Home | History | Annotate | Download | only in IR
      1 //===-- Value.cpp - Implement the Value class -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Value, ValueHandle, and User classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Value.h"
     15 #include "LLVMContextImpl.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/SmallString.h"
     18 #include "llvm/IR/CallSite.h"
     19 #include "llvm/IR/Constant.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/GetElementPtrTypeIterator.h"
     24 #include "llvm/IR/InstrTypes.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/IR/Statepoint.h"
     30 #include "llvm/IR/ValueHandle.h"
     31 #include "llvm/IR/ValueSymbolTable.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/ManagedStatic.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include <algorithm>
     37 using namespace llvm;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                                Value Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 static inline Type *checkType(Type *Ty) {
     44   assert(Ty && "Value defined with a null type: Error!");
     45   return Ty;
     46 }
     47 
     48 Value::Value(Type *ty, unsigned scid)
     49     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
     50       SubclassOptionalData(0), SubclassData(0), NumOperands(0) {
     51   // FIXME: Why isn't this in the subclass gunk??
     52   // Note, we cannot call isa<CallInst> before the CallInst has been
     53   // constructed.
     54   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
     55     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
     56            "invalid CallInst type!");
     57   else if (SubclassID != BasicBlockVal &&
     58            (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
     59     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
     60            "Cannot create non-first-class values except for constants!");
     61 }
     62 
     63 Value::~Value() {
     64   // Notify all ValueHandles (if present) that this value is going away.
     65   if (HasValueHandle)
     66     ValueHandleBase::ValueIsDeleted(this);
     67   if (isUsedByMetadata())
     68     ValueAsMetadata::handleDeletion(this);
     69 
     70 #ifndef NDEBUG      // Only in -g mode...
     71   // Check to make sure that there are no uses of this value that are still
     72   // around when the value is destroyed.  If there are, then we have a dangling
     73   // reference and something is wrong.  This code is here to print out where
     74   // the value is still being referenced.
     75   //
     76   if (!use_empty()) {
     77     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
     78     for (auto *U : users())
     79       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
     80   }
     81 #endif
     82   assert(use_empty() && "Uses remain when a value is destroyed!");
     83 
     84   // If this value is named, destroy the name.  This should not be in a symtab
     85   // at this point.
     86   destroyValueName();
     87 }
     88 
     89 void Value::destroyValueName() {
     90   ValueName *Name = getValueName();
     91   if (Name)
     92     Name->Destroy();
     93   setValueName(nullptr);
     94 }
     95 
     96 bool Value::hasNUses(unsigned N) const {
     97   const_use_iterator UI = use_begin(), E = use_end();
     98 
     99   for (; N; --N, ++UI)
    100     if (UI == E) return false;  // Too few.
    101   return UI == E;
    102 }
    103 
    104 bool Value::hasNUsesOrMore(unsigned N) const {
    105   const_use_iterator UI = use_begin(), E = use_end();
    106 
    107   for (; N; --N, ++UI)
    108     if (UI == E) return false;  // Too few.
    109 
    110   return true;
    111 }
    112 
    113 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
    114   // This can be computed either by scanning the instructions in BB, or by
    115   // scanning the use list of this Value. Both lists can be very long, but
    116   // usually one is quite short.
    117   //
    118   // Scan both lists simultaneously until one is exhausted. This limits the
    119   // search to the shorter list.
    120   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
    121   const_user_iterator UI = user_begin(), UE = user_end();
    122   for (; BI != BE && UI != UE; ++BI, ++UI) {
    123     // Scan basic block: Check if this Value is used by the instruction at BI.
    124     if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
    125       return true;
    126     // Scan use list: Check if the use at UI is in BB.
