Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "ssa_liveness_analysis.h"
     18 
     19 #include "base/bit_vector-inl.h"
     20 #include "code_generator.h"
     21 #include "nodes.h"
     22 
     23 namespace art {
     24 
     25 void SsaLivenessAnalysis::Analyze() {
     26   LinearizeGraph();
     27   NumberInstructions();
     28   ComputeLiveness();
     29 }
     30 
     31 static bool IsLoop(HLoopInformation* info) {
     32   return info != nullptr;
     33 }
     34 
     35 static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
     36   return first_loop == second_loop;
     37 }
     38 
     39 static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
     40   return (inner != outer)
     41       && (inner != nullptr)
     42       && (outer != nullptr)
     43       && inner->IsIn(*outer);
     44 }
     45 
     46 static void AddToListForLinearization(GrowableArray<HBasicBlock*>* worklist, HBasicBlock* block) {
     47   size_t insert_at = worklist->Size();
     48   HLoopInformation* block_loop = block->GetLoopInformation();
     49   for (; insert_at > 0; --insert_at) {
     50     HBasicBlock* current = worklist->Get(insert_at - 1);
     51     HLoopInformation* current_loop = current->GetLoopInformation();
     52     if (InSameLoop(block_loop, current_loop)
     53         || !IsLoop(current_loop)
     54         || IsInnerLoop(current_loop, block_loop)) {
     55       // The block can be processed immediately.
     56       break;
     57     }
     58   }
     59   worklist->InsertAt(insert_at, block);
     60 }
     61 
     62 void SsaLivenessAnalysis::LinearizeGraph() {
     63   // Create a reverse post ordering with the following properties:
     64   // - Blocks in a loop are consecutive,
     65   // - Back-edge is the last block before loop exits.
     66 
     67   // (1): Record the number of forward predecessors for each block. This is to
     68   //      ensure the resulting order is reverse post order. We could use the
     69   //      current reverse post order in the graph, but it would require making
     70   //      order queries to a GrowableArray, which is not the best data structure
     71   //      for it.
     72   GrowableArray<uint32_t> forward_predecessors(graph_->GetArena(), graph_->GetBlocks().Size());
     73   forward_predecessors.SetSize(graph_->GetBlocks().Size());
     74   for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
     75     HBasicBlock* block = it.Current();
     76     size_t number_of_forward_predecessors = block->GetPredecessors().Size();
     77     if (block->IsLoopHeader()) {
     78       number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges();
     79     }
     80     forward_predecessors.Put(block->GetBlockId(), number_of_forward_predecessors);
     81   }
     82 
     83   // (2): Following a worklist approach, first start with the entry block, and
     84   //      iterate over the successors. When all non-back edge predecessors of a
     85   //      successor block are visited, the successor block is added in the worklist
     86   //      following an order that satisfies the requirements to build our linear graph.
     87   GrowableArray<HBasicBlock*> worklist(graph_->GetArena(), 1);
     88   worklist.Add(graph_->GetEntryBlock());
     89   do {
     90     HBasicBlock* current = worklist.Pop();
     91     graph_->linear_order_.Add(current);
     92     for (size_t i = 0, e = current->GetSuccessors().Size(); i < e; ++i) {
     93       HBasicBlock* successor = current->GetSuccessors().Get(i);
     94       int block_id = successor->GetBlockId();
     95       size_t number_of_remaining_predecessors = forward_predecessors.Get(block_id);
     96       if (number_of_remaining_predecessors == 1) {
     97         AddToListForLinearization(&worklist, successor);
     98       }
     99       forward_predecessors.Put(block_id, number_of_remaining_predecessors - 1);
    100     }
    101   } while (!worklist.IsEmpty());
    102 }
    103 
    104 void SsaLivenessAnalysis::NumberInstructions() {
    105   int ssa_index = 0;
    106   size_t lifetime_position = 0;
    107   // Each instruction gets a lifetime position, and a block gets a lifetime
    108   // start and end position. Non-phi instructions have a distinct lifetime position than
    109   // the block they are in. Phi instructions have the lifetime start of their block as
    110   // lifetime position.
    111   //
    112   // Because the register allocator will insert moves in the graph, we need
    113   // to differentiate between the start and end of an instruction. Adding 2 to
    114   // the lifetime position for each instruction ensures the start of an
    115   // instruction is different than the end of the previous instruction.
    116   for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
    117     HBasicBlock* block = it.Current();
    118     block->SetLifetimeStart(lifetime_position);
    119 
    120     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
    121       HInstruction* current = inst_it.Current();
    122       codegen_->AllocateLocations(current);
    123       LocationSummary* locations = current->GetLocations();
    124       if (locations != nullptr && locations->Out().IsValid()) {
    125         instructions_from_ssa_index_.Add(current);
    126         current->SetSsaIndex(ssa_index++);
    127         current->SetLiveInterval(
    128             LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
    129       }
    130       current->SetLifetimePosition(lifetime_position);
    131     }
    132     lifetime_position += 2;
    133 
    134     // Add a null marker to notify we are starting a block.
