Home | History | Annotate | Download | only in CodeGen
      1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the SplitAnalysis class as well as mutator functions for
     11 // live range splitting.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "SplitKit.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     18 #include "llvm/CodeGen/LiveRangeEdit.h"
     19 #include "llvm/CodeGen/MachineDominators.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineLoopInfo.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/VirtRegMap.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include "llvm/Target/TargetInstrInfo.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 
     29 using namespace llvm;
     30 
     31 #define DEBUG_TYPE "regalloc"
     32 
     33 STATISTIC(NumFinished, "Number of splits finished");
     34 STATISTIC(NumSimple,   "Number of splits that were simple");
     35 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
     36 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
     37 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                                 Split Analysis
     41 //===----------------------------------------------------------------------===//
     42 
     43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
     44                              const MachineLoopInfo &mli)
     45     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
     46       TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
     47       LastSplitPoint(MF.getNumBlockIDs()) {}
     48 
     49 void SplitAnalysis::clear() {
     50   UseSlots.clear();
     51   UseBlocks.clear();
     52   ThroughBlocks.clear();
     53   CurLI = nullptr;
     54   DidRepairRange = false;
     55 }
     56 
     57 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
     58   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
     59   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
     60   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
     61   SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
     62 
     63   // Compute split points on the first call. The pair is independent of the
     64   // current live interval.
     65   if (!LSP.first.isValid()) {
     66     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
     67     if (FirstTerm == MBB->end())
     68       LSP.first = MBBEnd;
     69     else
     70       LSP.first = LIS.getInstructionIndex(FirstTerm);
     71 
     72     // If there is a landing pad successor, also find the call instruction.
     73     if (!LPad)
     74       return LSP.first;
     75     // There may not be a call instruction (?) in which case we ignore LPad.
     76     LSP.second = LSP.first;
     77     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
     78          I != E;) {
     79       --I;
     80       if (I->isCall()) {
     81         LSP.second = LIS.getInstructionIndex(I);
     82         break;
     83       }
     84     }
     85   }
     86 
     87   // If CurLI is live into a landing pad successor, move the last split point
     88   // back to the call that may throw.
     89   if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
     90     return LSP.first;
     91 
     92   // Find the value leaving MBB.
     93   const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
     94   if (!VNI)
     95     return LSP.first;
     96 
     97   // If the value leaving MBB was defined after the call in MBB, it can't
     98   // really be live-in to the landing pad.  This can happen if the landing pad
     99   // has a PHI, and this register is undef on the exceptional edge.
    100   // <rdar://problem/10664933>
    101   if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
    102     return LSP.first;
    103 
    104   // Value is properly live-in to the landing pad.
    105   // Only allow splits before the call.
    106   return LSP.second;
    107 }
    108 
    109 MachineBasicBlock::iterator
    110 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
    111   SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
    112   if (LSP == LIS.getMBBEndIdx(MBB))
    113     return MBB->end();
    114   return LIS.getInstructionFromIndex(LSP);
    115 }
    116 
    117 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
    118 void SplitAnalysis::analyzeUses() {
    119   assert(UseSlots.empty() && "Call clear first");
    120 
    121   // First get all the defs from the interval values. This provides the correct
    122   // slots for early clobbers.
    123   for (const VNInfo *VNI : CurLI->valnos)
    124     if (!VNI->isPHIDef() && !VNI->isUnused())
    125       UseSlots.push_back(VNI->def);
    126 
    127   // Get use slots form the use-def chain.
    128   const MachineRegisterInfo &MRI = MF.getRegInfo();
    129   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
    130     if (!MO.isUndef())
    131       UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot());
    132 
    133   array_pod_sort(UseSlots.begin(), UseSlots.end());
    134 
    135   // Remove duplicates, keeping the smaller slot for each instruction.
    136   // That is what we want for early clobbers.
    137   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
    138                              SlotIndex::isSameInstr),
    139                  UseSlots.end());
    140 
    141   // Compute per-live block info.
    142   if (!calcLiveBlockInfo()) {
    143     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
    144     // I am looking at you, RegisterCoalescer!
    145     DidRepairRange = true;
    146     ++NumRepairs;
    147     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
    148     const_cast<LiveIntervals&>(LIS)
    149       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
    150     UseBlocks.clear();
    151     ThroughBlocks.clear();
    152     bool fixed = calcLiveBlockInfo();
    153     (void)fixed;
    154     assert(fixed && "Couldn't fix broken live interval");
    155   }
    156 
    157   DEBUG(dbgs() << "Analyze counted "
    158                << UseSlots.size() << " instrs in "
    159                << UseBlocks.size() << " blocks, through "
    160                << NumThroughBlocks << " blocks.\n");
    161 }
    162 
    163 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
    164 /// where CurLI is live.
    165 bool SplitAnalysis::calcLiveBlockInfo() {
    166   ThroughBlocks.resize(MF.getNumBlockIDs());
    167   NumThroughBlocks = NumGapBlocks = 0;
    168   if (CurLI->empty())
    169     return true;
    170 
    171   LiveInterval::const_iterator LVI = CurLI->begin();
    172   LiveInterval::const_iterator LVE = CurLI->end();
    173 
    174   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
    175   UseI = UseSlots.begin();
    176   UseE = UseSlots.end();
    177 
    178   // Loop over basic blocks where CurLI is live.
    179   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
    180   for (;;) {
    181     BlockInfo BI;
    182     BI.MBB = MFI;
    183     SlotIndex Start, Stop;
    184     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
    185 
    186     // If the block contains no uses, the range must be live through. At one
    187     // point, RegisterCoalescer could create dangling ranges that ended
    188     // mid-block.
    189     if (UseI == UseE || *UseI >= Stop) {
    190       ++NumThroughBlocks;
    191       ThroughBlocks.set(BI.MBB->getNumber());
    192       // The range shouldn't end mid-block if there are no uses. This shouldn't
    193       // happen.
