Home | History | Annotate | Download | only in Analysis
      1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for lazy computation of value constraint
     11 // information.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/LazyValueInfo.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/Analysis/AssumptionCache.h"
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Analysis/TargetLibraryInfo.h"
     21 #include "llvm/Analysis/ValueTracking.h"
     22 #include "llvm/IR/CFG.h"
     23 #include "llvm/IR/ConstantRange.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/Dominators.h"
     27 #include "llvm/IR/Instructions.h"
     28 #include "llvm/IR/IntrinsicInst.h"
     29 #include "llvm/IR/PatternMatch.h"
     30 #include "llvm/IR/ValueHandle.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include <map>
     34 #include <stack>
     35 using namespace llvm;
     36 using namespace PatternMatch;
     37 
     38 #define DEBUG_TYPE "lazy-value-info"
     39 
     40 char LazyValueInfo::ID = 0;
     41 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
     42                 "Lazy Value Information Analysis", false, true)
     43 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
     44 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
     45 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
     46                 "Lazy Value Information Analysis", false, true)
     47 
     48 namespace llvm {
     49   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
     50 }
     51 
     52 
     53 //===----------------------------------------------------------------------===//
     54 //                               LVILatticeVal
     55 //===----------------------------------------------------------------------===//
     56 
     57 /// This is the information tracked by LazyValueInfo for each value.
     58 ///
     59 /// FIXME: This is basically just for bringup, this can be made a lot more rich
     60 /// in the future.
     61 ///
     62 namespace {
     63 class LVILatticeVal {
     64   enum LatticeValueTy {
     65     /// This Value has no known value yet.
     66     undefined,
     67 
     68     /// This Value has a specific constant value.
     69     constant,
     70 
     71     /// This Value is known to not have the specified value.
     72     notconstant,
     73 
     74     /// The Value falls within this range.
     75     constantrange,
     76 
     77     /// This value is not known to be constant, and we know that it has a value.
     78     overdefined
     79   };
     80 
     81   /// Val: This stores the current lattice value along with the Constant* for
     82   /// the constant if this is a 'constant' or 'notconstant' value.
     83   LatticeValueTy Tag;
     84   Constant *Val;
     85   ConstantRange Range;
     86 
     87 public:
     88   LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
     89 
     90   static LVILatticeVal get(Constant *C) {
     91     LVILatticeVal Res;
     92     if (!isa<UndefValue>(C))
     93       Res.markConstant(C);
     94     return Res;
     95   }
     96   static LVILatticeVal getNot(Constant *C) {
     97     LVILatticeVal Res;
     98     if (!isa<UndefValue>(C))
     99       Res.markNotConstant(C);
    100     return Res;
    101   }
    102   static LVILatticeVal getRange(ConstantRange CR) {
    103     LVILatticeVal Res;
    104     Res.markConstantRange(CR);
    105     return Res;
    106   }
    107 
    108   bool isUndefined() const     { return Tag == undefined; }
    109   bool isConstant() const      { return Tag == constant; }
    110   bool isNotConstant() const   { return Tag == notconstant; }
    111   bool isConstantRange() const { return Tag == constantrange; }
    112   bool isOverdefined() const   { return Tag == overdefined; }
    113 
    114   Constant *getConstant() const {
    115     assert(isConstant() && "Cannot get the constant of a non-constant!");
    116     return Val;
    117   }
    118 
    119   Constant *getNotConstant() const {
    120     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    121     return Val;
    122   }
    123 
    124   ConstantRange getConstantRange() const {
    125     assert(isConstantRange() &&
    126            "Cannot get the constant-range of a non-constant-range!");
    127     return Range;
    128   }
    129 
    130   /// Return true if this is a change in status.
    131   bool markOverdefined() {
    132     if (isOverdefined())
    133       return false;
    134     Tag = overdefined;
    135     return true;
    136   }
    137 
    138   /// Return true if this is a change in status.
    139   bool markConstant(Constant *V) {
    140     assert(V && "Marking constant with NULL");
    141     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    142       return markConstantRange(ConstantRange(CI->getValue()));
    143     if (isa<UndefValue>(V))
    144       return false;
    145 
    146     assert((!isConstant() || getConstant() == V) &&
    147            "Marking constant with different value");
    148     assert(isUndefined());
    149     Tag = constant;
    150     Val = V;
    151     return true;
    152   }
    153 
    154   /// Return true if this is a change in status.
    155   bool markNotConstant(Constant *V) {
    156     assert(V && "Marking constant with NULL");
    157     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    158       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
    159     if (isa<UndefValue>(V))
    160       return false;
    161 
    162     assert((!isConstant() || getConstant() != V) &&
    163            "Marking constant !constant with same value");
    164     assert((!isNotConstant() || getNotConstant() == V) &&
    165            "Marking !constant with different value");
    166     assert(isUndefined() || isConstant());
    167     Tag = notconstant;
    168     Val = V;
    169     return true;
    170   }
    171 
    172   /// Return true if this is a change in status.
    173   bool markConstantRange(const ConstantRange NewR) {
    174     if (isConstantRange()) {
    175       if (NewR.isEmptySet())
    176         return markOverdefined();
    177 
    178       bool changed = Range != NewR;
    179       Range = NewR;
    180       return changed;
    181     }
    182 
    183     assert(isUndefined());
    184     if (NewR.isEmptySet())
    185       return markOverdefined();
    186 
    187     Tag = constantrange;
    188     Range = NewR;
    189     return true;
    190   }
    191 
    192   /// Merge the specified lattice value into this one, updating this
    193   /// one and returning true if anything changed.
