Home | History | Annotate | Download | only in Sema
      1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements name lookup for C, C++, Objective-C, and
     11 //  Objective-C++.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 #include "clang/Sema/Lookup.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/Decl.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclLookups.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/DeclTemplate.h"
     22 #include "clang/AST/Expr.h"
     23 #include "clang/AST/ExprCXX.h"
     24 #include "clang/Basic/Builtins.h"
     25 #include "clang/Basic/LangOptions.h"
     26 #include "clang/Lex/ModuleLoader.h"
     27 #include "clang/Sema/DeclSpec.h"
     28 #include "clang/Sema/ExternalSemaSource.h"
     29 #include "clang/Sema/Overload.h"
     30 #include "clang/Sema/Scope.h"
     31 #include "clang/Sema/ScopeInfo.h"
     32 #include "clang/Sema/Sema.h"
     33 #include "clang/Sema/SemaInternal.h"
     34 #include "clang/Sema/TemplateDeduction.h"
     35 #include "clang/Sema/TypoCorrection.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/ADT/SetVector.h"
     38 #include "llvm/ADT/SmallPtrSet.h"
     39 #include "llvm/ADT/StringMap.h"
     40 #include "llvm/ADT/TinyPtrVector.h"
     41 #include "llvm/ADT/edit_distance.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include <algorithm>
     44 #include <iterator>
     45 #include <limits>
     46 #include <list>
     47 #include <map>
     48 #include <set>
     49 #include <utility>
     50 #include <vector>
     51 
     52 using namespace clang;
     53 using namespace sema;
     54 
     55 namespace {
     56   class UnqualUsingEntry {
     57     const DeclContext *Nominated;
     58     const DeclContext *CommonAncestor;
     59 
     60   public:
     61     UnqualUsingEntry(const DeclContext *Nominated,
     62                      const DeclContext *CommonAncestor)
     63       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
     64     }
     65 
     66     const DeclContext *getCommonAncestor() const {
     67       return CommonAncestor;
     68     }
     69 
     70     const DeclContext *getNominatedNamespace() const {
     71       return Nominated;
     72     }
     73 
     74     // Sort by the pointer value of the common ancestor.
     75     struct Comparator {
     76       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
     77         return L.getCommonAncestor() < R.getCommonAncestor();
     78       }
     79 
     80       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
     81         return E.getCommonAncestor() < DC;
     82       }
     83 
     84       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
     85         return DC < E.getCommonAncestor();
     86       }
     87     };
     88   };
     89 
     90   /// A collection of using directives, as used by C++ unqualified
     91   /// lookup.
     92   class UnqualUsingDirectiveSet {
     93     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
     94 
     95     ListTy list;
     96     llvm::SmallPtrSet<DeclContext*, 8> visited;
     97 
     98   public:
     99     UnqualUsingDirectiveSet() {}
    100 
    101     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
    102       // C++ [namespace.udir]p1:
    103       //   During unqualified name lookup, the names appear as if they
    104       //   were declared in the nearest enclosing namespace which contains
    105       //   both the using-directive and the nominated namespace.
    106       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
    107       assert(InnermostFileDC && InnermostFileDC->isFileContext());
    108 
    109       for (; S; S = S->getParent()) {
    110         // C++ [namespace.udir]p1:
    111         //   A using-directive shall not appear in class scope, but may
    112         //   appear in namespace scope or in block scope.
    113         DeclContext *Ctx = S->getEntity();
    114         if (Ctx && Ctx->isFileContext()) {
    115           visit(Ctx, Ctx);
    116         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
    117           for (auto *I : S->using_directives())
    118             visit(I, InnermostFileDC);
    119         }
    120       }
    121     }
    122 
    123     // Visits a context and collect all of its using directives
    124     // recursively.  Treats all using directives as if they were
    125     // declared in the context.
    126     //
    127     // A given context is only every visited once, so it is important
    128     // that contexts be visited from the inside out in order to get
    129     // the effective DCs right.
    130     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
    131       if (!visited.insert(DC).second)
    132         return;
    133 
    134       addUsingDirectives(DC, EffectiveDC);
    135     }
    136 
    137     // Visits a using directive and collects all of its using
    138     // directives recursively.  Treats all using directives as if they
    139     // were declared in the effective DC.
    140     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    141       DeclContext *NS = UD->getNominatedNamespace();
    142       if (!visited.insert(NS).second)
    143         return;
    144 
    145       addUsingDirective(UD, EffectiveDC);
    146       addUsingDirectives(NS, EffectiveDC);
    147     }
    148 
    149     // Adds all the using directives in a context (and those nominated
    150     // by its using directives, transitively) as if they appeared in
    151     // the given effective context.
    152     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
    153       SmallVector<DeclContext*,4> queue;
    154       while (true) {
    155         for (auto UD : DC->using_directives()) {
    156           DeclContext *NS = UD->getNominatedNamespace();
    157           if (visited.insert(NS).second) {
    158             addUsingDirective(UD, EffectiveDC);
    159             queue.push_back(NS);
    160           }
    161         }
    162 
    163         if (queue.empty())
    164           return;
    165 
    166         DC = queue.pop_back_val();
    167       }
    168     }
    169 
    170     // Add a using directive as if it had been declared in the given
    171     // context.  This helps implement C++ [namespace.udir]p3:
    172     //   The using-directive is transitive: if a scope contains a
    173     //   using-directive that nominates a second namespace that itself
    174     //   contains using-directives, the effect is as if the
    175     //   using-directives from the second namespace also appeared in
    176     //   the first.
    177     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    178       // Find the common ancestor between the effective context and
    179       // the nominated namespace.
    180       DeclContext *Common = UD->getNominatedNamespace();
    181       while (!Common->Encloses(EffectiveDC))
    182         Common = Common->getParent();
    183       Common = Common->getPrimaryContext();
    184 
    185       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
    186     }
    187 
    188     void done() {
    189       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
    190     }
    191 
    192     typedef ListTy::const_iterator const_iterator;
    193 
    194     const_iterator begin() const { return list.begin(); }
    195     const_iterator end() const { return list.end(); }
    196 
    197     llvm::iterator_range<const_iterator>
    198     getNamespacesFor(DeclContext *DC) const {
    199       return llvm::make_range(std::equal_range(begin(), end(),
    200                                                DC->getPrimaryContext(),
    201                                                UnqualUsingEntry::Comparator()));
    202     }
    203   };
    204 }
    205 
    206 // Retrieve the set of identifier namespaces that correspond to a
    207 // specific kind of name lookup.
    208 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
    209                                bool CPlusPlus,
    210                                bool Redeclaration) {
    211   unsigned IDNS = 0;
    212   switch (NameKind) {
    213   case Sema::LookupObjCImplicitSelfParam:
    214   case Sema::LookupOrdinaryName:
    215   case Sema::LookupRedeclarationWithLinkage:
    216   case Sema::LookupLocalFriendName:
    217     IDNS = Decl::IDNS_Ordinary;
    218     if (CPlusPlus) {
    219       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
    220       if (Redeclaration)
    221         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
    222     }
    223     if (Redeclaration)
    224       IDNS |= Decl::IDNS_LocalExtern;
    225     break;
    226 
    227   case Sema::LookupOperatorName:
    228     // Operator lookup is its own crazy thing;  it is not the same
    229     // as (e.g.) looking up an operator name for redeclaration.
    230     assert(!Redeclaration && "cannot do redeclaration operator lookup");
    231     IDNS = Decl::IDNS_NonMemberOperator;
    232     break;
    233 
    234   case Sema::LookupTagName:
    235     if (CPlusPlus) {
    236       IDNS = Decl::IDNS_Type;
    237 
    238       // When looking for a redeclaration of a tag name, we add:
    239       // 1) TagFriend to find undeclared friend decls
    240       // 2) Namespace because they can't "overload" with tag decls.
    241       // 3) Tag because it includes class templates, which can't
    242       //    "overload" with tag decls.
    243       if (Redeclaration)
    244         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
    245     } else {
    246       IDNS = Decl::IDNS_Tag;
    247     }
    248     break;
    249 
    250   case Sema::LookupLabel:
    251     IDNS = Decl::IDNS_Label;
    252     break;
    253 
    254   case Sema::LookupMemberName:
    255     IDNS = Decl::IDNS_Member;
    256     if (CPlusPlus)
    257       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
    258     break;
    259 
    260   case Sema::LookupNestedNameSpecifierName:
    261     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
    262     break;
    263 
    264   case Sema::LookupNamespaceName:
    265     IDNS = Decl::IDNS_Namespace;
    266     break;
    267 
    268   case Sema::LookupUsingDeclName:
    269     assert(Redeclaration && "should only be used for redecl lookup");
    270     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
    271            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
    272            Decl::IDNS_LocalExtern;
    273     break;
    274 
    275   case Sema::LookupObjCProtocolName:
    276     IDNS = Decl::IDNS_ObjCProtocol;
    277     break;
    278 
    279   case Sema::LookupAnyName:
    280     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
    281       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
    282       | Decl::IDNS_Type;
    283     break;
    284   }
    285   return IDNS;
    286 }
    287 
    288 void LookupResult::configure() {
    289   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
    290                  isForRedeclaration());
    291 
    292   // If we're looking for one of the allocation or deallocation
    293   // operators, make sure that the implicitly-declared new and delete
    294   // operators can be found.
    295   switch (NameInfo.getName().getCXXOverloadedOperator()) {
    296   case OO_New:
    297   case OO_Delete:
    298   case OO_Array_New:
    299   case OO_Array_Delete:
    300     getSema().DeclareGlobalNewDelete();
    301     break;
    302 
    303   default:
    304     break;
    305   }
    306 
    307   // Compiler builtins are always visible, regardless of where they end
    308   // up being declared.
    309   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
    310     if (unsigned BuiltinID = Id->getBuiltinID()) {
    311       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    312         AllowHidden = true;
    313     }
    314   }
    315 }
    316 
    317 bool LookupResult::sanity() const {
    318   // This function is never called by NDEBUG builds.
    319   assert(ResultKind != NotFound || Decls.size() == 0);
    320   assert(ResultKind != Found || Decls.size() == 1);
    321   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
    322          (Decls.size() == 1 &&
    323           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
    324   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
    325   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
    326          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
    327                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
    328   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
    329                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
    330                                  Ambiguity == AmbiguousBaseSubobjects)));
    331   return true;
    332 }
    333 
    334 // Necessary because CXXBasePaths is not complete in Sema.h
    335 void LookupResult::deletePaths(CXXBasePaths *Paths) {
    336   delete Paths;
    337 }
    338 
    339 /// Get a representative context for a declaration such that two declarations
    340 /// will have the same context if they were found within the same scope.
    341 static DeclContext *getContextForScopeMatching(Decl *D) {
    342   // For function-local declarations, use that function as the context. This
    343   // doesn't account for scopes within the function; the caller must deal with
    344   // those.
    345   DeclContext *DC = D->getLexicalDeclContext();
    346   if (DC->isFunctionOrMethod())
    347     return DC;
    348 
    349   // Otherwise, look at the semantic context of the declaration. The
    350   // declaration must have been found there.
    351   return D->getDeclContext()->getRedeclContext();
    352 }
    353 
    354 /// Resolves the result kind of this lookup.
    355 void LookupResult::resolveKind() {
    356   unsigned N = Decls.size();
    357 
    358   // Fast case: no possible ambiguity.
    359   if (N == 0) {
    360     assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
    361     return;
    362   }
    363 
    364   // If there's a single decl, we need to examine it to decide what
    365   // kind of lookup this is.
    366   if (N == 1) {
    367     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
    368     if (isa<FunctionTemplateDecl>(D))
    369       ResultKind = FoundOverloaded;
    370     else if (isa<UnresolvedUsingValueDecl>(D))
    371       ResultKind = FoundUnresolvedValue;
    372     return;
    373   }
    374 
    375   // Don't do any extra resolution if we've already resolved as ambiguous.
    376   if (ResultKind == Ambiguous) return;
    377 
    378   llvm::SmallPtrSet<NamedDecl*, 16> Unique;
    379   llvm::SmallPtrSet<QualType, 16> UniqueTypes;
    380 
    381   bool Ambiguous = false;
    382   bool HasTag = false, HasFunction = false, HasNonFunction = false;
    383   bool HasFunctionTemplate = false, HasUnresolved = false;
    384 
    385   unsigned UniqueTagIndex = 0;
    386 
    387   unsigned I = 0;
    388   while (I < N) {
    389     NamedDecl *D = Decls[I]->getUnderlyingDecl();
    390     D = cast<NamedDecl>(D->getCanonicalDecl());
    391 
    392     // Ignore an invalid declaration unless it's the only one left.
    393     if (D->isInvalidDecl() && I < N-1) {
    394       Decls[I] = Decls[--N];
    395       continue;
    396     }
    397 
    398     // Redeclarations of types via typedef can occur both within a scope
    399     // and, through using declarations and directives, across scopes. There is
    400     // no ambiguity if they all refer to the same type, so unique based on the
    401     // canonical type.
    402     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
    403       if (!TD->getDeclContext()->isRecord()) {
    404         QualType T = getSema().Context.getTypeDeclType(TD);
    405         if (!UniqueTypes.insert(getSema().Context.getCanonicalType(T)).second) {
    406           // The type is not unique; pull something off the back and continue
    407           // at this index.
    408           Decls[I] = Decls[--N];
    409           continue;
    410         }
    411       }
    412     }
    413 
    414     if (!Unique.insert(D).second) {
    415       // If it's not unique, pull something off the back (and
    416       // continue at this index).
    417       // FIXME: This is wrong. We need to take the more recent declaration in
    418       // order to get the right type, default arguments, etc. We also need to
    419       // prefer visible declarations to hidden ones (for redeclaration lookup
    420       // in modules builds).
    421       Decls[I] = Decls[--N];
    422       continue;
    423     }
    424 
    425     // Otherwise, do some decl type analysis and then continue.
    426 
    427     if (isa<UnresolvedUsingValueDecl>(D)) {
    428       HasUnresolved = true;
    429     } else if (isa<TagDecl>(D)) {
    430       if (HasTag)
    431         Ambiguous = true;
    432       UniqueTagIndex = I;
    433       HasTag = true;
    434     } else if (isa<FunctionTemplateDecl>(D)) {
    435       HasFunction = true;
    436       HasFunctionTemplate = true;
    437     } else if (isa<FunctionDecl>(D)) {
    438       HasFunction = true;
    439     } else {
    440       if (HasNonFunction)
    441         Ambiguous = true;
    442       HasNonFunction = true;
    443     }
    444     I++;
    445   }
    446 
    447   // C++ [basic.scope.hiding]p2:
    448   //   A class name or enumeration name can be hidden by the name of
    449   //   an object, function, or enumerator declared in the same
    450   //   scope. If a class or enumeration name and an object, function,
    451   //   or enumerator are declared in the same scope (in any order)
    452   //   with the same name, the class or enumeration name is hidden
    453   //   wherever the object, function, or enumerator name is visible.
    454   // But it's still an error if there are distinct tag types found,
    455   // even if they're not visible. (ref?)
    456   if (HideTags && HasTag && !Ambiguous &&
    457       (HasFunction || HasNonFunction || HasUnresolved)) {
    458     if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
    459             getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
    460       Decls[UniqueTagIndex] = Decls[--N];
    461     else
    462       Ambiguous = true;
    463   }
    464 
    465   Decls.set_size(N);
    466 
    467   if (HasNonFunction && (HasFunction || HasUnresolved))
    468     Ambiguous = true;
    469 
    470   if (Ambiguous)
    471     setAmbiguous(LookupResult::AmbiguousReference);
    472   else if (HasUnresolved)
    473     ResultKind = LookupResult::FoundUnresolvedValue;
    474   else if (N > 1 || HasFunctionTemplate)
    475     ResultKind = LookupResult::FoundOverloaded;
    476   else
    477     ResultKind = LookupResult::Found;
    478 }
    479 
    480 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
    481   CXXBasePaths::const_paths_iterator I, E;
    482   for (I = P.begin(), E = P.end(); I != E; ++I)
    483     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
    484          DE = I->Decls.end(); DI != DE; ++DI)
    485       addDecl(*DI);
    486 }
    487 
    488 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
    489   Paths = new CXXBasePaths;
    490   Paths->swap(P);
    491   addDeclsFromBasePaths(*Paths);
    492   resolveKind();
    493   setAmbiguous(AmbiguousBaseSubobjects);
    494 }
    495 
    496 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
    497   Paths = new CXXBasePaths;
    498   Paths->swap(P);
    499   addDeclsFromBasePaths(*Paths);
    500   resolveKind();
    501   setAmbiguous(AmbiguousBaseSubobjectTypes);
    502 }
    503 
    504 void LookupResult::print(raw_ostream &Out) {
    505   Out << Decls.size() << " result(s)";
    506   if (isAmbiguous()) Out << ", ambiguous";
    507   if (Paths) Out << ", base paths present";
    508 
    509   for (iterator I = begin(), E = end(); I != E; ++I) {
    510     Out << "\n";
    511     (*I)->print(Out, 2);
    512   }
    513 }
    514 
    515 /// \brief Lookup a builtin function, when name lookup would otherwise
    516 /// fail.
    517 static bool LookupBuiltin(Sema &S, LookupResult &R) {
    518   Sema::LookupNameKind NameKind = R.getLookupKind();
    519 
    520   // If we didn't find a use of this identifier, and if the identifier
    521   // corresponds to a compiler builtin, create the decl object for the builtin
    522   // now, injecting it into translation unit scope, and return it.
    523   if (NameKind == Sema::LookupOrdinaryName ||
    524       NameKind == Sema::LookupRedeclarationWithLinkage) {
    525     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
    526     if (II) {
    527       if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
    528           II == S.getFloat128Identifier()) {
    529         // libstdc++4.7's type_traits expects type __float128 to exist, so
    530         // insert a dummy type to make that header build in gnu++11 mode.
    531         R.addDecl(S.getASTContext().getFloat128StubType());
    532         return true;
    533       }
    534 
    535       // If this is a builtin on this (or all) targets, create the decl.
    536       if (unsigned BuiltinID = II->getBuiltinID()) {
    537         // In C++, we don't have any predefined library functions like
    538         // 'malloc'. Instead, we'll just error.
    539         if (S.getLangOpts().CPlusPlus &&
    540             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    541           return false;
    542 
    543         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
    544                                                  BuiltinID, S.TUScope,
    545                                                  R.isForRedeclaration(),
    546                                                  R.getNameLoc())) {
    547           R.addDecl(D);
    548           return true;
    549         }
    550       }
    551     }
    552   }
    553 
    554   return false;
    555 }
    556 
    557 /// \brief Determine whether we can declare a special member function within
    558 /// the class at this point.
    559 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
    560   // We need to have a definition for the class.
    561   if (!Class->getDefinition() || Class->isDependentContext())
    562     return false;
    563 
    564   // We can't be in the middle of defining the class.
    565   return !Class->isBeingDefined();
    566 }
    567 
    568 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
    569   if (!CanDeclareSpecialMemberFunction(Class))
    570     return;
    571 
    572   // If the default constructor has not yet been declared, do so now.
    573   if (Class->needsImplicitDefaultConstructor())
    574     DeclareImplicitDefaultConstructor(Class);
    575 
    576   // If the copy constructor has not yet been declared, do so now.
    577   if (Class->needsImplicitCopyConstructor())
    578     DeclareImplicitCopyConstructor(Class);
    579 
    580   // If the copy assignment operator has not yet been declared, do so now.
    581   if (Class->needsImplicitCopyAssignment())
    582     DeclareImplicitCopyAssignment(Class);
    583 
    584   if (getLangOpts().CPlusPlus11) {
    585     // If the move constructor has not yet been declared, do so now.
    586     if (Class->needsImplicitMoveConstructor())
    587       DeclareImplicitMoveConstructor(Class); // might not actually do it
    588 
    589     // If the move assignment operator has not yet been declared, do so now.
    590     if (Class->needsImplicitMoveAssignment())
    591       DeclareImplicitMoveAssignment(Class); // might not actually do it
    592   }
    593 
    594   // If the destructor has not yet been declared, do so now.
    595   if (Class->needsImplicitDestructor())
    596     DeclareImplicitDestructor(Class);
    597 }
    598 
    599 /// \brief Determine whether this is the name of an implicitly-declared
    600 /// special member function.