    194       if (LVI->end < Stop)
    195         return false;
    196     } else {
    197       // This block has uses. Find the first and last uses in the block.
    198       BI.FirstInstr = *UseI;
    199       assert(BI.FirstInstr >= Start);
    200       do ++UseI;
    201       while (UseI != UseE && *UseI < Stop);
    202       BI.LastInstr = UseI[-1];
    203       assert(BI.LastInstr < Stop);
    204 
    205       // LVI is the first live segment overlapping MBB.
    206       BI.LiveIn = LVI->start <= Start;
    207 
    208       // When not live in, the first use should be a def.
    209       if (!BI.LiveIn) {
    210         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
    211         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
    212         BI.FirstDef = BI.FirstInstr;
    213       }
    214 
    215       // Look for gaps in the live range.
    216       BI.LiveOut = true;
    217       while (LVI->end < Stop) {
    218         SlotIndex LastStop = LVI->end;
    219         if (++LVI == LVE || LVI->start >= Stop) {
    220           BI.LiveOut = false;
    221           BI.LastInstr = LastStop;
    222           break;
    223         }
    224 
    225         if (LastStop < LVI->start) {
    226           // There is a gap in the live range. Create duplicate entries for the
    227           // live-in snippet and the live-out snippet.
    228           ++NumGapBlocks;
    229 
    230           // Push the Live-in part.
    231           BI.LiveOut = false;
    232           UseBlocks.push_back(BI);
    233           UseBlocks.back().LastInstr = LastStop;
    234 
    235           // Set up BI for the live-out part.
    236           BI.LiveIn = false;
    237           BI.LiveOut = true;
    238           BI.FirstInstr = BI.FirstDef = LVI->start;
    239         }
    240 
    241         // A Segment that starts in the middle of the block must be a def.
    242         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
    243         if (!BI.FirstDef)
    244           BI.FirstDef = LVI->start;
    245       }
    246 
    247       UseBlocks.push_back(BI);
    248 
    249       // LVI is now at LVE or LVI->end >= Stop.
    250       if (LVI == LVE)
    251         break;
    252     }
    253 
    254     // Live segment ends exactly at Stop. Move to the next segment.
    255     if (LVI->end == Stop && ++LVI == LVE)
    256       break;
    257 
    258     // Pick the next basic block.
    259     if (LVI->start < Stop)
    260       ++MFI;
    261     else
    262       MFI = LIS.getMBBFromIndex(LVI->start);
    263   }
    264 
    265   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
    266   return true;
    267 }
    268 
    269 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
    270   if (cli->empty())
    271     return 0;
    272   LiveInterval *li = const_cast<LiveInterval*>(cli);
    273   LiveInterval::iterator LVI = li->begin();
    274   LiveInterval::iterator LVE = li->end();
    275   unsigned Count = 0;
    276 
    277   // Loop over basic blocks where li is live.
    278   MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
    279   SlotIndex Stop = LIS.getMBBEndIdx(MFI);
    280   for (;;) {
    281     ++Count;
    282     LVI = li->advanceTo(LVI, Stop);
    283     if (LVI == LVE)
    284       return Count;
    285     do {
    286       ++MFI;
    287       Stop = LIS.getMBBEndIdx(MFI);
    288     } while (Stop <= LVI->start);
    289   }
    290 }
    291 
    292 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
    293   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
    294   const LiveInterval &Orig = LIS.getInterval(OrigReg);
    295   assert(!Orig.empty() && "Splitting empty interval?");
    296   LiveInterval::const_iterator I = Orig.find(Idx);
    297 
    298   // Range containing Idx should begin at Idx.
    299   if (I != Orig.end() && I->start <= Idx)
    300     return I->start == Idx;
    301 
    302   // Range does not contain Idx, previous must end at Idx.
    303   return I != Orig.begin() && (--I)->end == Idx;
    304 }
    305 
    306 void SplitAnalysis::analyze(const LiveInterval *li) {
    307   clear();
    308   CurLI = li;
    309   analyzeUses();
    310 }
    311 
    312 
    313 //===----------------------------------------------------------------------===//
    314 //                               Split Editor
    315 //===----------------------------------------------------------------------===//
    316 
    317 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
    318 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
    319                          MachineDominatorTree &mdt,
    320                          MachineBlockFrequencyInfo &mbfi)
    321     : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()),
    322       MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
    323       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
    324       MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
    325       RegAssign(Allocator) {}
    326 
    327 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
    328   Edit = &LRE;
    329   SpillMode = SM;
    330   OpenIdx = 0;
    331   RegAssign.clear();
    332   Values.clear();
    333 
    334   // Reset the LiveRangeCalc instances needed for this spill mode.
    335   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
    336                   &LIS.getVNInfoAllocator());
    337   if (SpillMode)
    338     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
    339                     &LIS.getVNInfoAllocator());
    340 
    341   // We don't need an AliasAnalysis since we will only be performing
    342   // cheap-as-a-copy remats anyway.
    343   Edit->anyRematerializable(nullptr);
    344 }
    345 
    346 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    347 void SplitEditor::dump() const {
    348   if (RegAssign.empty()) {
    349     dbgs() << " empty\n";
    350     return;
    351   }
    352 
    353   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
    354     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
    355   dbgs() << '\n';
    356 }
    357 #endif
    358 
    359 VNInfo *SplitEditor::defValue(unsigned RegIdx,
    360                               const VNInfo *ParentVNI,
    361                               SlotIndex Idx) {
    362   assert(ParentVNI && "Mapping  NULL value");
    363   assert(Idx.isValid() && "Invalid SlotIndex");
    364   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
    365   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
    366 
    367   // Create a new value.
    368   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
    369 
    370   // Use insert for lookup, so we can add missing values with a second lookup.
    371   std::pair<ValueMap::iterator, bool> InsP =
    372     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
    373                                  ValueForcePair(VNI, false)));
    374 
    375   // This was the first time (RegIdx, ParentVNI) was mapped.