    194   bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
    195     if (RHS.isUndefined() || isOverdefined()) return false;
    196     if (RHS.isOverdefined()) return markOverdefined();
    197 
    198     if (isUndefined()) {
    199       Tag = RHS.Tag;
    200       Val = RHS.Val;
    201       Range = RHS.Range;
    202       return true;
    203     }
    204 
    205     if (isConstant()) {
    206       if (RHS.isConstant()) {
    207         if (Val == RHS.Val)
    208           return false;
    209         return markOverdefined();
    210       }
    211 
    212       if (RHS.isNotConstant()) {
    213         if (Val == RHS.Val)
    214           return markOverdefined();
    215 
    216         // Unless we can prove that the two Constants are different, we must
    217         // move to overdefined.
    218         if (ConstantInt *Res =
    219                 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
    220                     CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL)))
    221           if (Res->isOne())
    222             return markNotConstant(RHS.getNotConstant());
    223 
    224         return markOverdefined();
    225       }
    226 
    227       // RHS is a ConstantRange, LHS is a non-integer Constant.
    228 
    229       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
    230       // a function. The correct result is to pick up RHS.
    231 
    232       return markOverdefined();
    233     }
    234 
    235     if (isNotConstant()) {
    236       if (RHS.isConstant()) {
    237         if (Val == RHS.Val)
    238           return markOverdefined();
    239 
    240         // Unless we can prove that the two Constants are different, we must
    241         // move to overdefined.
    242         if (ConstantInt *Res =
    243                 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
    244                     CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL)))
    245           if (Res->isOne())
    246             return false;
    247 
    248         return markOverdefined();
    249       }
    250 
    251       if (RHS.isNotConstant()) {
    252         if (Val == RHS.Val)
    253           return false;
    254         return markOverdefined();
    255       }
    256 
    257       return markOverdefined();
    258     }
    259 
    260     assert(isConstantRange() && "New LVILattice type?");
    261     if (!RHS.isConstantRange())
    262       return markOverdefined();
    263 
    264     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
    265     if (NewR.isFullSet())
    266       return markOverdefined();
    267     return markConstantRange(NewR);
    268   }
    269 };
    270 
    271 } // end anonymous namespace.
    272 
    273 namespace llvm {
    274 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
    275     LLVM_ATTRIBUTE_USED;
    276 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
    277   if (Val.isUndefined())
    278     return OS << "undefined";
    279   if (Val.isOverdefined())
    280     return OS << "overdefined";
    281 
    282   if (Val.isNotConstant())
    283     return OS << "notconstant<" << *Val.getNotConstant() << '>';
    284   else if (Val.isConstantRange())
    285     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
    286               << Val.getConstantRange().getUpper() << '>';
    287   return OS << "constant<" << *Val.getConstant() << '>';
    288 }
    289 }
    290 
    291 //===----------------------------------------------------------------------===//
    292 //                          LazyValueInfoCache Decl
    293 //===----------------------------------------------------------------------===//
    294 
    295 namespace {
    296   /// A callback value handle updates the cache when values are erased.
    297   class LazyValueInfoCache;
    298   struct LVIValueHandle : public CallbackVH {
    299     LazyValueInfoCache *Parent;
    300 
    301     LVIValueHandle(Value *V, LazyValueInfoCache *P)
    302       : CallbackVH(V), Parent(P) { }
    303 
    304     void deleted() override;
    305     void allUsesReplacedWith(Value *V) override {
    306       deleted();
    307     }
    308   };
    309 }
    310 
    311 namespace {
    312   /// This is the cache kept by LazyValueInfo which
    313   /// maintains information about queries across the clients' queries.
    314   class LazyValueInfoCache {
    315     /// This is all of the cached block information for exactly one Value*.
    316     /// The entries are sorted by the BasicBlock* of the
    317     /// entries, allowing us to do a lookup with a binary search.
    318     typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
    319 
    320     /// This is all of the cached information for all values,
    321     /// mapped from Value* to key information.
    322     std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
    323 
    324     /// This tracks, on a per-block basis, the set of values that are
    325     /// over-defined at the end of that block.  This is required
    326     /// for cache updating.
    327     typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    328     DenseSet<OverDefinedPairTy> OverDefinedCache;
    329 
    330     /// Keep track of all blocks that we have ever seen, so we
    331     /// don't spend time removing unused blocks from our caches.
    332     DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
    333 
    334     /// This stack holds the state of the value solver during a query.
    335     /// It basically emulates the callstack of the naive
    336     /// recursive value lookup process.
    337     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
    338 
    339     /// Keeps track of which block-value pairs are in BlockValueStack.
    340     DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
    341 
    342     /// Push BV onto BlockValueStack unless it's already in there.
    343     /// Returns true on success.
    344     bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
    345       if (!BlockValueSet.insert(BV).second)
    346         return false;  // It's already in the stack.