    135     instructions_from_lifetime_position_.Add(nullptr);
    136 
    137     for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
    138          inst_it.Advance()) {
    139       HInstruction* current = inst_it.Current();
    140       codegen_->AllocateLocations(current);
    141       LocationSummary* locations = current->GetLocations();
    142       if (locations != nullptr && locations->Out().IsValid()) {
    143         instructions_from_ssa_index_.Add(current);
    144         current->SetSsaIndex(ssa_index++);
    145         current->SetLiveInterval(
    146             LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
    147       }
    148       instructions_from_lifetime_position_.Add(current);
    149       current->SetLifetimePosition(lifetime_position);
    150       lifetime_position += 2;
    151     }
    152 
    153     block->SetLifetimeEnd(lifetime_position);
    154   }
    155   number_of_ssa_values_ = ssa_index;
    156 }
    157 
    158 void SsaLivenessAnalysis::ComputeLiveness() {
    159   for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
    160     HBasicBlock* block = it.Current();
    161     block_infos_.Put(
    162         block->GetBlockId(),
    163         new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_));
    164   }
    165 
    166   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
    167   // This method does not handle backward branches for the sets, therefore live_in
    168   // and live_out sets are not yet correct.
    169   ComputeLiveRanges();
    170 
    171   // Do a fixed point calculation to take into account backward branches,
    172   // that will update live_in of loop headers, and therefore live_out and live_in
    173   // of blocks in the loop.
    174   ComputeLiveInAndLiveOutSets();
    175 }
    176 
    177 void SsaLivenessAnalysis::ComputeLiveRanges() {
    178   // Do a post order visit, adding inputs of instructions live in the block where
    179   // that instruction is defined, and killing instructions that are being visited.
    180   for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
    181     HBasicBlock* block = it.Current();
    182 
    183     BitVector* kill = GetKillSet(*block);
    184     BitVector* live_in = GetLiveInSet(*block);
    185 
    186     // Set phi inputs of successors of this block corresponding to this block
    187     // as live_in.
    188     for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
    189       HBasicBlock* successor = block->GetSuccessors().Get(i);
    190       live_in->Union(GetLiveInSet(*successor));
    191       size_t phi_input_index = successor->GetPredecessorIndexOf(block);
    192       for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
    193         HInstruction* phi = inst_it.Current();
    194         HInstruction* input = phi->InputAt(phi_input_index);
    195         input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
    196         // A phi input whose last user is the phi dies at the end of the predecessor block,
    197         // and not at the phi's lifetime position.
    198         live_in->SetBit(input->GetSsaIndex());
    199       }
    200     }
    201 
    202     // Add a range that covers this block to all instructions live_in because of successors.
    203     // Instructions defined in this block will have their start of the range adjusted.
    204     for (uint32_t idx : live_in->Indexes()) {
    205       HInstruction* current = instructions_from_ssa_index_.Get(idx);
    206       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
    207     }
    208 
    209     for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
    210          back_it.Advance()) {
    211       HInstruction* current = back_it.Current();
    212       if (current->HasSsaIndex()) {
    213         // Kill the instruction and shorten its interval.
    214         kill->SetBit(current->GetSsaIndex());
    215         live_in->ClearBit(current->GetSsaIndex());
    216         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
    217       }
    218 
    219       // Process the environment first, because we know their uses come after
    220       // or at the same liveness position of inputs.
    221       for (HEnvironment* environment = current->GetEnvironment();
    222            environment != nullptr;
    223            environment = environment->GetParent()) {
    224         // Handle environment uses. See statements (b) and (c) of the
    225         // SsaLivenessAnalysis.
    226         for (size_t i = 0, e = environment->Size(); i < e; ++i) {
    227           HInstruction* instruction = environment->GetInstructionAt(i);
    228           bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
    229           if (should_be_live) {
    230             DCHECK(instruction->HasSsaIndex());
    231             live_in->SetBit(instruction->GetSsaIndex());
    232           }
    233           if (instruction != nullptr) {
    234             instruction->GetLiveInterval()->AddUse(
    235                 current, environment, i, should_be_live);
    236           }
    237         }
    238       }
    239 
    240       // All inputs of an instruction must be live.
    241       for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
    242         HInstruction* input = current->InputAt(i);
    243         // Some instructions 'inline' their inputs, that is they do not need
    244         // to be materialized.
    245         if (input->HasSsaIndex()) {
    246           live_in->SetBit(input->GetSsaIndex());
    247           input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i);
    248         }
    249       }
    250     }
    251 
    252     // Kill phis defined in this block.