    601 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
    602   switch (Name.getNameKind()) {
    603   case DeclarationName::CXXConstructorName:
    604   case DeclarationName::CXXDestructorName:
    605     return true;
    606 
    607   case DeclarationName::CXXOperatorName:
    608     return Name.getCXXOverloadedOperator() == OO_Equal;
    609 
    610   default:
    611     break;
    612   }
    613 
    614   return false;
    615 }
    616 
    617 /// \brief If there are any implicit member functions with the given name
    618 /// that need to be declared in the given declaration context, do so.
    619 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
    620                                                    DeclarationName Name,
    621                                                    const DeclContext *DC) {
    622   if (!DC)
    623     return;
    624 
    625   switch (Name.getNameKind()) {
    626   case DeclarationName::CXXConstructorName:
    627     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    628       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
    629         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    630         if (Record->needsImplicitDefaultConstructor())
    631           S.DeclareImplicitDefaultConstructor(Class);
    632         if (Record->needsImplicitCopyConstructor())
    633           S.DeclareImplicitCopyConstructor(Class);
    634         if (S.getLangOpts().CPlusPlus11 &&
    635             Record->needsImplicitMoveConstructor())
    636           S.DeclareImplicitMoveConstructor(Class);
    637       }
    638     break;
    639 
    640   case DeclarationName::CXXDestructorName:
    641     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    642       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
    643           CanDeclareSpecialMemberFunction(Record))
    644         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
    645     break;
    646 
    647   case DeclarationName::CXXOperatorName:
    648     if (Name.getCXXOverloadedOperator() != OO_Equal)
    649       break;
    650 
    651     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
    652       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
    653         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    654         if (Record->needsImplicitCopyAssignment())
    655           S.DeclareImplicitCopyAssignment(Class);
    656         if (S.getLangOpts().CPlusPlus11 &&
    657             Record->needsImplicitMoveAssignment())
    658           S.DeclareImplicitMoveAssignment(Class);
    659       }
    660     }
    661     break;
    662 
    663   default:
    664     break;
    665   }
    666 }
    667 
    668 // Adds all qualifying matches for a name within a decl context to the
    669 // given lookup result.  Returns true if any matches were found.
    670 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
    671   bool Found = false;
    672 
    673   // Lazily declare C++ special member functions.
    674   if (S.getLangOpts().CPlusPlus)
    675     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
    676 
    677   // Perform lookup into this declaration context.
    678   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
    679   for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
    680        ++I) {
    681     NamedDecl *D = *I;
    682     if ((D = R.getAcceptableDecl(D))) {
    683       R.addDecl(D);
    684       Found = true;
    685     }
    686   }
    687 
    688   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
    689     return true;
    690 
    691   if (R.getLookupName().getNameKind()
    692         != DeclarationName::CXXConversionFunctionName ||
    693       R.getLookupName().getCXXNameType()->isDependentType() ||
    694       !isa<CXXRecordDecl>(DC))
    695     return Found;
    696 
    697   // C++ [temp.mem]p6:
    698   //   A specialization of a conversion function template is not found by
    699   //   name lookup. Instead, any conversion function templates visible in the
    700   //   context of the use are considered. [...]
    701   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
    702   if (!Record->isCompleteDefinition())
    703     return Found;
    704 
    705   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
    706          UEnd = Record->conversion_end(); U != UEnd; ++U) {
    707     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
    708     if (!ConvTemplate)
    709       continue;
    710 
    711     // When we're performing lookup for the purposes of redeclaration, just
    712     // add the conversion function template. When we deduce template
    713     // arguments for specializations, we'll end up unifying the return
    714     // type of the new declaration with the type of the function template.
    715     if (R.isForRedeclaration()) {
    716       R.addDecl(ConvTemplate);
    717       Found = true;
    718       continue;
    719     }
    720 
    721     // C++ [temp.mem]p6:
    722     //   [...] For each such operator, if argument deduction succeeds
    723     //   (14.9.2.3), the resulting specialization is used as if found by
    724     //   name lookup.
    725     //
    726     // When referencing a conversion function for any purpose other than
    727     // a redeclaration (such that we'll be building an expression with the
    728     // result), perform template argument deduction and place the
    729     // specialization into the result set. We do this to avoid forcing all
    730     // callers to perform special deduction for conversion functions.
    731     TemplateDeductionInfo Info(R.getNameLoc());
    732     FunctionDecl *Specialization = nullptr;
    733 
    734     const FunctionProtoType *ConvProto
    735       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
    736     assert(ConvProto && "Nonsensical conversion function template type");
    737 
    738     // Compute the type of the function that we would expect the conversion
    739     // function to have, if it were to match the name given.
    740     // FIXME: Calling convention!
    741     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
    742     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
    743     EPI.ExceptionSpec = EST_None;
    744     QualType ExpectedType
    745       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
    746                                             None, EPI);
    747 
    748     // Perform template argument deduction against the type that we would
    749     // expect the function to have.
    750     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
    751                                             Specialization, Info)
    752           == Sema::TDK_Success) {
    753       R.addDecl(Specialization);
    754       Found = true;
    755     }
    756   }
    757 
    758   return Found;
    759 }
    760 
    761 // Performs C++ unqualified lookup into the given file context.
    762 static bool
    763 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
    764                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
    765 
    766   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
    767 
    768   // Perform direct name lookup into the LookupCtx.
    769   bool Found = LookupDirect(S, R, NS);
    770 
    771   // Perform direct name lookup into the namespaces nominated by the
    772   // using directives whose common ancestor is this namespace.
    773   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
    774     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
    775       Found = true;
    776 
    777   R.resolveKind();
    778 
    779   return Found;
    780 }
    781 
    782 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
    783   if (DeclContext *Ctx = S->getEntity())
    784     return Ctx->isFileContext();
    785   return false;
    786 }
    787 
    788 // Find the next outer declaration context from this scope. This
    789 // routine actually returns the semantic outer context, which may
    790 // differ from the lexical context (encoded directly in the Scope
    791 // stack) when we are parsing a member of a class template. In this
    792 // case, the second element of the pair will be true, to indicate that
    793 // name lookup should continue searching in this semantic context when
    794 // it leaves the current template parameter scope.
    795 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
    796   DeclContext *DC = S->getEntity();
    797   DeclContext *Lexical = nullptr;
    798   for (Scope *OuterS = S->getParent(); OuterS;
    799        OuterS = OuterS->getParent()) {
    800     if (OuterS->getEntity()) {
    801       Lexical = OuterS->getEntity();
    802       break;
    803     }
    804   }
    805 
    806   // C++ [temp.local]p8:
    807   //   In the definition of a member of a class template that appears
    808   //   outside of the namespace containing the class template
    809   //   definition, the name of a template-parameter hides the name of
    810   //   a member of this namespace.
    811   //
    812   // Example:
    813   //
    814   //   namespace N {
    815   //     class C { };
    816   //
    817   //     template<class T> class B {
    818   //       void f(T);
    819   //     };
    820   //   }
    821   //
    822   //   template<class C> void N::B<C>::f(C) {
    823   //     C b;  // C is the template parameter, not N::C
    824   //   }
    825   //
    826   // In this example, the lexical context we return is the
    827   // TranslationUnit, while the semantic context is the namespace N.
    828   if (!Lexical || !DC || !S->getParent() ||
    829       !S->getParent()->isTemplateParamScope())
    830     return std::make_pair(Lexical, false);
    831 
    832   // Find the outermost template parameter scope.
    833   // For the example, this is the scope for the template parameters of
    834   // template<class C>.
    835   Scope *OutermostTemplateScope = S->getParent();
    836   while (OutermostTemplateScope->getParent() &&
    837          OutermostTemplateScope->getParent()->isTemplateParamScope())
    838     OutermostTemplateScope = OutermostTemplateScope->getParent();
    839 
    840   // Find the namespace context in which the original scope occurs. In
    841   // the example, this is namespace N.
    842   DeclContext *Semantic = DC;
    843   while (!Semantic->isFileContext())
    844     Semantic = Semantic->getParent();
    845 
    846   // Find the declaration context just outside of the template
    847   // parameter scope. This is the context in which the template is
    848   // being lexically declaration (a namespace context). In the
    849   // example, this is the global scope.
    850   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
    851       Lexical->Encloses(Semantic))
    852     return std::make_pair(Semantic, true);
    853 
    854   return std::make_pair(Lexical, false);
    855 }
    856 
    857 namespace {
    858 /// An RAII object to specify that we want to find block scope extern
    859 /// declarations.
    860 struct FindLocalExternScope {
    861   FindLocalExternScope(LookupResult &R)
    862       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
    863                                  Decl::IDNS_LocalExtern) {
    864     R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
    865   }
    866   void restore() {
    867     R.setFindLocalExtern(OldFindLocalExtern);
    868   }
    869   ~FindLocalExternScope() {
    870     restore();
    871   }
    872   LookupResult &R;
    873   bool OldFindLocalExtern;
    874 };
    875 }
    876 
    877 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
    878   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
    879 
    880   DeclarationName Name = R.getLookupName();
    881   Sema::LookupNameKind NameKind = R.getLookupKind();
    882 
    883   // If this is the name of an implicitly-declared special member function,
    884   // go through the scope stack to implicitly declare
    885   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
    886     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
    887       if (DeclContext *DC = PreS->getEntity())
    888         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
    889   }
    890 
    891   // Implicitly declare member functions with the name we're looking for, if in
    892   // fact we are in a scope where it matters.
    893 
    894   Scope *Initial = S;
    895   IdentifierResolver::iterator
    896     I = IdResolver.begin(Name),
    897     IEnd = IdResolver.end();
    898 
    899   // First we lookup local scope.
    900   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
    901   // ...During unqualified name lookup (3.4.1), the names appear as if
    902   // they were declared in the nearest enclosing namespace which contains
    903   // both the using-directive and the nominated namespace.
    904   // [Note: in this context, "contains" means "contains directly or
    905   // indirectly".
    906   //
    907   // For example:
    908   // namespace A { int i; }
    909   // void foo() {
    910   //   int i;
    911   //   {
    912   //     using namespace A;
    913   //     ++i; // finds local 'i', A::i appears at global scope
    914   //   }
    915   // }
    916   //
    917   UnqualUsingDirectiveSet UDirs;
    918   bool VisitedUsingDirectives = false;
    919   bool LeftStartingScope = false;
    920   DeclContext *OutsideOfTemplateParamDC = nullptr;
    921 
    922   // When performing a scope lookup, we want to find local extern decls.
    923   FindLocalExternScope FindLocals(R);
    924 
    925   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
    926     DeclContext *Ctx = S->getEntity();
    927 
    928     // Check whether the IdResolver has anything in this scope.
    929     bool Found = false;
    930     for (; I != IEnd && S->isDeclScope(*I); ++I) {
    931       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
    932         if (NameKind == LookupRedeclarationWithLinkage) {
    933           // Determine whether this (or a previous) declaration is
    934           // out-of-scope.
    935           if (!LeftStartingScope && !Initial->isDeclScope(*I))
    936             LeftStartingScope = true;
    937 
    938           // If we found something outside of our starting scope that
    939           // does not have linkage, skip it. If it's a template parameter,
    940           // we still find it, so we can diagnose the invalid redeclaration.
    941           if (LeftStartingScope && !((*I)->hasLinkage()) &&
    942               !(*I)->isTemplateParameter()) {
    943             R.setShadowed();
    944             continue;
    945           }
    946         }
    947 
    948         Found = true;
    949         R.addDecl(ND);
    950       }
    951     }
    952     if (Found) {
    953       R.resolveKind();
    954       if (S->isClassScope())
    955         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
    956           R.setNamingClass(Record);
    957       return true;
    958     }
    959 
    960     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
    961       // C++11 [class.friend]p11:
    962       //   If a friend declaration appears in a local class and the name
    963       //   specified is an unqualified name, a prior declaration is
    964       //   looked up without considering scopes that are outside the
    965       //   innermost enclosing non-class scope.
    966       return false;
    967     }
    968 
    969     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
    970         S->getParent() && !S->getParent()->isTemplateParamScope()) {
    971       // We've just searched the last template parameter scope and
    972       // found nothing, so look into the contexts between the
    973       // lexical and semantic declaration contexts returned by
    974       // findOuterContext(). This implements the name lookup behavior
    975       // of C++ [temp.local]p8.
    976       Ctx = OutsideOfTemplateParamDC;
    977       OutsideOfTemplateParamDC = nullptr;
    978     }
    979 
    980     if (Ctx) {
    981       DeclContext *OuterCtx;
    982       bool SearchAfterTemplateScope;
    983       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
    984       if (SearchAfterTemplateScope)
    985         OutsideOfTemplateParamDC = OuterCtx;
    986 
    987       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
    988         // We do not directly look into transparent contexts, since
    989         // those entities will be found in the nearest enclosing
    990         // non-transparent context.
    991         if (Ctx->isTransparentContext())
    992           continue;
    993 
    994         // We do not look directly into function or method contexts,
    995         // since all of the local variables and parameters of the
    996         // function/method are present within the Scope.
    997         if (Ctx->isFunctionOrMethod()) {
    998           // If we have an Objective-C instance method, look for ivars
    999           // in the corresponding interface.
   1000           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   1001             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
   1002               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
   1003                 ObjCInterfaceDecl *ClassDeclared;
   1004                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
   1005                                                  Name.getAsIdentifierInfo(),
   1006                                                              ClassDeclared)) {
   1007                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
   1008                     R.addDecl(ND);
   1009                     R.resolveKind();
   1010                     return true;
   1011                   }
   1012                 }
   1013               }
   1014           }
   1015 
   1016           continue;
   1017         }
   1018 
   1019         // If this is a file context, we need to perform unqualified name
   1020         // lookup considering using directives.
   1021         if (Ctx->isFileContext()) {
   1022           // If we haven't handled using directives yet, do so now.
   1023           if (!VisitedUsingDirectives) {
   1024             // Add using directives from this context up to the top level.
   1025             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
   1026               if (UCtx->isTransparentContext())
   1027                 continue;
   1028 
   1029               UDirs.visit(UCtx, UCtx);
   1030             }
   1031 
   1032             // Find the innermost file scope, so we can add using directives
   1033             // from local scopes.
   1034             Scope *InnermostFileScope = S;
   1035             while (InnermostFileScope &&
   1036                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
   1037               InnermostFileScope = InnermostFileScope->getParent();
   1038             UDirs.visitScopeChain(Initial, InnermostFileScope);
   1039 
   1040             UDirs.done();
   1041 
   1042             VisitedUsingDirectives = true;
   1043           }
   1044 
   1045           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
   1046             R.resolveKind();
   1047             return true;
   1048           }
   1049 
   1050           continue;
   1051         }
   1052 
   1053         // Perform qualified name lookup into this context.
   1054         // FIXME: In some cases, we know that every name that could be found by
   1055         // this qualified name lookup will also be on the identifier chain. For
   1056         // example, inside a class without any base classes, we never need to
   1057         // perform qualified lookup because all of the members are on top of the
   1058         // identifier chain.
   1059         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
   1060           return true;
   1061       }
   1062     }
   1063   }
   1064 
   1065   // Stop if we ran out of scopes.
   1066   // FIXME:  This really, really shouldn't be happening.
   1067   if (!S) return false;
   1068 
   1069   // If we are looking for members, no need to look into global/namespace scope.
   1070   if (NameKind == LookupMemberName)
   1071     return false;
   1072 
   1073   // Collect UsingDirectiveDecls in all scopes, and recursively all
   1074   // nominated namespaces by those using-directives.
   1075   //
   1076   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
   1077   // don't build it for each lookup!
   1078   if (!VisitedUsingDirectives) {
   1079     UDirs.visitScopeChain(Initial, S);
   1080     UDirs.done();
   1081   }
   1082 
   1083   // If we're not performing redeclaration lookup, do not look for local
   1084   // extern declarations outside of a function scope.
   1085   if (!R.isForRedeclaration())
   1086     FindLocals.restore();
   1087 
   1088   // Lookup namespace scope, and global scope.
   1089   // Unqualified name lookup in C++ requires looking into scopes
   1090   // that aren't strictly lexical, and therefore we walk through the
   1091   // context as well as walking through the scopes.
   1092   for (; S; S = S->getParent()) {
   1093     // Check whether the IdResolver has anything in this scope.
   1094     bool Found = false;
   1095     for (; I != IEnd && S->isDeclScope(*I); ++I) {
   1096       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
   1097         // We found something.  Look for anything else in our scope
   1098         // with this same name and in an acceptable identifier
   1099         // namespace, so that we can construct an overload set if we
   1100         // need to.
   1101         Found = true;
   1102         R.addDecl(ND);
   1103       }
   1104     }
   1105 
   1106     if (Found && S->isTemplateParamScope()) {
   1107       R.resolveKind();
   1108       return true;
   1109     }
   1110 
   1111     DeclContext *Ctx = S->getEntity();
   1112     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
   1113         S->getParent() && !S->getParent()->isTemplateParamScope()) {
   1114       // We've just searched the last template parameter scope and
   1115       // found nothing, so look into the contexts between the
   1116       // lexical and semantic declaration contexts returned by
   1117       // findOuterContext(). This implements the name lookup behavior
   1118       // of C++ [temp.local]p8.
   1119       Ctx = OutsideOfTemplateParamDC;
   1120       OutsideOfTemplateParamDC = nullptr;
   1121     }
   1122 
   1123     if (Ctx) {
   1124       DeclContext *OuterCtx;
   1125       bool SearchAfterTemplateScope;
   1126       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
   1127       if (SearchAfterTemplateScope)
   1128         OutsideOfTemplateParamDC = OuterCtx;
   1129 
   1130       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
   1131         // We do not directly look into transparent contexts, since
   1132         // those entities will be found in the nearest enclosing
   1133         // non-transparent context.
   1134         if (Ctx->isTransparentContext())
   1135           continue;
   1136 
   1137         // If we have a context, and it's not a context stashed in the
   1138         // template parameter scope for an out-of-line definition, also
   1139         // look into that context.
   1140         if (!(Found && S && S->isTemplateParamScope())) {
   1141           assert(Ctx->isFileContext() &&
   1142               "We should have been looking only at file context here already.");
   1143 
   1144           // Look into context considering using-directives.
   1145           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
   1146             Found = true;
   1147         }
   1148 
   1149         if (Found) {
   1150           R.resolveKind();
   1151           return true;
   1152         }
   1153 
   1154         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
   1155           return false;
   1156       }
   1157     }
   1158 
   1159     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
   1160       return false;
   1161   }
   1162 
   1163   return !R.empty();
   1164 }
   1165 
   1166 /// \brief Find the declaration that a class temploid member specialization was
   1167 /// instantiated from, or the member itself if it is an explicit specialization.
   1168 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
   1169   return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
   1170 }
   1171 
   1172 /// \brief Find the module in which the given declaration was defined.
   1173 static Module *getDefiningModule(Decl *Entity) {
   1174   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
   1175     // If this function was instantiated from a template, the defining module is
   1176     // the module containing the pattern.
   1177     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
   1178       Entity = Pattern;
   1179   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
   1180     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
   1181       Entity = Pattern;
   1182   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
   1183     if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
   1184       Entity = getInstantiatedFrom(ED, MSInfo);
   1185   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
   1186     // FIXME: Map from variable template specializations back to the template.
   1187     if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
   1188       Entity = getInstantiatedFrom(VD, MSInfo);
   1189   }
   1190 
   1191   // Walk up to the containing context. That might also have been instantiated
   1192   // from a template.
   1193   DeclContext *Context = Entity->getDeclContext();
   1194   if (Context->isFileContext())
   1195     return Entity->getOwningModule();
   1196   return getDefiningModule(cast<Decl>(Context));
   1197 }
   1198 
   1199 llvm::DenseSet<Module*> &Sema::getLookupModules() {
   1200   unsigned N = ActiveTemplateInstantiations.size();
   1201   for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
   1202        I != N; ++I) {
   1203     Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
   1204     if (M && !LookupModulesCache.insert(M).second)
   1205       M = nullptr;
   1206     ActiveTemplateInstantiationLookupModules.push_back(M);
   1207   }
   1208   return LookupModulesCache;
   1209 }
   1210 
   1211 /// \brief Determine whether a declaration is visible to name lookup.
   1212 ///
   1213 /// This routine determines whether the declaration D is visible in the current
   1214 /// lookup context, taking into account the current template instantiation
   1215 /// stack. During template instantiation, a declaration is visible if it is
   1216 /// visible from a module containing any entity on the template instantiation
   1217 /// path (by instantiating a template, you allow it to see the declarations that
   1218 /// your module can see, including those later on in your module).