    347 
    348       BlockValueStack.push(BV);
    349       return true;
    350     }
    351 
    352     AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
    353     const DataLayout &DL; ///< A mandatory DataLayout
    354     DominatorTree *DT;    ///< An optional DT pointer.
    355 
    356     friend struct LVIValueHandle;
    357 
    358     void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
    359       SeenBlocks.insert(BB);
    360       lookup(Val)[BB] = Result;
    361       if (Result.isOverdefined())
    362         OverDefinedCache.insert(std::make_pair(BB, Val));
    363     }
    364 
    365     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
    366     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
    367                       LVILatticeVal &Result,
    368                       Instruction *CxtI = nullptr);
    369     bool hasBlockValue(Value *Val, BasicBlock *BB);
    370 
    371     // These methods process one work item and may add more. A false value
    372     // returned means that the work item was not completely processed and must
    373     // be revisited after going through the new items.
    374     bool solveBlockValue(Value *Val, BasicBlock *BB);
    375     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
    376                                  Value *Val, BasicBlock *BB);
    377     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
    378                                 PHINode *PN, BasicBlock *BB);
    379     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
    380                                       Instruction *BBI, BasicBlock *BB);
    381     void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
    382                                             Instruction *BBI);
    383 
    384     void solve();
    385 
    386     ValueCacheEntryTy &lookup(Value *V) {
    387       return ValueCache[LVIValueHandle(V, this)];
    388     }
    389 
    390   public:
    391     /// This is the query interface to determine the lattice
    392     /// value for the specified Value* at the end of the specified block.
    393     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
    394                                   Instruction *CxtI = nullptr);
    395 
    396     /// This is the query interface to determine the lattice
    397     /// value for the specified Value* at the specified instruction (generally
    398     /// from an assume intrinsic).
    399     LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
    400 
    401     /// This is the query interface to determine the lattice
    402     /// value for the specified Value* that is true on the specified edge.
    403     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
    404                                  Instruction *CxtI = nullptr);
    405 
    406     /// This is the update interface to inform the cache that an edge from
    407     /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
    408     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
    409 
    410     /// This is part of the update interface to inform the cache
    411     /// that a block has been deleted.
    412     void eraseBlock(BasicBlock *BB);
    413 
    414     /// clear - Empty the cache.
    415     void clear() {
    416       SeenBlocks.clear();
    417       ValueCache.clear();
    418       OverDefinedCache.clear();
    419     }
    420 
    421     LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL,
    422                        DominatorTree *DT = nullptr)
    423         : AC(AC), DL(DL), DT(DT) {}
    424   };
    425 } // end anonymous namespace
    426 
    427 void LVIValueHandle::deleted() {
    428   typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    429 
    430   SmallVector<OverDefinedPairTy, 4> ToErase;
    431   for (const OverDefinedPairTy &P : Parent->OverDefinedCache)
    432     if (P.second == getValPtr())
    433       ToErase.push_back(P);
    434   for (const OverDefinedPairTy &P : ToErase)
    435     Parent->OverDefinedCache.erase(P);
    436 
    437   // This erasure deallocates *this, so it MUST happen after we're done
    438   // using any and all members of *this.
    439   Parent->ValueCache.erase(*this);
    440 }
    441 
    442 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
    443   // Shortcut if we have never seen this block.
    444   DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
    445   if (I == SeenBlocks.end())
    446     return;
    447   SeenBlocks.erase(I);
    448 
    449   SmallVector<OverDefinedPairTy, 4> ToErase;
    450   for (const OverDefinedPairTy& P : OverDefinedCache)
    451     if (P.first == BB)
    452       ToErase.push_back(P);
    453   for (const OverDefinedPairTy &P : ToErase)
    454     OverDefinedCache.erase(P);
    455 
    456   for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
    457        I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
    458     I->second.erase(BB);
    459 }
    460 
    461 void LazyValueInfoCache::solve() {
    462   while (!BlockValueStack.empty()) {
    463     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
    464     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
    465 
    466     if (solveBlockValue(e.second, e.first)) {
    467       // The work item was completely processed.
    468       assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
    469       assert(lookup(e.second).count(e.first) && "Result should be in cache!");
    470 
    471       BlockValueStack.pop();
    472       BlockValueSet.erase(e);
    473     } else {
    474       // More work needs to be done before revisiting.
    475       assert(BlockValueStack.top() != e && "Stack should have been pushed!");
    476     }
    477   }
    478 }
    479 
    480 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
    481   // If already a constant, there is nothing to compute.
    482   if (isa<Constant>(Val))
    483     return true;
    484 
    485   LVIValueHandle ValHandle(Val, this);
    486   std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
    487     ValueCache.find(ValHandle);
    488   if (I == ValueCache.end()) return false;
    489   return I->second.count(BB);
    490 }
    491 
    492 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
    493   // If already a constant, there is nothing to compute.
    494   if (Constant *VC = dyn_cast<Constant>(Val))
    495     return LVILatticeVal::get(VC);
    496 
    497   SeenBlocks.insert(BB);
    498   return lookup(Val)[BB];
    499 }
    500 
    501 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
    502   if (isa<Constant>(Val))
    503     return true;
    504 
    505   if (lookup(Val).count(BB)) {
    506     // If we have a cached value, use that.
    507     DEBUG(dbgs() << "  reuse BB '" << BB->getName()
    508                  << "' val=" << lookup(Val)[BB] << '\n');
    509 
    510     // Since we're reusing a cached value, we don't need to update the
    511     // OverDefinedCache. The cache will have been properly updated whenever the
    512     // cached value was inserted.
    513     return true;
    514   }
    515 
    516   // Hold off inserting this value into the Cache in case we have to return
    517   // false and come back later.
