Home | History | Annotate | Download | only in Utils
      1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file promotes memory references to be register references.  It promotes
     11 // alloca instructions which only have loads and stores as uses.  An alloca is
     12 // transformed by using iterated dominator frontiers to place PHI nodes, then
     13 // traversing the function in depth-first order to rewrite loads and stores as
     14 // appropriate.
     15 //
     16 // The algorithm used here is based on:
     17 //
     18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
     19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
     20 //   Programming Languages
     21 //   POPL '95. ACM, New York, NY, 62-73.
     22 //
     23 // It has been modified to not explicitly use the DJ graph data structure and to
     24 // directly compute pruned SSA using per-variable liveness information.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     29 #include "llvm/ADT/ArrayRef.h"
     30 #include "llvm/ADT/DenseMap.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/ADT/SmallPtrSet.h"
     33 #include "llvm/ADT/SmallVector.h"
     34 #include "llvm/ADT/Statistic.h"
     35 #include "llvm/Analysis/AliasSetTracker.h"
     36 #include "llvm/Analysis/InstructionSimplify.h"
     37 #include "llvm/Analysis/ValueTracking.h"
     38 #include "llvm/IR/CFG.h"
     39 #include "llvm/IR/Constants.h"
     40 #include "llvm/IR/DIBuilder.h"
     41 #include "llvm/IR/DebugInfo.h"
     42 #include "llvm/IR/DerivedTypes.h"
     43 #include "llvm/IR/Dominators.h"
     44 #include "llvm/IR/Function.h"
     45 #include "llvm/IR/Instructions.h"
     46 #include "llvm/IR/IntrinsicInst.h"
     47 #include "llvm/IR/Metadata.h"
     48 #include "llvm/IR/Module.h"
     49 #include "llvm/Transforms/Utils/Local.h"
     50 #include <algorithm>
     51 #include <queue>
     52 using namespace llvm;
     53 
     54 #define DEBUG_TYPE "mem2reg"
     55 
     56 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
     57 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
     58 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
     59 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
     60 
     61 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
     62   // FIXME: If the memory unit is of pointer or integer type, we can permit
     63   // assignments to subsections of the memory unit.
     64   unsigned AS = AI->getType()->getAddressSpace();
     65 
     66   // Only allow direct and non-volatile loads and stores...
     67   for (const User *U : AI->users()) {
     68     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
     69       // Note that atomic loads can be transformed; atomic semantics do
     70       // not have any meaning for a local alloca.
     71       if (LI->isVolatile())
     72         return false;
     73     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
     74       if (SI->getOperand(0) == AI)
     75         return false; // Don't allow a store OF the AI, only INTO the AI.
     76       // Note that atomic stores can be transformed; atomic semantics do
     77       // not have any meaning for a local alloca.
     78       if (SI->isVolatile())
     79         return false;
     80     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
     81       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
     82           II->getIntrinsicID() != Intrinsic::lifetime_end)
     83         return false;
     84     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
     85       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
     86         return false;
     87       if (!onlyUsedByLifetimeMarkers(BCI))
     88         return false;
     89     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
     90       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
     91         return false;
     92       if (!GEPI->hasAllZeroIndices())
     93         return false;
     94       if (!onlyUsedByLifetimeMarkers(GEPI))
     95         return false;
     96     } else {
     97       return false;
     98     }
     99   }
    100 
    101   return true;
    102 }
    103 
    104 namespace {
    105 
    106 struct AllocaInfo {
    107   SmallVector<BasicBlock *, 32> DefiningBlocks;
    108   SmallVector<BasicBlock *, 32> UsingBlocks;
    109 
    110   StoreInst *OnlyStore;
    111   BasicBlock *OnlyBlock;
    112   bool OnlyUsedInOneBlock;
    113 
    114   Value *AllocaPointerVal;
    115   DbgDeclareInst *DbgDeclare;
    116 
    117   void clear() {
    118     DefiningBlocks.clear();
    119     UsingBlocks.clear();
    120     OnlyStore = nullptr;
    121     OnlyBlock = nullptr;
    122     OnlyUsedInOneBlock = true;
    123     AllocaPointerVal = nullptr;
    124     DbgDeclare = nullptr;
    125   }
    126 
    127   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
    128   /// by the rest of the pass to reason about the uses of this alloca.
    129   void AnalyzeAlloca(AllocaInst *AI) {
    130     clear();
    131 
    132     // As we scan the uses of the alloca instruction, keep track of stores,
    133     // and decide whether all of the loads and stores to the alloca are within
    134     // the same basic block.
    135     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    136       Instruction *User = cast<Instruction>(*UI++);
    137 
    138       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    139         // Remember the basic blocks which define new values for the alloca
    140         DefiningBlocks.push_back(SI->getParent());
    141         AllocaPointerVal = SI->getOperand(0);
    142         OnlyStore = SI;
    143       } else {
    144         LoadInst *LI = cast<LoadInst>(User);
    145         // Otherwise it must be a load instruction, keep track of variable
    146         // reads.
