1 /* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkBitmapCache.h" 9 #include "SkBitmapProcState.h" 10 #include "SkColorPriv.h" 11 #include "SkFilterProc.h" 12 #include "SkPaint.h" 13 #include "SkShader.h" // for tilemodes 14 #include "SkUtilsArm.h" 15 #include "SkBitmapScaler.h" 16 #include "SkMipMap.h" 17 #include "SkPixelRef.h" 18 #include "SkImageEncoder.h" 19 #include "SkResourceCache.h" 20 21 #if !SK_ARM_NEON_IS_NONE 22 // These are defined in src/opts/SkBitmapProcState_arm_neon.cpp 23 extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; 24 extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; 25 extern void S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*); 26 extern void Clamp_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int); 27 extern void Repeat_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int); 28 extern void SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*); 29 extern void SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int); 30 extern void Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int); 31 #endif 32 33 extern void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const SkBitmapProcState&, int, int, uint32_t*, int); 34 35 #define NAME_WRAP(x) x 36 #include "SkBitmapProcState_filter.h" 37 #include "SkBitmapProcState_procs.h" 38 39 /////////////////////////////////////////////////////////////////////////////// 40 41 // true iff the matrix contains, at most, scale and translate elements 42 static bool matrix_only_scale_translate(const SkMatrix& m) { 43 return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask); 44 } 45 46 /** 47 * For the purposes of drawing bitmaps, if a matrix is "almost" translate 48 * go ahead and treat it as if it were, so that subsequent code can go fast. 49 */ 50 static bool just_trans_clamp(const SkMatrix& matrix, const SkBitmap& bitmap) { 51 SkASSERT(matrix_only_scale_translate(matrix)); 52 53 if (matrix.getType() & SkMatrix::kScale_Mask) { 54 SkRect src, dst; 55 bitmap.getBounds(&src); 56 57 // Can't call mapRect(), since that will fix up inverted rectangles, 58 // e.g. when scale is negative, and we don't want to return true for 59 // those. 60 matrix.mapPoints(SkTCast<SkPoint*>(&dst), 61 SkTCast<const SkPoint*>(&src), 62 2); 63 64 // Now round all 4 edges to device space, and then compare the device 65 // width/height to the original. Note: we must map all 4 and subtract 66 // rather than map the "width" and compare, since we care about the 67 // phase (in pixel space) that any translate in the matrix might impart. 68 SkIRect idst; 69 dst.round(&idst); 70 return idst.width() == bitmap.width() && idst.height() == bitmap.height(); 71 } 72 // if we got here, we're either kTranslate_Mask or identity 73 return true; 74 } 75 76 static bool just_trans_general(const SkMatrix& matrix) { 77 SkASSERT(matrix_only_scale_translate(matrix)); 78 79 if (matrix.getType() & SkMatrix::kScale_Mask) { 80 const SkScalar tol = SK_Scalar1 / 32768; 81 82 if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) { 83 return false; 84 } 85 if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) { 86 return false; 87 } 88 } 89 // if we got here, treat us as either kTranslate_Mask or identity 90 return true; 91 } 92 93 /////////////////////////////////////////////////////////////////////////////// 94 95 static bool valid_for_filtering(unsigned dimension) { 96 // for filtering, width and height must fit in 14bits, since we use steal 97 // 2 bits from each to store our 4bit subpixel data 98 return (dimension & ~0x3FFF) == 0; 99 } 100 101 // Check to see that the size of the bitmap that would be produced by 102 // scaling by the given inverted matrix is less than the maximum allowed. 