    518   LVILatticeVal Res;
    519 
    520   Instruction *BBI = dyn_cast<Instruction>(Val);
    521   if (!BBI || BBI->getParent() != BB) {
    522     if (!solveBlockValueNonLocal(Res, Val, BB))
    523       return false;
    524    insertResult(Val, BB, Res);
    525    return true;
    526   }
    527 
    528   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
    529     if (!solveBlockValuePHINode(Res, PN, BB))
    530       return false;
    531     insertResult(Val, BB, Res);
    532     return true;
    533   }
    534 
    535   if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
    536     Res = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
    537     insertResult(Val, BB, Res);
    538     return true;
    539   }
    540 
    541   // We can only analyze the definitions of certain classes of instructions
    542   // (integral binops and casts at the moment), so bail if this isn't one.
    543   LVILatticeVal Result;
    544   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
    545      !BBI->getType()->isIntegerTy()) {
    546     DEBUG(dbgs() << " compute BB '" << BB->getName()
    547                  << "' - overdefined because inst def found.\n");
    548     Res.markOverdefined();
    549     insertResult(Val, BB, Res);
    550     return true;
    551   }
    552 
    553   // FIXME: We're currently limited to binops with a constant RHS.  This should
    554   // be improved.
    555   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
    556   if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
    557     DEBUG(dbgs() << " compute BB '" << BB->getName()
    558                  << "' - overdefined because inst def found.\n");
    559 
    560     Res.markOverdefined();
    561     insertResult(Val, BB, Res);
    562     return true;
    563   }
    564 
    565   if (!solveBlockValueConstantRange(Res, BBI, BB))
    566     return false;
    567   insertResult(Val, BB, Res);
    568   return true;
    569 }
    570 
    571 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
    572   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    573     return L->getPointerAddressSpace() == 0 &&
    574            GetUnderlyingObject(L->getPointerOperand(),
    575                                L->getModule()->getDataLayout()) == Ptr;
    576   }
    577   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    578     return S->getPointerAddressSpace() == 0 &&
    579            GetUnderlyingObject(S->getPointerOperand(),
    580                                S->getModule()->getDataLayout()) == Ptr;
    581   }
    582   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    583     if (MI->isVolatile()) return false;
    584 
    585     // FIXME: check whether it has a valuerange that excludes zero?
    586     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
    587     if (!Len || Len->isZero()) return false;
    588 
    589     if (MI->getDestAddressSpace() == 0)
    590       if (GetUnderlyingObject(MI->getRawDest(),
    591                               MI->getModule()->getDataLayout()) == Ptr)
    592         return true;
    593     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
    594       if (MTI->getSourceAddressSpace() == 0)
    595         if (GetUnderlyingObject(MTI->getRawSource(),
    596                                 MTI->getModule()->getDataLayout()) == Ptr)
    597           return true;
    598   }
    599   return false;
    600 }
    601 
    602 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
    603                                                  Value *Val, BasicBlock *BB) {
    604   LVILatticeVal Result;  // Start Undefined.
    605 
    606   // If this is a pointer, and there's a load from that pointer in this BB,
    607   // then we know that the pointer can't be NULL.
    608   bool NotNull = false;
    609   if (Val->getType()->isPointerTy()) {
    610     if (isKnownNonNull(Val)) {
    611       NotNull = true;
    612     } else {
    613       const DataLayout &DL = BB->getModule()->getDataLayout();
    614       Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
    615       // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
    616       // inside InstructionDereferencesPointer either.
    617       if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) {
    618         for (Instruction &I : *BB) {
    619           if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
    620             NotNull = true;
    621             break;
    622           }
    623         }
    624       }
    625     }
    626   }
    627 
    628   // If this is the entry block, we must be asking about an argument.  The
    629   // value is overdefined.
    630   if (BB == &BB->getParent()->getEntryBlock()) {
    631     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
    632     if (NotNull) {
    633       PointerType *PTy = cast<PointerType>(Val->getType());
    634       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    635     } else {
    636       Result.markOverdefined();
    637     }
    638     BBLV = Result;
    639     return true;
    640   }
    641 
    642   // Loop over all of our predecessors, merging what we know from them into
    643   // result.
    644   bool EdgesMissing = false;
    645   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    646     LVILatticeVal EdgeResult;
    647     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
    648     if (EdgesMissing)
    649       continue;
    650 
    651     Result.mergeIn(EdgeResult, DL);
    652 
    653     // If we hit overdefined, exit early.  The BlockVals entry is already set
    654     // to overdefined.
    655     if (Result.isOverdefined()) {
    656       DEBUG(dbgs() << " compute BB '" << BB->getName()
    657             << "' - overdefined because of pred.\n");
    658       // If we previously determined that this is a pointer that can't be null
    659       // then return that rather than giving up entirely.
    660       if (NotNull) {
    661         PointerType *PTy = cast<PointerType>(Val->getType());
    662         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    663       }
    664 
    665       BBLV = Result;
    666       return true;
    667     }
    668   }
    669   if (EdgesMissing)
    670     return false;
    671 
    672   // Return the merged value, which is more precise than 'overdefined'.
    673   assert(!Result.isOverdefined());
    674   BBLV = Result;
    675   return true;
    676 }
    677 
    678 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
    679                                                 PHINode *PN, BasicBlock *BB) {
    680   LVILatticeVal Result;  // Start Undefined.
    681 
    682   // Loop over all of our predecessors, merging what we know from them into
    683   // result.