    147         UsingBlocks.push_back(LI->getParent());
    148         AllocaPointerVal = LI;
    149       }
    150 
    151       if (OnlyUsedInOneBlock) {
    152         if (!OnlyBlock)
    153           OnlyBlock = User->getParent();
    154         else if (OnlyBlock != User->getParent())
    155           OnlyUsedInOneBlock = false;
    156       }
    157     }
    158 
    159     DbgDeclare = FindAllocaDbgDeclare(AI);
    160   }
    161 };
    162 
    163 // Data package used by RenamePass()
    164 class RenamePassData {
    165 public:
    166   typedef std::vector<Value *> ValVector;
    167 
    168   RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
    169   RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
    170       : BB(B), Pred(P), Values(V) {}
    171   BasicBlock *BB;
    172   BasicBlock *Pred;
    173   ValVector Values;
    174 
    175   void swap(RenamePassData &RHS) {
    176     std::swap(BB, RHS.BB);
    177     std::swap(Pred, RHS.Pred);
    178     Values.swap(RHS.Values);
    179   }
    180 };
    181 
    182 /// \brief This assigns and keeps a per-bb relative ordering of load/store
    183 /// instructions in the block that directly load or store an alloca.
    184 ///
    185 /// This functionality is important because it avoids scanning large basic
    186 /// blocks multiple times when promoting many allocas in the same block.
    187 class LargeBlockInfo {
    188   /// \brief For each instruction that we track, keep the index of the
    189   /// instruction.
    190   ///
    191   /// The index starts out as the number of the instruction from the start of
    192   /// the block.
    193   DenseMap<const Instruction *, unsigned> InstNumbers;
    194 
    195 public:
    196 
    197   /// This code only looks at accesses to allocas.
    198   static bool isInterestingInstruction(const Instruction *I) {
    199     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
    200            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
    201   }
    202 
    203   /// Get or calculate the index of the specified instruction.
    204   unsigned getInstructionIndex(const Instruction *I) {
    205     assert(isInterestingInstruction(I) &&
    206            "Not a load/store to/from an alloca?");
    207 
    208     // If we already have this instruction number, return it.
    209     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    210     if (It != InstNumbers.end())
    211       return It->second;
    212 
    213     // Scan the whole block to get the instruction.  This accumulates
    214     // information for every interesting instruction in the block, in order to
    215     // avoid gratuitus rescans.
    216     const BasicBlock *BB = I->getParent();
    217     unsigned InstNo = 0;
    218     for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
    219          ++BBI)
    220       if (isInterestingInstruction(BBI))
    221         InstNumbers[BBI] = InstNo++;
    222     It = InstNumbers.find(I);
    223 
    224     assert(It != InstNumbers.end() && "Didn't insert instruction?");
    225     return It->second;
    226   }
    227 
    228   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
    229 
    230   void clear() { InstNumbers.clear(); }
    231 };
    232 
    233 struct PromoteMem2Reg {
    234   /// The alloca instructions being promoted.
    235   std::vector<AllocaInst *> Allocas;
    236   DominatorTree &DT;
    237   DIBuilder DIB;
    238 
    239   /// An AliasSetTracker object to update.  If null, don't update it.
    240   AliasSetTracker *AST;
    241 
    242   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
    243   AssumptionCache *AC;
    244 
    245   /// Reverse mapping of Allocas.
    246   DenseMap<AllocaInst *, unsigned> AllocaLookup;
    247 
    248   /// \brief The PhiNodes we're adding.
    249   ///
    250   /// That map is used to simplify some Phi nodes as we iterate over it, so
    251   /// it should have deterministic iterators.  We could use a MapVector, but
    252   /// since we already maintain a map from BasicBlock* to a stable numbering
    253   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
    254   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
    255 
    256   /// For each PHI node, keep track of which entry in Allocas it corresponds
    257   /// to.
    258   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
    259 
    260   /// If we are updating an AliasSetTracker, then for each alloca that is of
    261   /// pointer type, we keep track of what to copyValue to the inserted PHI
    262   /// nodes here.
    263   std::vector<Value *> PointerAllocaValues;
    264 
    265   /// For each alloca, we keep track of the dbg.declare intrinsic that
    266   /// describes it, if any, so that we can convert it to a dbg.value
    267   /// intrinsic if the alloca gets promoted.
    268   SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
    269 
    270   /// The set of basic blocks the renamer has already visited.
    271   ///
    272   SmallPtrSet<BasicBlock *, 16> Visited;
    273 
    274   /// Contains a stable numbering of basic blocks to avoid non-determinstic
    275   /// behavior.
    276   DenseMap<BasicBlock *, unsigned> BBNumbers;
    277 
    278   /// Maps DomTreeNodes to their level in the dominator tree.