103 static inline bool cache_size_okay(const SkBitmap& bm, const SkMatrix& invMat) { 104 size_t maximumAllocation = SkResourceCache::GetEffectiveSingleAllocationByteLimit(); 105 if (0 == maximumAllocation) { 106 return true; 107 } 108 // float matrixScaleFactor = 1.0 / (invMat.scaleX * invMat.scaleY); 109 // return ((origBitmapSize * matrixScaleFactor) < maximumAllocationSize); 110 // Skip the division step: 111 return bm.info().getSafeSize(bm.info().minRowBytes()) 112 < (maximumAllocation * invMat.getScaleX() * invMat.getScaleY()); 113 } 114 115 /* 116 * High quality is implemented by performing up-right scale-only filtering and then 117 * using bilerp for any remaining transformations. 118 */ 119 void SkBitmapProcState::processHQRequest() { 120 SkASSERT(kHigh_SkFilterQuality == fFilterLevel); 121 122 // Our default return state is to downgrade the request to Medium, w/ or w/o setting fBitmap 123 // to a valid bitmap. If we succeed, we will set this to Low instead. 124 fFilterLevel = kMedium_SkFilterQuality; 125 126 if (kN32_SkColorType != fOrigBitmap.colorType() || !cache_size_okay(fOrigBitmap, fInvMatrix) || 127 fInvMatrix.hasPerspective()) 128 { 129 return; // can't handle the reqeust 130 } 131 132 SkScalar invScaleX = fInvMatrix.getScaleX(); 133 SkScalar invScaleY = fInvMatrix.getScaleY(); 134 if (fInvMatrix.getType() & SkMatrix::kAffine_Mask) { 135 SkSize scale; 136 if (!fInvMatrix.decomposeScale(&scale)) { 137 return; 138 } 139 invScaleX = scale.width(); 140 invScaleY = scale.height(); 141 } 142 if (SkScalarNearlyEqual(invScaleX, 1) && SkScalarNearlyEqual(invScaleY, 1)) { 143 return; // no need for HQ 144 } 145 146 SkScalar trueDestWidth = fOrigBitmap.width() / invScaleX; 147 SkScalar trueDestHeight = fOrigBitmap.height() / invScaleY; 148 SkScalar roundedDestWidth = SkScalarRoundToScalar(trueDestWidth); 149 SkScalar roundedDestHeight = SkScalarRoundToScalar(trueDestHeight); 150 151 if (!SkBitmapCache::Find(fOrigBitmap, roundedDestWidth, roundedDestHeight, &fScaledBitmap)) { 152 if (!SkBitmapScaler::Resize(&fScaledBitmap, 153 fOrigBitmap, 154 SkBitmapScaler::RESIZE_BEST, 155 roundedDestWidth, 156 roundedDestHeight, 157 SkResourceCache::GetAllocator())) { 158 return; // we failed to create fScaledBitmap 159 } 160 161 SkASSERT(fScaledBitmap.getPixels()); 162 fScaledBitmap.setImmutable(); 163 SkBitmapCache::Add(fOrigBitmap, roundedDestWidth, roundedDestHeight, fScaledBitmap); 164 } 165 166 SkASSERT(fScaledBitmap.getPixels()); 167 fBitmap = &fScaledBitmap; 168 169 fInvMatrix.postScale(roundedDestWidth / fOrigBitmap.width(), 170 roundedDestHeight / fOrigBitmap.height()); 171 fFilterLevel = kLow_SkFilterQuality; 172 } 173 174 /* 175 * Modulo internal errors, this should always succeed *if* the matrix is downscaling 176 * (in this case, we have the inverse, so it succeeds if fInvMatrix is upscaling) 177 */ 178 void SkBitmapProcState::processMediumRequest() { 179 SkASSERT(kMedium_SkFilterQuality == fFilterLevel); 180 181 // Our default return state is to downgrade the request to Low, w/ or w/o setting fBitmap 182 // to a valid bitmap. 183 fFilterLevel = kLow_SkFilterQuality; 184 185 SkSize invScaleSize; 186 if (!fInvMatrix.decomposeScale(&invScaleSize, NULL)) { 187 return; 188 } 189 SkScalar invScale = SkScalarSqrt(invScaleSize.width() * invScaleSize.height()); 190 191 if (invScale > SK_Scalar1) { 192 fCurrMip.reset(SkMipMapCache::FindAndRef(fOrigBitmap)); 193 if (NULL == fCurrMip.get()) { 194 fCurrMip.reset(SkMipMapCache::AddAndRef(fOrigBitmap)); 195 if (NULL == fCurrMip.get()) { 196 return; 197 } 198 } 199 // diagnostic for a crasher... 200 if (NULL == fCurrMip->data()) { 201 sk_throw(); 202 } 203 204 SkScalar levelScale = SkScalarInvert(invScale); 205 SkMipMap::Level level; 206 if (fCurrMip->extractLevel(levelScale, &level)) { 207 SkScalar invScaleFixup = level.fScale; 208 fInvMatrix.postScale(invScaleFixup, invScaleFixup); 209 210 const SkImageInfo info = fOrigBitmap.info().makeWH(level.fWidth, level.fHeight); 211 // todo: if we could wrap the fCurrMip in a pixelref, then we could just install 212 // that here, and not need to explicitly track it ourselves. 