   1219 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
   1220   assert(D->isHidden() && "should not call this: not in slow case");
   1221   Module *DeclModule = D->getOwningModule();
   1222   assert(DeclModule && "hidden decl not from a module");
   1223 
   1224   // If this declaration is not at namespace scope nor module-private,
   1225   // then it is visible if its lexical parent has a visible definition.
   1226   DeclContext *DC = D->getLexicalDeclContext();
   1227   if (!D->isModulePrivate() &&
   1228       DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
   1229     if (SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
   1230       if (SemaRef.ActiveTemplateInstantiations.empty()) {
   1231         // Cache the fact that this declaration is implicitly visible because
   1232         // its parent has a visible definition.
   1233         D->setHidden(false);
   1234       }
   1235       return true;
   1236     }
   1237     return false;
   1238   }
   1239 
   1240   // Find the extra places where we need to look.
   1241   llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
   1242   if (LookupModules.empty())
   1243     return false;
   1244 
   1245   // If our lookup set contains the decl's module, it's visible.
   1246   if (LookupModules.count(DeclModule))
   1247     return true;
   1248 
   1249   // If the declaration isn't exported, it's not visible in any other module.
   1250   if (D->isModulePrivate())
   1251     return false;
   1252 
   1253   // Check whether DeclModule is transitively exported to an import of
   1254   // the lookup set.
   1255   for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
   1256                                           E = LookupModules.end();
   1257        I != E; ++I)
   1258     if ((*I)->isModuleVisible(DeclModule))
   1259       return true;
   1260   return false;
   1261 }
   1262 
   1263 /// \brief Retrieve the visible declaration corresponding to D, if any.
   1264 ///
   1265 /// This routine determines whether the declaration D is visible in the current
   1266 /// module, with the current imports. If not, it checks whether any
   1267 /// redeclaration of D is visible, and if so, returns that declaration.
   1268 ///
   1269 /// \returns D, or a visible previous declaration of D, whichever is more recent
   1270 /// and visible. If no declaration of D is visible, returns null.
   1271 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
   1272   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
   1273 
   1274   for (auto RD : D->redecls()) {
   1275     if (auto ND = dyn_cast<NamedDecl>(RD)) {
   1276       // FIXME: This is wrong in the case where the previous declaration is not
   1277       // visible in the same scope as D. This needs to be done much more
   1278       // carefully.
   1279       if (LookupResult::isVisible(SemaRef, ND))
   1280         return ND;
   1281     }
   1282   }
   1283 
   1284   return nullptr;
   1285 }
   1286 
   1287 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
   1288   return findAcceptableDecl(getSema(), D);
   1289 }
   1290 
   1291 /// @brief Perform unqualified name lookup starting from a given
   1292 /// scope.
   1293 ///
   1294 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
   1295 /// used to find names within the current scope. For example, 'x' in
   1296 /// @code
   1297 /// int x;
   1298 /// int f() {
   1299 ///   return x; // unqualified name look finds 'x' in the global scope
   1300 /// }
   1301 /// @endcode
   1302 ///
   1303 /// Different lookup criteria can find different names. For example, a
   1304 /// particular scope can have both a struct and a function of the same
   1305 /// name, and each can be found by certain lookup criteria. For more
   1306 /// information about lookup criteria, see the documentation for the
   1307 /// class LookupCriteria.
   1308 ///
   1309 /// @param S        The scope from which unqualified name lookup will
   1310 /// begin. If the lookup criteria permits, name lookup may also search
   1311 /// in the parent scopes.
   1312 ///
   1313 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
   1314 /// look up and the lookup kind), and is updated with the results of lookup
   1315 /// including zero or more declarations and possibly additional information
   1316 /// used to diagnose ambiguities.
   1317 ///
   1318 /// @returns \c true if lookup succeeded and false otherwise.
   1319 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
   1320   DeclarationName Name = R.getLookupName();
   1321   if (!Name) return false;
   1322 
   1323   LookupNameKind NameKind = R.getLookupKind();
   1324 
   1325   if (!getLangOpts().CPlusPlus) {
   1326     // Unqualified name lookup in C/Objective-C is purely lexical, so
   1327     // search in the declarations attached to the name.
   1328     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
   1329       // Find the nearest non-transparent declaration scope.
   1330       while (!(S->getFlags() & Scope::DeclScope) ||
   1331              (S->getEntity() && S->getEntity()->isTransparentContext()))
   1332         S = S->getParent();
   1333     }
   1334 
   1335     // When performing a scope lookup, we want to find local extern decls.
   1336     FindLocalExternScope FindLocals(R);
   1337 
   1338     // Scan up the scope chain looking for a decl that matches this
   1339     // identifier that is in the appropriate namespace.  This search
   1340     // should not take long, as shadowing of names is uncommon, and
   1341     // deep shadowing is extremely uncommon.
   1342     bool LeftStartingScope = false;
   1343 
   1344     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
   1345                                    IEnd = IdResolver.end();
   1346          I != IEnd; ++I)
   1347       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
   1348         if (NameKind == LookupRedeclarationWithLinkage) {
   1349           // Determine whether this (or a previous) declaration is
   1350           // out-of-scope.
   1351           if (!LeftStartingScope && !S->isDeclScope(*I))
   1352             LeftStartingScope = true;
   1353 
   1354           // If we found something outside of our starting scope that
   1355           // does not have linkage, skip it.
   1356           if (LeftStartingScope && !((*I)->hasLinkage())) {
   1357             R.setShadowed();
   1358             continue;
   1359           }
   1360         }
   1361         else if (NameKind == LookupObjCImplicitSelfParam &&
   1362                  !isa<ImplicitParamDecl>(*I))
   1363           continue;
   1364 
   1365         R.addDecl(D);
   1366 
   1367         // Check whether there are any other declarations with the same name
   1368         // and in the same scope.
   1369         if (I != IEnd) {
   1370           // Find the scope in which this declaration was declared (if it
   1371           // actually exists in a Scope).
   1372           while (S && !S->isDeclScope(D))
   1373             S = S->getParent();
   1374 
   1375           // If the scope containing the declaration is the translation unit,
   1376           // then we'll need to perform our checks based on the matching
   1377           // DeclContexts rather than matching scopes.
   1378           if (S && isNamespaceOrTranslationUnitScope(S))
   1379             S = nullptr;
   1380 
   1381           // Compute the DeclContext, if we need it.
   1382           DeclContext *DC = nullptr;
   1383           if (!S)
   1384             DC = (*I)->getDeclContext()->getRedeclContext();
   1385 
   1386           IdentifierResolver::iterator LastI = I;
   1387           for (++LastI; LastI != IEnd; ++LastI) {
   1388             if (S) {
   1389               // Match based on scope.
   1390               if (!S->isDeclScope(*LastI))
   1391                 break;
   1392             } else {
   1393               // Match based on DeclContext.
   1394               DeclContext *LastDC
   1395                 = (*LastI)->getDeclContext()->getRedeclContext();
   1396               if (!LastDC->Equals(DC))
   1397                 break;
   1398             }
   1399 
   1400             // If the declaration is in the right namespace and visible, add it.
   1401             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
   1402               R.addDecl(LastD);
   1403           }
   1404 
   1405           R.resolveKind();
   1406         }
   1407 
   1408         return true;
   1409       }
   1410   } else {
   1411     // Perform C++ unqualified name lookup.
   1412     if (CppLookupName(R, S))
   1413       return true;
   1414   }
   1415 
   1416   // If we didn't find a use of this identifier, and if the identifier
   1417   // corresponds to a compiler builtin, create the decl object for the builtin
   1418   // now, injecting it into translation unit scope, and return it.
   1419   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
   1420     return true;
   1421 
   1422   // If we didn't find a use of this identifier, the ExternalSource
   1423   // may be able to handle the situation.
   1424   // Note: some lookup failures are expected!
   1425   // See e.g. R.isForRedeclaration().
   1426   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
   1427 }
   1428 
   1429 /// @brief Perform qualified name lookup in the namespaces nominated by
   1430 /// using directives by the given context.
   1431 ///
   1432 /// C++98 [namespace.qual]p2:
   1433 ///   Given X::m (where X is a user-declared namespace), or given \::m
   1434 ///   (where X is the global namespace), let S be the set of all
   1435 ///   declarations of m in X and in the transitive closure of all
   1436 ///   namespaces nominated by using-directives in X and its used
   1437 ///   namespaces, except that using-directives are ignored in any
   1438 ///   namespace, including X, directly containing one or more
   1439 ///   declarations of m. No namespace is searched more than once in
   1440 ///   the lookup of a name. If S is the empty set, the program is
   1441 ///   ill-formed. Otherwise, if S has exactly one member, or if the
   1442 ///   context of the reference is a using-declaration
   1443 ///   (namespace.udecl), S is the required set of declarations of
   1444 ///   m. Otherwise if the use of m is not one that allows a unique
   1445 ///   declaration to be chosen from S, the program is ill-formed.
   1446 ///
   1447 /// C++98 [namespace.qual]p5:
   1448 ///   During the lookup of a qualified namespace member name, if the
   1449 ///   lookup finds more than one declaration of the member, and if one
   1450 ///   declaration introduces a class name or enumeration name and the
   1451 ///   other declarations either introduce the same object, the same
   1452 ///   enumerator or a set of functions, the non-type name hides the
   1453 ///   class or enumeration name if and only if the declarations are
   1454 ///   from the same namespace; otherwise (the declarations are from
   1455 ///   different namespaces), the program is ill-formed.
   1456 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
   1457                                                  DeclContext *StartDC) {
   1458   assert(StartDC->isFileContext() && "start context is not a file context");
   1459 
   1460   DeclContext::udir_range UsingDirectives = StartDC->using_directives();
   1461   if (UsingDirectives.begin() == UsingDirectives.end()) return false;
   1462 
   1463   // We have at least added all these contexts to the queue.
   1464   llvm::SmallPtrSet<DeclContext*, 8> Visited;
   1465   Visited.insert(StartDC);
   1466 
   1467   // We have not yet looked into these namespaces, much less added
   1468   // their "using-children" to the queue.
   1469   SmallVector<NamespaceDecl*, 8> Queue;
   1470 
   1471   // We have already looked into the initial namespace; seed the queue
   1472   // with its using-children.
   1473   for (auto *I : UsingDirectives) {
   1474     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
   1475     if (Visited.insert(ND).second)
   1476       Queue.push_back(ND);
   1477   }
   1478 
   1479   // The easiest way to implement the restriction in [namespace.qual]p5
   1480   // is to check whether any of the individual results found a tag
   1481   // and, if so, to declare an ambiguity if the final result is not
   1482   // a tag.
   1483   bool FoundTag = false;
   1484   bool FoundNonTag = false;
   1485 
   1486   LookupResult LocalR(LookupResult::Temporary, R);
   1487 
   1488   bool Found = false;
   1489   while (!Queue.empty()) {
   1490     NamespaceDecl *ND = Queue.pop_back_val();
   1491 
   1492     // We go through some convolutions here to avoid copying results
   1493     // between LookupResults.
   1494     bool UseLocal = !R.empty();
   1495     LookupResult &DirectR = UseLocal ? LocalR : R;
   1496     bool FoundDirect = LookupDirect(S, DirectR, ND);
   1497 
   1498     if (FoundDirect) {
   1499       // First do any local hiding.
   1500       DirectR.resolveKind();
   1501 
   1502       // If the local result is a tag, remember that.
   1503       if (DirectR.isSingleTagDecl())
   1504         FoundTag = true;
   1505       else
   1506         FoundNonTag = true;
   1507 
   1508       // Append the local results to the total results if necessary.
   1509       if (UseLocal) {
   1510         R.addAllDecls(LocalR);
   1511         LocalR.clear();
   1512       }
   1513     }
   1514 
   1515     // If we find names in this namespace, ignore its using directives.
   1516     if (FoundDirect) {
   1517       Found = true;
   1518       continue;
   1519     }
   1520 
   1521     for (auto I : ND->using_directives()) {
   1522       NamespaceDecl *Nom = I->getNominatedNamespace();
   1523       if (Visited.insert(Nom).second)
   1524         Queue.push_back(Nom);
   1525     }
   1526   }
   1527 
   1528   if (Found) {
   1529     if (FoundTag && FoundNonTag)
   1530       R.setAmbiguousQualifiedTagHiding();
   1531     else
   1532       R.resolveKind();
   1533   }
   1534 
   1535   return Found;
   1536 }
   1537 
   1538 /// \brief Callback that looks for any member of a class with the given name.
   1539 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
   1540                             CXXBasePath &Path,
   1541                             void *Name) {
   1542   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   1543 
   1544   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
   1545   Path.Decls = BaseRecord->lookup(N);
   1546   return !Path.Decls.empty();
   1547 }
   1548 
   1549 /// \brief Determine whether the given set of member declarations contains only
   1550 /// static members, nested types, and enumerators.
   1551 template<typename InputIterator>
   1552 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
   1553   Decl *D = (*First)->getUnderlyingDecl();
   1554   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
   1555     return true;
   1556 
   1557   if (isa<CXXMethodDecl>(D)) {
   1558     // Determine whether all of the methods are static.
   1559     bool AllMethodsAreStatic = true;
   1560     for(; First != Last; ++First) {
   1561       D = (*First)->getUnderlyingDecl();
   1562 
   1563       if (!isa<CXXMethodDecl>(D)) {
   1564         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
   1565         break;
   1566       }
   1567 
   1568       if (!cast<CXXMethodDecl>(D)->isStatic()) {
   1569         AllMethodsAreStatic = false;
   1570         break;
   1571       }
   1572     }
   1573 
   1574     if (AllMethodsAreStatic)
   1575       return true;
   1576   }
   1577 
   1578   return false;
   1579 }
   1580 
   1581 /// \brief Perform qualified name lookup into a given context.
   1582 ///
   1583 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
   1584 /// names when the context of those names is explicit specified, e.g.,
   1585 /// "std::vector" or "x->member", or as part of unqualified name lookup.
   1586 ///
   1587 /// Different lookup criteria can find different names. For example, a
   1588 /// particular scope can have both a struct and a function of the same
   1589 /// name, and each can be found by certain lookup criteria. For more
   1590 /// information about lookup criteria, see the documentation for the
   1591 /// class LookupCriteria.
   1592 ///
   1593 /// \param R captures both the lookup criteria and any lookup results found.
   1594 ///
   1595 /// \param LookupCtx The context in which qualified name lookup will
   1596 /// search. If the lookup criteria permits, name lookup may also search
   1597 /// in the parent contexts or (for C++ classes) base classes.
   1598 ///
   1599 /// \param InUnqualifiedLookup true if this is qualified name lookup that
   1600 /// occurs as part of unqualified name lookup.
   1601 ///
   1602 /// \returns true if lookup succeeded, false if it failed.
   1603 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
   1604                                bool InUnqualifiedLookup) {
   1605   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
   1606 
   1607   if (!R.getLookupName())
   1608     return false;
   1609 
   1610   // Make sure that the declaration context is complete.
   1611   assert((!isa<TagDecl>(LookupCtx) ||
   1612           LookupCtx->isDependentContext() ||
   1613           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
   1614           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
   1615          "Declaration context must already be complete!");
   1616 
   1617   // Perform qualified name lookup into the LookupCtx.
   1618   if (LookupDirect(*this, R, LookupCtx)) {
   1619     R.resolveKind();
   1620     if (isa<CXXRecordDecl>(LookupCtx))
   1621       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
   1622     return true;
   1623   }
   1624 
   1625   // Don't descend into implied contexts for redeclarations.
   1626   // C++98 [namespace.qual]p6:
   1627   //   In a declaration for a namespace member in which the
   1628   //   declarator-id is a qualified-id, given that the qualified-id
   1629   //   for the namespace member has the form
   1630   //     nested-name-specifier unqualified-id
   1631   //   the unqualified-id shall name a member of the namespace
   1632   //   designated by the nested-name-specifier.
   1633   // See also [class.mfct]p5 and [class.static.data]p2.
   1634   if (R.isForRedeclaration())
   1635     return false;
   1636 
   1637   // If this is a namespace, look it up in the implied namespaces.
   1638   if (LookupCtx->isFileContext())
   1639     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
   1640 
   1641   // If this isn't a C++ class, we aren't allowed to look into base
   1642   // classes, we're done.
   1643   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
   1644   if (!LookupRec || !LookupRec->getDefinition())
   1645     return false;
   1646 
   1647   // If we're performing qualified name lookup into a dependent class,
   1648   // then we are actually looking into a current instantiation. If we have any
   1649   // dependent base classes, then we either have to delay lookup until
   1650   // template instantiation time (at which point all bases will be available)
   1651   // or we have to fail.
   1652   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
   1653       LookupRec->hasAnyDependentBases()) {
   1654     R.setNotFoundInCurrentInstantiation();
   1655     return false;
   1656   }
   1657 
   1658   // Perform lookup into our base classes.
   1659   CXXBasePaths Paths;
   1660   Paths.setOrigin(LookupRec);
   1661 
   1662   // Look for this member in our base classes
   1663   CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
   1664   switch (R.getLookupKind()) {
   1665     case LookupObjCImplicitSelfParam:
   1666     case LookupOrdinaryName:
   1667     case LookupMemberName:
   1668     case LookupRedeclarationWithLinkage:
   1669     case LookupLocalFriendName:
   1670       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
   1671       break;
   1672 
   1673     case LookupTagName:
   1674       BaseCallback = &CXXRecordDecl::FindTagMember;
   1675       break;
   1676 
   1677     case LookupAnyName:
   1678       BaseCallback = &LookupAnyMember;
   1679       break;
   1680 
   1681     case LookupUsingDeclName:
   1682       // This lookup is for redeclarations only.
   1683 
   1684     case LookupOperatorName:
   1685     case LookupNamespaceName:
   1686     case LookupObjCProtocolName:
   1687     case LookupLabel:
   1688       // These lookups will never find a member in a C++ class (or base class).
   1689       return false;
   1690 
   1691     case LookupNestedNameSpecifierName:
   1692       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
   1693       break;
   1694   }
   1695 
   1696   if (!LookupRec->lookupInBases(BaseCallback,
   1697                                 R.getLookupName().getAsOpaquePtr(), Paths))
   1698     return false;
   1699 
   1700   R.setNamingClass(LookupRec);
   1701 
   1702   // C++ [class.member.lookup]p2:
   1703   //   [...] If the resulting set of declarations are not all from
   1704   //   sub-objects of the same type, or the set has a nonstatic member
   1705   //   and includes members from distinct sub-objects, there is an
   1706   //   ambiguity and the program is ill-formed. Otherwise that set is
   1707   //   the result of the lookup.
   1708   QualType SubobjectType;
   1709   int SubobjectNumber = 0;
   1710   AccessSpecifier SubobjectAccess = AS_none;
   1711 
   1712   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
   1713        Path != PathEnd; ++Path) {
   1714     const CXXBasePathElement &PathElement = Path->back();
   1715 
   1716     // Pick the best (i.e. most permissive i.e. numerically lowest) access
   1717     // across all paths.
   1718     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
   1719 
   1720     // Determine whether we're looking at a distinct sub-object or not.
   1721     if (SubobjectType.isNull()) {
   1722       // This is the first subobject we've looked at. Record its type.
   1723       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
   1724       SubobjectNumber = PathElement.SubobjectNumber;
   1725       continue;
   1726     }
   1727 
   1728     if (SubobjectType
   1729                  != Context.getCanonicalType(PathElement.Base->getType())) {
   1730       // We found members of the given name in two subobjects of
   1731       // different types. If the declaration sets aren't the same, this
   1732       // lookup is ambiguous.
   1733       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
   1734         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
   1735         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
   1736         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
   1737 
   1738         while (FirstD != FirstPath->Decls.end() &&
   1739                CurrentD != Path->Decls.end()) {
   1740          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
   1741              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
   1742            break;
   1743 
   1744           ++FirstD;
   1745           ++CurrentD;
   1746         }
   1747 
   1748         if (FirstD == FirstPath->Decls.end() &&
   1749             CurrentD == Path->Decls.end())
   1750           continue;
   1751       }
   1752 
   1753       R.setAmbiguousBaseSubobjectTypes(Paths);
   1754       return true;
   1755     }
   1756 
   1757     if (SubobjectNumber != PathElement.SubobjectNumber) {
   1758       // We have a different subobject of the same type.