    279   DenseMap<DomTreeNode *, unsigned> DomLevels;
    280 
    281   /// Lazily compute the number of predecessors a block has.
    282   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
    283 
    284 public:
    285   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
    286                  AliasSetTracker *AST, AssumptionCache *AC)
    287       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
    288         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
    289         AST(AST), AC(AC) {}
    290 
    291   void run();
    292 
    293 private:
    294   void RemoveFromAllocasList(unsigned &AllocaIdx) {
    295     Allocas[AllocaIdx] = Allocas.back();
    296     Allocas.pop_back();
    297     --AllocaIdx;
    298   }
    299 
    300   unsigned getNumPreds(const BasicBlock *BB) {
    301     unsigned &NP = BBNumPreds[BB];
    302     if (NP == 0)
    303       NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
    304     return NP - 1;
    305   }
    306 
    307   void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    308                                AllocaInfo &Info);
    309   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    310                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
    311                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
    312   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
    313                   RenamePassData::ValVector &IncVals,
    314                   std::vector<RenamePassData> &Worklist);
    315   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
    316 };
    317 
    318 } // end of anonymous namespace
    319 
    320 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
    321   // Knowing that this alloca is promotable, we know that it's safe to kill all
    322   // instructions except for load and store.
    323 
    324   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
    325     Instruction *I = cast<Instruction>(*UI);
    326     ++UI;
    327     if (isa<LoadInst>(I) || isa<StoreInst>(I))
    328       continue;
    329 
    330     if (!I->getType()->isVoidTy()) {
    331       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
    332       // Follow the use/def chain to erase them now instead of leaving it for
    333       // dead code elimination later.
    334       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
    335         Instruction *Inst = cast<Instruction>(*UUI);
    336         ++UUI;
    337         Inst->eraseFromParent();
    338       }
    339     }
    340     I->eraseFromParent();
    341   }
    342 }
    343 
    344 /// \brief Rewrite as many loads as possible given a single store.
    345 ///
    346 /// When there is only a single store, we can use the domtree to trivially
    347 /// replace all of the dominated loads with the stored value. Do so, and return
    348 /// true if this has successfully promoted the alloca entirely. If this returns
    349 /// false there were some loads which were not dominated by the single store
    350 /// and thus must be phi-ed with undef. We fall back to the standard alloca
    351 /// promotion algorithm in that case.
    352 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
    353                                      LargeBlockInfo &LBI,
    354                                      DominatorTree &DT,
    355                                      AliasSetTracker *AST) {
    356   StoreInst *OnlyStore = Info.OnlyStore;
    357   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
    358   BasicBlock *StoreBB = OnlyStore->getParent();
    359   int StoreIndex = -1;
    360 
    361   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    362   Info.UsingBlocks.clear();
    363 
    364   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    365     Instruction *UserInst = cast<Instruction>(*UI++);
    366     if (!isa<LoadInst>(UserInst)) {
    367       assert(UserInst == OnlyStore && "Should only have load/stores");
    368       continue;
    369     }
    370     LoadInst *LI = cast<LoadInst>(UserInst);
    371 
    372     // Okay, if we have a load from the alloca, we want to replace it with the
    373     // only value stored to the alloca.  We can do this if the value is
    374     // dominated by the store.  If not, we use the rest of the mem2reg machinery
    375     // to insert the phi nodes as needed.
    376     if (!StoringGlobalVal) { // Non-instructions are always dominated.
    377       if (LI->getParent() == StoreBB) {
    378         // If we have a use that is in the same block as the store, compare the
    379         // indices of the two instructions to see which one came first.  If the
    380         // load came before the store, we can't handle it.
    381         if (StoreIndex == -1)
    382           StoreIndex = LBI.getInstructionIndex(OnlyStore);
    383 
    384         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
    385           // Can't handle this load, bail out.
    386           Info.UsingBlocks.push_back(StoreBB);
    387           continue;
    388         }
    389 
    390       } else if (LI->getParent() != StoreBB &&
    391                  !DT.dominates(StoreBB, LI->getParent())) {
    392         // If the load and store are in different blocks, use BB dominance to
    393         // check their relationships.  If the store doesn't dom the use, bail
    394         // out.
    395         Info.UsingBlocks.push_back(LI->getParent());
    396         continue;
    397       }
    398     }
    399 
    400     // Otherwise, we *can* safely rewrite this load.
    401     Value *ReplVal = OnlyStore->getOperand(0);
    402     // If the replacement value is the load, this must occur in unreachable
    403     // code.
    404     if (ReplVal == LI)
    405       ReplVal = UndefValue::get(LI->getType());
    406     LI->replaceAllUsesWith(ReplVal);
    407     if (AST && LI->getType()->isPointerTy())
    408       AST->deleteValue(LI);
    409     LI->eraseFromParent();
    410     LBI.deleteValue(LI);
    411   }
    412 
    413   // Finally, after the scan, check to see if the store is all that is left.