213 fScaledBitmap.installPixels(info, level.fPixels, level.fRowBytes); 214 fBitmap = &fScaledBitmap; 215 } else { 216 // failed to extract, so release the mipmap 217 fCurrMip.reset(NULL); 218 } 219 } 220 } 221 222 bool SkBitmapProcState::lockBaseBitmap() { 223 // TODO(reed): use bitmap cache here? 224 fScaledBitmap = fOrigBitmap; 225 fScaledBitmap.lockPixels(); 226 if (NULL == fScaledBitmap.getPixels()) { 227 return false; 228 } 229 fBitmap = &fScaledBitmap; 230 return true; 231 } 232 233 static bool valid_for_drawing(const SkBitmap& bm) { 234 if (0 == bm.width() || 0 == bm.height()) { 235 return false; // nothing to draw 236 } 237 if (NULL == bm.pixelRef()) { 238 return false; // no pixels to read 239 } 240 if (bm.getTexture()) { 241 // we can handle texture (ugh) since lockPixels will perform a read-back 242 return true; 243 } 244 if (kIndex_8_SkColorType == bm.colorType()) { 245 SkAutoLockPixels alp(bm); // but we need to call it before getColorTable() is safe. 246 if (!bm.getColorTable()) { 247 return false; 248 } 249 } 250 return true; 251 } 252 253 /* 254 * Analyze filter-quality and matrix, and decide how to implement that. 255 * 256 * In general, we cascade down the request level [ High ... None ] 257 * - for a given level, if we can fulfill it, fine, else 258 * - else we downgrade to the next lower level and try again. 259 * We can always fulfill requests for Low and None 260 * - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack 261 * and may be removed. 262 */ 263 bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) { 264 if (!valid_for_drawing(fOrigBitmap)) { 265 return false; 266 } 267 268 fBitmap = NULL; 269 fInvMatrix = inv; 270 fFilterLevel = paint.getFilterQuality(); 271 272 if (kHigh_SkFilterQuality == fFilterLevel) { 273 this->processHQRequest(); 274 } 275 SkASSERT(fFilterLevel < kHigh_SkFilterQuality); 276 277 if (kMedium_SkFilterQuality == fFilterLevel) { 278 this->processMediumRequest(); 279 } 280 SkASSERT(fFilterLevel < kMedium_SkFilterQuality); 281 282 if (NULL == fBitmap) { 283 if (!this->lockBaseBitmap()) { 284 return false; 285 } 286 } 287 SkASSERT(fBitmap); 288 289 bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; 290 bool clampClamp = SkShader::kClamp_TileMode == fTileModeX && 291 SkShader::kClamp_TileMode == fTileModeY; 292 293 // Most of the scanline procs deal with "unit" texture coordinates, as this 294 // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate 295 // those, we divide the matrix by its dimensions here. 296 // 297 // We don't do this if we're either trivial (can ignore the matrix) or clamping 298 // in both X and Y since clamping to width,height is just as easy as to 0xFFFF. 299 300 if (!(clampClamp || trivialMatrix)) { 301 fInvMatrix.postIDiv(fBitmap->width(), fBitmap->height()); 302 } 303 304 // Now that all possible changes to the matrix have taken place, check 305 // to see if we're really close to a no-scale matrix. If so, explicitly 306 // set it to be so. Subsequent code may inspect this matrix to choose 307 // a faster path in this case. 308 309 // This code will only execute if the matrix has some scale component; 310 // if it's already pure translate then we won't do this inversion. 311 312 if (matrix_only_scale_translate(fInvMatrix)) { 313 SkMatrix forward; 314 if (fInvMatrix.invert(&forward)) { 315 if (clampClamp ? just_trans_clamp(forward, *fBitmap) 316 : just_trans_general(forward)) { 317 SkScalar tx = -SkScalarRoundToScalar(forward.getTranslateX()); 318 SkScalar ty = -SkScalarRoundToScalar(forward.getTranslateY()); 319 fInvMatrix.setTranslate(tx, ty); 320 } 321 } 322 } 323 324 fInvProc = fInvMatrix.getMapXYProc(); 325 fInvType = fInvMatrix.getType(); 326 fInvSx = SkScalarToFixed(fInvMatrix.getScaleX()); 327 fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); 328 fInvKy = SkScalarToFixed(fInvMatrix.getSkewY()); 