    376   // Keep it as a simple def without any liveness.
    377   if (InsP.second)
    378     return VNI;
    379 
    380   // If the previous value was a simple mapping, add liveness for it now.
    381   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
    382     SlotIndex Def = OldVNI->def;
    383     LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
    384     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
    385     InsP.first->second = ValueForcePair();
    386   }
    387 
    388   // This is a complex mapping, add liveness for VNI
    389   SlotIndex Def = VNI->def;
    390   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
    391 
    392   return VNI;
    393 }
    394 
    395 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
    396   assert(ParentVNI && "Mapping  NULL value");
    397   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
    398   VNInfo *VNI = VFP.getPointer();
    399 
    400   // ParentVNI was either unmapped or already complex mapped. Either way, just
    401   // set the force bit.
    402   if (!VNI) {
    403     VFP.setInt(true);
    404     return;
    405   }
    406 
    407   // This was previously a single mapping. Make sure the old def is represented
    408   // by a trivial live range.
    409   SlotIndex Def = VNI->def;
    410   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
    411   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
    412   // Mark as complex mapped, forced.
    413   VFP = ValueForcePair(nullptr, true);
    414 }
    415 
    416 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
    417                                    VNInfo *ParentVNI,
    418                                    SlotIndex UseIdx,
    419                                    MachineBasicBlock &MBB,
    420                                    MachineBasicBlock::iterator I) {
    421   MachineInstr *CopyMI = nullptr;
    422   SlotIndex Def;
    423   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
    424 
    425   // We may be trying to avoid interference that ends at a deleted instruction,
    426   // so always begin RegIdx 0 early and all others late.
    427   bool Late = RegIdx != 0;
    428 
    429   // Attempt cheap-as-a-copy rematerialization.
    430   LiveRangeEdit::Remat RM(ParentVNI);
    431   if (Edit->canRematerializeAt(RM, UseIdx, true)) {
    432     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
    433     ++NumRemats;
    434   } else {
    435     // Can't remat, just insert a copy from parent.
    436     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
    437                .addReg(Edit->getReg());
    438     Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
    439             .getRegSlot();
    440     ++NumCopies;
    441   }
    442 
    443   // Define the value in Reg.
    444   return defValue(RegIdx, ParentVNI, Def);
    445 }
    446 
    447 /// Create a new virtual register and live interval.
    448 unsigned SplitEditor::openIntv() {
    449   // Create the complement as index 0.
    450   if (Edit->empty())
    451     Edit->createEmptyInterval();
    452 
    453   // Create the open interval.
    454   OpenIdx = Edit->size();
    455   Edit->createEmptyInterval();
    456   return OpenIdx;
    457 }
    458 
    459 void SplitEditor::selectIntv(unsigned Idx) {
    460   assert(Idx != 0 && "Cannot select the complement interval");
    461   assert(Idx < Edit->size() && "Can only select previously opened interval");
    462   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
    463   OpenIdx = Idx;
    464 }
    465 
    466 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
    467   assert(OpenIdx && "openIntv not called before enterIntvBefore");
    468   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
    469   Idx = Idx.getBaseIndex();
    470   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    471   if (!ParentVNI) {
    472     DEBUG(dbgs() << ": not live\n");
    473     return Idx;
    474   }
    475   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    476   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    477   assert(MI && "enterIntvBefore called with invalid index");
    478 
    479   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
    480   return VNI->def;
    481 }
    482 
    483 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
    484   assert(OpenIdx && "openIntv not called before enterIntvAfter");
    485   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
    486   Idx = Idx.getBoundaryIndex();
    487   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    488   if (!ParentVNI) {
    489     DEBUG(dbgs() << ": not live\n");
    490     return Idx;
    491   }
    492   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    493   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    494   assert(MI && "enterIntvAfter called with invalid index");
    495 
    496   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
    497                               std::next(MachineBasicBlock::iterator(MI)));
    498   return VNI->def;
    499 }
    500 
    501 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
    502   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
    503   SlotIndex End = LIS.getMBBEndIdx(&MBB);
    504   SlotIndex Last = End.getPrevSlot();
    505   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
    506   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
    507   if (!ParentVNI) {
    508     DEBUG(dbgs() << ": not live\n");
    509     return End;
    510   }
    511   DEBUG(dbgs() << ": valno " << ParentVNI->id);
    512   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
    513                               SA.getLastSplitPointIter(&MBB));
    514   RegAssign.insert(VNI->def, End, OpenIdx);
    515   DEBUG(dump());
    516   return VNI->def;
    517 }
    518 
    519 /// useIntv - indicate that all instructions in MBB should use OpenLI.
    520 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
    521   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
    522 }
    523 
    524 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
    525   assert(OpenIdx && "openIntv not called before useIntv");
    526   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
    527   RegAssign.insert(Start, End, OpenIdx);
    528   DEBUG(dump());
    529 }
    530 
    531 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
    532   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
    533   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
    534 
    535   // The interval must be live beyond the instruction at Idx.
    536   SlotIndex Boundary = Idx.getBoundaryIndex();
    537   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
    538   if (!ParentVNI) {
    539     DEBUG(dbgs() << ": not live\n");
    540     return Boundary.getNextSlot();
    541   }
    542   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    543   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
    544   assert(MI && "No instruction at index");
    545 
    546   // In spill mode, make live ranges as short as possible by inserting the copy
    547   // before MI.  This is only possible if that instruction doesn't redefine the
    548   // value.  The inserted COPY is not a kill, and we don't need to recompute
    549   // the source live range.  The spiller also won't try to hoist this copy.
    550   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
    551       MI->readsVirtualRegister(Edit->getReg())) {
    552     forceRecompute(0, ParentVNI);
    553     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
    554     return Idx;
    555   }
    556 
    557   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
    558                               std::next(MachineBasicBlock::iterator(MI)));
    559   return VNI->def;
    560 }
    561 
    562 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
    563   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
    564   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
    565 
    566   // The interval must be live into the instruction at Idx.