    414   if (!Info.UsingBlocks.empty())
    415     return false; // If not, we'll have to fall back for the remainder.
    416 
    417   // Record debuginfo for the store and remove the declaration's
    418   // debuginfo.
    419   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    420     DIBuilder DIB(*AI->getParent()->getParent()->getParent(),
    421                   /*AllowUnresolved*/ false);
    422     ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
    423     DDI->eraseFromParent();
    424     LBI.deleteValue(DDI);
    425   }
    426   // Remove the (now dead) store and alloca.
    427   Info.OnlyStore->eraseFromParent();
    428   LBI.deleteValue(Info.OnlyStore);
    429 
    430   if (AST)
    431     AST->deleteValue(AI);
    432   AI->eraseFromParent();
    433   LBI.deleteValue(AI);
    434   return true;
    435 }
    436 
    437 /// Many allocas are only used within a single basic block.  If this is the
    438 /// case, avoid traversing the CFG and inserting a lot of potentially useless
    439 /// PHI nodes by just performing a single linear pass over the basic block
    440 /// using the Alloca.
    441 ///
    442 /// If we cannot promote this alloca (because it is read before it is written),
    443 /// return true.  This is necessary in cases where, due to control flow, the
    444 /// alloca is potentially undefined on some control flow paths.  e.g. code like
    445 /// this is potentially correct:
    446 ///
    447 ///   for (...) { if (c) { A = undef; undef = B; } }
    448 ///
    449 /// ... so long as A is not used before undef is set.
    450 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
    451                                      LargeBlockInfo &LBI,
    452                                      AliasSetTracker *AST) {
    453   // The trickiest case to handle is when we have large blocks. Because of this,
    454   // this code is optimized assuming that large blocks happen.  This does not
    455   // significantly pessimize the small block case.  This uses LargeBlockInfo to
    456   // make it efficient to get the index of various operations in the block.
    457 
    458   // Walk the use-def list of the alloca, getting the locations of all stores.
    459   typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
    460   StoresByIndexTy StoresByIndex;
    461 
    462   for (User *U : AI->users())
    463     if (StoreInst *SI = dyn_cast<StoreInst>(U))
    464       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
    465 
    466   // Sort the stores by their index, making it efficient to do a lookup with a
    467   // binary search.
    468   std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
    469 
    470   // Walk all of the loads from this alloca, replacing them with the nearest
    471   // store above them, if any.
    472   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    473     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    474     if (!LI)
    475       continue;
    476 
    477     unsigned LoadIdx = LBI.getInstructionIndex(LI);
    478 
    479     // Find the nearest store that has a lower index than this load.
    480     StoresByIndexTy::iterator I =
    481         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
    482                          std::make_pair(LoadIdx,
    483                                         static_cast<StoreInst *>(nullptr)),
    484                          less_first());
    485 
    486     if (I == StoresByIndex.begin())
    487       // If there is no store before this load, the load takes the undef value.
    488       LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    489     else
    490       // Otherwise, there was a store before this load, the load takes its value.
    491       LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0));
    492 
    493     if (AST && LI->getType()->isPointerTy())
    494       AST->deleteValue(LI);
    495     LI->eraseFromParent();
    496     LBI.deleteValue(LI);
    497   }
    498 
    499   // Remove the (now dead) stores and alloca.
    500   while (!AI->use_empty()) {
    501     StoreInst *SI = cast<StoreInst>(AI->user_back());
    502     // Record debuginfo for the store before removing it.
    503     if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    504       DIBuilder DIB(*AI->getParent()->getParent()->getParent(),
    505                     /*AllowUnresolved*/ false);
    506       ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    507     }
    508     SI->eraseFromParent();
    509     LBI.deleteValue(SI);
    510   }
    511 
    512   if (AST)
    513     AST->deleteValue(AI);
    514   AI->eraseFromParent();
    515   LBI.deleteValue(AI);
    516 
    517   // The alloca's debuginfo can be removed as well.
    518   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    519     DDI->eraseFromParent();
    520     LBI.deleteValue(DDI);
    521   }
    522 
    523   ++NumLocalPromoted;
    524 }
    525 
    526 void PromoteMem2Reg::run() {
    527   Function &F = *DT.getRoot()->getParent();
    528 
    529   if (AST)
    530     PointerAllocaValues.resize(Allocas.size());
    531   AllocaDbgDeclares.resize(Allocas.size());
    532 
    533   AllocaInfo Info;
    534   LargeBlockInfo LBI;
    535 
    536   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    537     AllocaInst *AI = Allocas[AllocaNum];
    538 
    539     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
    540     assert(AI->getParent()->getParent() == &F &&
    541            "All allocas should be in the same function, which is same as DF!");
    542 
    543     removeLifetimeIntrinsicUsers(AI);
    544 
    545     if (AI->use_empty()) {
    546       // If there are no uses of the alloca, just delete it now.