329 fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY()); 330 331 fAlphaScale = SkAlpha255To256(paint.getAlpha()); 332 333 fShaderProc32 = NULL; 334 fShaderProc16 = NULL; 335 fSampleProc32 = NULL; 336 fSampleProc16 = NULL; 337 338 // recompute the triviality of the matrix here because we may have 339 // changed it! 340 341 trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; 342 343 if (kLow_SkFilterQuality == fFilterLevel) { 344 // Only try bilerp if the matrix is "interesting" and 345 // the image has a suitable size. 346 347 if (fInvType <= SkMatrix::kTranslate_Mask || 348 !valid_for_filtering(fBitmap->width() | fBitmap->height())) 349 { 350 fFilterLevel = kNone_SkFilterQuality; 351 } 352 } 353 354 return this->chooseScanlineProcs(trivialMatrix, clampClamp, paint); 355 } 356 357 bool SkBitmapProcState::chooseScanlineProcs(bool trivialMatrix, bool clampClamp, 358 const SkPaint& paint) { 359 fMatrixProc = this->chooseMatrixProc(trivialMatrix); 360 // TODO(dominikg): SkASSERT(fMatrixProc) instead? chooseMatrixProc never returns NULL. 361 if (NULL == fMatrixProc) { 362 return false; 363 } 364 365 /////////////////////////////////////////////////////////////////////// 366 367 const SkAlphaType at = fBitmap->alphaType(); 368 369 // No need to do this if we're doing HQ sampling; if filter quality is 370 // still set to HQ by the time we get here, then we must have installed 371 // the shader procs above and can skip all this. 372 373 if (fFilterLevel < kHigh_SkFilterQuality) { 374 375 int index = 0; 376 if (fAlphaScale < 256) { // note: this distinction is not used for D16 377 index |= 1; 378 } 379 if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { 380 index |= 2; 381 } 382 if (fFilterLevel > kNone_SkFilterQuality) { 383 index |= 4; 384 } 385 // bits 3,4,5 encoding the source bitmap format 386 switch (fBitmap->colorType()) { 387 case kN32_SkColorType: 388 if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) { 389 return false; 390 } 391 index |= 0; 392 break; 393 case kRGB_565_SkColorType: 394 index |= 8; 395 break; 396 case kIndex_8_SkColorType: 397 if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) { 398 return false; 399 } 400 index |= 16; 401 break; 402 case kARGB_4444_SkColorType: 403 if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) { 404 return false; 405 } 406 index |= 24; 407 break; 408 case kAlpha_8_SkColorType: 409 index |= 32; 410 fPaintPMColor = SkPreMultiplyColor(paint.getColor()); 411 break; 412 case kGray_8_SkColorType: 413 index |= 40; 414 fPaintPMColor = SkPreMultiplyColor(paint.getColor()); 415 break; 416 default: 417 // TODO(dominikg): Should we ever get here? SkASSERT(false) instead? 418 return false; 419 } 420 421 #if !SK_ARM_NEON_IS_ALWAYS 422 static const SampleProc32 gSkBitmapProcStateSample32[] = { 423 S32_opaque_D32_nofilter_DXDY, 424 S32_alpha_D32_nofilter_DXDY, 425 S32_opaque_D32_nofilter_DX, 426 S32_alpha_D32_nofilter_DX, 427 S32_opaque_D32_filter_DXDY, 428 S32_alpha_D32_filter_DXDY, 429 S32_opaque_D32_filter_DX, 430 S32_alpha_D32_filter_DX, 431 432 S16_opaque_D32_nofilter_DXDY, 433 S16_alpha_D32_nofilter_DXDY, 434 S16_opaque_D32_nofilter_DX, 435 S16_alpha_D32_nofilter_DX, 436 S16_opaque_D32_filter_DXDY, 437 S16_alpha_D32_filter_DXDY, 438 S16_opaque_D32_filter_DX, 439 S16_alpha_D32_filter_DX, 440 441 SI8_opaque_D32_nofilter_DXDY, 442 SI8_alpha_D32_nofilter_DXDY, 443 SI8_opaque_D32_nofilter_DX, 444 SI8_alpha_D32_nofilter_DX, 445 SI8_opaque_D32_filter_DXDY, 446 SI8_alpha_D32_filter_DXDY, 447 SI8_opaque_D32_filter_DX, 448 SI8_alpha_D32_filter_DX, 449 450 S4444_opaque_D32_nofilter_DXDY, 451 S4444_alpha_D32_nofilter_DXDY, 452 S4444_opaque_D32_nofilter_DX, 453 S4444_alpha_D32_nofilter_DX, 454 S4444_opaque_D32_filter_DXDY, 455 S4444_alpha_D32_filter_DXDY, 456 S4444_opaque_D32_filter_DX, 457 S4444_alpha_D32_filter_DX, 458 459 // A8 treats alpha/opaque the same (equally efficient) 460 