    567   Idx = Idx.getBaseIndex();
    568   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    569   if (!ParentVNI) {
    570     DEBUG(dbgs() << ": not live\n");
    571     return Idx.getNextSlot();
    572   }
    573   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    574 
    575   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    576   assert(MI && "No instruction at index");
    577   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
    578   return VNI->def;
    579 }
    580 
    581 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
    582   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
    583   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
    584   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
    585 
    586   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
    587   if (!ParentVNI) {
    588     DEBUG(dbgs() << ": not live\n");
    589     return Start;
    590   }
    591 
    592   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
    593                               MBB.SkipPHIsAndLabels(MBB.begin()));
    594   RegAssign.insert(Start, VNI->def, OpenIdx);
    595   DEBUG(dump());
    596   return VNI->def;
    597 }
    598 
    599 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
    600   assert(OpenIdx && "openIntv not called before overlapIntv");
    601   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
    602   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
    603          "Parent changes value in extended range");
    604   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
    605          "Range cannot span basic blocks");
    606 
    607   // The complement interval will be extended as needed by LRCalc.extend().
    608   if (ParentVNI)
    609     forceRecompute(0, ParentVNI);
    610   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
    611   RegAssign.insert(Start, End, OpenIdx);
    612   DEBUG(dump());
    613 }
    614 
    615 //===----------------------------------------------------------------------===//
    616 //                                  Spill modes
    617 //===----------------------------------------------------------------------===//
    618 
    619 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
    620   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
    621   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
    622   RegAssignMap::iterator AssignI;
    623   AssignI.setMap(RegAssign);
    624 
    625   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
    626     SlotIndex Def = Copies[i]->def;
    627     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
    628     assert(MI && "No instruction for back-copy");
    629 
    630     MachineBasicBlock *MBB = MI->getParent();
    631     MachineBasicBlock::iterator MBBI(MI);
    632     bool AtBegin;
    633     do AtBegin = MBBI == MBB->begin();
    634     while (!AtBegin && (--MBBI)->isDebugValue());
    635 
    636     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
    637     LIS.removeVRegDefAt(*LI, Def);
    638     LIS.RemoveMachineInstrFromMaps(MI);
    639     MI->eraseFromParent();
    640 
    641     // Adjust RegAssign if a register assignment is killed at Def. We want to
    642     // avoid calculating the live range of the source register if possible.
    643     AssignI.find(Def.getPrevSlot());
    644     if (!AssignI.valid() || AssignI.start() >= Def)
    645       continue;
    646     // If MI doesn't kill the assigned register, just leave it.
    647     if (AssignI.stop() != Def)
    648       continue;
    649     unsigned RegIdx = AssignI.value();
    650     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
    651       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
    652       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
    653     } else {
    654       SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
    655       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
    656       AssignI.setStop(Kill);
    657     }
    658   }
    659 }
    660 
    661 MachineBasicBlock*
    662 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
    663                                   MachineBasicBlock *DefMBB) {
    664   if (MBB == DefMBB)
    665     return MBB;
    666   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
    667 
    668   const MachineLoopInfo &Loops = SA.Loops;
    669   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
    670   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
    671 
    672   // Best candidate so far.
    673   MachineBasicBlock *BestMBB = MBB;
    674   unsigned BestDepth = UINT_MAX;
    675 
    676   for (;;) {
    677     const MachineLoop *Loop = Loops.getLoopFor(MBB);
    678 
    679     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
    680     // higher frequency by definition.
    681     if (!Loop) {
    682       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    683                    << MBB->getNumber() << " at depth 0\n");
    684       return MBB;
    685     }
    686 
    687     // We'll never be able to exit the DefLoop.
    688     if (Loop == DefLoop) {
    689       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    690                    << MBB->getNumber() << " in the same loop\n");
    691       return MBB;
    692     }
    693 
    694     // Least busy dominator seen so far.
    695     unsigned Depth = Loop->getLoopDepth();
    696     if (Depth < BestDepth) {
    697       BestMBB = MBB;
    698       BestDepth = Depth;
    699       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    700                    << MBB->getNumber() << " at depth " << Depth << '\n');
    701     }
    702 
    703     // Leave loop by going to the immediate dominator of the loop header.
    704     // This is a bigger stride than simply walking up the dominator tree.
    705     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
    706 
    707     // Too far up the dominator tree?
    708     if (!IDom || !MDT.dominates(DefDomNode, IDom))
    709       return BestMBB;
    710 
    711     MBB = IDom->getBlock();
    712   }
    713 }
    714 
    715 void SplitEditor::hoistCopiesForSize() {
    716   // Get the complement interval, always RegIdx 0.
    717   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
    718   LiveInterval *Parent = &Edit->getParent();
    719 
    720   // Track the nearest common dominator for all back-copies for each ParentVNI,
    721   // indexed by ParentVNI->id.
    722   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
    723   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
    724 
    725   // Find the nearest common dominator for parent values with multiple
    726   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
    727   for (VNInfo *VNI : LI->valnos) {
    728     if (VNI->isUnused())
    729       continue;
    730     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    731     assert(ParentVNI && "Parent not live at complement def");
    732 
    733     // Don't hoist remats.  The complement is probably going to disappear
    734     // completely anyway.
    735     if (Edit->didRematerialize(ParentVNI))
    736       continue;
    737 
    738     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
    739     DomPair &Dom = NearestDom[ParentVNI->id];
    740 
    741     // Keep directly defined parent values.  This is either a PHI or an
    742     // instruction in the complement range.  All other copies of ParentVNI
    743     // should be eliminated.
    744     if (VNI->def == ParentVNI->def) {
    745       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
    746       Dom = DomPair(ValMBB, VNI->def);
    747       continue;
    748     }
    749     // Skip the singly mapped values.  There is nothing to gain from hoisting a
    750     // single back-copy.