   1759 
   1760       // C++ [class.member.lookup]p5:
   1761       //   A static member, a nested type or an enumerator defined in
   1762       //   a base class T can unambiguously be found even if an object
   1763       //   has more than one base class subobject of type T.
   1764       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
   1765         continue;
   1766 
   1767       // We have found a nonstatic member name in multiple, distinct
   1768       // subobjects. Name lookup is ambiguous.
   1769       R.setAmbiguousBaseSubobjects(Paths);
   1770       return true;
   1771     }
   1772   }
   1773 
   1774   // Lookup in a base class succeeded; return these results.
   1775 
   1776   for (auto *D : Paths.front().Decls) {
   1777     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
   1778                                                     D->getAccess());
   1779     R.addDecl(D, AS);
   1780   }
   1781   R.resolveKind();
   1782   return true;
   1783 }
   1784 
   1785 /// \brief Performs qualified name lookup or special type of lookup for
   1786 /// "__super::" scope specifier.
   1787 ///
   1788 /// This routine is a convenience overload meant to be called from contexts
   1789 /// that need to perform a qualified name lookup with an optional C++ scope
   1790 /// specifier that might require special kind of lookup.
   1791 ///
   1792 /// \param R captures both the lookup criteria and any lookup results found.
   1793 ///
   1794 /// \param LookupCtx The context in which qualified name lookup will
   1795 /// search.
   1796 ///
   1797 /// \param SS An optional C++ scope-specifier.
   1798 ///
   1799 /// \returns true if lookup succeeded, false if it failed.
   1800 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
   1801                                CXXScopeSpec &SS) {
   1802   auto *NNS = SS.getScopeRep();
   1803   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
   1804     return LookupInSuper(R, NNS->getAsRecordDecl());
   1805   else
   1806 
   1807     return LookupQualifiedName(R, LookupCtx);
   1808 }
   1809 
   1810 /// @brief Performs name lookup for a name that was parsed in the
   1811 /// source code, and may contain a C++ scope specifier.
   1812 ///
   1813 /// This routine is a convenience routine meant to be called from
   1814 /// contexts that receive a name and an optional C++ scope specifier
   1815 /// (e.g., "N::M::x"). It will then perform either qualified or
   1816 /// unqualified name lookup (with LookupQualifiedName or LookupName,
   1817 /// respectively) on the given name and return those results. It will
   1818 /// perform a special type of lookup for "__super::" scope specifier.
   1819 ///
   1820 /// @param S        The scope from which unqualified name lookup will
   1821 /// begin.
   1822 ///
   1823 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
   1824 ///
   1825 /// @param EnteringContext Indicates whether we are going to enter the
   1826 /// context of the scope-specifier SS (if present).
   1827 ///
   1828 /// @returns True if any decls were found (but possibly ambiguous)
   1829 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
   1830                             bool AllowBuiltinCreation, bool EnteringContext) {
   1831   if (SS && SS->isInvalid()) {
   1832     // When the scope specifier is invalid, don't even look for
   1833     // anything.
   1834     return false;
   1835   }
   1836 
   1837   if (SS && SS->isSet()) {
   1838     NestedNameSpecifier *NNS = SS->getScopeRep();
   1839     if (NNS->getKind() == NestedNameSpecifier::Super)
   1840       return LookupInSuper(R, NNS->getAsRecordDecl());
   1841 
   1842     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
   1843       // We have resolved the scope specifier to a particular declaration
   1844       // contex, and will perform name lookup in that context.
   1845       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
   1846         return false;
   1847 
   1848       R.setContextRange(SS->getRange());
   1849       return LookupQualifiedName(R, DC);
   1850     }
   1851 
   1852     // We could not resolve the scope specified to a specific declaration
   1853     // context, which means that SS refers to an unknown specialization.
   1854     // Name lookup can't find anything in this case.
   1855     R.setNotFoundInCurrentInstantiation();
   1856     R.setContextRange(SS->getRange());
   1857     return false;
   1858   }
   1859 
   1860   // Perform unqualified name lookup starting in the given scope.
   1861   return LookupName(R, S, AllowBuiltinCreation);
   1862 }
   1863 
   1864 /// \brief Perform qualified name lookup into all base classes of the given
   1865 /// class.
   1866 ///
   1867 /// \param R captures both the lookup criteria and any lookup results found.
   1868 ///
   1869 /// \param Class The context in which qualified name lookup will
   1870 /// search. Name lookup will search in all base classes merging the results.
   1871 ///
   1872 /// @returns True if any decls were found (but possibly ambiguous)
   1873 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
   1874   for (const auto &BaseSpec : Class->bases()) {
   1875     CXXRecordDecl *RD = cast<CXXRecordDecl>(
   1876         BaseSpec.getType()->castAs<RecordType>()->getDecl());
   1877     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
   1878 	Result.setBaseObjectType(Context.getRecordType(Class));
   1879     LookupQualifiedName(Result, RD);
   1880     for (auto *Decl : Result)
   1881       R.addDecl(Decl);
   1882   }
   1883 
   1884   R.resolveKind();
   1885 
   1886   return !R.empty();
   1887 }
   1888 
   1889 /// \brief Produce a diagnostic describing the ambiguity that resulted
   1890 /// from name lookup.
   1891 ///
   1892 /// \param Result The result of the ambiguous lookup to be diagnosed.
   1893 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
   1894   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
   1895 
   1896   DeclarationName Name = Result.getLookupName();
   1897   SourceLocation NameLoc = Result.getNameLoc();
   1898   SourceRange LookupRange = Result.getContextRange();
   1899 
   1900   switch (Result.getAmbiguityKind()) {
   1901   case LookupResult::AmbiguousBaseSubobjects: {
   1902     CXXBasePaths *Paths = Result.getBasePaths();
   1903     QualType SubobjectType = Paths->front().back().Base->getType();
   1904     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
   1905       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
   1906       << LookupRange;
   1907 
   1908     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
   1909     while (isa<CXXMethodDecl>(*Found) &&
   1910            cast<CXXMethodDecl>(*Found)->isStatic())
   1911       ++Found;
   1912 
   1913     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
   1914     break;
   1915   }
   1916 
   1917   case LookupResult::AmbiguousBaseSubobjectTypes: {
   1918     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
   1919       << Name << LookupRange;
   1920 
   1921     CXXBasePaths *Paths = Result.getBasePaths();
   1922     std::set<Decl *> DeclsPrinted;
   1923     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
   1924                                       PathEnd = Paths->end();
   1925          Path != PathEnd; ++Path) {
   1926       Decl *D = Path->Decls.front();
   1927       if (DeclsPrinted.insert(D).second)
   1928         Diag(D->getLocation(), diag::note_ambiguous_member_found);
   1929     }
   1930     break;
   1931   }
   1932 
   1933   case LookupResult::AmbiguousTagHiding: {
   1934     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
   1935 
   1936     llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
   1937 
   1938     for (auto *D : Result)
   1939       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
   1940         TagDecls.insert(TD);
   1941         Diag(TD->getLocation(), diag::note_hidden_tag);
   1942       }
   1943 
   1944     for (auto *D : Result)
   1945       if (!isa<TagDecl>(D))
   1946         Diag(D->getLocation(), diag::note_hiding_object);
   1947 
   1948     // For recovery purposes, go ahead and implement the hiding.
   1949     LookupResult::Filter F = Result.makeFilter();
   1950     while (F.hasNext()) {
   1951       if (TagDecls.count(F.next()))
   1952         F.erase();
   1953     }
   1954     F.done();
   1955     break;
   1956   }
   1957 
   1958   case LookupResult::AmbiguousReference: {
   1959     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
   1960 
   1961     for (auto *D : Result)
   1962       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
   1963     break;
   1964   }
   1965   }
   1966 }
   1967 
   1968 namespace {
   1969   struct AssociatedLookup {
   1970     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
   1971                      Sema::AssociatedNamespaceSet &Namespaces,
   1972                      Sema::AssociatedClassSet &Classes)
   1973       : S(S), Namespaces(Namespaces), Classes(Classes),
   1974         InstantiationLoc(InstantiationLoc) {
   1975     }
   1976 
   1977     Sema &S;
   1978     Sema::AssociatedNamespaceSet &Namespaces;
   1979     Sema::AssociatedClassSet &Classes;
   1980     SourceLocation InstantiationLoc;
   1981   };
   1982 }
   1983 
   1984 static void
   1985 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
   1986 
   1987 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
   1988                                       DeclContext *Ctx) {
   1989   // Add the associated namespace for this class.
   1990 
   1991   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
   1992   // be a locally scoped record.
   1993 
   1994   // We skip out of inline namespaces. The innermost non-inline namespace
   1995   // contains all names of all its nested inline namespaces anyway, so we can
   1996   // replace the entire inline namespace tree with its root.
   1997   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
   1998          Ctx->isInlineNamespace())
   1999     Ctx = Ctx->getParent();
   2000 
   2001   if (Ctx->isFileContext())
   2002     Namespaces.insert(Ctx->getPrimaryContext());
   2003 }
   2004 
   2005 // \brief Add the associated classes and namespaces for argument-dependent
   2006 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
   2007 static void
   2008 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   2009                                   const TemplateArgument &Arg) {
   2010   // C++ [basic.lookup.koenig]p2, last bullet:
   2011   //   -- [...] ;
   2012   switch (Arg.getKind()) {
   2013     case TemplateArgument::Null:
   2014       break;
   2015 
   2016     case TemplateArgument::Type:
   2017       // [...] the namespaces and classes associated with the types of the
   2018       // template arguments provided for template type parameters (excluding
   2019       // template template parameters)
   2020       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
   2021       break;
   2022 
   2023     case TemplateArgument::Template:
   2024     case TemplateArgument::TemplateExpansion: {
   2025       // [...] the namespaces in which any template template arguments are
   2026       // defined; and the classes in which any member templates used as
   2027       // template template arguments are defined.
   2028       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
   2029       if (ClassTemplateDecl *ClassTemplate
   2030                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
   2031         DeclContext *Ctx = ClassTemplate->getDeclContext();
   2032         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2033           Result.Classes.insert(EnclosingClass);
   2034         // Add the associated namespace for this class.
   2035         CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2036       }
   2037       break;
   2038     }
   2039 
   2040     case TemplateArgument::Declaration:
   2041     case TemplateArgument::Integral:
   2042     case TemplateArgument::Expression:
   2043     case TemplateArgument::NullPtr:
   2044       // [Note: non-type template arguments do not contribute to the set of
   2045       //  associated namespaces. ]
   2046       break;
   2047 
   2048     case TemplateArgument::Pack:
   2049       for (const auto &P : Arg.pack_elements())
   2050         addAssociatedClassesAndNamespaces(Result, P);
   2051       break;
   2052   }
   2053 }
   2054 
   2055 // \brief Add the associated classes and namespaces for
   2056 // argument-dependent lookup with an argument of class type
   2057 // (C++ [basic.lookup.koenig]p2).
   2058 static void
   2059 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   2060                                   CXXRecordDecl *Class) {
   2061 
   2062   // Just silently ignore anything whose name is __va_list_tag.
   2063   if (Class->getDeclName() == Result.S.VAListTagName)
   2064     return;
   2065 
   2066   // C++ [basic.lookup.koenig]p2:
   2067   //   [...]
   2068   //     -- If T is a class type (including unions), its associated
   2069   //        classes are: the class itself; the class of which it is a
   2070   //        member, if any; and its direct and indirect base
   2071   //        classes. Its associated namespaces are the namespaces in
   2072   //        which its associated classes are defined.
   2073 
   2074   // Add the class of which it is a member, if any.
   2075   DeclContext *Ctx = Class->getDeclContext();
   2076   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2077     Result.Classes.insert(EnclosingClass);
   2078   // Add the associated namespace for this class.
   2079   CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2080 
   2081   // Add the class itself. If we've already seen this class, we don't
   2082   // need to visit base classes.
   2083   //
   2084   // FIXME: That's not correct, we may have added this class only because it
   2085   // was the enclosing class of another class, and in that case we won't have
   2086   // added its base classes yet.
   2087   if (!Result.Classes.insert(Class).second)
   2088     return;
   2089 
   2090   // -- If T is a template-id, its associated namespaces and classes are
   2091   //    the namespace in which the template is defined; for member
   2092   //    templates, the member template's class; the namespaces and classes
   2093   //    associated with the types of the template arguments provided for
   2094   //    template type parameters (excluding template template parameters); the
   2095   //    namespaces in which any template template arguments are defined; and
   2096   //    the classes in which any member templates used as template template
   2097   //    arguments are defined. [Note: non-type template arguments do not
   2098   //    contribute to the set of associated namespaces. ]
   2099   if (ClassTemplateSpecializationDecl *Spec
   2100         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
   2101     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
   2102     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2103       Result.Classes.insert(EnclosingClass);
   2104     // Add the associated namespace for this class.
   2105     CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2106 
   2107     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   2108     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   2109       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
   2110   }
   2111 
   2112   // Only recurse into base classes for complete types.
   2113   if (!Class->hasDefinition())
   2114     return;
   2115 
   2116   // Add direct and indirect base classes along with their associated
   2117   // namespaces.
   2118   SmallVector<CXXRecordDecl *, 32> Bases;
   2119   Bases.push_back(Class);
   2120   while (!Bases.empty()) {
   2121     // Pop this class off the stack.
   2122     Class = Bases.pop_back_val();
   2123 
   2124     // Visit the base classes.
   2125     for (const auto &Base : Class->bases()) {
   2126       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
   2127       // In dependent contexts, we do ADL twice, and the first time around,
   2128       // the base type might be a dependent TemplateSpecializationType, or a
   2129       // TemplateTypeParmType. If that happens, simply ignore it.
   2130       // FIXME: If we want to support export, we probably need to add the
   2131       // namespace of the template in a TemplateSpecializationType, or even
   2132       // the classes and namespaces of known non-dependent arguments.
   2133       if (!BaseType)
   2134         continue;
   2135       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   2136       if (Result.Classes.insert(BaseDecl).second) {
   2137         // Find the associated namespace for this base class.
   2138         DeclContext *BaseCtx = BaseDecl->getDeclContext();
   2139         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
   2140 
   2141         // Make sure we visit the bases of this base class.
   2142         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
   2143           Bases.push_back(BaseDecl);
   2144       }
   2145     }
   2146   }
   2147 }
   2148 
   2149 // \brief Add the associated classes and namespaces for
   2150 // argument-dependent lookup with an argument of type T
   2151 // (C++ [basic.lookup.koenig]p2).
   2152 static void
   2153 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
   2154   // C++ [basic.lookup.koenig]p2:
   2155   //
   2156   //   For each argument type T in the function call, there is a set
   2157   //   of zero or more associated namespaces and a set of zero or more
   2158   //   associated classes to be considered. The sets of namespaces and
   2159   //   classes is determined entirely by the types of the function
   2160   //   arguments (and the namespace of any template template
   2161   //   argument). Typedef names and using-declarations used to specify
   2162   //   the types do not contribute to this set. The sets of namespaces
   2163   //   and classes are determined in the following way:
   2164 
   2165   SmallVector<const Type *, 16> Queue;
   2166   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
   2167 
   2168   while (true) {
   2169     switch (T->getTypeClass()) {
   2170 
   2171 #define TYPE(Class, Base)
   2172 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   2173 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2174 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   2175 #define ABSTRACT_TYPE(Class, Base)
   2176 #include "clang/AST/TypeNodes.def"
   2177       // T is canonical.  We can also ignore dependent types because
   2178       // we don't need to do ADL at the definition point, but if we
   2179       // wanted to implement template export (or if we find some other
   2180       // use for associated classes and namespaces...) this would be
   2181       // wrong.
   2182       break;
   2183 
   2184     //    -- If T is a pointer to U or an array of U, its associated
   2185     //       namespaces and classes are those associated with U.
   2186     case Type::Pointer:
   2187       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
   2188       continue;
   2189     case Type::ConstantArray:
   2190     case Type::IncompleteArray:
   2191     case Type::VariableArray:
   2192       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   2193       continue;
   2194 
   2195     //     -- If T is a fundamental type, its associated sets of
   2196     //        namespaces and classes are both empty.
   2197     case Type::Builtin:
   2198       break;
   2199 
   2200     //     -- If T is a class type (including unions), its associated
   2201     //        classes are: the class itself; the class of which it is a
   2202     //        member, if any; and its direct and indirect base
   2203     //        classes. Its associated namespaces are the namespaces in
   2204     //        which its associated classes are defined.
   2205     case Type::Record: {
   2206       Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
   2207                                    /*no diagnostic*/ 0);
   2208       CXXRecordDecl *Class
   2209         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
   2210       addAssociatedClassesAndNamespaces(Result, Class);
   2211       break;
   2212     }
   2213 
   2214     //     -- If T is an enumeration type, its associated namespace is
   2215     //        the namespace in which it is defined. If it is class
   2216     //        member, its associated class is the member's class; else
   2217     //        it has no associated class.
   2218     case Type::Enum: {
   2219       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
   2220 
   2221       DeclContext *Ctx = Enum->getDeclContext();
   2222       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2223         Result.Classes.insert(EnclosingClass);
   2224 
   2225       // Add the associated namespace for this class.
   2226       CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2227 
   2228       break;
   2229     }
   2230 
   2231     //     -- If T is a function type, its associated namespaces and
   2232     //        classes are those associated with the function parameter
   2233     //        types and those associated with the return type.
   2234     case Type::FunctionProto: {
   2235       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   2236       for (const auto &Arg : Proto->param_types())
   2237         Queue.push_back(Arg.getTypePtr());
   2238       // fallthrough
   2239     }
   2240     case Type::FunctionNoProto: {
   2241       const FunctionType *FnType = cast<FunctionType>(T);
   2242       T = FnType->getReturnType().getTypePtr();
   2243       continue;
   2244     }
   2245 
   2246     //     -- If T is a pointer to a member function of a class X, its
   2247     //        associated namespaces and classes are those associated
   2248     //        with the function parameter types and return type,
   2249     //        together with those associated with X.
   2250     //
   2251     //     -- If T is a pointer to a data member of class X, its
   2252     //        associated namespaces and classes are those associated
   2253     //        with the member type together with those associated with
   2254     //        X.
   2255     case Type::MemberPointer: {
   2256       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
   2257 
   2258       // Queue up the class type into which this points.
   2259       Queue.push_back(MemberPtr->getClass());
   2260 
   2261       // And directly continue with the pointee type.
   2262       T = MemberPtr->getPointeeType().getTypePtr();
   2263       continue;
   2264     }
   2265 
   2266     // As an extension, treat this like a normal pointer.
   2267     case Type::BlockPointer:
   2268       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
   2269       continue;
   2270 
   2271     // References aren't covered by the standard, but that's such an
   2272     // obvious defect that we cover them anyway.
   2273     case Type::LValueReference:
   2274     case Type::RValueReference:
   2275       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
   2276       continue;
   2277 
   2278     // These are fundamental types.
   2279     case Type::Vector:
   2280     case Type::ExtVector:
   2281     case Type::Complex:
   2282       break;
   2283 
   2284     // Non-deduced auto types only get here for error cases.
   2285     case Type::Auto:
   2286       break;
   2287 
   2288     // If T is an Objective-C object or interface type, or a pointer to an
   2289     // object or interface type, the associated namespace is the global
   2290     // namespace.
   2291     case Type::ObjCObject:
   2292     case Type::ObjCInterface:
   2293     case Type::ObjCObjectPointer:
   2294       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
   2295       break;
   2296 
   2297     // Atomic types are just wrappers; use the associations of the
   2298     // contained type.
   2299     case Type::Atomic:
   2300       T = cast<AtomicType>(T)->getValueType().getTypePtr();
   2301       continue;
   2302     }
   2303 
   2304     if (Queue.empty())
   2305       break;
   2306     T = Queue.pop_back_val();
   2307   }
   2308 }
   2309 
   2310 /// \brief Find the associated classes and namespaces for
   2311 /// argument-dependent lookup for a call with the given set of
   2312 /// arguments.
   2313 ///
   2314 /// This routine computes the sets of associated classes and associated
   2315 /// namespaces searched by argument-dependent lookup
   2316 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
   2317 void Sema::FindAssociatedClassesAndNamespaces(
   2318     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
   2319     AssociatedNamespaceSet &AssociatedNamespaces,
   2320     AssociatedClassSet &AssociatedClasses) {
   2321   AssociatedNamespaces.clear();
   2322   AssociatedClasses.clear();
   2323 
   2324   AssociatedLookup Result(*this, InstantiationLoc,
   2325                           AssociatedNamespaces, AssociatedClasses);
   2326 
   2327   // C++ [basic.lookup.koenig]p2:
   2328   //   For each argument type T in the function call, there is a set
   2329   //   of zero or more associated namespaces and a set of zero or more
   2330   //   associated classes to be considered. The sets of namespaces and
   2331   //   classes is determined entirely by the types of the function
   2332   //   arguments (and the namespace of any template template
   2333   //   argument).
