Home | History | Annotate | Download | only in CodeGen
      1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TargetRegisterInfo interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetRegisterInfo.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/VirtRegMap.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/raw_ostream.h"
     21 
     22 using namespace llvm;
     23 
     24 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
     25                              regclass_iterator RCB, regclass_iterator RCE,
     26                              const char *const *SRINames,
     27                              const unsigned *SRILaneMasks,
     28                              unsigned SRICoveringLanes)
     29   : InfoDesc(ID), SubRegIndexNames(SRINames),
     30     SubRegIndexLaneMasks(SRILaneMasks),
     31     RegClassBegin(RCB), RegClassEnd(RCE),
     32     CoveringLanes(SRICoveringLanes) {
     33 }
     34 
     35 TargetRegisterInfo::~TargetRegisterInfo() {}
     36 
     37 void PrintReg::print(raw_ostream &OS) const {
     38   if (!Reg)
     39     OS << "%noreg";
     40   else if (TargetRegisterInfo::isStackSlot(Reg))
     41     OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
     42   else if (TargetRegisterInfo::isVirtualRegister(Reg))
     43     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
     44   else if (TRI && Reg < TRI->getNumRegs())
     45     OS << '%' << TRI->getName(Reg);
     46   else
     47     OS << "%physreg" << Reg;
     48   if (SubIdx) {
     49     if (TRI)
     50       OS << ':' << TRI->getSubRegIndexName(SubIdx);
     51     else
     52       OS << ":sub(" << SubIdx << ')';
     53   }
     54 }
     55 
     56 void PrintRegUnit::print(raw_ostream &OS) const {
     57   // Generic printout when TRI is missing.
     58   if (!TRI) {
     59     OS << "Unit~" << Unit;
     60     return;
     61   }
     62 
     63   // Check for invalid register units.
     64   if (Unit >= TRI->getNumRegUnits()) {
     65     OS << "BadUnit~" << Unit;
     66     return;
     67   }
     68 
     69   // Normal units have at least one root.
     70   MCRegUnitRootIterator Roots(Unit, TRI);
     71   assert(Roots.isValid() && "Unit has no roots.");
     72   OS << TRI->getName(*Roots);
     73   for (++Roots; Roots.isValid(); ++Roots)
     74     OS << '~' << TRI->getName(*Roots);
     75 }
     76 
     77 void PrintVRegOrUnit::print(raw_ostream &OS) const {
     78   if (TRI && TRI->isVirtualRegister(Unit)) {
     79     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
     80     return;
     81   }
     82   PrintRegUnit::print(OS);
     83 }
     84 
     85 /// getAllocatableClass - Return the maximal subclass of the given register
     86 /// class that is alloctable, or NULL.
     87 const TargetRegisterClass *
     88 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
     89   if (!RC || RC->isAllocatable())
     90     return RC;
     91 
     92   const unsigned *SubClass = RC->getSubClassMask();
     93   for (unsigned Base = 0, BaseE = getNumRegClasses();
     94        Base < BaseE; Base += 32) {
     95     unsigned Idx = Base;
     96     for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
     97       unsigned Offset = countTrailingZeros(Mask);
     98       const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
     99       if (SubRC->isAllocatable())
    100         return SubRC;
    101       Mask >>= Offset;
    102       Idx += Offset + 1;
    103     }
    104   }
    105   return nullptr;
    106 }
    107 
    108 /// getMinimalPhysRegClass - Returns the Register Class of a physical
    109 /// register of the given type, picking the most sub register class of
    110 /// the right type that contains this physreg.
    111 const TargetRegisterClass *
    112 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
    113   assert(isPhysicalRegister(reg) && "reg must be a physical register");
    114 
    115   // Pick the most sub register class of the right type that contains
    116   // this physreg.
    117   const TargetRegisterClass* BestRC = nullptr;
    118   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
    119     const TargetRegisterClass* RC = *I;
    120     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
    121         (!BestRC || BestRC->hasSubClass(RC)))
    122       BestRC = RC;
    123   }
    124 
    125   assert(BestRC && "Couldn't find the register class");
    126   return BestRC;
    127 }
    128 
    129 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
    130 /// registers for the specific register class.
    131 static void getAllocatableSetForRC(const MachineFunction &MF,
    132                                    const TargetRegisterClass *RC, BitVector &R){
    133   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
    134   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
    135   for (unsigned i = 0; i != Order.size(); ++i)
    136     R.set(Order[i]);
    137 }
    138 
    139 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
    140                                           const TargetRegisterClass *RC) const {
    141   BitVector Allocatable(getNumRegs());
    142   if (RC) {
    143     // A register class with no allocatable subclass returns an empty set.
    144     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
    145     if (SubClass)
    146       getAllocatableSetForRC(MF, SubClass, Allocatable);
    147   } else {
    148     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
    149          E = regclass_end(); I != E; ++I)
    150       if ((*I)->isAllocatable())
    151         getAllocatableSetForRC(MF, *I, Allocatable);
    152   }
    153 
    154   // Mask out the reserved registers
    155   BitVector Reserved = getReservedRegs(MF);
    156   Allocatable &= Reserved.flip();
    157 
    158   return Allocatable;
    159 }
    160 
    161 static inline
    162 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
    163                                             const uint32_t *B,
    164                                             const TargetRegisterInfo *TRI) {
    165   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
    166     if (unsigned Common = *A++ & *B++)
    167       return TRI->getRegClass(I + countTrailingZeros(Common));
    168   return nullptr;
    169 }
    170 
    171 const TargetRegisterClass *
    172 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
    173                                       const TargetRegisterClass *B) const {
    174   // First take care of the trivial cases.