    547       if (AST)
    548         AST->deleteValue(AI);
    549       AI->eraseFromParent();
    550 
    551       // Remove the alloca from the Allocas list, since it has been processed
    552       RemoveFromAllocasList(AllocaNum);
    553       ++NumDeadAlloca;
    554       continue;
    555     }
    556 
    557     // Calculate the set of read and write-locations for each alloca.  This is
    558     // analogous to finding the 'uses' and 'definitions' of each variable.
    559     Info.AnalyzeAlloca(AI);
    560 
    561     // If there is only a single store to this value, replace any loads of
    562     // it that are directly dominated by the definition with the value stored.
    563     if (Info.DefiningBlocks.size() == 1) {
    564       if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
    565         // The alloca has been processed, move on.
    566         RemoveFromAllocasList(AllocaNum);
    567         ++NumSingleStore;
    568         continue;
    569       }
    570     }
    571 
    572     // If the alloca is only read and written in one basic block, just perform a
    573     // linear sweep over the block to eliminate it.
    574     if (Info.OnlyUsedInOneBlock) {
    575       promoteSingleBlockAlloca(AI, Info, LBI, AST);
    576 
    577       // The alloca has been processed, move on.
    578       RemoveFromAllocasList(AllocaNum);
    579       continue;
    580     }
    581 
    582     // If we haven't computed dominator tree levels, do so now.
    583     if (DomLevels.empty()) {
    584       SmallVector<DomTreeNode *, 32> Worklist;
    585 
    586       DomTreeNode *Root = DT.getRootNode();
    587       DomLevels[Root] = 0;
    588       Worklist.push_back(Root);
    589 
    590       while (!Worklist.empty()) {
    591         DomTreeNode *Node = Worklist.pop_back_val();
    592         unsigned ChildLevel = DomLevels[Node] + 1;
    593         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
    594              CI != CE; ++CI) {
    595           DomLevels[*CI] = ChildLevel;
    596           Worklist.push_back(*CI);
    597         }
    598       }
    599     }
    600 
    601     // If we haven't computed a numbering for the BB's in the function, do so
    602     // now.
    603     if (BBNumbers.empty()) {
    604       unsigned ID = 0;
    605       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    606         BBNumbers[I] = ID++;
    607     }
    608 
    609     // If we have an AST to keep updated, remember some pointer value that is
    610     // stored into the alloca.
    611     if (AST)
    612       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
    613 
    614     // Remember the dbg.declare intrinsic describing this alloca, if any.
    615     if (Info.DbgDeclare)
    616       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
    617 
    618     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    619     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
    620 
    621     // At this point, we're committed to promoting the alloca using IDF's, and
    622     // the standard SSA construction algorithm.  Determine which blocks need PHI
    623     // nodes and see if we can optimize out some work by avoiding insertion of
    624     // dead phi nodes.
    625     DetermineInsertionPoint(AI, AllocaNum, Info);
    626   }
    627 
    628   if (Allocas.empty())
    629     return; // All of the allocas must have been trivial!
    630 
    631   LBI.clear();
    632 
    633   // Set the incoming values for the basic block to be null values for all of
    634   // the alloca's.  We do this in case there is a load of a value that has not
    635   // been stored yet.  In this case, it will get this null value.
    636   //
    637   RenamePassData::ValVector Values(Allocas.size());
    638   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    639     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
    640 
    641   // Walks all basic blocks in the function performing the SSA rename algorithm
    642   // and inserting the phi nodes we marked as necessary
    643   //
    644   std::vector<RenamePassData> RenamePassWorkList;
    645   RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values));
    646   do {
    647     RenamePassData RPD;
    648     RPD.swap(RenamePassWorkList.back());
    649     RenamePassWorkList.pop_back();
    650     // RenamePass may add new worklist entries.
    651     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
    652   } while (!RenamePassWorkList.empty());
    653 
    654   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
    655   Visited.clear();
    656 
    657   // Remove the allocas themselves from the function.
    658   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
    659     Instruction *A = Allocas[i];
    660 
    661     // If there are any uses of the alloca instructions left, they must be in
    662     // unreachable basic blocks that were not processed by walking the dominator
    663     // tree. Just delete the users now.
    664     if (!A->use_empty())
    665       A->replaceAllUsesWith(UndefValue::get(A->getType()));
    666     if (AST)
    667       AST->deleteValue(A);
    668     A->eraseFromParent();
    669   }
    670 
    671   const DataLayout &DL = F.getParent()->getDataLayout();
    672 
    673   // Remove alloca's dbg.declare instrinsics from the function.
    674   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
    675     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
    676       DDI->eraseFromParent();
    677 
    678   // Loop over all of the PHI nodes and see if there are any that we can get
    679   // rid of because they merge all of the same incoming values.  This can
    680   // happen due to undef values coming into the PHI nodes.  This process is
    681   // iterative, because eliminating one PHI node can cause others to be removed.