    684   bool EdgesMissing = false;
    685   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    686     BasicBlock *PhiBB = PN->getIncomingBlock(i);
    687     Value *PhiVal = PN->getIncomingValue(i);
    688     LVILatticeVal EdgeResult;
    689     // Note that we can provide PN as the context value to getEdgeValue, even
    690     // though the results will be cached, because PN is the value being used as
    691     // the cache key in the caller.
    692     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
    693     if (EdgesMissing)
    694       continue;
    695 
    696     Result.mergeIn(EdgeResult, DL);
    697 
    698     // If we hit overdefined, exit early.  The BlockVals entry is already set
    699     // to overdefined.
    700     if (Result.isOverdefined()) {
    701       DEBUG(dbgs() << " compute BB '" << BB->getName()
    702             << "' - overdefined because of pred.\n");
    703 
    704       BBLV = Result;
    705       return true;
    706     }
    707   }
    708   if (EdgesMissing)
    709     return false;
    710 
    711   // Return the merged value, which is more precise than 'overdefined'.
    712   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
    713   BBLV = Result;
    714   return true;
    715 }
    716 
    717 static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
    718                                       LVILatticeVal &Result,
    719                                       bool isTrueDest = true);
    720 
    721 // If we can determine a constant range for the value Val in the context
    722 // provided by the instruction BBI, then merge it into BBLV. If we did find a
    723 // constant range, return true.
    724 void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val,
    725                                                             LVILatticeVal &BBLV,
    726                                                             Instruction *BBI) {
    727   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
    728   if (!BBI)
    729     return;
    730 
    731   for (auto &AssumeVH : AC->assumptions()) {
    732     if (!AssumeVH)
    733       continue;
    734     auto *I = cast<CallInst>(AssumeVH);
    735     if (!isValidAssumeForContext(I, BBI, DT))
    736       continue;
    737 
    738     Value *C = I->getArgOperand(0);
    739     if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
    740       LVILatticeVal Result;
    741       if (getValueFromFromCondition(Val, ICI, Result)) {
    742         if (BBLV.isOverdefined())
    743           BBLV = Result;
    744         else
    745           BBLV.mergeIn(Result, DL);
    746       }
    747     }
    748   }
    749 }
    750 
    751 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
    752                                                       Instruction *BBI,
    753                                                       BasicBlock *BB) {
    754   // Figure out the range of the LHS.  If that fails, bail.
    755   if (!hasBlockValue(BBI->getOperand(0), BB)) {
    756     if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
    757       return false;
    758     BBLV.markOverdefined();
    759     return true;
    760   }
    761 
    762   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
    763   mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
    764   if (!LHSVal.isConstantRange()) {
    765     BBLV.markOverdefined();
    766     return true;
    767   }
    768 
    769   ConstantRange LHSRange = LHSVal.getConstantRange();
    770   ConstantRange RHSRange(1);
    771   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
    772   if (isa<BinaryOperator>(BBI)) {
    773     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
    774       RHSRange = ConstantRange(RHS->getValue());
    775     } else {
    776       BBLV.markOverdefined();
    777       return true;
    778     }
    779   }
    780 
    781   // NOTE: We're currently limited by the set of operations that ConstantRange
    782   // can evaluate symbolically.  Enhancing that set will allows us to analyze
    783   // more definitions.
    784   LVILatticeVal Result;
    785   switch (BBI->getOpcode()) {
    786   case Instruction::Add:
    787     Result.markConstantRange(LHSRange.add(RHSRange));
    788     break;
    789   case Instruction::Sub:
    790     Result.markConstantRange(LHSRange.sub(RHSRange));
    791     break;
    792   case Instruction::Mul:
    793     Result.markConstantRange(LHSRange.multiply(RHSRange));
    794     break;
    795   case Instruction::UDiv:
    796     Result.markConstantRange(LHSRange.udiv(RHSRange));
    797     break;
    798   case Instruction::Shl:
    799     Result.markConstantRange(LHSRange.shl(RHSRange));
    800     break;
    801   case Instruction::LShr:
    802     Result.markConstantRange(LHSRange.lshr(RHSRange));
    803     break;
    804   case Instruction::Trunc:
    805     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
    806     break;
    807   case Instruction::SExt:
    808     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
    809     break;
    810   case Instruction::ZExt:
    811     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
    812     break;
    813   case Instruction::BitCast:
    814     Result.markConstantRange(LHSRange);
    815     break;
    816   case Instruction::And:
    817     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
    818     break;
    819   case Instruction::Or:
    820     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
    821     break;
    822 
    823   // Unhandled instructions are overdefined.
    824   default:
    825     DEBUG(dbgs() << " compute BB '" << BB->getName()
    826                  << "' - overdefined because inst def found.\n");
    827     Result.markOverdefined();
    828     break;
    829   }
    830 
    831   BBLV = Result;
    832   return true;
    833 }
    834 
    835 bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
    836                                LVILatticeVal &Result, bool isTrueDest) {
    837   if (ICI && isa<Constant>(ICI->getOperand(1))) {
    838     if (ICI->isEquality() && ICI->getOperand(0) == Val) {
    839       // We know that V has the RHS constant if this is a true SETEQ or
    840       // false SETNE.
    841       if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
    842         Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
    843       else
    844         Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
    845       return true;
    846     }
    847 
    848     // Recognize the range checking idiom that InstCombine produces.