SA8_alpha_D32_nofilter_DXDY, 461 SA8_alpha_D32_nofilter_DXDY, 462 SA8_alpha_D32_nofilter_DX, 463 SA8_alpha_D32_nofilter_DX, 464 SA8_alpha_D32_filter_DXDY, 465 SA8_alpha_D32_filter_DXDY, 466 SA8_alpha_D32_filter_DX, 467 SA8_alpha_D32_filter_DX, 468 469 // todo: possibly specialize on opaqueness 470 SG8_alpha_D32_nofilter_DXDY, 471 SG8_alpha_D32_nofilter_DXDY, 472 SG8_alpha_D32_nofilter_DX, 473 SG8_alpha_D32_nofilter_DX, 474 SG8_alpha_D32_filter_DXDY, 475 SG8_alpha_D32_filter_DXDY, 476 SG8_alpha_D32_filter_DX, 477 SG8_alpha_D32_filter_DX 478 }; 479 480 static const SampleProc16 gSkBitmapProcStateSample16[] = { 481 S32_D16_nofilter_DXDY, 482 S32_D16_nofilter_DX, 483 S32_D16_filter_DXDY, 484 S32_D16_filter_DX, 485 486 S16_D16_nofilter_DXDY, 487 S16_D16_nofilter_DX, 488 S16_D16_filter_DXDY, 489 S16_D16_filter_DX, 490 491 SI8_D16_nofilter_DXDY, 492 SI8_D16_nofilter_DX, 493 SI8_D16_filter_DXDY, 494 SI8_D16_filter_DX, 495 496 // Don't support 4444 -> 565 497 NULL, NULL, NULL, NULL, 498 // Don't support A8 -> 565 499 NULL, NULL, NULL, NULL, 500 // Don't support G8 -> 565 (but we could) 501 NULL, NULL, NULL, NULL 502 }; 503 #endif 504 505 fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index]; 506 index >>= 1; // shift away any opaque/alpha distinction 507 fSampleProc16 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample16)[index]; 508 509 // our special-case shaderprocs 510 if (SK_ARM_NEON_WRAP(S16_D16_filter_DX) == fSampleProc16) { 511 if (clampClamp) { 512 fShaderProc16 = SK_ARM_NEON_WRAP(Clamp_S16_D16_filter_DX_shaderproc); 513 } else if (SkShader::kRepeat_TileMode == fTileModeX && 514 SkShader::kRepeat_TileMode == fTileModeY) { 515 fShaderProc16 = SK_ARM_NEON_WRAP(Repeat_S16_D16_filter_DX_shaderproc); 516 } 517 } else if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clampClamp) { 518 fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc); 519 } else if (S32_opaque_D32_nofilter_DX == fSampleProc32 && clampClamp) { 520 fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc; 521 } 522 523 if (NULL == fShaderProc32) { 524 fShaderProc32 = this->chooseShaderProc32(); 525 } 526 } 527 528 // see if our platform has any accelerated overrides 529 this->platformProcs(); 530 531 return true; 532 } 533 534 static void Clamp_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s, 535 int x, int y, 536 SkPMColor* SK_RESTRICT colors, 537 int count) { 538 SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); 539 SkASSERT(s.fInvKy == 0); 540 SkASSERT(count > 0 && colors != NULL); 541 SkASSERT(kNone_SkFilterQuality == s.fFilterLevel); 542 543 const int maxX = s.fBitmap->width() - 1; 544 const int maxY = s.fBitmap->height() - 1; 545 int ix = s.fFilterOneX + x; 546 int iy = SkClampMax(s.fFilterOneY + y, maxY); 547 #ifdef SK_DEBUG 548 { 549 SkPoint pt; 550 s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, 551 SkIntToScalar(y) + SK_ScalarHalf, &pt); 552 int iy2 = SkClampMax(SkScalarFloorToInt(pt.fY), maxY); 553 int ix2 = SkScalarFloorToInt(pt.fX); 554 555 SkASSERT(iy == iy2); 556 SkASSERT(ix == ix2); 557 } 558 #endif 559 const SkPMColor* row = s.fBitmap->getAddr32(0, iy); 560 561 // clamp to the left 562 if (ix < 0) { 563 int n = SkMin32(-ix, count); 564 sk_memset32(colors, row[0], n); 565 count -= n; 566 if (0 == count) { 567 return; 568 } 569 colors += n; 570 SkASSERT(-ix == n); 571 ix = 0; 572 } 573 // copy the middle 574 if (ix <= maxX) { 575 int n = SkMin32(maxX - ix + 1, count); 576 memcpy(colors, row + ix, n * sizeof(SkPMColor)); 577 count -= n; 578 if (0 == count) { 579 return; 580 } 581 colors += n; 582 } 583 SkASSERT(count > 0); 584 // clamp to the right 585 sk_memset32(colors, row[maxX], count); 586 } 587 588 static inline int sk_int_mod(int x, int n) { 589 SkASSERT(n > 0); 590 if ((unsigned)x >= (unsigned)n) { 591 if (x < 0) { 592 x = n + ~(~x % n); 593 } else { 594 x = x % n; 595 } 596 } 597 return x; 598 } 599 600 static