   2334   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   2335     Expr *Arg = Args[ArgIdx];
   2336 
   2337     if (Arg->getType() != Context.OverloadTy) {
   2338       addAssociatedClassesAndNamespaces(Result, Arg->getType());
   2339       continue;
   2340     }
   2341 
   2342     // [...] In addition, if the argument is the name or address of a
   2343     // set of overloaded functions and/or function templates, its
   2344     // associated classes and namespaces are the union of those
   2345     // associated with each of the members of the set: the namespace
   2346     // in which the function or function template is defined and the
   2347     // classes and namespaces associated with its (non-dependent)
   2348     // parameter types and return type.
   2349     Arg = Arg->IgnoreParens();
   2350     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
   2351       if (unaryOp->getOpcode() == UO_AddrOf)
   2352         Arg = unaryOp->getSubExpr();
   2353 
   2354     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
   2355     if (!ULE) continue;
   2356 
   2357     for (const auto *D : ULE->decls()) {
   2358       // Look through any using declarations to find the underlying function.
   2359       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
   2360 
   2361       // Add the classes and namespaces associated with the parameter
   2362       // types and return type of this function.
   2363       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
   2364     }
   2365   }
   2366 }
   2367 
   2368 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
   2369                                   SourceLocation Loc,
   2370                                   LookupNameKind NameKind,
   2371                                   RedeclarationKind Redecl) {
   2372   LookupResult R(*this, Name, Loc, NameKind, Redecl);
   2373   LookupName(R, S);
   2374   return R.getAsSingle<NamedDecl>();
   2375 }
   2376 
   2377 /// \brief Find the protocol with the given name, if any.
   2378 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
   2379                                        SourceLocation IdLoc,
   2380                                        RedeclarationKind Redecl) {
   2381   Decl *D = LookupSingleName(TUScope, II, IdLoc,
   2382                              LookupObjCProtocolName, Redecl);
   2383   return cast_or_null<ObjCProtocolDecl>(D);
   2384 }
   2385 
   2386 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
   2387                                         QualType T1, QualType T2,
   2388                                         UnresolvedSetImpl &Functions) {
   2389   // C++ [over.match.oper]p3:
   2390   //     -- The set of non-member candidates is the result of the
   2391   //        unqualified lookup of operator@ in the context of the
   2392   //        expression according to the usual rules for name lookup in
   2393   //        unqualified function calls (3.4.2) except that all member
   2394   //        functions are ignored.
   2395   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   2396   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
   2397   LookupName(Operators, S);
   2398 
   2399   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
   2400   Functions.append(Operators.begin(), Operators.end());
   2401 }
   2402 
   2403 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
   2404                                                             CXXSpecialMember SM,
   2405                                                             bool ConstArg,
   2406                                                             bool VolatileArg,
   2407                                                             bool RValueThis,
   2408                                                             bool ConstThis,
   2409                                                             bool VolatileThis) {
   2410   assert(CanDeclareSpecialMemberFunction(RD) &&
   2411          "doing special member lookup into record that isn't fully complete");
   2412   RD = RD->getDefinition();
   2413   if (RValueThis || ConstThis || VolatileThis)
   2414     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
   2415            "constructors and destructors always have unqualified lvalue this");
   2416   if (ConstArg || VolatileArg)
   2417     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
   2418            "parameter-less special members can't have qualified arguments");
   2419 
   2420   llvm::FoldingSetNodeID ID;
   2421   ID.AddPointer(RD);
   2422   ID.AddInteger(SM);
   2423   ID.AddInteger(ConstArg);
   2424   ID.AddInteger(VolatileArg);
   2425   ID.AddInteger(RValueThis);
   2426   ID.AddInteger(ConstThis);
   2427   ID.AddInteger(VolatileThis);
   2428 
   2429   void *InsertPoint;
   2430   SpecialMemberOverloadResult *Result =
   2431     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
   2432 
   2433   // This was already cached
   2434   if (Result)
   2435     return Result;
   2436 
   2437   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
   2438   Result = new (Result) SpecialMemberOverloadResult(ID);
   2439   SpecialMemberCache.InsertNode(Result, InsertPoint);
   2440 
   2441   if (SM == CXXDestructor) {
   2442     if (RD->needsImplicitDestructor())
   2443       DeclareImplicitDestructor(RD);
   2444     CXXDestructorDecl *DD = RD->getDestructor();
   2445     assert(DD && "record without a destructor");
   2446     Result->setMethod(DD);
   2447     Result->setKind(DD->isDeleted() ?
   2448                     SpecialMemberOverloadResult::NoMemberOrDeleted :
   2449                     SpecialMemberOverloadResult::Success);
   2450     return Result;
   2451   }
   2452 
   2453   // Prepare for overload resolution. Here we construct a synthetic argument
   2454   // if necessary and make sure that implicit functions are declared.
   2455   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
   2456   DeclarationName Name;
   2457   Expr *Arg = nullptr;
   2458   unsigned NumArgs;
   2459 
   2460   QualType ArgType = CanTy;
   2461   ExprValueKind VK = VK_LValue;
   2462 
   2463   if (SM == CXXDefaultConstructor) {
   2464     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2465     NumArgs = 0;
   2466     if (RD->needsImplicitDefaultConstructor())
   2467       DeclareImplicitDefaultConstructor(RD);
   2468   } else {
   2469     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
   2470       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2471       if (RD->needsImplicitCopyConstructor())
   2472         DeclareImplicitCopyConstructor(RD);
   2473       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
   2474         DeclareImplicitMoveConstructor(RD);
   2475     } else {
   2476       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   2477       if (RD->needsImplicitCopyAssignment())
   2478         DeclareImplicitCopyAssignment(RD);
   2479       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
   2480         DeclareImplicitMoveAssignment(RD);
   2481     }
   2482 
   2483     if (ConstArg)
   2484       ArgType.addConst();
   2485     if (VolatileArg)
   2486       ArgType.addVolatile();
   2487 
   2488     // This isn't /really/ specified by the standard, but it's implied
   2489     // we should be working from an RValue in the case of move to ensure
   2490     // that we prefer to bind to rvalue references, and an LValue in the
   2491     // case of copy to ensure we don't bind to rvalue references.
   2492     // Possibly an XValue is actually correct in the case of move, but
   2493     // there is no semantic difference for class types in this restricted
   2494     // case.
   2495     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
   2496       VK = VK_LValue;
   2497     else
   2498       VK = VK_RValue;
   2499   }
   2500 
   2501   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
   2502 
   2503   if (SM != CXXDefaultConstructor) {
   2504     NumArgs = 1;
   2505     Arg = &FakeArg;
   2506   }
   2507 
   2508   // Create the object argument
   2509   QualType ThisTy = CanTy;
   2510   if (ConstThis)
   2511     ThisTy.addConst();
   2512   if (VolatileThis)
   2513     ThisTy.addVolatile();
   2514   Expr::Classification Classification =
   2515     OpaqueValueExpr(SourceLocation(), ThisTy,
   2516                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
   2517 
   2518   // Now we perform lookup on the name we computed earlier and do overload
   2519   // resolution. Lookup is only performed directly into the class since there
   2520   // will always be a (possibly implicit) declaration to shadow any others.
   2521   OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
   2522   DeclContext::lookup_result R = RD->lookup(Name);
   2523 
   2524   if (R.empty()) {
   2525     // We might have no default constructor because we have a lambda's closure
   2526     // type, rather than because there's some other declared constructor.
   2527     // Every class has a copy/move constructor, copy/move assignment, and
   2528     // destructor.
   2529     assert(SM == CXXDefaultConstructor &&
   2530            "lookup for a constructor or assignment operator was empty");
   2531     Result->setMethod(nullptr);
   2532     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2533     return Result;
   2534   }
   2535 
   2536   // Copy the candidates as our processing of them may load new declarations
   2537   // from an external source and invalidate lookup_result.
   2538   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
   2539 
   2540   for (auto *Cand : Candidates) {
   2541     if (Cand->isInvalidDecl())
   2542       continue;
   2543 
   2544     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
   2545       // FIXME: [namespace.udecl]p15 says that we should only consider a
   2546       // using declaration here if it does not match a declaration in the
   2547       // derived class. We do not implement this correctly in other cases
   2548       // either.
   2549       Cand = U->getTargetDecl();
   2550 
   2551       if (Cand->isInvalidDecl())
   2552         continue;
   2553     }
   2554 
   2555     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
   2556       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2557         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
   2558                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
   2559                            OCS, true);
   2560       else
   2561         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
   2562                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2563     } else if (FunctionTemplateDecl *Tmpl =
   2564                  dyn_cast<FunctionTemplateDecl>(Cand)) {
   2565       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2566         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
   2567                                    RD, nullptr, ThisTy, Classification,
   2568                                    llvm::makeArrayRef(&Arg, NumArgs),
   2569                                    OCS, true);
   2570       else
   2571         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
   2572                                      nullptr, llvm::makeArrayRef(&Arg, NumArgs),
   2573                                      OCS, true);
   2574     } else {
   2575       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
   2576     }
   2577   }
   2578 
   2579   OverloadCandidateSet::iterator Best;
   2580   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
   2581     case OR_Success:
   2582       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2583       Result->setKind(SpecialMemberOverloadResult::Success);
   2584       break;
   2585 
   2586     case OR_Deleted:
   2587       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2588       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2589       break;
   2590 
   2591     case OR_Ambiguous:
   2592       Result->setMethod(nullptr);
   2593       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
   2594       break;
   2595 
   2596     case OR_No_Viable_Function:
   2597       Result->setMethod(nullptr);
   2598       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2599       break;
   2600   }
   2601 
   2602   return Result;
   2603 }
   2604 
   2605 /// \brief Look up the default constructor for the given class.
   2606 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
   2607   SpecialMemberOverloadResult *Result =
   2608     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
   2609                         false, false);
   2610 
   2611   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2612 }
   2613 
   2614 /// \brief Look up the copying constructor for the given class.
   2615 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
   2616                                                    unsigned Quals) {
   2617   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2618          "non-const, non-volatile qualifiers for copy ctor arg");
   2619   SpecialMemberOverloadResult *Result =
   2620     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
   2621                         Quals & Qualifiers::Volatile, false, false, false);
   2622 
   2623   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2624 }
   2625 
   2626 /// \brief Look up the moving constructor for the given class.
   2627 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
   2628                                                   unsigned Quals) {
   2629   SpecialMemberOverloadResult *Result =
   2630     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
   2631                         Quals & Qualifiers::Volatile, false, false, false);
   2632 
   2633   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2634 }
   2635 
   2636 /// \brief Look up the constructors for the given class.
   2637 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
   2638   // If the implicit constructors have not yet been declared, do so now.
   2639   if (CanDeclareSpecialMemberFunction(Class)) {
   2640     if (Class->needsImplicitDefaultConstructor())
   2641       DeclareImplicitDefaultConstructor(Class);
   2642     if (Class->needsImplicitCopyConstructor())
   2643       DeclareImplicitCopyConstructor(Class);
   2644     if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
   2645       DeclareImplicitMoveConstructor(Class);
   2646   }
   2647 
   2648   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
   2649   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
   2650   return Class->lookup(Name);
   2651 }
   2652 
   2653 /// \brief Look up the copying assignment operator for the given class.
   2654 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
   2655                                              unsigned Quals, bool RValueThis,
   2656                                              unsigned ThisQuals) {
   2657   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2658          "non-const, non-volatile qualifiers for copy assignment arg");
   2659   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2660          "non-const, non-volatile qualifiers for copy assignment this");
   2661   SpecialMemberOverloadResult *Result =
   2662     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
   2663                         Quals & Qualifiers::Volatile, RValueThis,
   2664                         ThisQuals & Qualifiers::Const,
   2665                         ThisQuals & Qualifiers::Volatile);
   2666 
   2667   return Result->getMethod();
   2668 }
   2669 
   2670 /// \brief Look up the moving assignment operator for the given class.
   2671 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
   2672                                             unsigned Quals,
   2673                                             bool RValueThis,
   2674                                             unsigned ThisQuals) {
   2675   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2676          "non-const, non-volatile qualifiers for copy assignment this");
   2677   SpecialMemberOverloadResult *Result =
   2678     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
   2679                         Quals & Qualifiers::Volatile, RValueThis,
   2680                         ThisQuals & Qualifiers::Const,
   2681                         ThisQuals & Qualifiers::Volatile);
   2682 
   2683   return Result->getMethod();
   2684 }
   2685 
   2686 /// \brief Look for the destructor of the given class.
   2687 ///
   2688 /// During semantic analysis, this routine should be used in lieu of
   2689 /// CXXRecordDecl::getDestructor().
   2690 ///
   2691 /// \returns The destructor for this class.
   2692 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
   2693   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
   2694                                                      false, false, false,
   2695                                                      false, false)->getMethod());
   2696 }
   2697 
   2698 /// LookupLiteralOperator - Determine which literal operator should be used for
   2699 /// a user-defined literal, per C++11 [lex.ext].
   2700 ///
   2701 /// Normal overload resolution is not used to select which literal operator to
   2702 /// call for a user-defined literal. Look up the provided literal operator name,
   2703 /// and filter the results to the appropriate set for the given argument types.
   2704 Sema::LiteralOperatorLookupResult
   2705 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
   2706                             ArrayRef<QualType> ArgTys,
   2707                             bool AllowRaw, bool AllowTemplate,
   2708                             bool AllowStringTemplate) {
   2709   LookupName(R, S);
   2710   assert(R.getResultKind() != LookupResult::Ambiguous &&
   2711          "literal operator lookup can't be ambiguous");
   2712 
   2713   // Filter the lookup results appropriately.
   2714   LookupResult::Filter F = R.makeFilter();
   2715 
   2716   bool FoundRaw = false;
   2717   bool FoundTemplate = false;
   2718   bool FoundStringTemplate = false;
   2719   bool FoundExactMatch = false;
   2720 
   2721   while (F.hasNext()) {
   2722     Decl *D = F.next();
   2723     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
   2724       D = USD->getTargetDecl();
   2725 
   2726     // If the declaration we found is invalid, skip it.
   2727     if (D->isInvalidDecl()) {
   2728       F.erase();
   2729       continue;
   2730     }
   2731 
   2732     bool IsRaw = false;
   2733     bool IsTemplate = false;
   2734     bool IsStringTemplate = false;
   2735     bool IsExactMatch = false;
   2736 
   2737     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2738       if (FD->getNumParams() == 1 &&
   2739           FD->getParamDecl(0)->getType()->getAs<PointerType>())
   2740         IsRaw = true;
   2741       else if (FD->getNumParams() == ArgTys.size()) {
   2742         IsExactMatch = true;
   2743         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
   2744           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
   2745           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
   2746             IsExactMatch = false;
   2747             break;
   2748           }
   2749         }
   2750       }
   2751     }
   2752     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
   2753       TemplateParameterList *Params = FD->getTemplateParameters();
   2754       if (Params->size() == 1)
   2755         IsTemplate = true;
   2756       else
   2757         IsStringTemplate = true;
   2758     }
   2759 
   2760     if (IsExactMatch) {
   2761       FoundExactMatch = true;
   2762       AllowRaw = false;
   2763       AllowTemplate = false;
   2764       AllowStringTemplate = false;
   2765       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
   2766         // Go through again and remove the raw and template decls we've
   2767         // already found.
   2768         F.restart();
   2769         FoundRaw = FoundTemplate = FoundStringTemplate = false;
   2770       }
   2771     } else if (AllowRaw && IsRaw) {
   2772       FoundRaw = true;
   2773     } else if (AllowTemplate && IsTemplate) {
   2774       FoundTemplate = true;
   2775     } else if (AllowStringTemplate && IsStringTemplate) {
   2776       FoundStringTemplate = true;
   2777     } else {
   2778       F.erase();
   2779     }
   2780   }
   2781 
   2782   F.done();
   2783 
   2784   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
   2785   // parameter type, that is used in preference to a raw literal operator
   2786   // or literal operator template.
   2787   if (FoundExactMatch)
   2788     return LOLR_Cooked;
   2789 
   2790   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
   2791   // operator template, but not both.
   2792   if (FoundRaw && FoundTemplate) {
   2793     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
   2794     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   2795       NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
   2796     return LOLR_Error;
   2797   }
   2798 
   2799   if (FoundRaw)
   2800     return LOLR_Raw;
   2801 
   2802   if (FoundTemplate)
   2803     return LOLR_Template;
   2804 
   2805   if (FoundStringTemplate)
   2806     return LOLR_StringTemplate;
   2807 
   2808   // Didn't find anything we could use.
   2809   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
   2810     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
   2811     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
   2812     << (AllowTemplate || AllowStringTemplate);
   2813   return LOLR_Error;
   2814 }
   2815 
   2816 void ADLResult::insert(NamedDecl *New) {
   2817   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
   2818 
   2819   // If we haven't yet seen a decl for this key, or the last decl
   2820   // was exactly this one, we're done.
   2821   if (Old == nullptr || Old == New) {
   2822     Old = New;
   2823     return;
   2824   }
   2825 
   2826   // Otherwise, decide which is a more recent redeclaration.
   2827   FunctionDecl *OldFD = Old->getAsFunction();
   2828   FunctionDecl *NewFD = New->getAsFunction();
   2829 
   2830   FunctionDecl *Cursor = NewFD;
   2831   while (true) {
   2832     Cursor = Cursor->getPreviousDecl();
   2833 
   2834     // If we got to the end without finding OldFD, OldFD is the newer
   2835     // declaration;  leave things as they are.
   2836     if (!Cursor) return;
   2837 
   2838     // If we do find OldFD, then NewFD is newer.
   2839     if (Cursor == OldFD) break;
   2840 
   2841     // Otherwise, keep looking.
   2842   }
   2843 
   2844   Old = New;
   2845 }
   2846 
   2847 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
   2848                                    ArrayRef<Expr *> Args, ADLResult &Result) {
   2849   // Find all of the associated namespaces and classes based on the
   2850   // arguments we have.
   2851   AssociatedNamespaceSet AssociatedNamespaces;
   2852   AssociatedClassSet AssociatedClasses;
   2853   FindAssociatedClassesAndNamespaces(Loc, Args,
   2854                                      AssociatedNamespaces,
   2855                                      AssociatedClasses);
   2856 
   2857   // C++ [basic.lookup.argdep]p3:
   2858   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   2859   //   and let Y be the lookup set produced by argument dependent
   2860   //   lookup (defined as follows). If X contains [...] then Y is
   2861   //   empty. Otherwise Y is the set of declarations found in the
   2862   //   namespaces associated with the argument types as described
   2863   //   below. The set of declarations found by the lookup of the name
   2864   //   is the union of X and Y.
   2865   //
   2866   // Here, we compute Y and add its members to the overloaded
   2867   // candidate set.
   2868   for (auto *NS : AssociatedNamespaces) {
   2869     //   When considering an associated namespace, the lookup is the
   2870     //   same as the lookup performed when the associated namespace is
   2871     //   used as a qualifier (3.4.3.2) except that:
   2872     //
   2873     //     -- Any using-directives in the associated namespace are
   2874     //        ignored.
   2875     //
   2876     //     -- Any namespace-scope friend functions declared in
   2877     //        associated classes are visible within their respective
   2878     //        namespaces even if they are not visible during an ordinary
   2879     //        lookup (11.4).
   2880     DeclContext::lookup_result R = NS->lookup(Name);
   2881     for (auto *D : R) {
   2882       // If the only declaration here is an ordinary friend, consider
   2883       // it only if it was declared in an associated classes.
   2884       if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
   2885         // If it's neither ordinarily visible nor a friend, we can't find it.