    751     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
    752       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
    753       continue;
    754     }
    755 
    756     if (!Dom.first) {
    757       // First time we see ParentVNI.  VNI dominates itself.
    758       Dom = DomPair(ValMBB, VNI->def);
    759     } else if (Dom.first == ValMBB) {
    760       // Two defs in the same block.  Pick the earlier def.
    761       if (!Dom.second.isValid() || VNI->def < Dom.second)
    762         Dom.second = VNI->def;
    763     } else {
    764       // Different basic blocks. Check if one dominates.
    765       MachineBasicBlock *Near =
    766         MDT.findNearestCommonDominator(Dom.first, ValMBB);
    767       if (Near == ValMBB)
    768         // Def ValMBB dominates.
    769         Dom = DomPair(ValMBB, VNI->def);
    770       else if (Near != Dom.first)
    771         // None dominate. Hoist to common dominator, need new def.
    772         Dom = DomPair(Near, SlotIndex());
    773     }
    774 
    775     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
    776                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
    777                  << " hoist to BB#" << Dom.first->getNumber() << ' '
    778                  << Dom.second << '\n');
    779   }
    780 
    781   // Insert the hoisted copies.
    782   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
    783     DomPair &Dom = NearestDom[i];
    784     if (!Dom.first || Dom.second.isValid())
    785       continue;
    786     // This value needs a hoisted copy inserted at the end of Dom.first.
    787     VNInfo *ParentVNI = Parent->getValNumInfo(i);
    788     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
    789     // Get a less loopy dominator than Dom.first.
    790     Dom.first = findShallowDominator(Dom.first, DefMBB);
    791     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
    792     Dom.second =
    793       defFromParent(0, ParentVNI, Last, *Dom.first,
    794                     SA.getLastSplitPointIter(Dom.first))->def;
    795   }
    796 
    797   // Remove redundant back-copies that are now known to be dominated by another
    798   // def with the same value.
    799   SmallVector<VNInfo*, 8> BackCopies;
    800   for (VNInfo *VNI : LI->valnos) {
    801     if (VNI->isUnused())
    802       continue;
    803     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    804     const DomPair &Dom = NearestDom[ParentVNI->id];
    805     if (!Dom.first || Dom.second == VNI->def)
    806       continue;
    807     BackCopies.push_back(VNI);
    808     forceRecompute(0, ParentVNI);
    809   }
    810   removeBackCopies(BackCopies);
    811 }
    812 
    813 
    814 /// transferValues - Transfer all possible values to the new live ranges.
    815 /// Values that were rematerialized are left alone, they need LRCalc.extend().
    816 bool SplitEditor::transferValues() {
    817   bool Skipped = false;
    818   RegAssignMap::const_iterator AssignI = RegAssign.begin();
    819   for (const LiveRange::Segment &S : Edit->getParent()) {
    820     DEBUG(dbgs() << "  blit " << S << ':');
    821     VNInfo *ParentVNI = S.valno;
    822     // RegAssign has holes where RegIdx 0 should be used.
    823     SlotIndex Start = S.start;
    824     AssignI.advanceTo(Start);
    825     do {
    826       unsigned RegIdx;
    827       SlotIndex End = S.end;
    828       if (!AssignI.valid()) {
    829         RegIdx = 0;
    830       } else if (AssignI.start() <= Start) {
    831         RegIdx = AssignI.value();
    832         if (AssignI.stop() < End) {
    833           End = AssignI.stop();
    834           ++AssignI;
    835         }
    836       } else {
    837         RegIdx = 0;
    838         End = std::min(End, AssignI.start());
    839       }
    840 
    841       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
    842       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
    843       LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
    844 
    845       // Check for a simply defined value that can be blitted directly.
    846       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
    847       if (VNInfo *VNI = VFP.getPointer()) {
    848         DEBUG(dbgs() << ':' << VNI->id);
    849         LR.addSegment(LiveInterval::Segment(Start, End, VNI));
    850         Start = End;
    851         continue;
    852       }
    853 
    854       // Skip values with forced recomputation.
    855       if (VFP.getInt()) {
    856         DEBUG(dbgs() << "(recalc)");
    857         Skipped = true;
    858         Start = End;
    859         continue;
    860       }
    861 
    862       LiveRangeCalc &LRC = getLRCalc(RegIdx);
    863 
    864       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
    865       // so the live range is accurate. Add live-in blocks in [Start;End) to the
    866       // LiveInBlocks.
    867       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
    868       SlotIndex BlockStart, BlockEnd;
    869       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
    870 
    871       // The first block may be live-in, or it may have its own def.
    872       if (Start != BlockStart) {
    873         VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
    874         assert(VNI && "Missing def for complex mapped value");
    875         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
    876         // MBB has its own def. Is it also live-out?
    877         if (BlockEnd <= End)
    878           LRC.setLiveOutValue(MBB, VNI);
    879 
    880         // Skip to the next block for live-in.
    881         ++MBB;
    882         BlockStart = BlockEnd;
    883       }
    884 
    885       // Handle the live-in blocks covered by [Start;End).
    886       assert(Start <= BlockStart && "Expected live-in block");
    887       while (BlockStart < End) {
    888         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
    889         BlockEnd = LIS.getMBBEndIdx(MBB);
    890         if (BlockStart == ParentVNI->def) {
    891           // This block has the def of a parent PHI, so it isn't live-in.
    892           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
    893           VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
    894           assert(VNI && "Missing def for complex mapped parent PHI");
    895           if (End >= BlockEnd)
    896             LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
    897         } else {
    898           // This block needs a live-in value.  The last block covered may not
    899           // be live-out.
    900           if (End < BlockEnd)
    901             LRC.addLiveInBlock(LR, MDT[MBB], End);
    902           else {
    903             // Live-through, and we don't know the value.