inline int sk_int_mirror(int x, int n) { 601 x = sk_int_mod(x, 2 * n); 602 if (x >= n) { 603 x = n + ~(x - n); 604 } 605 return x; 606 } 607 608 static void Repeat_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s, 609 int x, int y, 610 SkPMColor* SK_RESTRICT colors, 611 int count) { 612 SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0); 613 SkASSERT(s.fInvKy == 0); 614 SkASSERT(count > 0 && colors != NULL); 615 SkASSERT(kNone_SkFilterQuality == s.fFilterLevel); 616 617 const int stopX = s.fBitmap->width(); 618 const int stopY = s.fBitmap->height(); 619 int ix = s.fFilterOneX + x; 620 int iy = sk_int_mod(s.fFilterOneY + y, stopY); 621 #ifdef SK_DEBUG 622 { 623 SkPoint pt; 624 s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, 625 SkIntToScalar(y) + SK_ScalarHalf, &pt); 626 int iy2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY); 627 int ix2 = SkScalarFloorToInt(pt.fX); 628 629 SkASSERT(iy == iy2); 630 SkASSERT(ix == ix2); 631 } 632 #endif 633 const SkPMColor* row = s.fBitmap->getAddr32(0, iy); 634 635 ix = sk_int_mod(ix, stopX); 636 for (;;) { 637 int n = SkMin32(stopX - ix, count); 638 memcpy(colors, row + ix, n * sizeof(SkPMColor)); 639 count -= n; 640 if (0 == count) { 641 return; 642 } 643 colors += n; 644 ix = 0; 645 } 646 } 647 648 static void S32_D32_constX_shaderproc(const SkBitmapProcState& s, 649 int x, int y, 650 SkPMColor* SK_RESTRICT colors, 651 int count) { 652 SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); 653 SkASSERT(s.fInvKy == 0); 654 SkASSERT(count > 0 && colors != NULL); 655 SkASSERT(1 == s.fBitmap->width()); 656 657 int iY0; 658 int iY1 SK_INIT_TO_AVOID_WARNING; 659 int iSubY SK_INIT_TO_AVOID_WARNING; 660 661 if (kNone_SkFilterQuality != s.fFilterLevel) { 662 SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); 663 uint32_t xy[2]; 664 665 mproc(s, xy, 1, x, y); 666 667 iY0 = xy[0] >> 18; 668 iY1 = xy[0] & 0x3FFF; 669 iSubY = (xy[0] >> 14) & 0xF; 670 } else { 671 int yTemp; 672 673 if (s.fInvType > SkMatrix::kTranslate_Mask) { 674 SkPoint pt; 675 s.fInvProc(s.fInvMatrix, 676 SkIntToScalar(x) + SK_ScalarHalf, 677 SkIntToScalar(y) + SK_ScalarHalf, 678 &pt); 679 // When the matrix has a scale component the setup code in 680 // chooseProcs multiples the inverse matrix by the inverse of the 681 // bitmap's width and height. Since this method is going to do 682 // its own tiling and sampling we need to undo that here. 683 if (SkShader::kClamp_TileMode != s.fTileModeX || 684 SkShader::kClamp_TileMode != s.fTileModeY) { 685 yTemp = SkScalarFloorToInt(pt.fY * s.fBitmap->height()); 686 } else { 687 yTemp = SkScalarFloorToInt(pt.fY); 688 } 689 } else { 690 yTemp = s.fFilterOneY + y; 691 } 692 693 const int stopY = s.fBitmap->height(); 694 switch (s.fTileModeY) { 695 case SkShader::kClamp_TileMode: 696 iY0 = SkClampMax(yTemp, stopY-1); 697 break; 698 case SkShader::kRepeat_TileMode: 699 iY0 = sk_int_mod(yTemp, stopY); 700 break; 701 case SkShader::kMirror_TileMode: 702 default: 703 iY0 = sk_int_mirror(yTemp, stopY); 704 break; 705 } 706 707 #ifdef SK_DEBUG 708 { 709 SkPoint pt; 710 s.fInvProc(s.fInvMatrix, 711 SkIntToScalar(x) + SK_ScalarHalf, 712 SkIntToScalar(y) + SK_ScalarHalf, 713 &pt); 714 if (s.fInvType > SkMatrix::kTranslate_Mask && 715 (SkShader::kClamp_TileMode != s.fTileModeX || 716 SkShader::kClamp_TileMode != s.fTileModeY)) { 717 pt.fY *= s.fBitmap->height(); 718 } 719 int iY2; 720 721 switch (s.fTileModeY) { 722 case SkShader::kClamp_TileMode: 723 iY2 = SkClampMax(SkScalarFloorToInt(pt.fY), stopY-1); 724 break; 725 case SkShader::kRepeat_TileMode: 726 iY2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY); 727 break; 728 case SkShader::kMirror_TileMode: 729 default: 730 iY2 = sk_int_mirror(SkScalarFloorToInt(pt.fY), stopY); 731 break; 732 } 733 734 SkASSERT(iY0 == iY2); 735 } 736 #endif 737 } 738 739 const SkPMColor* row0 = s.fBitmap->getAddr32(0, iY0); 740 SkPMColor