    253     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
    254       HInstruction* current = inst_it.Current();
    255       if (current->HasSsaIndex()) {
    256         kill->SetBit(current->GetSsaIndex());
    257         live_in->ClearBit(current->GetSsaIndex());
    258         LiveInterval* interval = current->GetLiveInterval();
    259         DCHECK((interval->GetFirstRange() == nullptr)
    260                || (interval->GetStart() == current->GetLifetimePosition()));
    261         interval->SetFrom(current->GetLifetimePosition());
    262       }
    263     }
    264 
    265     if (block->IsLoopHeader()) {
    266       size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
    267       // For all live_in instructions at the loop header, we need to create a range
    268       // that covers the full loop.
    269       for (uint32_t idx : live_in->Indexes()) {
    270         HInstruction* current = instructions_from_ssa_index_.Get(idx);
    271         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
    272       }
    273     }
    274   }
    275 }
    276 
    277 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
    278   bool changed;
    279   do {
    280     changed = false;
    281 
    282     for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
    283       const HBasicBlock& block = *it.Current();
    284 
    285       // The live_in set depends on the kill set (which does not
    286       // change in this loop), and the live_out set.  If the live_out
    287       // set does not change, there is no need to update the live_in set.
    288       if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
    289         changed = true;
    290       }
    291     }
    292   } while (changed);
    293 }
    294 
    295 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
    296   BitVector* live_out = GetLiveOutSet(block);
    297   bool changed = false;
    298   // The live_out set of a block is the union of live_in sets of its successors.
    299   for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
    300     HBasicBlock* successor = block.GetSuccessors().Get(i);
    301     if (live_out->Union(GetLiveInSet(*successor))) {
    302       changed = true;
    303     }
    304   }
    305   return changed;
    306 }
    307 
    308 
    309 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
    310   BitVector* live_out = GetLiveOutSet(block);
    311   BitVector* kill = GetKillSet(block);
    312   BitVector* live_in = GetLiveInSet(block);
    313   // If live_out is updated (because of backward branches), we need to make
    314   // sure instructions in live_out are also in live_in, unless they are killed
    315   // by this block.
    316   return live_in->UnionIfNotIn(live_out, kill);
    317 }
    318 
    319 static int RegisterOrLowRegister(Location location) {
    320   return location.IsPair() ? location.low() : location.reg();
    321 }
    322 
    323 int LiveInterval::FindFirstRegisterHint(size_t* free_until,
    324                                         const SsaLivenessAnalysis& liveness) const {
    325   DCHECK(!IsHighInterval());
    326   if (IsTemp()) return kNoRegister;
    327 
    328   if (GetParent() == this && defined_by_ != nullptr) {
    329     // This is the first interval for the instruction. Try to find
    330     // a register based on its definition.
    331     DCHECK_EQ(defined_by_->GetLiveInterval(), this);
    332     int hint = FindHintAtDefinition();
    333     if (hint != kNoRegister && free_until[hint] > GetStart()) {
    334       return hint;
    335     }
    336   }
    337 
    338   if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
    339     // If the start of this interval is at a block boundary, we look at the
    340     // location of the interval in blocks preceding the block this interval
    341     // starts at. If one location is a register we return it as a hint. This
    342     // will avoid a move between the two blocks.
    343     HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
    344     for (size_t i = 0; i < block->GetPredecessors().Size(); ++i) {
    345       size_t position = block->GetPredecessors().Get(i)->GetLifetimeEnd() - 1;
    346       // We know positions above GetStart() do not have a location yet.
    347       if (position < GetStart()) {
    348         LiveInterval* existing = GetParent()->GetSiblingAt(position);
    349         if (existing != nullptr
    350             && existing->HasRegister()
    351             && (free_until[existing->GetRegister()] > GetStart())) {
    352           return existing->GetRegister();
    353         }
    354       }
    355     }
    356   }
    357 
    358   UsePosition* use = first_use_;
    359   size_t start = GetStart();
    360   size_t end = GetEnd();
    361   while (use != nullptr && use->GetPosition() <= end) {
    362     size_t use_position = use->GetPosition();
    363     if (use_position >= start && !use->IsSynthesized()) {
    364       HInstruction* user = use->GetUser();
    365       size_t input_index = use->GetInputIndex();
    366       if (user->IsPhi()) {
    367         // If the phi has a register, try to use the same.
    368         Location phi_location = user->GetLiveInterval()->ToLocation();
    369         if (phi_location.IsRegisterKind()) {
    370           DCHECK(SameRegisterKind(phi_location));
    371           int reg = RegisterOrLowRegister(phi_location);
    372           if (free_until[reg] >= use_position) {
    373             return reg;
    374           }
    375         }
    376         const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
    377         // If the instruction dies at the phi assignment, we can try having the
    378         // same register.