    849     // (X-C1) u< C2 --> [C1, C1+C2)
    850     ConstantInt *NegOffset = nullptr;
    851     if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
    852       match(ICI->getOperand(0), m_Add(m_Specific(Val),
    853                                       m_ConstantInt(NegOffset)));
    854 
    855     ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
    856     if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
    857       // Calculate the range of values that are allowed by the comparison
    858       ConstantRange CmpRange(CI->getValue());
    859       ConstantRange TrueValues =
    860           ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange);
    861 
    862       if (NegOffset) // Apply the offset from above.
    863         TrueValues = TrueValues.subtract(NegOffset->getValue());
    864 
    865       // If we're interested in the false dest, invert the condition.
    866       if (!isTrueDest) TrueValues = TrueValues.inverse();
    867 
    868       Result = LVILatticeVal::getRange(TrueValues);
    869       return true;
    870     }
    871   }
    872 
    873   return false;
    874 }
    875 
    876 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
    877 /// Val is not constrained on the edge.
    878 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
    879                               BasicBlock *BBTo, LVILatticeVal &Result) {
    880   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
    881   // know that v != 0.
    882   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    883     // If this is a conditional branch and only one successor goes to BBTo, then
    884     // we may be able to infer something from the condition.
    885     if (BI->isConditional() &&
    886         BI->getSuccessor(0) != BI->getSuccessor(1)) {
    887       bool isTrueDest = BI->getSuccessor(0) == BBTo;
    888       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
    889              "BBTo isn't a successor of BBFrom");
    890 
    891       // If V is the condition of the branch itself, then we know exactly what
    892       // it is.
    893       if (BI->getCondition() == Val) {
    894         Result = LVILatticeVal::get(ConstantInt::get(
    895                               Type::getInt1Ty(Val->getContext()), isTrueDest));
    896         return true;
    897       }
    898 
    899       // If the condition of the branch is an equality comparison, we may be
    900       // able to infer the value.
    901       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
    902         if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
    903           return true;
    904     }
    905   }
    906 
    907   // If the edge was formed by a switch on the value, then we may know exactly
    908   // what it is.
    909   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    910     if (SI->getCondition() != Val)
    911       return false;
    912 
    913     bool DefaultCase = SI->getDefaultDest() == BBTo;
    914     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
    915     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
    916 
    917     for (SwitchInst::CaseIt i : SI->cases()) {
    918       ConstantRange EdgeVal(i.getCaseValue()->getValue());
    919       if (DefaultCase) {
    920         // It is possible that the default destination is the destination of
    921         // some cases. There is no need to perform difference for those cases.
    922         if (i.getCaseSuccessor() != BBTo)
    923           EdgesVals = EdgesVals.difference(EdgeVal);
    924       } else if (i.getCaseSuccessor() == BBTo)
    925         EdgesVals = EdgesVals.unionWith(EdgeVal);
    926     }
    927     Result = LVILatticeVal::getRange(EdgesVals);
    928     return true;
    929   }
    930   return false;
    931 }
    932 
    933 /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
    934 /// the basic block if the edge does not constrain Val.
    935 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
    936                                       BasicBlock *BBTo, LVILatticeVal &Result,
    937                                       Instruction *CxtI) {
    938   // If already a constant, there is nothing to compute.
    939   if (Constant *VC = dyn_cast<Constant>(Val)) {
    940     Result = LVILatticeVal::get(VC);
    941     return true;
    942   }
    943 
    944   if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
    945     if (!Result.isConstantRange() ||
    946         Result.getConstantRange().getSingleElement())
    947       return true;
    948 
    949     // FIXME: this check should be moved to the beginning of the function when
    950     // LVI better supports recursive values. Even for the single value case, we
    951     // can intersect to detect dead code (an empty range).
    952     if (!hasBlockValue(Val, BBFrom)) {
    953       if (pushBlockValue(std::make_pair(BBFrom, Val)))
    954         return false;
    955       Result.markOverdefined();
    956       return true;
    957     }
    958 
    959     // Try to intersect ranges of the BB and the constraint on the edge.
    960     LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
    961     mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
    962     // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange,
    963     // and caching, below.
    964     mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI);
    965     if (!InBlock.isConstantRange())
    966       return true;
    967 
    968     ConstantRange Range =
    969       Result.getConstantRange().intersectWith(InBlock.getConstantRange());
    970     Result = LVILatticeVal::getRange(Range);
    971     return true;
    972   }
    973 
    974   if (!hasBlockValue(Val, BBFrom)) {
    975     if (pushBlockValue(std::make_pair(BBFrom, Val)))
    976       return false;
    977     Result.markOverdefined();
    978     return true;
    979   }
    980 
    981   // If we couldn't compute the value on the edge, use the value from the BB.
    982   Result = getBlockValue(Val, BBFrom);
    983   mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator());
    984   // We can use the context instruction (generically the ultimate instruction
    985   // the calling pass is trying to simplify) here, even though the result of
    986   // this function is generally cached when called from the solve* functions
    987   // (and that cached result might be used with queries using a different
    988   // context instruction), because when this function is called from the solve*
    989   // functions, the context instruction is not provided. When called from
    990   // LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
    991   // but then the result is not cached.