color; 741 742 if (kNone_SkFilterQuality != s.fFilterLevel) { 743 const SkPMColor* row1 = s.fBitmap->getAddr32(0, iY1); 744 745 if (s.fAlphaScale < 256) { 746 Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); 747 } else { 748 Filter_32_opaque(iSubY, *row0, *row1, &color); 749 } 750 } else { 751 if (s.fAlphaScale < 256) { 752 color = SkAlphaMulQ(*row0, s.fAlphaScale); 753 } else { 754 color = *row0; 755 } 756 } 757 758 sk_memset32(colors, color, count); 759 } 760 761 static void DoNothing_shaderproc(const SkBitmapProcState&, int x, int y, 762 SkPMColor* SK_RESTRICT colors, int count) { 763 // if we get called, the matrix is too tricky, so we just draw nothing 764 sk_memset32(colors, 0, count); 765 } 766 767 bool SkBitmapProcState::setupForTranslate() { 768 SkPoint pt; 769 fInvProc(fInvMatrix, SK_ScalarHalf, SK_ScalarHalf, &pt); 770 771 /* 772 * if the translate is larger than our ints, we can get random results, or 773 * worse, we might get 0x80000000, which wreaks havoc on us, since we can't 774 * negate it. 775 */ 776 const SkScalar too_big = SkIntToScalar(1 << 30); 777 if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { 778 return false; 779 } 780 781 // Since we know we're not filtered, we re-purpose these fields allow 782 // us to go from device -> src coordinates w/ just an integer add, 783 // rather than running through the inverse-matrix 784 fFilterOneX = SkScalarFloorToInt(pt.fX); 785 fFilterOneY = SkScalarFloorToInt(pt.fY); 786 return true; 787 } 788 789 SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { 790 791 if (kN32_SkColorType != fBitmap->colorType()) { 792 return NULL; 793 } 794 795 static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask; 796 797 if (1 == fBitmap->width() && 0 == (fInvType & ~kMask)) { 798 if (kNone_SkFilterQuality == fFilterLevel && 799 fInvType <= SkMatrix::kTranslate_Mask && 800 !this->setupForTranslate()) { 801 return DoNothing_shaderproc; 802 } 803 return S32_D32_constX_shaderproc; 804 } 805 806 if (fAlphaScale < 256) { 807 return NULL; 808 } 809 if (fInvType > SkMatrix::kTranslate_Mask) { 810 return NULL; 811 } 812 if (kNone_SkFilterQuality != fFilterLevel) { 813 return NULL; 814 } 815 816 SkShader::TileMode tx = (SkShader::TileMode)fTileModeX; 817 SkShader::TileMode ty = (SkShader::TileMode)fTileModeY; 818 819 if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) { 820 if (this->setupForTranslate()) { 821 return Clamp_S32_D32_nofilter_trans_shaderproc; 822 } 823 return DoNothing_shaderproc; 824 } 825 if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) { 826 if (this->setupForTranslate()) { 827 return Repeat_S32_D32_nofilter_trans_shaderproc; 828 } 829 return DoNothing_shaderproc; 830 } 831 return NULL; 832 } 833 834 /////////////////////////////////////////////////////////////////////////////// 835 836 #ifdef SK_DEBUG 837 838 static void check_scale_nofilter(uint32_t bitmapXY[], int count, 839 unsigned mx, unsigned my) { 840 unsigned y = *bitmapXY++; 841 SkASSERT(y < my); 842 843 const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY); 844 for (int i = 0; i < count; ++i) { 845 SkASSERT(xptr[i] < mx); 846 } 847 } 848 849 static void check_scale_filter(uint32_t bitmapXY[], int count, 850 unsigned mx, unsigned my) { 851 uint32_t YY = *bitmapXY++; 852 unsigned y0 = YY >> 18; 853 unsigned y1 = YY & 0x3FFF; 854 SkASSERT(y0 < my); 855 SkASSERT(y1 < my); 856 857 for (int i = 0; i < count; ++i) { 858 uint32_t XX = bitmapXY[i]; 859 unsigned x0 = XX >> 18; 860 unsigned x1 = XX & 0x3FFF; 861 SkASSERT(x0 < mx); 862 SkASSERT(x1 < mx); 863 } 864 } 865 866 static void check_affine_nofilter(uint32_t bitmapXY[], int count, 867 unsigned mx, unsigned my) { 868 for (int i = 0; i < count; ++i) { 869 uint32_t XY = bitmapXY[i]; 870 unsigned x = XY & 0xFFFF; 871 unsigned y = XY >> 16; 872 SkASSERT(x < mx); 873 SkASSERT(y < my); 874 } 875 } 876 877 static void check_affine_filter(uint32_t