string literals, warn and
   1556   // simply copy the byte values, for compatibility with gcc and older
   1557   // versions of clang.
   1558   bool NoErrorOnBadEncoding = isAscii();
   1559   if (NoErrorOnBadEncoding) {
   1560     memcpy(ResultPtr, Fragment.data(), Fragment.size());
   1561     ResultPtr += Fragment.size();
   1562   }
   1563 
   1564   if (Diags) {
   1565     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1566 
   1567     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
   1568     const DiagnosticBuilder &Builder =
   1569       Diag(Diags, Features, SourceLoc, TokBegin,
   1570            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
   1571            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
   1572                                 : diag::err_bad_string_encoding);
   1573 
   1574     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1575     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
   1576 
   1577     // Decode into a dummy buffer.
   1578     SmallString<512> Dummy;
   1579     Dummy.reserve(Fragment.size() * CharByteWidth);
   1580     char *Ptr = Dummy.data();
   1581 
   1582     while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
   1583       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1584       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1585       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
   1586                                      ErrorPtr, NextStart);
   1587       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
   1588     }
   1589   }
   1590   return !NoErrorOnBadEncoding;
   1591 }
   1592 
   1593 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
   1594   hadError = true;
   1595   if (Diags)
   1596     Diags->Report(Loc, diag::err_lexing_string);
   1597 }
   1598 
   1599 /// getOffsetOfStringByte - This function returns the offset of the
   1600 /// specified byte of the string data represented by Token.  This handles
   1601 /// advancing over escape sequences in the string.
   1602 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
   1603                                                     unsigned ByteNo) const {
   1604   // Get the spelling of the token.
   1605   SmallString<32> SpellingBuffer;
   1606   SpellingBuffer.resize(Tok.getLength());
   1607 
   1608   bool StringInvalid = false;
   1609   const char *SpellingPtr = &SpellingBuffer[0];
   1610   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
   1611                                        &StringInvalid);
   1612   if (StringInvalid)
   1613     return 0;
   1614 
   1615   const char *SpellingStart = SpellingPtr;
   1616   const char *SpellingEnd = SpellingPtr+TokLen;
   1617 
   1618   // Handle UTF-8 strings just like narrow strings.
   1619   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
   1620     SpellingPtr += 2;
   1621 
   1622   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
   1623          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
   1624 
   1625   // For raw string literals, this is easy.
   1626   if (SpellingPtr[0] == 'R') {
   1627     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
   1628     // Skip 'R"'.
   1629     SpellingPtr += 2;
   1630     while (*SpellingPtr != '(') {
   1631       ++SpellingPtr;
   1632       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
   1633     }
   1634     // Skip '('.
   1635     ++SpellingPtr;
   1636     return SpellingPtr - SpellingStart + ByteNo;
   1637   }
   1638 
   1639   // Skip over the leading quote
   1640   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
   1641   ++SpellingPtr;
   1642 
   1643   // Skip over bytes until we find the offset we're looking for.
   1644   while (ByteNo) {
   1645     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
   1646 
   1647     // Step over non-escapes simply.
   1648     if (*SpellingPtr != '\\') {
   1649       ++SpellingPtr;
   1650       --ByteNo;
   1651       continue;
   1652     }
   1653 
   1654     // Otherwise, this is an escape character.  Advance over it.
   1655     bool HadError = false;
   1656     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
   1657       const char *EscapePtr = SpellingPtr;
   1658       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
   1659                                       1, Features, HadError);
   1660       if (Len > ByteNo) {
   1661         // ByteNo is somewhere within the escape sequence.
   1662         SpellingPtr = EscapePtr;
   1663         break;
   1664       }
   1665       ByteNo -= Len;
   1666     } else {
   1667       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
   1668                         FullSourceLoc(Tok.getLocation(), SM),
   1669                         CharByteWidth*8, Diags, Features);
   1670       --ByteNo;
   1671     }
   1672     assert(!HadError && "This method isn't valid on erroneous strings");
   1673   }
   1674 
   1675   return SpellingPtr-SpellingStart;
   1676 }
   1677