    682   bool EliminatedAPHI = true;
    683   while (EliminatedAPHI) {
    684     EliminatedAPHI = false;
    685 
    686     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
    687     // simplify and RAUW them as we go.  If it was not, we could add uses to
    688     // the values we replace with in a non-deterministic order, thus creating
    689     // non-deterministic def->use chains.
    690     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
    691              I = NewPhiNodes.begin(),
    692              E = NewPhiNodes.end();
    693          I != E;) {
    694       PHINode *PN = I->second;
    695 
    696       // If this PHI node merges one value and/or undefs, get the value.
    697       if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) {
    698         if (AST && PN->getType()->isPointerTy())
    699           AST->deleteValue(PN);
    700         PN->replaceAllUsesWith(V);
    701         PN->eraseFromParent();
    702         NewPhiNodes.erase(I++);
    703         EliminatedAPHI = true;
    704         continue;
    705       }
    706       ++I;
    707     }
    708   }
    709 
    710   // At this point, the renamer has added entries to PHI nodes for all reachable
    711   // code.  Unfortunately, there may be unreachable blocks which the renamer
    712   // hasn't traversed.  If this is the case, the PHI nodes may not
    713   // have incoming values for all predecessors.  Loop over all PHI nodes we have
    714   // created, inserting undef values if they are missing any incoming values.
    715   //
    716   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
    717            I = NewPhiNodes.begin(),
    718            E = NewPhiNodes.end();
    719        I != E; ++I) {
    720     // We want to do this once per basic block.  As such, only process a block
    721     // when we find the PHI that is the first entry in the block.
    722     PHINode *SomePHI = I->second;
    723     BasicBlock *BB = SomePHI->getParent();
    724     if (&BB->front() != SomePHI)
    725       continue;
    726 
    727     // Only do work here if there the PHI nodes are missing incoming values.  We
    728     // know that all PHI nodes that were inserted in a block will have the same
    729     // number of incoming values, so we can just check any of them.
    730     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
    731       continue;
    732 
    733     // Get the preds for BB.
    734     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
    735 
    736     // Ok, now we know that all of the PHI nodes are missing entries for some
    737     // basic blocks.  Start by sorting the incoming predecessors for efficient
    738     // access.
    739     std::sort(Preds.begin(), Preds.end());
    740 
    741     // Now we loop through all BB's which have entries in SomePHI and remove
    742     // them from the Preds list.
    743     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
    744       // Do a log(n) search of the Preds list for the entry we want.
    745       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
    746           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
    747       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
    748              "PHI node has entry for a block which is not a predecessor!");
    749 
    750       // Remove the entry
    751       Preds.erase(EntIt);
    752     }
    753 
    754     // At this point, the blocks left in the preds list must have dummy
    755     // entries inserted into every PHI nodes for the block.  Update all the phi
    756     // nodes in this block that we are inserting (there could be phis before
    757     // mem2reg runs).
    758     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    759     BasicBlock::iterator BBI = BB->begin();
    760     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
    761            SomePHI->getNumIncomingValues() == NumBadPreds) {
    762       Value *UndefVal = UndefValue::get(SomePHI->getType());
    763       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
    764         SomePHI->addIncoming(UndefVal, Preds[pred]);
    765     }
    766   }
    767 
    768   NewPhiNodes.clear();
    769 }
    770 
    771 /// \brief Determine which blocks the value is live in.
    772 ///
    773 /// These are blocks which lead to uses.  Knowing this allows us to avoid
    774 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
    775 /// inserted phi nodes would be dead).
    776 void PromoteMem2Reg::ComputeLiveInBlocks(
    777     AllocaInst *AI, AllocaInfo &Info,
    778     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
    779     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
    780 
    781   // To determine liveness, we must iterate through the predecessors of blocks
    782   // where the def is live.  Blocks are added to the worklist if we need to
    783   // check their predecessors.  Start with all the using blocks.
    784   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
    785                                                     Info.UsingBlocks.end());
    786 
    787   // If any of the using blocks is also a definition block, check to see if the
    788   // definition occurs before or after the use.  If it happens before the use,
    789   // the value isn't really live-in.
    790   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    791     BasicBlock *BB = LiveInBlockWorklist[i];
    792     if (!DefBlocks.count(BB))
    793       continue;
    794 
    795     // Okay, this is a block that both uses and defines the value.  If the first
    796     // reference to the alloca is a def (store), then we know it isn't live-in.
    797     for (BasicBlock::iterator I = BB->begin();; ++I) {
    798       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    799         if (SI->getOperand(1) != AI)
    800           continue;
    801 
    802         // We found a store to the alloca before a load.  The alloca is not
    803         // actually live-in here.