bitmapXY[], int count, 878 unsigned mx, unsigned my) { 879 for (int i = 0; i < count; ++i) { 880 uint32_t YY = *bitmapXY++; 881 unsigned y0 = YY >> 18; 882 unsigned y1 = YY & 0x3FFF; 883 SkASSERT(y0 < my); 884 SkASSERT(y1 < my); 885 886 uint32_t XX = *bitmapXY++; 887 unsigned x0 = XX >> 18; 888 unsigned x1 = XX & 0x3FFF; 889 SkASSERT(x0 < mx); 890 SkASSERT(x1 < mx); 891 } 892 } 893 894 void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, 895 uint32_t bitmapXY[], int count, 896 int x, int y) { 897 SkASSERT(bitmapXY); 898 SkASSERT(count > 0); 899 900 state.fMatrixProc(state, bitmapXY, count, x, y); 901 902 void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); 903 904 // There are four formats possible: 905 // scale -vs- affine 906 // filter -vs- nofilter 907 if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { 908 proc = state.fFilterLevel != kNone_SkFilterQuality ? check_scale_filter : check_scale_nofilter; 909 } else { 910 proc = state.fFilterLevel != kNone_SkFilterQuality ? check_affine_filter : check_affine_nofilter; 911 } 912 proc(bitmapXY, count, state.fBitmap->width(), state.fBitmap->height()); 913 } 914 915 SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { 916 return DebugMatrixProc; 917 } 918 919 #endif 920 921 /////////////////////////////////////////////////////////////////////////////// 922 /* 923 The storage requirements for the different matrix procs are as follows, 924 where each X or Y is 2 bytes, and N is the number of pixels/elements: 925 926 scale/translate nofilter Y(4bytes) + N * X 927 affine/perspective nofilter N * (X Y) 928 scale/translate filter Y Y + N * (X X) 929 affine/perspective filter N * (Y Y X X) 930 */ 931 int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { 932 int32_t size = static_cast<int32_t>(bufferSize); 933 934 size &= ~3; // only care about 4-byte aligned chunks 935 if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { 936 size -= 4; // the shared Y (or YY) coordinate 937 if (size < 0) { 938 size = 0; 939 } 940 size >>= 1; 941 } else { 942 size >>= 2; 943 } 944 945 if (fFilterLevel != kNone_SkFilterQuality) { 946 size >>= 1; 947 } 948 949 return size; 950 } 951 952 /////////////////////// 953 954 void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const SkBitmapProcState& s, int x, int y, 955 SkPMColor* SK_RESTRICT dst, int count) { 956 SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | 957 SkMatrix::kScale_Mask)) == 0); 958 959 const unsigned maxX = s.fBitmap->width() - 1; 960 SkFractionalInt fx; 961 int dstY; 962 { 963 SkPoint pt; 964 s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, 965 &pt); 966 fx = SkScalarToFractionalInt(pt.fY); 967 const unsigned maxY = s.fBitmap->height() - 1; 968 dstY = SkClampMax(SkFractionalIntToInt(fx), maxY); 969 fx = SkScalarToFractionalInt(pt.fX); 970 } 971 972 const SkPMColor* SK_RESTRICT src = s.fBitmap->getAddr32(0, dstY); 973 const SkFractionalInt dx = s.fInvSxFractionalInt; 974 975 // Check if we're safely inside [0...maxX] so no need to clamp each computed index. 976 // 977 if ((uint64_t)SkFractionalIntToInt(fx) <= maxX && 978 (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX) 979 { 980 int count4 = count >> 2; 981 for (int i = 0; i < count4; ++i) { 982 SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx; 983 SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx; 984 SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx; 985 SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx; 986 dst[0] = src0; 987 dst[1] = src1; 988 dst[2] = src2; 989 dst[3] = src3; 990 dst += 4; 991 } 992 for (int i = (count4 << 2); i < count; ++i) { 993 unsigned index = SkFractionalIntToInt(fx); 994 SkASSERT(index <= maxX); 995 *dst++ = src[index]; 996 fx += dx; 997 } 998 } else { 999 for (int i = 0; i < count; ++i) { 1000 dst[i] = src[SkClampMax(SkFractionalIntToInt(fx), maxX)]; 1001 fx += dx; 1002 } 1003 } 1004 } 1005 1006