    992   mergeAssumeBlockValueConstantRange(Val, Result, CxtI);
    993   return true;
    994 }
    995 
    996 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
    997                                                   Instruction *CxtI) {
    998   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
    999         << BB->getName() << "'\n");
   1000 
   1001   assert(BlockValueStack.empty() && BlockValueSet.empty());
   1002   pushBlockValue(std::make_pair(BB, V));
   1003 
   1004   solve();
   1005   LVILatticeVal Result = getBlockValue(V, BB);
   1006   mergeAssumeBlockValueConstantRange(V, Result, CxtI);
   1007 
   1008   DEBUG(dbgs() << "  Result = " << Result << "\n");
   1009   return Result;
   1010 }
   1011 
   1012 LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
   1013   DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
   1014         << CxtI->getName() << "'\n");
   1015 
   1016   LVILatticeVal Result;
   1017   mergeAssumeBlockValueConstantRange(V, Result, CxtI);
   1018 
   1019   DEBUG(dbgs() << "  Result = " << Result << "\n");
   1020   return Result;
   1021 }
   1022 
   1023 LVILatticeVal LazyValueInfoCache::
   1024 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
   1025                Instruction *CxtI) {
   1026   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
   1027         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
   1028 
   1029   LVILatticeVal Result;
   1030   if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
   1031     solve();
   1032     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
   1033     (void)WasFastQuery;
   1034     assert(WasFastQuery && "More work to do after problem solved?");
   1035   }
   1036 
   1037   DEBUG(dbgs() << "  Result = " << Result << "\n");
   1038   return Result;
   1039 }
   1040 
   1041 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
   1042                                     BasicBlock *NewSucc) {
   1043   // When an edge in the graph has been threaded, values that we could not
   1044   // determine a value for before (i.e. were marked overdefined) may be possible
   1045   // to solve now.  We do NOT try to proactively update these values.  Instead,
   1046   // we clear their entries from the cache, and allow lazy updating to recompute
   1047   // them when needed.
   1048 
   1049   // The updating process is fairly simple: we need to drop cached info
   1050   // for all values that were marked overdefined in OldSucc, and for those same
   1051   // values in any successor of OldSucc (except NewSucc) in which they were
   1052   // also marked overdefined.
   1053   std::vector<BasicBlock*> worklist;
   1054   worklist.push_back(OldSucc);
   1055 
   1056   DenseSet<Value*> ClearSet;
   1057   for (OverDefinedPairTy &P : OverDefinedCache)
   1058     if (P.first == OldSucc)
   1059       ClearSet.insert(P.second);
   1060 
   1061   // Use a worklist to perform a depth-first search of OldSucc's successors.
   1062   // NOTE: We do not need a visited list since any blocks we have already
   1063   // visited will have had their overdefined markers cleared already, and we
   1064   // thus won't loop to their successors.
   1065   while (!worklist.empty()) {
   1066     BasicBlock *ToUpdate = worklist.back();
   1067     worklist.pop_back();
   1068 
   1069     // Skip blocks only accessible through NewSucc.
   1070     if (ToUpdate == NewSucc) continue;
   1071 
   1072     bool changed = false;
   1073     for (Value *V : ClearSet) {
   1074       // If a value was marked overdefined in OldSucc, and is here too...
   1075       DenseSet<OverDefinedPairTy>::iterator OI =
   1076         OverDefinedCache.find(std::make_pair(ToUpdate, V));
   1077       if (OI == OverDefinedCache.end()) continue;
   1078 
   1079       // Remove it from the caches.
   1080       ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(V, this)];
   1081       ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
   1082 
   1083       assert(CI != Entry.end() && "Couldn't find entry to update?");
   1084       Entry.erase(CI);
   1085       OverDefinedCache.erase(OI);
   1086 
   1087       // If we removed anything, then we potentially need to update
   1088       // blocks successors too.
   1089       changed = true;
   1090     }
   1091 
   1092     if (!changed) continue;
   1093 
   1094     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
   1095   }
   1096 }
   1097 
   1098 //===----------------------------------------------------------------------===//
   1099 //                            LazyValueInfo Impl
   1100 //===----------------------------------------------------------------------===//
   1101 
   1102 /// This lazily constructs the LazyValueInfoCache.
   1103 static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
   1104                                     const DataLayout *DL,
   1105                                     DominatorTree *DT = nullptr) {
   1106   if (!PImpl) {
   1107     assert(DL && "getCache() called with a null DataLayout");
   1108     PImpl = new LazyValueInfoCache(AC, *DL, DT);
   1109   }
   1110   return *static_cast<LazyValueInfoCache*>(PImpl);
   1111 }
   1112 
   1113 bool LazyValueInfo::runOnFunction(Function &F) {
   1114   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   1115   const DataLayout &DL = F.getParent()->getDataLayout();
   1116 
   1117   DominatorTreeWrapperPass *DTWP =
   1118       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
   1119   DT = DTWP ? &DTWP->getDomTree() : nullptr;
   1120 
   1121   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1122 
   1123   if (PImpl)
   1124     getCache(PImpl, AC, &DL, DT).clear();
   1125 
   1126   // Fully lazy.
   1127   return false;
   1128 }
   1129 
   1130 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
   1131   AU.setPreservesAll();
   1132   AU.addRequired<AssumptionCacheTracker>();
   1133   AU.addRequired<TargetLibraryInfoWrapperPass>();
   1134 }
   1135 
   1136 void LazyValueInfo::releaseMemory() {
   1137   // If the cache was allocated, free it.