    804         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
    805         LiveInBlockWorklist.pop_back();
    806         --i, --e;
    807         break;
    808       }
    809 
    810       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    811         if (LI->getOperand(0) != AI)
    812           continue;
    813 
    814         // Okay, we found a load before a store to the alloca.  It is actually
    815         // live into this block.
    816         break;
    817       }
    818     }
    819   }
    820 
    821   // Now that we have a set of blocks where the phi is live-in, recursively add
    822   // their predecessors until we find the full region the value is live.
    823   while (!LiveInBlockWorklist.empty()) {
    824     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
    825 
    826     // The block really is live in here, insert it into the set.  If already in
    827     // the set, then it has already been processed.
    828     if (!LiveInBlocks.insert(BB).second)
    829       continue;
    830 
    831     // Since the value is live into BB, it is either defined in a predecessor or
    832     // live into it to.  Add the preds to the worklist unless they are a
    833     // defining block.
    834     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    835       BasicBlock *P = *PI;
    836 
    837       // The value is not live into a predecessor if it defines the value.
    838       if (DefBlocks.count(P))
    839         continue;
    840 
    841       // Otherwise it is, add to the worklist.
    842       LiveInBlockWorklist.push_back(P);
    843     }
    844   }
    845 }
    846 
    847 /// At this point, we're committed to promoting the alloca using IDF's, and the
    848 /// standard SSA construction algorithm.  Determine which blocks need phi nodes
    849 /// and see if we can optimize out some work by avoiding insertion of dead phi
    850 /// nodes.
    851 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    852                                              AllocaInfo &Info) {
    853   // Unique the set of defining blocks for efficient lookup.
    854   SmallPtrSet<BasicBlock *, 32> DefBlocks;
    855   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
    856 
    857   // Determine which blocks the value is live in.  These are blocks which lead
    858   // to uses.
    859   SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
    860   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
    861 
    862   // Use a priority queue keyed on dominator tree level so that inserted nodes
    863   // are handled from the bottom of the dominator tree upwards.
    864   typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
    865   typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
    866                               less_second> IDFPriorityQueue;
    867   IDFPriorityQueue PQ;
    868 
    869   for (BasicBlock *BB : DefBlocks) {
    870     if (DomTreeNode *Node = DT.getNode(BB))
    871       PQ.push(std::make_pair(Node, DomLevels[Node]));
    872   }
    873 
    874   SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
    875   SmallVector<DomTreeNode *, 32> Worklist;
    876   SmallPtrSet<DomTreeNode *, 32> VisitedPQ;
    877   SmallPtrSet<DomTreeNode *, 32> VisitedWorklist;
    878 
    879   while (!PQ.empty()) {
    880     DomTreeNodePair RootPair = PQ.top();
    881     PQ.pop();
    882     DomTreeNode *Root = RootPair.first;
    883     unsigned RootLevel = RootPair.second;
    884 
    885     // Walk all dominator tree children of Root, inspecting their CFG edges with
    886     // targets elsewhere on the dominator tree. Only targets whose level is at
    887     // most Root's level are added to the iterated dominance frontier of the
    888     // definition set.
    889 
    890     Worklist.clear();
    891     Worklist.push_back(Root);
    892     VisitedWorklist.insert(Root);
    893 
    894     while (!Worklist.empty()) {
    895       DomTreeNode *Node = Worklist.pop_back_val();
    896       BasicBlock *BB = Node->getBlock();
    897 
    898       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
    899            ++SI) {
    900         DomTreeNode *SuccNode = DT.getNode(*SI);
    901 
    902         // Quickly skip all CFG edges that are also dominator tree edges instead
    903         // of catching them below.
    904         if (SuccNode->getIDom() == Node)
    905           continue;
    906 
    907         unsigned SuccLevel = DomLevels[SuccNode];
    908         if (SuccLevel > RootLevel)
    909           continue;
    910 
    911         if (!VisitedPQ.insert(SuccNode).second)
    912           continue;
    913 
    914         BasicBlock *SuccBB = SuccNode->getBlock();
    915         if (!LiveInBlocks.count(SuccBB))
    916           continue;
    917 
    918         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
    919         if (!DefBlocks.count(SuccBB))
    920           PQ.push(std::make_pair(SuccNode, SuccLevel));
    921       }
    922 
    923       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
    924            ++CI) {
    925         if (VisitedWorklist.insert(*CI).second)
    926           Worklist.push_back(*CI);
    927       }
    928     }
    929   }
    930 
    931   if (DFBlocks.size() > 1)
    932     std::sort(DFBlocks.begin(), DFBlocks.end());
    933 
    934   unsigned CurrentVersion = 0;
    935   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
    936     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
    937 }
    938 
    939 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
    940 ///
    941 /// Returns true if there wasn't already a phi-node for that variable
    942 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
    943                                   unsigned &Version) {
    944   // Look up the basic-block in question.
    945   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
    946 
    947   // If the BB already has a phi node added for the i'th alloca then we're done!