    904             LRC.addLiveInBlock(LR, MDT[MBB]);
    905             LRC.setLiveOutValue(MBB, nullptr);
    906           }
    907         }
    908         BlockStart = BlockEnd;
    909         ++MBB;
    910       }
    911       Start = End;
    912     } while (Start != S.end);
    913     DEBUG(dbgs() << '\n');
    914   }
    915 
    916   LRCalc[0].calculateValues();
    917   if (SpillMode)
    918     LRCalc[1].calculateValues();
    919 
    920   return Skipped;
    921 }
    922 
    923 void SplitEditor::extendPHIKillRanges() {
    924     // Extend live ranges to be live-out for successor PHI values.
    925   for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
    926     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
    927       continue;
    928     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
    929     LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
    930     LiveRangeCalc &LRC = getLRCalc(RegIdx);
    931     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
    932     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
    933          PE = MBB->pred_end(); PI != PE; ++PI) {
    934       SlotIndex End = LIS.getMBBEndIdx(*PI);
    935       SlotIndex LastUse = End.getPrevSlot();
    936       // The predecessor may not have a live-out value. That is OK, like an
    937       // undef PHI operand.
    938       if (Edit->getParent().liveAt(LastUse)) {
    939         assert(RegAssign.lookup(LastUse) == RegIdx &&
    940                "Different register assignment in phi predecessor");
    941         LRC.extend(LR, End);
    942       }
    943     }
    944   }
    945 }
    946 
    947 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
    948 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
    949   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
    950        RE = MRI.reg_end(); RI != RE;) {
    951     MachineOperand &MO = *RI;
    952     MachineInstr *MI = MO.getParent();
    953     ++RI;
    954     // LiveDebugVariables should have handled all DBG_VALUE instructions.
    955     if (MI->isDebugValue()) {
    956       DEBUG(dbgs() << "Zapping " << *MI);
    957       MO.setReg(0);
    958       continue;
    959     }
    960 
    961     // <undef> operands don't really read the register, so it doesn't matter
    962     // which register we choose.  When the use operand is tied to a def, we must
    963     // use the same register as the def, so just do that always.
    964     SlotIndex Idx = LIS.getInstructionIndex(MI);
    965     if (MO.isDef() || MO.isUndef())
    966       Idx = Idx.getRegSlot(MO.isEarlyClobber());
    967 
    968     // Rewrite to the mapped register at Idx.
    969     unsigned RegIdx = RegAssign.lookup(Idx);
    970     LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
    971     MO.setReg(LI->reg);
    972     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
    973                  << Idx << ':' << RegIdx << '\t' << *MI);
    974 
    975     // Extend liveness to Idx if the instruction reads reg.
    976     if (!ExtendRanges || MO.isUndef())
    977       continue;
    978 
    979     // Skip instructions that don't read Reg.
    980     if (MO.isDef()) {
    981       if (!MO.getSubReg() && !MO.isEarlyClobber())
    982         continue;
    983       // We may wan't to extend a live range for a partial redef, or for a use
    984       // tied to an early clobber.
    985       Idx = Idx.getPrevSlot();
    986       if (!Edit->getParent().liveAt(Idx))
    987         continue;
    988     } else
    989       Idx = Idx.getRegSlot(true);
    990 
    991     getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
    992   }
    993 }
    994 
    995 void SplitEditor::deleteRematVictims() {
    996   SmallVector<MachineInstr*, 8> Dead;
    997   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
    998     LiveInterval *LI = &LIS.getInterval(*I);
    999     for (const LiveRange::Segment &S : LI->segments) {
   1000       // Dead defs end at the dead slot.
   1001       if (S.end != S.valno->def.getDeadSlot())
   1002         continue;
   1003       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
   1004       assert(MI && "Missing instruction for dead def");
   1005       MI->addRegisterDead(LI->reg, &TRI);
   1006 
   1007       if (!MI->allDefsAreDead())
   1008         continue;
   1009 
   1010       DEBUG(dbgs() << "All defs dead: " << *MI);
   1011       Dead.push_back(MI);
   1012     }
   1013   }
   1014 
   1015   if (Dead.empty())
   1016     return;
   1017 
   1018   Edit->eliminateDeadDefs(Dead);
   1019 }
   1020 
   1021 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
   1022   ++NumFinished;
   1023 
   1024   // At this point, the live intervals in Edit contain VNInfos corresponding to
   1025   // the inserted copies.
   1026 
   1027   // Add the original defs from the parent interval.
   1028   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
   1029     if (ParentVNI->isUnused())
   1030       continue;
   1031     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
   1032     defValue(RegIdx, ParentVNI, ParentVNI->def);
   1033 
   1034     // Force rematted values to be recomputed everywhere.
   1035     // The new live ranges may be truncated.
   1036     if (Edit->didRematerialize(ParentVNI))
   1037       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
   1038         forceRecompute(i, ParentVNI);
   1039   }
   1040 
   1041   // Hoist back-copies to the complement interval when in spill mode.
   1042   switch (SpillMode) {
   1043   case SM_Partition:
   1044     // Leave all back-copies as is.
   1045     break;
   1046   case SM_Size:
   1047     hoistCopiesForSize();
   1048     break;
   1049   case SM_Speed:
   1050     llvm_unreachable("Spill mode 'speed' not implemented yet");
   1051   }
   1052 
   1053   // Transfer the simply mapped values, check if any are skipped.
   1054   bool Skipped = transferValues();
   1055   if (Skipped)
   1056     extendPHIKillRanges();
   1057   else
   1058     ++NumSimple;
   1059 
   1060   // Rewrite virtual registers, possibly extending ranges.
   1061   rewriteAssigned(Skipped);
   1062 
   1063   // Delete defs that were rematted everywhere.
   1064   if (Skipped)
   1065     deleteRematVictims();
   1066 
   1067   // Get rid of unused values and set phi-kill flags.