    379         if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
    380           for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
    381             if (i == input_index) {
    382               continue;
    383             }
    384             HInstruction* input = user->InputAt(i);
    385             Location location = input->GetLiveInterval()->GetLocationAt(
    386                 predecessors.Get(i)->GetLifetimeEnd() - 1);
    387             if (location.IsRegisterKind()) {
    388               int reg = RegisterOrLowRegister(location);
    389               if (free_until[reg] >= use_position) {
    390                 return reg;
    391               }
    392             }
    393           }
    394         }
    395       } else {
    396         // If the instruction is expected in a register, try to use it.
    397         LocationSummary* locations = user->GetLocations();
    398         Location expected = locations->InAt(use->GetInputIndex());
    399         // We use the user's lifetime position - 1 (and not `use_position`) because the
    400         // register is blocked at the beginning of the user.
    401         size_t position = user->GetLifetimePosition() - 1;
    402         if (expected.IsRegisterKind()) {
    403           DCHECK(SameRegisterKind(expected));
    404           int reg = RegisterOrLowRegister(expected);
    405           if (free_until[reg] >= position) {
    406             return reg;
    407           }
    408         }
    409       }
    410     }
    411     use = use->GetNext();
    412   }
    413 
    414   return kNoRegister;
    415 }
    416 
    417 int LiveInterval::FindHintAtDefinition() const {
    418   if (defined_by_->IsPhi()) {
    419     // Try to use the same register as one of the inputs.
    420     const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
    421     for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
    422       HInstruction* input = defined_by_->InputAt(i);
    423       size_t end = predecessors.Get(i)->GetLifetimeEnd();
    424       LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1);
    425       if (input_interval->GetEnd() == end) {
    426         // If the input dies at the end of the predecessor, we know its register can
    427         // be reused.
    428         Location input_location = input_interval->ToLocation();
    429         if (input_location.IsRegisterKind()) {
    430           DCHECK(SameRegisterKind(input_location));
    431           return RegisterOrLowRegister(input_location);
    432         }
    433       }
    434     }
    435   } else {
    436     LocationSummary* locations = GetDefinedBy()->GetLocations();
    437     Location out = locations->Out();
    438     if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
    439       // Try to use the same register as the first input.
    440       LiveInterval* input_interval =
    441           GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
    442       if (input_interval->GetEnd() == GetStart()) {
    443         // If the input dies at the start of this instruction, we know its register can
    444         // be reused.
    445         Location location = input_interval->ToLocation();
    446         if (location.IsRegisterKind()) {
    447           DCHECK(SameRegisterKind(location));
    448           return RegisterOrLowRegister(location);
    449         }
    450       }
    451     }
    452   }
    453   return kNoRegister;
    454 }
    455 
    456 bool LiveInterval::SameRegisterKind(Location other) const {
    457   if (IsFloatingPoint()) {
    458     if (IsLowInterval() || IsHighInterval()) {
    459       return other.IsFpuRegisterPair();
    460     } else {
    461       return other.IsFpuRegister();
    462     }
    463   } else {
    464     if (IsLowInterval() || IsHighInterval()) {
    465       return other.IsRegisterPair();
    466     } else {
    467       return other.IsRegister();
    468     }
    469   }
    470 }
    471 
    472 bool LiveInterval::NeedsTwoSpillSlots() const {
    473   return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
    474 }
    475 
    476 Location LiveInterval::ToLocation() const {
    477   DCHECK(!IsHighInterval());
    478   if (HasRegister()) {
    479     if (IsFloatingPoint()) {
    480       if (HasHighInterval()) {
    481         return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
    482       } else {
    483         return Location::FpuRegisterLocation(GetRegister());
    484       }
    485     } else {
    486       if (HasHighInterval()) {
    487         return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
    488       } else {
    489         return Location::RegisterLocation(GetRegister());
    490       }
    491     }
    492   } else {
    493     HInstruction* defined_by = GetParent()->GetDefinedBy();
    494     if (defined_by->IsConstant()) {
    495       return defined_by->GetLocations()->Out();
    496     } else if (GetParent()->HasSpillSlot()) {
    497       if (NeedsTwoSpillSlots()) {
    498         return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
    499       } else {
    500         return Location::StackSlot(GetParent()->GetSpillSlot());
    501       }
    502     } else {
    503       return Location();
    504     }
    505   }
    506 }
    507 
    508 Location LiveInterval::GetLocationAt(size_t position) {
    509   LiveInterval* sibling = GetSiblingAt(position);
    510   DCHECK(sibling != nullptr);
    511   return sibling->ToLocation();
    512 }
    513 
    514 LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
    515   LiveInterval* current = this;
    516   while (current != nullptr && !current->IsDefinedAt(position)) {
    517     current = current->GetNextSibling();
    518   }
    519   return current;
    520 }
    521 
    522 }  // namespace art
    523