    948   if (PN)
    949     return false;
    950 
    951   // Create a PhiNode using the dereferenced type... and add the phi-node to the
    952   // BasicBlock.
    953   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
    954                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
    955                        BB->begin());
    956   ++NumPHIInsert;
    957   PhiToAllocaMap[PN] = AllocaNo;
    958 
    959   if (AST && PN->getType()->isPointerTy())
    960     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
    961 
    962   return true;
    963 }
    964 
    965 /// \brief Recursively traverse the CFG of the function, renaming loads and
    966 /// stores to the allocas which we are promoting.
    967 ///
    968 /// IncomingVals indicates what value each Alloca contains on exit from the
    969 /// predecessor block Pred.
    970 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
    971                                 RenamePassData::ValVector &IncomingVals,
    972                                 std::vector<RenamePassData> &Worklist) {
    973 NextIteration:
    974   // If we are inserting any phi nodes into this BB, they will already be in the
    975   // block.
    976   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
    977     // If we have PHI nodes to update, compute the number of edges from Pred to
    978     // BB.
    979     if (PhiToAllocaMap.count(APN)) {
    980       // We want to be able to distinguish between PHI nodes being inserted by
    981       // this invocation of mem2reg from those phi nodes that already existed in
    982       // the IR before mem2reg was run.  We determine that APN is being inserted
    983       // because it is missing incoming edges.  All other PHI nodes being
    984       // inserted by this pass of mem2reg will have the same number of incoming
    985       // operands so far.  Remember this count.
    986       unsigned NewPHINumOperands = APN->getNumOperands();
    987 
    988       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
    989       assert(NumEdges && "Must be at least one edge from Pred to BB!");
    990 
    991       // Add entries for all the phis.
    992       BasicBlock::iterator PNI = BB->begin();
    993       do {
    994         unsigned AllocaNo = PhiToAllocaMap[APN];
    995 
    996         // Add N incoming values to the PHI node.
    997         for (unsigned i = 0; i != NumEdges; ++i)
    998           APN->addIncoming(IncomingVals[AllocaNo], Pred);
    999 
   1000         // The currently active variable for this block is now the PHI.
   1001         IncomingVals[AllocaNo] = APN;
   1002 
   1003         // Get the next phi node.
   1004         ++PNI;
   1005         APN = dyn_cast<PHINode>(PNI);
   1006         if (!APN)
   1007           break;
   1008 
   1009         // Verify that it is missing entries.  If not, it is not being inserted
   1010         // by this mem2reg invocation so we want to ignore it.
   1011       } while (APN->getNumOperands() == NewPHINumOperands);
   1012     }
   1013   }
   1014 
   1015   // Don't revisit blocks.
   1016   if (!Visited.insert(BB).second)
   1017     return;
   1018 
   1019   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
   1020     Instruction *I = II++; // get the instruction, increment iterator
   1021 
   1022     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1023       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
   1024       if (!Src)
   1025         continue;
   1026 
   1027       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
   1028       if (AI == AllocaLookup.end())
   1029         continue;
   1030 
   1031       Value *V = IncomingVals[AI->second];
   1032 
   1033       // Anything using the load now uses the current value.
   1034       LI->replaceAllUsesWith(V);
   1035       if (AST && LI->getType()->isPointerTy())
   1036         AST->deleteValue(LI);
   1037       BB->getInstList().erase(LI);
   1038     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1039       // Delete this instruction and mark the name as the current holder of the
   1040       // value
   1041       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
   1042       if (!Dest)
   1043         continue;
   1044 
   1045       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
   1046       if (ai == AllocaLookup.end())
   1047         continue;
   1048 
   1049       // what value were we writing?
   1050       IncomingVals[ai->second] = SI->getOperand(0);
   1051       // Record debuginfo for the store before removing it.
   1052       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
   1053         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
   1054       BB->getInstList().erase(SI);
   1055     }
   1056   }
   1057 
   1058   // 'Recurse' to our successors.
   1059   succ_iterator I = succ_begin(BB), E = succ_end(BB);
   1060   if (I == E)
   1061     return;
   1062 
   1063   // Keep track of the successors so we don't visit the same successor twice
   1064   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
   1065 
   1066   // Handle the first successor without using the worklist.
   1067   VisitedSuccs.insert(*I);
   1068   Pred = BB;
   1069   BB = *I;
   1070   ++I;
   1071 
   1072   for (; I != E; ++I)
   1073     if (VisitedSuccs.insert(*I).second)
   1074       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
   1075 
   1076   goto NextIteration;
   1077 }
   1078 
   1079 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
   1080                            AliasSetTracker *AST, AssumptionCache *AC) {
   1081   // If there is nothing to do, bail out...
   1082   if (Allocas.empty())
   1083     return;
   1084 
   1085   PromoteMem2Reg(Allocas, DT, AST, AC).run();
   1086 }
   1087