   1068   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
   1069     LiveInterval &LI = LIS.getInterval(*I);
   1070     LI.RenumberValues();
   1071   }
   1072 
   1073   // Provide a reverse mapping from original indices to Edit ranges.
   1074   if (LRMap) {
   1075     LRMap->clear();
   1076     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
   1077       LRMap->push_back(i);
   1078   }
   1079 
   1080   // Now check if any registers were separated into multiple components.
   1081   ConnectedVNInfoEqClasses ConEQ(LIS);
   1082   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
   1083     // Don't use iterators, they are invalidated by create() below.
   1084     LiveInterval *li = &LIS.getInterval(Edit->get(i));
   1085     unsigned NumComp = ConEQ.Classify(li);
   1086     if (NumComp <= 1)
   1087       continue;
   1088     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
   1089     SmallVector<LiveInterval*, 8> dups;
   1090     dups.push_back(li);
   1091     for (unsigned j = 1; j != NumComp; ++j)
   1092       dups.push_back(&Edit->createEmptyInterval());
   1093     ConEQ.Distribute(&dups[0], MRI);
   1094     // The new intervals all map back to i.
   1095     if (LRMap)
   1096       LRMap->resize(Edit->size(), i);
   1097   }
   1098 
   1099   // Calculate spill weight and allocation hints for new intervals.
   1100   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
   1101 
   1102   assert(!LRMap || LRMap->size() == Edit->size());
   1103 }
   1104 
   1105 
   1106 //===----------------------------------------------------------------------===//
   1107 //                            Single Block Splitting
   1108 //===----------------------------------------------------------------------===//
   1109 
   1110 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
   1111                                            bool SingleInstrs) const {
   1112   // Always split for multiple instructions.
   1113   if (!BI.isOneInstr())
   1114     return true;
   1115   // Don't split for single instructions unless explicitly requested.
   1116   if (!SingleInstrs)
   1117     return false;
   1118   // Splitting a live-through range always makes progress.
   1119   if (BI.LiveIn && BI.LiveOut)
   1120     return true;
   1121   // No point in isolating a copy. It has no register class constraints.
   1122   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
   1123     return false;
   1124   // Finally, don't isolate an end point that was created by earlier splits.
   1125   return isOriginalEndpoint(BI.FirstInstr);
   1126 }
   1127 
   1128 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
   1129   openIntv();
   1130   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
   1131   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
   1132     LastSplitPoint));
   1133   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
   1134     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
   1135   } else {
   1136       // The last use is after the last valid split point.
   1137     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
   1138     useIntv(SegStart, SegStop);
   1139     overlapIntv(SegStop, BI.LastInstr);
   1140   }
   1141 }
   1142 
   1143 
   1144 //===----------------------------------------------------------------------===//
   1145 //                    Global Live Range Splitting Support
   1146 //===----------------------------------------------------------------------===//
   1147 
   1148 // These methods support a method of global live range splitting that uses a
   1149 // global algorithm to decide intervals for CFG edges. They will insert split
   1150 // points and color intervals in basic blocks while avoiding interference.
   1151 //
   1152 // Note that splitSingleBlock is also useful for blocks where both CFG edges
   1153 // are on the stack.
   1154 
   1155 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
   1156                                         unsigned IntvIn, SlotIndex LeaveBefore,
   1157                                         unsigned IntvOut, SlotIndex EnterAfter){
   1158   SlotIndex Start, Stop;
   1159   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
   1160 
   1161   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
   1162                << ") intf " << LeaveBefore << '-' << EnterAfter
   1163                << ", live-through " << IntvIn << " -> " << IntvOut);
   1164 
   1165   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
   1166 
   1167   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
   1168   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
   1169   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
   1170 
   1171   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
   1172 
   1173   if (!IntvOut) {
   1174     DEBUG(dbgs() << ", spill on entry.\n");
   1175     //
   1176     //        <<<<<<<<<    Possible LeaveBefore interference.
   1177     //    |-----------|    Live through.
   1178     //    -____________    Spill on entry.
   1179     //
   1180     selectIntv(IntvIn);
   1181     SlotIndex Idx = leaveIntvAtTop(*MBB);
   1182     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1183     (void)Idx;
   1184     return;
   1185   }
   1186 
   1187   if (!IntvIn) {
   1188     DEBUG(dbgs() << ", reload on exit.\n");
   1189     //
   1190     //    >>>>>>>          Possible EnterAfter interference.
   1191     //    |-----------|    Live through.
   1192     //    ___________--    Reload on exit.
   1193     //
   1194     selectIntv(IntvOut);
   1195     SlotIndex Idx = enterIntvAtEnd(*MBB);
   1196     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1197     (void)Idx;
   1198     return;
   1199   }
   1200 
   1201   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
   1202     DEBUG(dbgs() << ", straight through.\n");
   1203     //
   1204     //    |-----------|    Live through.
   1205     //    -------------    Straight through, same intv, no interference.
   1206     //
   1207     selectIntv(IntvOut);
   1208     useIntv(Start, Stop);
   1209     return;
   1210   }
   1211 
   1212   // We cannot legally insert splits after LSP.
   1213   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
   1214   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
   1215 
   1216   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
   1217                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
   1218     DEBUG(dbgs() << ", switch avoiding interference.\n");
   1219     //
   1220     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
   1221     //    |-----------|    Live through.
   1222     //    ------=======    Switch intervals between interference.
   1223     //
   1224     selectIntv(IntvOut);
   1225     SlotIndex Idx;
   1226     if (LeaveBefore && LeaveBefore < LSP) {
   1227       Idx = enterIntvBefore(LeaveBefore);
   1228       useIntv(Idx, Stop);
   1229     } else {
   1230       Idx = enterIntvAtEnd(*MBB);
   1231     }
   1232     selectIntv(IntvIn);
   1233     useIntv(Start, Idx);
   1234     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1235     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1236     return;
   1237   }
   1238 
   1239   DEBUG(dbgs() << ", create local intv for interference.\n");
   1240   //
   1241   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
   1242   //    |-----------|    Live through.