   1138   if (PImpl) {
   1139     delete &getCache(PImpl, AC, nullptr);
   1140     PImpl = nullptr;
   1141   }
   1142 }
   1143 
   1144 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
   1145                                      Instruction *CxtI) {
   1146   const DataLayout &DL = BB->getModule()->getDataLayout();
   1147   LVILatticeVal Result =
   1148       getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
   1149 
   1150   if (Result.isConstant())
   1151     return Result.getConstant();
   1152   if (Result.isConstantRange()) {
   1153     ConstantRange CR = Result.getConstantRange();
   1154     if (const APInt *SingleVal = CR.getSingleElement())
   1155       return ConstantInt::get(V->getContext(), *SingleVal);
   1156   }
   1157   return nullptr;
   1158 }
   1159 
   1160 /// Determine whether the specified value is known to be a
   1161 /// constant on the specified edge.  Return null if not.
   1162 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
   1163                                            BasicBlock *ToBB,
   1164                                            Instruction *CxtI) {
   1165   const DataLayout &DL = FromBB->getModule()->getDataLayout();
   1166   LVILatticeVal Result =
   1167       getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
   1168 
   1169   if (Result.isConstant())
   1170     return Result.getConstant();
   1171   if (Result.isConstantRange()) {
   1172     ConstantRange CR = Result.getConstantRange();
   1173     if (const APInt *SingleVal = CR.getSingleElement())
   1174       return ConstantInt::get(V->getContext(), *SingleVal);
   1175   }
   1176   return nullptr;
   1177 }
   1178 
   1179 static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
   1180                                                   LVILatticeVal &Result,
   1181                                                   const DataLayout &DL,
   1182                                                   TargetLibraryInfo *TLI) {
   1183 
   1184   // If we know the value is a constant, evaluate the conditional.
   1185   Constant *Res = nullptr;
   1186   if (Result.isConstant()) {
   1187     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
   1188                                           TLI);
   1189     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
   1190       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
   1191     return LazyValueInfo::Unknown;
   1192   }
   1193 
   1194   if (Result.isConstantRange()) {
   1195     ConstantInt *CI = dyn_cast<ConstantInt>(C);
   1196     if (!CI) return LazyValueInfo::Unknown;
   1197 
   1198     ConstantRange CR = Result.getConstantRange();
   1199     if (Pred == ICmpInst::ICMP_EQ) {
   1200       if (!CR.contains(CI->getValue()))
   1201         return LazyValueInfo::False;
   1202 
   1203       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1204         return LazyValueInfo::True;
   1205     } else if (Pred == ICmpInst::ICMP_NE) {
   1206       if (!CR.contains(CI->getValue()))
   1207         return LazyValueInfo::True;
   1208 
   1209       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1210         return LazyValueInfo::False;
   1211     }
   1212 
   1213     // Handle more complex predicates.
   1214     ConstantRange TrueValues =
   1215         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
   1216     if (TrueValues.contains(CR))
   1217       return LazyValueInfo::True;
   1218     if (TrueValues.inverse().contains(CR))
   1219       return LazyValueInfo::False;
   1220     return LazyValueInfo::Unknown;
   1221   }
   1222 
   1223   if (Result.isNotConstant()) {
   1224     // If this is an equality comparison, we can try to fold it knowing that
   1225     // "V != C1".
   1226     if (Pred == ICmpInst::ICMP_EQ) {
   1227       // !C1 == C -> false iff C1 == C.
   1228       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1229                                             Result.getNotConstant(), C, DL,
   1230                                             TLI);
   1231       if (Res->isNullValue())
   1232         return LazyValueInfo::False;
   1233     } else if (Pred == ICmpInst::ICMP_NE) {
   1234       // !C1 != C -> true iff C1 == C.
   1235       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1236                                             Result.getNotConstant(), C, DL,
   1237                                             TLI);
   1238       if (Res->isNullValue())
   1239         return LazyValueInfo::True;
   1240     }
   1241     return LazyValueInfo::Unknown;
   1242   }
   1243 
   1244   return LazyValueInfo::Unknown;
   1245 }
   1246 
   1247 /// Determine whether the specified value comparison with a constant is known to
   1248 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
   1249 LazyValueInfo::Tristate
   1250 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
   1251                                   BasicBlock *FromBB, BasicBlock *ToBB,
   1252                                   Instruction *CxtI) {
   1253   const DataLayout &DL = FromBB->getModule()->getDataLayout();
   1254   LVILatticeVal Result =
   1255       getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
   1256 
   1257   return getPredicateResult(Pred, C, Result, DL, TLI);
   1258 }
   1259 
   1260 LazyValueInfo::Tristate
   1261 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
   1262                               Instruction *CxtI) {
   1263   const DataLayout &DL = CxtI->getModule()->getDataLayout();
   1264   LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
   1265 
   1266   return getPredicateResult(Pred, C, Result, DL, TLI);
   1267 }
   1268 
   1269 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
   1270                                BasicBlock *NewSucc) {
   1271   if (PImpl) {
   1272     const DataLayout &DL = PredBB->getModule()->getDataLayout();
   1273     getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
   1274   }
   1275 }
   1276 
   1277 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
   1278   if (PImpl) {
   1279     const DataLayout &DL = BB->getModule()->getDataLayout();
   1280     getCache(PImpl, AC, &DL, DT).eraseBlock(BB);
   1281   }
   1282 }
   1283