   2886         if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
   2887           continue;
   2888 
   2889         bool DeclaredInAssociatedClass = false;
   2890         for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
   2891           DeclContext *LexDC = DI->getLexicalDeclContext();
   2892           if (isa<CXXRecordDecl>(LexDC) &&
   2893               AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
   2894             DeclaredInAssociatedClass = true;
   2895             break;
   2896           }
   2897         }
   2898         if (!DeclaredInAssociatedClass)
   2899           continue;
   2900       }
   2901 
   2902       if (isa<UsingShadowDecl>(D))
   2903         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2904 
   2905       if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
   2906         continue;
   2907 
   2908       Result.insert(D);
   2909     }
   2910   }
   2911 }
   2912 
   2913 //----------------------------------------------------------------------------
   2914 // Search for all visible declarations.
   2915 //----------------------------------------------------------------------------
   2916 VisibleDeclConsumer::~VisibleDeclConsumer() { }
   2917 
   2918 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
   2919 
   2920 namespace {
   2921 
   2922 class ShadowContextRAII;
   2923 
   2924 class VisibleDeclsRecord {
   2925 public:
   2926   /// \brief An entry in the shadow map, which is optimized to store a
   2927   /// single declaration (the common case) but can also store a list
   2928   /// of declarations.
   2929   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
   2930 
   2931 private:
   2932   /// \brief A mapping from declaration names to the declarations that have
   2933   /// this name within a particular scope.
   2934   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
   2935 
   2936   /// \brief A list of shadow maps, which is used to model name hiding.
   2937   std::list<ShadowMap> ShadowMaps;
   2938 
   2939   /// \brief The declaration contexts we have already visited.
   2940   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
   2941 
   2942   friend class ShadowContextRAII;
   2943 
   2944 public:
   2945   /// \brief Determine whether we have already visited this context
   2946   /// (and, if not, note that we are going to visit that context now).
   2947   bool visitedContext(DeclContext *Ctx) {
   2948     return !VisitedContexts.insert(Ctx).second;
   2949   }
   2950 
   2951   bool alreadyVisitedContext(DeclContext *Ctx) {
   2952     return VisitedContexts.count(Ctx);
   2953   }
   2954 
   2955   /// \brief Determine whether the given declaration is hidden in the
   2956   /// current scope.
   2957   ///
   2958   /// \returns the declaration that hides the given declaration, or
   2959   /// NULL if no such declaration exists.
   2960   NamedDecl *checkHidden(NamedDecl *ND);
   2961 
   2962   /// \brief Add a declaration to the current shadow map.
   2963   void add(NamedDecl *ND) {
   2964     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
   2965   }
   2966 };
   2967 
   2968 /// \brief RAII object that records when we've entered a shadow context.
   2969 class ShadowContextRAII {
   2970   VisibleDeclsRecord &Visible;
   2971 
   2972   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
   2973 
   2974 public:
   2975   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
   2976     Visible.ShadowMaps.push_back(ShadowMap());
   2977   }
   2978 
   2979   ~ShadowContextRAII() {
   2980     Visible.ShadowMaps.pop_back();
   2981   }
   2982 };
   2983 
   2984 } // end anonymous namespace
   2985 
   2986 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
   2987   // Look through using declarations.
   2988   ND = ND->getUnderlyingDecl();
   2989 
   2990   unsigned IDNS = ND->getIdentifierNamespace();
   2991   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
   2992   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
   2993        SM != SMEnd; ++SM) {
   2994     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
   2995     if (Pos == SM->end())
   2996       continue;
   2997 
   2998     for (auto *D : Pos->second) {
   2999       // A tag declaration does not hide a non-tag declaration.
   3000       if (D->hasTagIdentifierNamespace() &&
   3001           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
   3002                    Decl::IDNS_ObjCProtocol)))
   3003         continue;
   3004 
   3005       // Protocols are in distinct namespaces from everything else.
   3006       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
   3007            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
   3008           D->getIdentifierNamespace() != IDNS)
   3009         continue;
   3010 
   3011       // Functions and function templates in the same scope overload
   3012       // rather than hide.  FIXME: Look for hiding based on function
   3013       // signatures!
   3014       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
   3015           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
   3016           SM == ShadowMaps.rbegin())
   3017         continue;
   3018 
   3019       // We've found a declaration that hides this one.
   3020       return D;
   3021     }
   3022   }
   3023 
   3024   return nullptr;
   3025 }
   3026 
   3027 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
   3028                                bool QualifiedNameLookup,
   3029                                bool InBaseClass,
   3030                                VisibleDeclConsumer &Consumer,
   3031                                VisibleDeclsRecord &Visited) {
   3032   if (!Ctx)
   3033     return;
   3034 
   3035   // Make sure we don't visit the same context twice.
   3036   if (Visited.visitedContext(Ctx->getPrimaryContext()))
   3037     return;
   3038 
   3039   // Outside C++, lookup results for the TU live on identifiers.
   3040   if (isa<TranslationUnitDecl>(Ctx) &&
   3041       !Result.getSema().getLangOpts().CPlusPlus) {
   3042     auto &S = Result.getSema();
   3043     auto &Idents = S.Context.Idents;
   3044 
   3045     // Ensure all external identifiers are in the identifier table.
   3046     if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
   3047       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
   3048       for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
   3049         Idents.get(Name);
   3050     }
   3051 
   3052     // Walk all lookup results in the TU for each identifier.
   3053     for (const auto &Ident : Idents) {
   3054       for (auto I = S.IdResolver.begin(Ident.getValue()),
   3055                 E = S.IdResolver.end();
   3056            I != E; ++I) {
   3057         if (S.IdResolver.isDeclInScope(*I, Ctx)) {
   3058           if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
   3059             Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
   3060             Visited.add(ND);
   3061           }
   3062         }
   3063       }
   3064     }
   3065 
   3066     return;
   3067   }
   3068 
   3069   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
   3070     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
   3071 
   3072   // Enumerate all of the results in this context.
   3073   for (DeclContextLookupResult R : Ctx->lookups()) {
   3074     for (auto *D : R) {
   3075       if (auto *ND = Result.getAcceptableDecl(D)) {
   3076         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
   3077         Visited.add(ND);
   3078       }
   3079     }
   3080   }
   3081 
   3082   // Traverse using directives for qualified name lookup.
   3083   if (QualifiedNameLookup) {
   3084     ShadowContextRAII Shadow(Visited);
   3085     for (auto I : Ctx->using_directives()) {
   3086       LookupVisibleDecls(I->getNominatedNamespace(), Result,
   3087                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   3088     }
   3089   }
   3090 
   3091   // Traverse the contexts of inherited C++ classes.
   3092   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
   3093     if (!Record->hasDefinition())
   3094       return;
   3095 
   3096     for (const auto &B : Record->bases()) {
   3097       QualType BaseType = B.getType();
   3098 
   3099       // Don't look into dependent bases, because name lookup can't look
   3100       // there anyway.
   3101       if (BaseType->isDependentType())
   3102         continue;
   3103 
   3104       const RecordType *Record = BaseType->getAs<RecordType>();
   3105       if (!Record)
   3106         continue;
   3107 
   3108       // FIXME: It would be nice to be able to determine whether referencing
   3109       // a particular member would be ambiguous. For example, given
   3110       //
   3111       //   struct A { int member; };
   3112       //   struct B { int member; };
   3113       //   struct C : A, B { };
   3114       //
   3115       //   void f(C *c) { c->### }
   3116       //
   3117       // accessing 'member' would result in an ambiguity. However, we
   3118       // could be smart enough to qualify the member with the base
   3119       // class, e.g.,
   3120       //
   3121       //   c->B::member
   3122       //
   3123       // or
   3124       //
   3125       //   c->A::member
   3126 
   3127       // Find results in this base class (and its bases).
   3128       ShadowContextRAII Shadow(Visited);
   3129       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
   3130                          true, Consumer, Visited);
   3131     }
   3132   }
   3133 
   3134   // Traverse the contexts of Objective-C classes.
   3135   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
   3136     // Traverse categories.
   3137     for (auto *Cat : IFace->visible_categories()) {
   3138       ShadowContextRAII Shadow(Visited);
   3139       LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
   3140                          Consumer, Visited);
   3141     }
   3142 
   3143     // Traverse protocols.
   3144     for (auto *I : IFace->all_referenced_protocols()) {
   3145       ShadowContextRAII Shadow(Visited);
   3146       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3147                          Visited);
   3148     }
   3149 
   3150     // Traverse the superclass.
   3151     if (IFace->getSuperClass()) {
   3152       ShadowContextRAII Shadow(Visited);
   3153       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
   3154                          true, Consumer, Visited);
   3155     }
   3156 
   3157     // If there is an implementation, traverse it. We do this to find
   3158     // synthesized ivars.
   3159     if (IFace->getImplementation()) {
   3160       ShadowContextRAII Shadow(Visited);
   3161       LookupVisibleDecls(IFace->getImplementation(), Result,
   3162                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   3163     }
   3164   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
   3165     for (auto *I : Protocol->protocols()) {
   3166       ShadowContextRAII Shadow(Visited);
   3167       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3168                          Visited);
   3169     }
   3170   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
   3171     for (auto *I : Category->protocols()) {
   3172       ShadowContextRAII Shadow(Visited);
   3173       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3174                          Visited);
   3175     }
   3176 
   3177     // If there is an implementation, traverse it.
   3178     if (Category->getImplementation()) {
   3179       ShadowContextRAII Shadow(Visited);
   3180       LookupVisibleDecls(Category->getImplementation(), Result,
   3181                          QualifiedNameLookup, true, Consumer, Visited);
   3182     }
   3183   }
   3184 }
   3185 
   3186 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
   3187                                UnqualUsingDirectiveSet &UDirs,
   3188                                VisibleDeclConsumer &Consumer,
   3189                                VisibleDeclsRecord &Visited) {
   3190   if (!S)
   3191     return;
   3192 
   3193   if (!S->getEntity() ||
   3194       (!S->getParent() &&
   3195        !Visited.alreadyVisitedContext(S->getEntity())) ||
   3196       (S->getEntity())->isFunctionOrMethod()) {
   3197     FindLocalExternScope FindLocals(Result);
   3198     // Walk through the declarations in this Scope.
   3199     for (auto *D : S->decls()) {
   3200       if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
   3201         if ((ND = Result.getAcceptableDecl(ND))) {
   3202           Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
   3203           Visited.add(ND);
   3204         }
   3205     }
   3206   }
   3207 
   3208   // FIXME: C++ [temp.local]p8
   3209   DeclContext *Entity = nullptr;
   3210   if (S->getEntity()) {
   3211     // Look into this scope's declaration context, along with any of its
   3212     // parent lookup contexts (e.g., enclosing classes), up to the point
   3213     // where we hit the context stored in the next outer scope.
   3214     Entity = S->getEntity();
   3215     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
   3216 
   3217     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
   3218          Ctx = Ctx->getLookupParent()) {
   3219       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   3220         if (Method->isInstanceMethod()) {
   3221           // For instance methods, look for ivars in the method's interface.
   3222           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
   3223                                   Result.getNameLoc(), Sema::LookupMemberName);
   3224           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
   3225             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
   3226                                /*InBaseClass=*/false, Consumer, Visited);
   3227           }
   3228         }
   3229 
   3230         // We've already performed all of the name lookup that we need
   3231         // to for Objective-C methods; the next context will be the
   3232         // outer scope.
   3233         break;
   3234       }
   3235 
   3236       if (Ctx->isFunctionOrMethod())
   3237         continue;
   3238 
   3239       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
   3240                          /*InBaseClass=*/false, Consumer, Visited);
   3241     }
   3242   } else if (!S->getParent()) {
   3243     // Look into the translation unit scope. We walk through the translation
   3244     // unit's declaration context, because the Scope itself won't have all of
   3245     // the declarations if we loaded a precompiled header.
   3246     // FIXME: We would like the translation unit's Scope object to point to the
   3247     // translation unit, so we don't need this special "if" branch. However,
   3248     // doing so would force the normal C++ name-lookup code to look into the
   3249     // translation unit decl when the IdentifierInfo chains would suffice.
   3250     // Once we fix that problem (which is part of a more general "don't look
   3251     // in DeclContexts unless we have to" optimization), we can eliminate this.
   3252     Entity = Result.getSema().Context.getTranslationUnitDecl();
   3253     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
   3254                        /*InBaseClass=*/false, Consumer, Visited);
   3255   }
   3256 
   3257   if (Entity) {
   3258     // Lookup visible declarations in any namespaces found by using
   3259     // directives.
   3260     for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
   3261       LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
   3262                          Result, /*QualifiedNameLookup=*/false,
   3263                          /*InBaseClass=*/false, Consumer, Visited);
   3264   }
   3265 
   3266   // Lookup names in the parent scope.
   3267   ShadowContextRAII Shadow(Visited);
   3268   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
   3269 }
   3270 
   3271 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
   3272                               VisibleDeclConsumer &Consumer,
   3273                               bool IncludeGlobalScope) {
   3274   // Determine the set of using directives available during
   3275   // unqualified name lookup.
   3276   Scope *Initial = S;
   3277   UnqualUsingDirectiveSet UDirs;
   3278   if (getLangOpts().CPlusPlus) {
   3279     // Find the first namespace or translation-unit scope.
   3280     while (S && !isNamespaceOrTranslationUnitScope(S))
   3281       S = S->getParent();
   3282 
   3283     UDirs.visitScopeChain(Initial, S);
   3284   }
   3285   UDirs.done();
   3286 
   3287   // Look for visible declarations.
   3288   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3289   Result.setAllowHidden(Consumer.includeHiddenDecls());
   3290   VisibleDeclsRecord Visited;
   3291   if (!IncludeGlobalScope)
   3292     Visited.visitedContext(Context.getTranslationUnitDecl());
   3293   ShadowContextRAII Shadow(Visited);
   3294   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
   3295 }
   3296 
   3297 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
   3298                               VisibleDeclConsumer &Consumer,
   3299                               bool IncludeGlobalScope) {
   3300   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3301   Result.setAllowHidden(Consumer.includeHiddenDecls());
   3302   VisibleDeclsRecord Visited;
   3303   if (!IncludeGlobalScope)
   3304     Visited.visitedContext(Context.getTranslationUnitDecl());
   3305   ShadowContextRAII Shadow(Visited);
   3306   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
   3307                        /*InBaseClass=*/false, Consumer, Visited);
   3308 }
   3309 
   3310 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
   3311 /// If GnuLabelLoc is a valid source location, then this is a definition
   3312 /// of an __label__ label name, otherwise it is a normal label definition
   3313 /// or use.
   3314 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
   3315                                      SourceLocation GnuLabelLoc) {
   3316   // Do a lookup to see if we have a label with this name already.
   3317   NamedDecl *Res = nullptr;
   3318 
   3319   if (GnuLabelLoc.isValid()) {
   3320     // Local label definitions always shadow existing labels.
   3321     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
   3322     Scope *S = CurScope;
   3323     PushOnScopeChains(Res, S, true);
   3324     return cast<LabelDecl>(Res);
   3325   }
   3326 
   3327   // Not a GNU local label.
   3328   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
   3329   // If we found a label, check to see if it is in the same context as us.
   3330   // When in a Block, we don't want to reuse a label in an enclosing function.
   3331   if (Res && Res->getDeclContext() != CurContext)
   3332     Res = nullptr;
   3333   if (!Res) {
   3334     // If not forward referenced or defined already, create the backing decl.
   3335     Res = LabelDecl::Create(Context, CurContext, Loc, II);
   3336     Scope *S = CurScope->getFnParent();
   3337     assert(S && "Not in a function?");
   3338     PushOnScopeChains(Res, S, true);
   3339   }
   3340   return cast<LabelDecl>(Res);
   3341 }
   3342 
   3343 //===----------------------------------------------------------------------===//
   3344 // Typo correction
   3345 //===----------------------------------------------------------------------===//
   3346 
   3347 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
   3348                               TypoCorrection &Candidate) {
   3349   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
   3350   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
   3351 }
   3352 
   3353 static void LookupPotentialTypoResult(Sema &SemaRef,
   3354                                       LookupResult &Res,
   3355                                       IdentifierInfo *Name,
   3356                                       Scope *S, CXXScopeSpec *SS,
   3357                                       DeclContext *MemberContext,
   3358                                       bool EnteringContext,
   3359                                       bool isObjCIvarLookup,
   3360                                       bool FindHidden);
   3361 
   3362 /// \brief Check whether the declarations found for a typo correction are
   3363 /// visible, and if none of them are, convert the correction to an 'import
   3364 /// a module' correction.
   3365 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
   3366   if (TC.begin() == TC.end())
   3367     return;
   3368 
   3369   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
   3370 
   3371   for (/**/; DI != DE; ++DI)
   3372     if (!LookupResult::isVisible(SemaRef, *DI))
   3373       break;
   3374   // Nothing to do if all decls are visible.
   3375   if (DI == DE)
   3376     return;
   3377 
   3378   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
   3379   bool AnyVisibleDecls = !NewDecls.empty();
   3380 
   3381   for (/**/; DI != DE; ++DI) {
   3382     NamedDecl *VisibleDecl = *DI;
   3383     if (!LookupResult::isVisible(SemaRef, *DI))
   3384       VisibleDecl = findAcceptableDecl(SemaRef, *DI);
   3385 
   3386     if (VisibleDecl) {
   3387       if (!AnyVisibleDecls) {
   3388         // Found a visible decl, discard all hidden ones.
   3389         AnyVisibleDecls = true;
   3390         NewDecls.clear();
   3391       }
   3392       NewDecls.push_back(VisibleDecl);
   3393     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
   3394       NewDecls.push_back(*DI);
   3395   }
   3396 
   3397   if (NewDecls.empty())
   3398     TC = TypoCorrection();
   3399   else {
   3400     TC.setCorrectionDecls(NewDecls);
   3401     TC.setRequiresImport(!AnyVisibleDecls);
   3402   }
   3403 }
   3404 
   3405 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
   3406 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
   3407 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
   3408 static void getNestedNameSpecifierIdentifiers(
   3409     NestedNameSpecifier *NNS,
   3410     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
   3411   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
   3412     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
   3413   else
   3414     Identifiers.clear();
   3415 
   3416   const IdentifierInfo *II = nullptr;
   3417 
   3418   switch (NNS->getKind()) {
   3419   case NestedNameSpecifier::Identifier:
   3420     II = NNS->getAsIdentifier();
   3421     break;
   3422 
   3423   case NestedNameSpecifier::Namespace:
   3424     if (NNS->getAsNamespace()->isAnonymousNamespace())
   3425       return;
   3426     II = NNS->getAsNamespace()->getIdentifier();
   3427     break;
   3428 
   3429   case NestedNameSpecifier::NamespaceAlias:
   3430     II = NNS->getAsNamespaceAlias()->getIdentifier();
   3431     break;
   3432 
   3433   case NestedNameSpecifier::TypeSpecWithTemplate:
   3434   case NestedNameSpecifier::TypeSpec:
   3435     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
   3436     break;
   3437 
   3438   case NestedNameSpecifier::Global:
   3439   case NestedNameSpecifier::Super:
   3440     return;
   3441   }
   3442 
   3443   if (II)
   3444     Identifiers.push_back(II);
   3445 }
   3446 
   3447 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
   3448                                        DeclContext *Ctx, bool InBaseClass) {
   3449   // Don't consider hidden names for typo correction.
   3450   if (Hiding)
   3451     return;
   3452 
   3453   // Only consider entities with identifiers for names, ignoring
   3454   // special names (constructors, overloaded operators, selectors,
   3455   // etc.).
   3456   IdentifierInfo *Name = ND->getIdentifier();
   3457   if (!Name)
   3458     return;
   3459 
   3460   // Only consider visible declarations and declarations from modules with
   3461   // names that exactly match.
   3462   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
   3463       !findAcceptableDecl(SemaRef, ND))
   3464     return;
   3465 
   3466   FoundName(Name->getName());
   3467 }
   3468 
   3469 void TypoCorrectionConsumer::FoundName(StringRef Name) {
   3470   // Compute the edit distance between the typo and the name of this
   3471   // entity, and add the identifier to the list of results.
   3472   addName(Name, nullptr);
   3473 }
   3474 
   3475 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
   3476   // Compute the edit distance between the typo and this keyword,
   3477   // and add the keyword to the list of results.
   3478   addName(Keyword, nullptr, nullptr, true);
   3479 }
   3480 
   3481 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
   3482                                      NestedNameSpecifier *NNS, bool isKeyword) {
   3483   // Use a simple length-based heuristic to determine the minimum possible
   3484   // edit distance. If the minimum isn't good enough, bail out early.
   3485   StringRef TypoStr = Typo->getName();
   3486   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
   3487   if (MinED && TypoStr.size() / MinED < 3)
   3488     return;
   3489 
   3490   // Compute an upper bound on the allowable edit distance, so that the
   3491   // edit-distance algorithm can short-circuit.