    175   if (A == B)
    176     return A;
    177   if (!A || !B)
    178     return nullptr;
    179 
    180   // Register classes are ordered topologically, so the largest common
    181   // sub-class it the common sub-class with the smallest ID.
    182   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
    183 }
    184 
    185 const TargetRegisterClass *
    186 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
    187                                              const TargetRegisterClass *B,
    188                                              unsigned Idx) const {
    189   assert(A && B && "Missing register class");
    190   assert(Idx && "Bad sub-register index");
    191 
    192   // Find Idx in the list of super-register indices.
    193   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
    194     if (RCI.getSubReg() == Idx)
    195       // The bit mask contains all register classes that are projected into B
    196       // by Idx. Find a class that is also a sub-class of A.
    197       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
    198   return nullptr;
    199 }
    200 
    201 const TargetRegisterClass *TargetRegisterInfo::
    202 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    203                        const TargetRegisterClass *RCB, unsigned SubB,
    204                        unsigned &PreA, unsigned &PreB) const {
    205   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
    206 
    207   // Search all pairs of sub-register indices that project into RCA and RCB
    208   // respectively. This is quadratic, but usually the sets are very small. On
    209   // most targets like X86, there will only be a single sub-register index
    210   // (e.g., sub_16bit projecting into GR16).
    211   //
    212   // The worst case is a register class like DPR on ARM.
    213   // We have indices dsub_0..dsub_7 projecting into that class.
    214   //
    215   // It is very common that one register class is a sub-register of the other.
    216   // Arrange for RCA to be the larger register so the answer will be found in
    217   // the first iteration. This makes the search linear for the most common
    218   // case.
    219   const TargetRegisterClass *BestRC = nullptr;
    220   unsigned *BestPreA = &PreA;
    221   unsigned *BestPreB = &PreB;
    222   if (RCA->getSize() < RCB->getSize()) {
    223     std::swap(RCA, RCB);
    224     std::swap(SubA, SubB);
    225     std::swap(BestPreA, BestPreB);
    226   }
    227 
    228   // Also terminate the search one we have found a register class as small as
    229   // RCA.
    230   unsigned MinSize = RCA->getSize();
    231 
    232   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
    233     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
    234     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
    235       // Check if a common super-register class exists for this index pair.
    236       const TargetRegisterClass *RC =
    237         firstCommonClass(IA.getMask(), IB.getMask(), this);
    238       if (!RC || RC->getSize() < MinSize)
    239         continue;
    240 
    241       // The indexes must compose identically: PreA+SubA == PreB+SubB.
    242       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
    243       if (FinalA != FinalB)
    244         continue;
    245 
    246       // Is RC a better candidate than BestRC?
    247       if (BestRC && RC->getSize() >= BestRC->getSize())
    248         continue;
    249 
    250       // Yes, RC is the smallest super-register seen so far.
    251       BestRC = RC;
    252       *BestPreA = IA.getSubReg();
    253       *BestPreB = IB.getSubReg();
    254 
    255       // Bail early if we reached MinSize. We won't find a better candidate.
    256       if (BestRC->getSize() == MinSize)
    257         return BestRC;
    258     }
    259   }
    260   return BestRC;
    261 }
    262 
    263 // Compute target-independent register allocator hints to help eliminate copies.
    264 void
    265 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
    266                                           ArrayRef<MCPhysReg> Order,
    267                                           SmallVectorImpl<MCPhysReg> &Hints,
    268                                           const MachineFunction &MF,
    269                                           const VirtRegMap *VRM) const {
    270   const MachineRegisterInfo &MRI = MF.getRegInfo();
    271   std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
    272 
    273   // Hints with HintType != 0 were set by target-dependent code.
    274   // Such targets must provide their own implementation of
    275   // TRI::getRegAllocationHints to interpret those hint types.
    276   assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
    277 
    278   // Target-independent hints are either a physical or a virtual register.
    279   unsigned Phys = Hint.second;
    280   if (VRM && isVirtualRegister(Phys))
    281     Phys = VRM->getPhys(Phys);
    282 
    283   // Check that Phys is a valid hint in VirtReg's register class.
    284   if (!isPhysicalRegister(Phys))
    285     return;
    286   if (MRI.isReserved(Phys))
    287     return;
    288   // Check that Phys is in the allocation order. We shouldn't heed hints
    289   // from VirtReg's register class if they aren't in the allocation order. The
    290   // target probably has a reason for removing the register.
    291   if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
    292     return;
    293 
    294   // All clear, tell the register allocator to prefer this register.
    295   Hints.push_back(Phys);
    296 }
    297 
    298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    299 void
    300 TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
    301                             const TargetRegisterInfo *TRI) {
    302   dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
    303 }
    304 #endif
    305