   1243   //    ==---------==    Switch intervals before/after interference.
   1244   //
   1245   assert(LeaveBefore <= EnterAfter && "Missed case");
   1246 
   1247   selectIntv(IntvOut);
   1248   SlotIndex Idx = enterIntvAfter(EnterAfter);
   1249   useIntv(Idx, Stop);
   1250   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1251 
   1252   selectIntv(IntvIn);
   1253   Idx = leaveIntvBefore(LeaveBefore);
   1254   useIntv(Start, Idx);
   1255   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1256 }
   1257 
   1258 
   1259 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
   1260                                   unsigned IntvIn, SlotIndex LeaveBefore) {
   1261   SlotIndex Start, Stop;
   1262   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
   1263 
   1264   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
   1265                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
   1266                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
   1267                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
   1268 
   1269   assert(IntvIn && "Must have register in");
   1270   assert(BI.LiveIn && "Must be live-in");
   1271   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
   1272 
   1273   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
   1274     DEBUG(dbgs() << " before interference.\n");
   1275     //
   1276     //               <<<    Interference after kill.
   1277     //     |---o---x   |    Killed in block.
   1278     //     =========        Use IntvIn everywhere.
   1279     //
   1280     selectIntv(IntvIn);
   1281     useIntv(Start, BI.LastInstr);
   1282     return;
   1283   }
   1284 
   1285   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
   1286 
   1287   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
   1288     //
   1289     //               <<<    Possible interference after last use.
   1290     //     |---o---o---|    Live-out on stack.
   1291     //     =========____    Leave IntvIn after last use.
   1292     //
   1293     //                 <    Interference after last use.
   1294     //     |---o---o--o|    Live-out on stack, late last use.
   1295     //     ============     Copy to stack after LSP, overlap IntvIn.
   1296     //            \_____    Stack interval is live-out.
   1297     //
   1298     if (BI.LastInstr < LSP) {
   1299       DEBUG(dbgs() << ", spill after last use before interference.\n");
   1300       selectIntv(IntvIn);
   1301       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
   1302       useIntv(Start, Idx);
   1303       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1304     } else {
   1305       DEBUG(dbgs() << ", spill before last split point.\n");
   1306       selectIntv(IntvIn);
   1307       SlotIndex Idx = leaveIntvBefore(LSP);
   1308       overlapIntv(Idx, BI.LastInstr);
   1309       useIntv(Start, Idx);
   1310       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1311     }
   1312     return;
   1313   }
   1314 
   1315   // The interference is overlapping somewhere we wanted to use IntvIn. That
   1316   // means we need to create a local interval that can be allocated a
   1317   // different register.
   1318   unsigned LocalIntv = openIntv();
   1319   (void)LocalIntv;
   1320   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
   1321 
   1322   if (!BI.LiveOut || BI.LastInstr < LSP) {
   1323     //
   1324     //           <<<<<<<    Interference overlapping uses.
   1325     //     |---o---o---|    Live-out on stack.
   1326     //     =====----____    Leave IntvIn before interference, then spill.
   1327     //
   1328     SlotIndex To = leaveIntvAfter(BI.LastInstr);
   1329     SlotIndex From = enterIntvBefore(LeaveBefore);
   1330     useIntv(From, To);
   1331     selectIntv(IntvIn);
   1332     useIntv(Start, From);
   1333     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
   1334     return;
   1335   }
   1336 
   1337   //           <<<<<<<    Interference overlapping uses.
   1338   //     |---o---o--o|    Live-out on stack, late last use.
   1339   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
   1340   //            \_____    Stack interval is live-out.
   1341   //
   1342   SlotIndex To = leaveIntvBefore(LSP);
   1343   overlapIntv(To, BI.LastInstr);
   1344   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
   1345   useIntv(From, To);
   1346   selectIntv(IntvIn);
   1347   useIntv(Start, From);
   1348   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
   1349 }
   1350 
   1351 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
   1352                                    unsigned IntvOut, SlotIndex EnterAfter) {
   1353   SlotIndex Start, Stop;
   1354   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
   1355 
   1356   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
   1357                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
   1358                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
   1359                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
   1360 
   1361   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
   1362 
   1363   assert(IntvOut && "Must have register out");
   1364   assert(BI.LiveOut && "Must be live-out");
   1365   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
   1366 
   1367   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
   1368     DEBUG(dbgs() << " after interference.\n");
   1369     //
   1370     //    >>>>             Interference before def.
   1371     //    |   o---o---|    Defined in block.
   1372     //        =========    Use IntvOut everywhere.
   1373     //
   1374     selectIntv(IntvOut);
   1375     useIntv(BI.FirstInstr, Stop);
   1376     return;
   1377   }
   1378 
   1379   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
   1380     DEBUG(dbgs() << ", reload after interference.\n");
   1381     //
   1382     //    >>>>             Interference before def.
   1383     //    |---o---o---|    Live-through, stack-in.
   1384     //    ____=========    Enter IntvOut before first use.
   1385     //
   1386     selectIntv(IntvOut);
   1387     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
   1388     useIntv(Idx, Stop);
   1389     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1390     return;
   1391   }
   1392 
   1393   // The interference is overlapping somewhere we wanted to use IntvOut. That
   1394   // means we need to create a local interval that can be allocated a
   1395   // different register.
   1396   DEBUG(dbgs() << ", interference overlaps uses.\n");
   1397   //
   1398   //    >>>>>>>          Interference overlapping uses.
   1399   //    |---o---o---|    Live-through, stack-in.
   1400   //    ____---======    Create local interval for interference range.
   1401   //
   1402   selectIntv(IntvOut);
   1403   SlotIndex Idx = enterIntvAfter(EnterAfter);
   1404   useIntv(Idx, Stop);
   1405   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1406 
   1407   openIntv();
   1408   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
   1409   useIntv(From, Idx);
   1410 }
   1411