   3492   unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
   3493   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
   3494   if (ED >= UpperBound) return;
   3495 
   3496   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
   3497   if (isKeyword) TC.makeKeyword();
   3498   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
   3499   addCorrection(TC);
   3500 }
   3501 
   3502 static const unsigned MaxTypoDistanceResultSets = 5;
   3503 
   3504 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
   3505   StringRef TypoStr = Typo->getName();
   3506   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
   3507 
   3508   // For very short typos, ignore potential corrections that have a different
   3509   // base identifier from the typo or which have a normalized edit distance
   3510   // longer than the typo itself.
   3511   if (TypoStr.size() < 3 &&
   3512       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
   3513     return;
   3514 
   3515   // If the correction is resolved but is not viable, ignore it.
   3516   if (Correction.isResolved()) {
   3517     checkCorrectionVisibility(SemaRef, Correction);
   3518     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
   3519       return;
   3520   }
   3521 
   3522   TypoResultList &CList =
   3523       CorrectionResults[Correction.getEditDistance(false)][Name];
   3524 
   3525   if (!CList.empty() && !CList.back().isResolved())
   3526     CList.pop_back();
   3527   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
   3528     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
   3529     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
   3530          RI != RIEnd; ++RI) {
   3531       // If the Correction refers to a decl already in the result list,
   3532       // replace the existing result if the string representation of Correction
   3533       // comes before the current result alphabetically, then stop as there is
   3534       // nothing more to be done to add Correction to the candidate set.
   3535       if (RI->getCorrectionDecl() == NewND) {
   3536         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
   3537           *RI = Correction;
   3538         return;
   3539       }
   3540     }
   3541   }
   3542   if (CList.empty() || Correction.isResolved())
   3543     CList.push_back(Correction);
   3544 
   3545   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
   3546     CorrectionResults.erase(std::prev(CorrectionResults.end()));
   3547 }
   3548 
   3549 void TypoCorrectionConsumer::addNamespaces(
   3550     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
   3551   SearchNamespaces = true;
   3552 
   3553   for (auto KNPair : KnownNamespaces)
   3554     Namespaces.addNameSpecifier(KNPair.first);
   3555 
   3556   bool SSIsTemplate = false;
   3557   if (NestedNameSpecifier *NNS =
   3558           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
   3559     if (const Type *T = NNS->getAsType())
   3560       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
   3561   }
   3562   for (const auto *TI : SemaRef.getASTContext().types()) {
   3563     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
   3564       CD = CD->getCanonicalDecl();
   3565       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
   3566           !CD->isUnion() && CD->getIdentifier() &&
   3567           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
   3568           (CD->isBeingDefined() || CD->isCompleteDefinition()))
   3569         Namespaces.addNameSpecifier(CD);
   3570     }
   3571   }
   3572 }
   3573 
   3574 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
   3575   if (++CurrentTCIndex < ValidatedCorrections.size())
   3576     return ValidatedCorrections[CurrentTCIndex];
   3577 
   3578   CurrentTCIndex = ValidatedCorrections.size();
   3579   while (!CorrectionResults.empty()) {
   3580     auto DI = CorrectionResults.begin();
   3581     if (DI->second.empty()) {
   3582       CorrectionResults.erase(DI);
   3583       continue;
   3584     }
   3585 
   3586     auto RI = DI->second.begin();
   3587     if (RI->second.empty()) {
   3588       DI->second.erase(RI);
   3589       performQualifiedLookups();
   3590       continue;
   3591     }
   3592 
   3593     TypoCorrection TC = RI->second.pop_back_val();
   3594     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
   3595       ValidatedCorrections.push_back(TC);
   3596       return ValidatedCorrections[CurrentTCIndex];
   3597     }
   3598   }
   3599   return ValidatedCorrections[0];  // The empty correction.
   3600 }
   3601 
   3602 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
   3603   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
   3604   DeclContext *TempMemberContext = MemberContext;
   3605   CXXScopeSpec *TempSS = SS.get();
   3606 retry_lookup:
   3607   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
   3608                             EnteringContext,
   3609                             CorrectionValidator->IsObjCIvarLookup,
   3610                             Name == Typo && !Candidate.WillReplaceSpecifier());
   3611   switch (Result.getResultKind()) {
   3612   case LookupResult::NotFound:
   3613   case LookupResult::NotFoundInCurrentInstantiation:
   3614   case LookupResult::FoundUnresolvedValue:
   3615     if (TempSS) {
   3616       // Immediately retry the lookup without the given CXXScopeSpec
   3617       TempSS = nullptr;
   3618       Candidate.WillReplaceSpecifier(true);
   3619       goto retry_lookup;
   3620     }
   3621     if (TempMemberContext) {
   3622       if (SS && !TempSS)
   3623         TempSS = SS.get();
   3624       TempMemberContext = nullptr;
   3625       goto retry_lookup;
   3626     }
   3627     if (SearchNamespaces)
   3628       QualifiedResults.push_back(Candidate);
   3629     break;
   3630 
   3631   case LookupResult::Ambiguous:
   3632     // We don't deal with ambiguities.
   3633     break;
   3634 
   3635   case LookupResult::Found:
   3636   case LookupResult::FoundOverloaded:
   3637     // Store all of the Decls for overloaded symbols
   3638     for (auto *TRD : Result)
   3639       Candidate.addCorrectionDecl(TRD);
   3640     checkCorrectionVisibility(SemaRef, Candidate);
   3641     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
   3642       if (SearchNamespaces)
   3643         QualifiedResults.push_back(Candidate);
   3644       break;
   3645     }
   3646     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
   3647     return true;
   3648   }
   3649   return false;
   3650 }
   3651 
   3652 void TypoCorrectionConsumer::performQualifiedLookups() {
   3653   unsigned TypoLen = Typo->getName().size();
   3654   for (auto QR : QualifiedResults) {
   3655     for (auto NSI : Namespaces) {
   3656       DeclContext *Ctx = NSI.DeclCtx;
   3657       const Type *NSType = NSI.NameSpecifier->getAsType();
   3658 
   3659       // If the current NestedNameSpecifier refers to a class and the
   3660       // current correction candidate is the name of that class, then skip
   3661       // it as it is unlikely a qualified version of the class' constructor
   3662       // is an appropriate correction.
   3663       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
   3664         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
   3665           continue;
   3666       }
   3667 
   3668       TypoCorrection TC(QR);
   3669       TC.ClearCorrectionDecls();
   3670       TC.setCorrectionSpecifier(NSI.NameSpecifier);
   3671       TC.setQualifierDistance(NSI.EditDistance);
   3672       TC.setCallbackDistance(0); // Reset the callback distance
   3673 
   3674       // If the current correction candidate and namespace combination are
   3675       // too far away from the original typo based on the normalized edit
   3676       // distance, then skip performing a qualified name lookup.
   3677       unsigned TmpED = TC.getEditDistance(true);
   3678       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
   3679           TypoLen / TmpED < 3)
   3680         continue;
   3681 
   3682       Result.clear();
   3683       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
   3684       if (!SemaRef.LookupQualifiedName(Result, Ctx))
   3685         continue;
   3686 
   3687       // Any corrections added below will be validated in subsequent
   3688       // iterations of the main while() loop over the Consumer's contents.
   3689       switch (Result.getResultKind()) {
   3690       case LookupResult::Found:
   3691       case LookupResult::FoundOverloaded: {
   3692         if (SS && SS->isValid()) {
   3693           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
   3694           std::string OldQualified;
   3695           llvm::raw_string_ostream OldOStream(OldQualified);
   3696           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
   3697           OldOStream << Typo->getName();
   3698           // If correction candidate would be an identical written qualified
   3699           // identifer, then the existing CXXScopeSpec probably included a
   3700           // typedef that didn't get accounted for properly.
   3701           if (OldOStream.str() == NewQualified)
   3702             break;
   3703         }
   3704         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
   3705              TRD != TRDEnd; ++TRD) {
   3706           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
   3707                                         NSType ? NSType->getAsCXXRecordDecl()
   3708                                                : nullptr,
   3709                                         TRD.getPair()) == Sema::AR_accessible)
   3710             TC.addCorrectionDecl(*TRD);
   3711         }
   3712         if (TC.isResolved()) {
   3713           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
   3714           addCorrection(TC);
   3715         }
   3716         break;
   3717       }
   3718       case LookupResult::NotFound:
   3719       case LookupResult::NotFoundInCurrentInstantiation:
   3720       case LookupResult::Ambiguous:
   3721       case LookupResult::FoundUnresolvedValue:
   3722         break;
   3723       }
   3724     }
   3725   }
   3726   QualifiedResults.clear();
   3727 }
   3728 
   3729 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
   3730     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
   3731     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
   3732   if (NestedNameSpecifier *NNS =
   3733           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
   3734     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
   3735     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
   3736 
   3737     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
   3738   }
   3739   // Build the list of identifiers that would be used for an absolute
   3740   // (from the global context) NestedNameSpecifier referring to the current
   3741   // context.
   3742   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
   3743                                          CEnd = CurContextChain.rend();
   3744        C != CEnd; ++C) {
   3745     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
   3746       CurContextIdentifiers.push_back(ND->getIdentifier());
   3747   }
   3748 
   3749   // Add the global context as a NestedNameSpecifier
   3750   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
   3751                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
   3752   DistanceMap[1].push_back(SI);
   3753 }
   3754 
   3755 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
   3756     DeclContext *Start) -> DeclContextList {
   3757   assert(Start && "Building a context chain from a null context");
   3758   DeclContextList Chain;
   3759   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
   3760        DC = DC->getLookupParent()) {
   3761     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
   3762     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
   3763         !(ND && ND->isAnonymousNamespace()))
   3764       Chain.push_back(DC->getPrimaryContext());
   3765   }
   3766   return Chain;
   3767 }
   3768 
   3769 unsigned
   3770 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
   3771     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
   3772   unsigned NumSpecifiers = 0;
   3773   for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
   3774                                       CEnd = DeclChain.rend();
   3775        C != CEnd; ++C) {
   3776     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
   3777       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
   3778       ++NumSpecifiers;
   3779     } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
   3780       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
   3781                                         RD->getTypeForDecl());
   3782       ++NumSpecifiers;
   3783     }
   3784   }
   3785   return NumSpecifiers;
   3786 }
   3787 
   3788 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
   3789     DeclContext *Ctx) {
   3790   NestedNameSpecifier *NNS = nullptr;
   3791   unsigned NumSpecifiers = 0;
   3792   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
   3793   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
   3794 
   3795   // Eliminate common elements from the two DeclContext chains.
   3796   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
   3797                                       CEnd = CurContextChain.rend();
   3798        C != CEnd && !NamespaceDeclChain.empty() &&
   3799        NamespaceDeclChain.back() == *C; ++C) {
   3800     NamespaceDeclChain.pop_back();
   3801   }
   3802 
   3803   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
   3804   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
   3805 
   3806   // Add an explicit leading '::' specifier if needed.
   3807   if (NamespaceDeclChain.empty()) {
   3808     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
   3809     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   3810     NumSpecifiers =
   3811         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
   3812   } else if (NamedDecl *ND =
   3813                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
   3814     IdentifierInfo *Name = ND->getIdentifier();
   3815     bool SameNameSpecifier = false;
   3816     if (std::find(CurNameSpecifierIdentifiers.begin(),
   3817                   CurNameSpecifierIdentifiers.end(),
   3818                   Name) != CurNameSpecifierIdentifiers.end()) {
   3819       std::string NewNameSpecifier;
   3820       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
   3821       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
   3822       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   3823       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
   3824       SpecifierOStream.flush();
   3825       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
   3826     }
   3827     if (SameNameSpecifier ||
   3828         std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
   3829                   Name) != CurContextIdentifiers.end()) {
   3830       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
   3831       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   3832       NumSpecifiers =
   3833           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
   3834     }
   3835   }
   3836 
   3837   // If the built NestedNameSpecifier would be replacing an existing
   3838   // NestedNameSpecifier, use the number of component identifiers that
   3839   // would need to be changed as the edit distance instead of the number
   3840   // of components in the built NestedNameSpecifier.
   3841   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
   3842     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
   3843     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   3844     NumSpecifiers = llvm::ComputeEditDistance(
   3845         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
   3846         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
   3847   }
   3848 
   3849   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
   3850   DistanceMap[NumSpecifiers].push_back(SI);
   3851 }
   3852 
   3853 /// \brief Perform name lookup for a possible result for typo correction.
   3854 static void LookupPotentialTypoResult(Sema &SemaRef,
   3855                                       LookupResult &Res,
   3856                                       IdentifierInfo *Name,
   3857                                       Scope *S, CXXScopeSpec *SS,
   3858                                       DeclContext *MemberContext,
   3859                                       bool EnteringContext,
   3860                                       bool isObjCIvarLookup,
   3861                                       bool FindHidden) {
   3862   Res.suppressDiagnostics();
   3863   Res.clear();
   3864   Res.setLookupName(Name);
   3865   Res.setAllowHidden(FindHidden);
   3866   if (MemberContext) {
   3867     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
   3868       if (isObjCIvarLookup) {
   3869         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
   3870           Res.addDecl(Ivar);
   3871           Res.resolveKind();
   3872           return;
   3873         }
   3874       }
   3875 
   3876       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
   3877         Res.addDecl(Prop);
   3878         Res.resolveKind();
   3879         return;
   3880       }
   3881     }
   3882 
   3883     SemaRef.LookupQualifiedName(Res, MemberContext);
   3884     return;
   3885   }
   3886 
   3887   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
   3888                            EnteringContext);
   3889 
   3890   // Fake ivar lookup; this should really be part of
   3891   // LookupParsedName.
   3892   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
   3893     if (Method->isInstanceMethod() && Method->getClassInterface() &&
   3894         (Res.empty() ||
   3895          (Res.isSingleResult() &&
   3896           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
   3897        if (ObjCIvarDecl *IV
   3898              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
   3899          Res.addDecl(IV);
   3900          Res.resolveKind();
   3901        }
   3902      }
   3903   }
   3904 }
   3905 
   3906 /// \brief Add keywords to the consumer as possible typo corrections.
   3907 static void AddKeywordsToConsumer(Sema &SemaRef,
   3908                                   TypoCorrectionConsumer &Consumer,
   3909                                   Scope *S, CorrectionCandidateCallback &CCC,
   3910                                   bool AfterNestedNameSpecifier) {
   3911   if (AfterNestedNameSpecifier) {
   3912     // For 'X::', we know exactly which keywords can appear next.
   3913     Consumer.addKeywordResult("template");
   3914     if (CCC.WantExpressionKeywords)
   3915       Consumer.addKeywordResult("operator");
   3916     return;
   3917   }
   3918 
   3919   if (CCC.WantObjCSuper)
   3920     Consumer.addKeywordResult("super");
   3921 
   3922   if (CCC.WantTypeSpecifiers) {
   3923     // Add type-specifier keywords to the set of results.
   3924     static const char *const CTypeSpecs[] = {
   3925       "char", "const", "double", "enum", "float", "int", "long", "short",
   3926       "signed", "struct", "union", "unsigned", "void", "volatile",
   3927       "_Complex", "_Imaginary",
   3928       // storage-specifiers as well
   3929       "extern", "inline", "static", "typedef"
   3930     };
   3931 
   3932     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
   3933     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
   3934       Consumer.addKeywordResult(CTypeSpecs[I]);
   3935 
   3936     if (SemaRef.getLangOpts().C99)
   3937       Consumer.addKeywordResult("restrict");
   3938     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
   3939       Consumer.addKeywordResult("bool");
   3940     else if (SemaRef.getLangOpts().C99)
   3941       Consumer.addKeywordResult("_Bool");
   3942 
   3943     if (SemaRef.getLangOpts().CPlusPlus) {
   3944       Consumer.addKeywordResult("class");
   3945       Consumer.addKeywordResult("typename");
   3946       Consumer.addKeywordResult("wchar_t");
   3947 
   3948       if (SemaRef.getLangOpts().CPlusPlus11) {
   3949         Consumer.addKeywordResult("char16_t");
   3950         Consumer.addKeywordResult("char32_t");
   3951         Consumer.addKeywordResult("constexpr");
   3952         Consumer.addKeywordResult("decltype");
   3953         Consumer.addKeywordResult("thread_local");
   3954       }
   3955     }
   3956 
   3957     if (SemaRef.getLangOpts().GNUMode)
   3958       Consumer.addKeywordResult("typeof");
   3959   } else if (CCC.WantFunctionLikeCasts) {
   3960     static const char *const CastableTypeSpecs[] = {
   3961       "char", "double", "float", "int", "long", "short",
   3962       "signed", "unsigned", "void"
   3963     };
   3964     for (auto *kw : CastableTypeSpecs)
   3965       Consumer.addKeywordResult(kw);
   3966   }
   3967 
   3968   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
   3969     Consumer.addKeywordResult("const_cast");
   3970     Consumer.addKeywordResult("dynamic_cast");
   3971     Consumer.addKeywordResult("reinterpret_cast");
   3972     Consumer.addKeywordResult("static_cast");
   3973   }
   3974 
   3975   if (CCC.WantExpressionKeywords) {
   3976     Consumer.addKeywordResult("sizeof");
   3977     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
   3978       Consumer.addKeywordResult("false");
   3979       Consumer.addKeywordResult("true");
   3980     }
   3981 
   3982     if (SemaRef.getLangOpts().CPlusPlus) {
   3983       static const char *const CXXExprs[] = {
   3984         "delete", "new", "operator", "throw", "typeid"
   3985       };
   3986       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
   3987       for (unsigned I = 0; I != NumCXXExprs; ++I)
   3988         Consumer.addKeywordResult(CXXExprs[I]);
   3989 
   3990       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
   3991           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
   3992         Consumer.addKeywordResult("this");
   3993 
   3994       if (SemaRef.getLangOpts().CPlusPlus11) {
   3995         Consumer.addKeywordResult("alignof");
   3996         Consumer.addKeywordResult("nullptr");
   3997       }
   3998     }
   3999 
   4000     if (SemaRef.getLangOpts().C11) {
   4001       // FIXME: We should not suggest _Alignof if the alignof macro
   4002       // is present.
   4003       Consumer.addKeywordResult("_Alignof");
   4004     }
   4005   }
   4006 
   4007   if (CCC.WantRemainingKeywords) {
   4008     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
   4009       // Statements.
   4010       static const char *const CStmts[] = {
   4011         "do", "else", "for", "goto", "if", "return", "switch", "while" };
   4012       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
   4013       for (unsigned I = 0; I != NumCStmts; ++I)
   4014         Consumer.addKeywordResult(CStmts[I]);
   4015 
   4016       if (SemaRef.getLangOpts().CPlusPlus) {
   4017         Consumer.addKeywordResult("catch");
   4018         Consumer.addKeywordResult("try");
   4019       }
   4020 
   4021       if (S && S->getBreakParent())
   4022         Consumer.addKeywordResult("break");
   4023 
   4024       if (S && S->getContinueParent())
   4025         Consumer.addKeywordResult("continue");
   4026 
   4027       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
   4028         Consumer.addKeywordResult("case");
   4029         Consumer.addKeywordResult("default");
   4030       }
   4031     } else {
   4032       if (SemaRef.getLangOpts().CPlusPlus) {
   4033         Consumer.addKeywordResult("namespace");
   4034         Consumer.addKeywordResult("template");
   4035       }
   4036 
   4037       if (S && S->isClassScope()) {
   4038         Consumer.addKeywordResult("explicit");
   4039         Consumer.addKeywordResult("friend");
   4040         Consumer.addKeywordResult("mutable");
   4041         Consumer.addKeywordResult("private");
   4042         Consumer.addKeywordResult("protected");
   4043         Consumer.addKeywordResult("public");
   4044         Consumer.addKeywordResult("virtual");
   4045       }
   4046     }
   4047 
   4048     if (SemaRef.getLangOpts().CPlusPlus) {
   4049       Consumer.addKeywordResult("using");
   4050 
   4051       if (SemaRef.getLangOpts().CPlusPlus11)
   4052         Consumer.addKeywordResult("static_assert");
   4053     }
   4054   }
   4055 }
   4056 
   4057 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
   4058     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
   4059     Scope *S, CXXScopeSpec *SS,
   4060     std::unique_ptr<CorrectionCandidateCallback> CCC,
   4061     DeclContext *MemberContext, bool EnteringContext,
   4062     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
   4063 
   4064   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
   4065       DisableTypoCorrection)
   4066     return nullptr;
   4067 
   4068   // In Microsoft mode, don't perform typo correction in a template member
   4069   // function dependent context because it interferes with the "lookup into
   4070   // dependent bases of class templates" feature.
   4071   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
   4072       isa<CXXMethodDecl>(CurContext))
   4073     return nullptr;
   4074 
   4075   // We only attempt to correct typos for identifiers.
   4076   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4077   if (!Typo)
   4078     return nullptr;
   4079 
   4080   // If the scope specifier itself was invalid, don't try to correct
   4081   // typos.
   4082   if (SS && SS->isInvalid())
   4083     return nullptr;
   4084 
   4085   // Never try to correct typos during template deduction or
   4086   // instantiation.
   4087   if (!ActiveTemplateInstantiations.empty())
   4088     return nullptr;
   4089 
   4090   // Don't try to correct 'super'.
   4091   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
   4092     return nullptr;
   4093 
   4094   // Abort if typo correction already failed for this specific typo.
   4095   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
   4096   if (locs != TypoCorrectionFailures.end() &&
   4097       locs->second.count(TypoName.getLoc()))
   4098     return nullptr;
   4099 
   4100   // Don't try to correct the identifier "vector" when in AltiVec mode.
   4101   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
   4102   // remove this workaround.
   4103   if (getLangOpts().AltiVec && Typo->isStr("vector"))
   4104     return nullptr;
   4105 
   4106   // Provide a stop gap for files that are just seriously broken.  Trying
   4107   // to correct all typos can turn into a HUGE performance penalty, causing
   4108   // some files to take minutes to get rejected by the parser.
   4109   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
   4110   if (Limit && TyposCorrected >= Limit)
   4111     return nullptr;
   4112   ++TyposCorrected;
   4113 
   4114   // If we're handling a missing symbol error, using modules, and the
   4115   // special search all modules option is used, look for a missing import.
   4116   if (ErrorRecovery && getLangOpts().Modules &&
   4117       getLangOpts().ModulesSearchAll) {
   4118     // The following has the side effect of loading the missing module.
   4119     getModuleLoader().lookupMissingImports(Typo->getName(),
   4120                                            TypoName.getLocStart());
   4121   }
   4122 
   4123   CorrectionCandidateCallback &CCCRef = *CCC;
   4124   auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
   4125       *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4126       EnteringContext);
   4127 
   4128   // Perform name lookup to find visible, similarly-named entities.
   4129   bool IsUnqualifiedLookup = false;
   4130   DeclContext *QualifiedDC = MemberContext;
   4131   if (MemberContext) {
   4132     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
   4133 
   4134     // Look in qualified interfaces.
   4135     if (OPT) {
   4136       for (auto *I : OPT->quals())
   4137         LookupVisibleDecls(I, LookupKind, *Consumer);
   4138     }
   4139   } else if (SS && SS->isSet()) {
   4140     QualifiedDC = computeDeclContext(*SS, EnteringContext);
   4141     if (!QualifiedDC)
   4142       return nullptr;
   4143 
   4144     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
   4145   } else {
   4146     IsUnqualifiedLookup = true;
   4147   }
   4148 
   4149   // Determine whether we are going to search in the various namespaces for
   4150   // corrections.
   4151   bool SearchNamespaces
   4152     = getLangOpts().CPlusPlus &&
   4153       (IsUnqualifiedLookup || (SS && SS->isSet()));
   4154 
   4155   if (IsUnqualifiedLookup || SearchNamespaces) {
   4156     // For unqualified lookup, look through all of the names that we have
   4157     // seen in this translation unit.
   4158     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   4159     for (const auto &I : Context.Idents)
   4160       Consumer->FoundName(I.getKey());
   4161 
   4162     // Walk through identifiers in external identifier sources.
   4163     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   4164     if (IdentifierInfoLookup *External
   4165                             = Context.Idents.getExternalIdentifierLookup()) {
   4166       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
   4167       do {
   4168         StringRef Name = Iter->Next();
   4169         if (Name.empty())
   4170           break;
   4171 
   4172         Consumer->FoundName(Name);
   4173       } while (true);
   4174     }
   4175   }
   4176 
   4177   AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
   4178 
   4179   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
   4180   // to search those namespaces.
   4181   if (SearchNamespaces) {
   4182     // Load any externally-known namespaces.
   4183     if (ExternalSource && !LoadedExternalKnownNamespaces) {
   4184       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
   4185       LoadedExternalKnownNamespaces = true;
   4186       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
   4187       for (auto *N : ExternalKnownNamespaces)
   4188         KnownNamespaces[N] = true;
   4189     }
   4190 
   4191     Consumer->addNamespaces(KnownNamespaces);
   4192   }
   4193 
   4194   return Consumer;
   4195 }
   4196 
   4197 /// \brief Try to "correct" a typo in the source code by finding
   4198 /// visible declarations whose names are similar to the name that was
   4199 /// present in the source code.
   4200 ///
   4201 /// \param TypoName the \c DeclarationNameInfo structure that contains
   4202 /// the name that was present in the source code along with its location.
   4203 ///
   4204 /// \param LookupKind the name-lookup criteria used to search for the name.
   4205 ///
   4206 /// \param S the scope in which name lookup occurs.
   4207 ///
   4208 /// \param SS the nested-name-specifier that precedes the name we're
   4209 /// looking for, if present.
   4210 ///
   4211 /// \param CCC A CorrectionCandidateCallback object that provides further
   4212 /// validation of typo correction candidates. It also provides flags for
   4213 /// determining the set of keywords permitted.
   4214 ///
   4215 /// \param MemberContext if non-NULL, the context in which to look for
   4216 /// a member access expression.
   4217 ///
   4218 /// \param EnteringContext whether we're entering the context described by
   4219 /// the nested-name-specifier SS.
   4220 ///
   4221 /// \param OPT when non-NULL, the search for visible declarations will
   4222 /// also walk the protocols in the qualified interfaces of \p OPT.
   4223 ///
   4224 /// \returns a \c TypoCorrection containing the corrected name if the typo
   4225 /// along with information such as the \c NamedDecl where the corrected name
   4226 /// was declared, and any additional \c NestedNameSpecifier needed to access
   4227 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
   4228 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
   4229                                  Sema::LookupNameKind LookupKind,
   4230                                  Scope *S, CXXScopeSpec *SS,
   4231                                  std::unique_ptr<CorrectionCandidateCallback> CCC,
   4232                                  CorrectTypoKind Mode,
   4233                                  DeclContext *MemberContext,
   4234                                  bool EnteringContext,
   4235                                  const ObjCObjectPointerType *OPT,
   4236                                  bool RecordFailure) {
   4237   assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
   4238 
   4239   // Always let the ExternalSource have the first chance at correction, even
   4240   // if we would otherwise have given up.
   4241   if (ExternalSource) {
   4242     if (TypoCorrection Correction = ExternalSource->CorrectTypo(
   4243         TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
   4244       return Correction;
   4245   }
   4246 
   4247   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
   4248   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
   4249   // some instances of CTC_Unknown, while WantRemainingKeywords is true
   4250   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
   4251   bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
   4252 
   4253   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4254   auto Consumer = makeTypoCorrectionConsumer(
   4255       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4256       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
   4257 
   4258   if (!Consumer)
   4259     return TypoCorrection();
   4260 
   4261   // If we haven't found anything, we're done.
   4262   if (Consumer->empty())
   4263     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4264 
   4265   // Make sure the best edit distance (prior to adding any namespace qualifiers)
   4266   // is not more that about a third of the length of the typo's identifier.
   4267   unsigned ED = Consumer->getBestEditDistance(true);
   4268   unsigned TypoLen = Typo->getName().size();
   4269   if (ED > 0 && TypoLen / ED < 3)
   4270     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4271 
   4272   TypoCorrection BestTC = Consumer->getNextCorrection();
   4273   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
   4274   if (!BestTC)
   4275     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4276 
   4277   ED = BestTC.getEditDistance();
   4278 
   4279   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
   4280     // If this was an unqualified lookup and we believe the callback
   4281     // object wouldn't have filtered out possible corrections, note
   4282     // that no correction was found.
   4283     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4284   }
   4285 
   4286   // If only a single name remains, return that result.
   4287   if (!SecondBestTC ||
   4288       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
   4289     const TypoCorrection &Result = BestTC;
   4290 
   4291     // Don't correct to a keyword that's the same as the typo; the keyword
   4292     // wasn't actually in scope.
   4293     if (ED == 0 && Result.isKeyword())
   4294       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4295 
   4296     TypoCorrection TC = Result;
   4297     TC.setCorrectionRange(SS, TypoName);
   4298     checkCorrectionVisibility(*this, TC);
   4299     return TC;
   4300   } else if (SecondBestTC && ObjCMessageReceiver) {
   4301     // Prefer 'super' when we're completing in a message-receiver
   4302     // context.
   4303 
   4304     if (BestTC.getCorrection().getAsString() != "super") {
   4305       if (SecondBestTC.getCorrection().getAsString() == "super")
   4306         BestTC = SecondBestTC;
   4307       else if ((*Consumer)["super"].front().isKeyword())
   4308         BestTC = (*Consumer)["super"].front();
   4309     }
   4310     // Don't correct to a keyword that's the same as the typo; the keyword
   4311     // wasn't actually in scope.
   4312     if (BestTC.getEditDistance() == 0 ||
   4313         BestTC.getCorrection().getAsString() != "super")
   4314       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4315 
   4316     BestTC.setCorrectionRange(SS, TypoName);
   4317     return BestTC;
   4318   }
   4319 
   4320   // Record the failure's location if needed and return an empty correction. If
   4321   // this was an unqualified lookup and we believe the callback object did not
   4322   // filter out possible corrections, also cache the failure for the typo.
   4323   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
   4324 }
   4325 
   4326 /// \brief Try to "correct" a typo in the source code by finding
   4327 /// visible declarations whose names are similar to the name that was
   4328 /// present in the source code.
   4329 ///
   4330 /// \param TypoName the \c DeclarationNameInfo structure that contains
   4331 /// the name that was present in the source code along with its location.
   4332 ///
   4333 /// \param LookupKind the name-lookup criteria used to search for the name.
   4334 ///
   4335 /// \param S the scope in which name lookup occurs.
   4336 ///
   4337 /// \param SS the nested-name-specifier that precedes the name we're
   4338 /// looking for, if present.
   4339 ///
   4340 /// \param CCC A CorrectionCandidateCallback object that provides further
   4341 /// validation of typo correction candidates. It also provides flags for
   4342 /// determining the set of keywords permitted.
   4343 ///
   4344 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
   4345 /// diagnostics when the actual typo correction is attempted.
   4346 ///
   4347 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
   4348 /// Expr from a typo correction candidate.
   4349 ///
   4350 /// \param MemberContext if non-NULL, the context in which to look for
   4351 /// a member access expression.
   4352 ///
   4353 /// \param EnteringContext whether we're entering the context described by
   4354 /// the nested-name-specifier SS.
   4355 ///
   4356 /// \param OPT when non-NULL, the search for visible declarations will
   4357 /// also walk the protocols in the qualified interfaces of \p OPT.
   4358 ///
   4359 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
   4360 /// Expr representing the result of performing typo correction, or nullptr if
   4361 /// typo correction is not possible. If nullptr is returned, no diagnostics will
   4362 /// be emitted and it is the responsibility of the caller to emit any that are
   4363 /// needed.
   4364 TypoExpr *Sema::CorrectTypoDelayed(
   4365     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
   4366     Scope *S, CXXScopeSpec *SS,
   4367     std::unique_ptr<CorrectionCandidateCallback> CCC,
   4368     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
   4369     DeclContext *MemberContext, bool EnteringContext,
   4370     const ObjCObjectPointerType *OPT) {
   4371   assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
   4372 
   4373   TypoCorrection Empty;
   4374   auto Consumer = makeTypoCorrectionConsumer(
   4375       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
   4376       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
   4377 
   4378   if (!Consumer || Consumer->empty())
   4379     return nullptr;
   4380 
   4381   // Make sure the best edit distance (prior to adding any namespace qualifiers)
   4382   // is not more that about a third of the length of the typo's identifier.
   4383   unsigned ED = Consumer->getBestEditDistance(true);
   4384   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4385   if (ED > 0 && Typo->getName().size() / ED < 3)
   4386     return nullptr;
   4387 
   4388   ExprEvalContexts.back().NumTypos++;
   4389   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
   4390 }
   4391 
   4392 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
   4393   if (!CDecl) return;
   4394 
   4395   if (isKeyword())
   4396     CorrectionDecls.clear();
   4397 
   4398   CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
   4399 
   4400   if (!CorrectionName)
   4401     CorrectionName = CDecl->getDeclName();
   4402 }
   4403 
   4404 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
   4405   if (CorrectionNameSpec) {
   4406     std::string tmpBuffer;
   4407     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
   4408     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
   4409     PrefixOStream << CorrectionName;
   4410     return PrefixOStream.str();
   4411   }
   4412 
   4413   return CorrectionName.getAsString();
   4414 }
   4415 
   4416 bool CorrectionCandidateCallback::ValidateCandidate(
   4417     const TypoCorrection &candidate) {
   4418   if (!candidate.isResolved())
   4419     return true;
   4420 
   4421   if (candidate.isKeyword())
   4422     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
   4423            WantRemainingKeywords || WantObjCSuper;
   4424 
   4425   bool HasNonType = false;
   4426   bool HasStaticMethod = false;
   4427   bool HasNonStaticMethod = false;
   4428   for (Decl *D : candidate) {
   4429     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
   4430       D = FTD->getTemplatedDecl();
   4431     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   4432       if (Method->isStatic())
   4433         HasStaticMethod = true;
   4434       else
   4435         HasNonStaticMethod = true;
   4436     }
   4437     if (!isa<TypeDecl>(D))
   4438       HasNonType = true;
   4439   }
   4440 
   4441   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
   4442       !candidate.getCorrectionSpecifier())
   4443     return false;
   4444 
   4445   return WantTypeSpecifiers || HasNonType;
   4446 }
   4447 
   4448 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
   4449                                              bool HasExplicitTemplateArgs,
   4450                                              MemberExpr *ME)
   4451     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
   4452       CurContext(SemaRef.CurContext), MemberFn(ME) {
   4453   WantTypeSpecifiers = false;
   4454   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
   4455   WantRemainingKeywords = false;
   4456 }
   4457 
   4458 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
   4459   if (!candidate.getCorrectionDecl())
   4460     return candidate.isKeyword();
   4461 
   4462   for (auto *C : candidate) {
   4463     FunctionDecl *FD = nullptr;
   4464     NamedDecl *ND = C->getUnderlyingDecl();
   4465     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
   4466       FD = FTD->getTemplatedDecl();
   4467     if (!HasExplicitTemplateArgs && !FD) {
   4468       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
   4469         // If the Decl is neither a function nor a template function,
   4470         // determine if it is a pointer or reference to a function. If so,
   4471         // check against the number of arguments expected for the pointee.
   4472         QualType ValType = cast<ValueDecl>(ND)->getType();
   4473         if (ValType->isAnyPointerType() || ValType->isReferenceType())
   4474           ValType = ValType->getPointeeType();
   4475         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
   4476           if (FPT->getNumParams() == NumArgs)
   4477             return true;
   4478       }
   4479     }
   4480 
   4481     // Skip the current candidate if it is not a FunctionDecl or does not accept
   4482     // the current number of arguments.
   4483     if (!FD || !(FD->getNumParams() >= NumArgs &&
   4484                  FD->getMinRequiredArguments() <= NumArgs))
   4485       continue;
   4486 
   4487     // If the current candidate is a non-static C++ method, skip the candidate
   4488     // unless the method being corrected--or the current DeclContext, if the
   4489     // function being corrected is not a method--is a method in the same class
   4490     // or a descendent class of the candidate's parent class.
   4491     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   4492       if (MemberFn || !MD->isStatic()) {
   4493         CXXMethodDecl *CurMD =
   4494             MemberFn
   4495                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
   4496                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
   4497         CXXRecordDecl *CurRD =
   4498             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
   4499         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
   4500         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
   4501           continue;
   4502       }
   4503     }
   4504     return true;
   4505   }
   4506   return false;
   4507 }
   4508 
   4509 void Sema::diagnoseTypo(const TypoCorrection &Correction,
   4510                         const PartialDiagnostic &TypoDiag,
   4511                         bool ErrorRecovery) {
   4512   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
   4513                ErrorRecovery);
   4514 }
   4515 
   4516 /// Find which declaration we should import to provide the definition of
   4517 /// the given declaration.
   4518 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
   4519   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   4520     return VD->getDefinition();
   4521   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   4522     return FD->isDefined(FD) ? FD : nullptr;
   4523   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
   4524     return TD->getDefinition();
   4525   if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
   4526     return ID->getDefinition();
   4527   if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
   4528     return PD->getDefinition();
   4529   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   4530     return getDefinitionToImport(TD->getTemplatedDecl());
   4531   return nullptr;
   4532 }
   4533 
   4534 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
   4535 /// itself to allow external validation of the result, etc.
   4536 ///
   4537 /// \param Correction The result of performing typo correction.
   4538 /// \param TypoDiag The diagnostic to produce. This will have the corrected
   4539 ///        string added to it (and usually also a fixit).
   4540 /// \param PrevNote A note to use when indicating the location of the entity to
   4541 ///        which we are correcting. Will have the correction string added to it.
   4542 /// \param ErrorRecovery If \c true (the default), the caller is going to
   4543 ///        recover from the typo as if the corrected string had been typed.
   4544 ///        In this case, \c PDiag must be an error, and we will attach a fixit
   4545 ///        to it.
   4546 void Sema::diagnoseTypo(const TypoCorrection &Correction,
   4547                         const PartialDiagnostic &TypoDiag,
   4548                         const PartialDiagnostic &PrevNote,
   4549                         bool ErrorRecovery) {
   4550   std::string CorrectedStr = Correction.getAsString(getLangOpts());
   4551   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
   4552   FixItHint FixTypo = FixItHint::CreateReplacement(
   4553       Correction.getCorrectionRange(), CorrectedStr);
   4554 
   4555   // Maybe we're just missing a module import.
   4556   if (Correction.requiresImport()) {
   4557     NamedDecl *Decl = Correction.getCorrectionDecl();
   4558     assert(Decl && "import required but no declaration to import");
   4559 
   4560     // Suggest importing a module providing the definition of this entity, if
   4561     // possible.
   4562     const NamedDecl *Def = getDefinitionToImport(Decl);
   4563     if (!Def)
   4564       Def = Decl;
   4565     Module *Owner = Def->getOwningModule();
   4566     assert(Owner && "definition of hidden declaration is not in a module");
   4567 
   4568     Diag(Correction.getCorrectionRange().getBegin(),
   4569          diag::err_module_private_declaration)
   4570       << Def << Owner->getFullModuleName();
   4571     Diag(Def->getLocation(), diag::note_previous_declaration);
   4572 
   4573     // Recover by implicitly importing this module.
   4574     if (ErrorRecovery)
   4575       createImplicitModuleImportForErrorRecovery(
   4576           Correction.getCorrectionRange().getBegin(), Owner);
   4577     return;
   4578   }
   4579 
   4580   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
   4581     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
   4582 
   4583   NamedDecl *ChosenDecl =
   4584       Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
   4585   if (PrevNote.getDiagID() && ChosenDecl)
   4586     Diag(ChosenDecl->getLocation(), PrevNote)
   4587       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
   4588 }
   4589 
   4590 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
   4591                                   TypoDiagnosticGenerator TDG,
   4592                                   TypoRecoveryCallback TRC) {
   4593   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
   4594   auto TE = new (Context) TypoExpr(Context.DependentTy);
   4595   auto &State = DelayedTypos[TE];
   4596   State.Consumer = std::move(TCC);
   4597   State.DiagHandler = std::move(TDG);
   4598   State.RecoveryHandler = std::move(TRC);
   4599   return TE;
   4600 }
   4601 
   4602 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
   4603   auto Entry = DelayedTypos.find(TE);
   4604   assert(Entry != DelayedTypos.end() &&
   4605          "Failed to get the state for a TypoExpr!");
   4606   return Entry->second;
   4607 }
   4608 
   4609 void Sema::clearDelayedTypo(TypoExpr *TE) {
   4610   DelayedTypos.erase(TE);
   4611 }
   4612