    127     const Instruction *User = dyn_cast<Instruction>(*UI);
    128     if (User && User->getParent() == BB)
    129       return true;
    130   }
    131   return false;
    132 }
    133 
    134 unsigned Value::getNumUses() const {
    135   return (unsigned)std::distance(use_begin(), use_end());
    136 }
    137 
    138 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
    139   ST = nullptr;
    140   if (Instruction *I = dyn_cast<Instruction>(V)) {
    141     if (BasicBlock *P = I->getParent())
    142       if (Function *PP = P->getParent())
    143         ST = &PP->getValueSymbolTable();
    144   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
    145     if (Function *P = BB->getParent())
    146       ST = &P->getValueSymbolTable();
    147   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    148     if (Module *P = GV->getParent())
    149       ST = &P->getValueSymbolTable();
    150   } else if (Argument *A = dyn_cast<Argument>(V)) {
    151     if (Function *P = A->getParent())
    152       ST = &P->getValueSymbolTable();
    153   } else {
    154     assert(isa<Constant>(V) && "Unknown value type!");
    155     return true;  // no name is setable for this.
    156   }
    157   return false;
    158 }
    159 
    160 StringRef Value::getName() const {
    161   // Make sure the empty string is still a C string. For historical reasons,
    162   // some clients want to call .data() on the result and expect it to be null
    163   // terminated.
    164   if (!getValueName())
    165     return StringRef("", 0);
    166   return getValueName()->getKey();
    167 }
    168 
    169 void Value::setName(const Twine &NewName) {
    170   // Fast path for common IRBuilder case of setName("") when there is no name.
    171   if (NewName.isTriviallyEmpty() && !hasName())
    172     return;
    173 
    174   SmallString<256> NameData;
    175   StringRef NameRef = NewName.toStringRef(NameData);
    176   assert(NameRef.find_first_of(0) == StringRef::npos &&
    177          "Null bytes are not allowed in names");
    178 
    179   // Name isn't changing?
    180   if (getName() == NameRef)
    181     return;
    182 
    183   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
    184 
    185   // Get the symbol table to update for this object.
    186   ValueSymbolTable *ST;
    187   if (getSymTab(this, ST))
    188     return;  // Cannot set a name on this value (e.g. constant).
    189 
    190   if (Function *F = dyn_cast<Function>(this))
    191     getContext().pImpl->IntrinsicIDCache.erase(F);
    192 
    193   if (!ST) { // No symbol table to update?  Just do the change.
    194     if (NameRef.empty()) {
    195       // Free the name for this value.
    196       destroyValueName();
    197       return;
    198     }
    199 
    200     // NOTE: Could optimize for the case the name is shrinking to not deallocate
    201     // then reallocated.
    202     destroyValueName();
    203 
    204     // Create the new name.
    205     setValueName(ValueName::Create(NameRef));
    206     getValueName()->setValue(this);
    207     return;
    208   }
    209 
    210   // NOTE: Could optimize for the case the name is shrinking to not deallocate
    211   // then reallocated.
    212   if (hasName()) {
    213     // Remove old name.
    214     ST->removeValueName(getValueName());
    215     destroyValueName();
    216 
    217     if (NameRef.empty())
    218       return;
    219   }
    220 
    221   // Name is changing to something new.
    222   setValueName(ST->createValueName(NameRef, this));
    223 }
    224 
    225 void Value::takeName(Value *V) {
    226   ValueSymbolTable *ST = nullptr;
    227   // If this value has a name, drop it.
    228   if (hasName()) {
    229     // Get the symtab this is in.
    230     if (getSymTab(this, ST)) {
    231       // We can't set a name on this value, but we need to clear V's name if
    232       // it has one.
    233       if (V->hasName()) V->setName("");
    234       return;  // Cannot set a name on this value (e.g. constant).
    235     }
    236 
    237     // Remove old name.
    238     if (ST)
    239       ST->removeValueName(getValueName());
    240     destroyValueName();
    241   }
    242 
    243   // Now we know that this has no name.
    244 
    245   // If V has no name either, we're done.
    246   if (!V->hasName()) return;
    247 
    248   // Get this's symtab if we didn't before.
    249   if (!ST) {
    250     if (getSymTab(this, ST)) {
    251       // Clear V's name.
    252       V->setName("");
    253       return;  // Cannot set a name on this value (e.g. constant).
    254     }
    255   }
    256 
    257   // Get V's ST, this should always succed, because V has a name.
    258   ValueSymbolTable *VST;
    259   bool Failure = getSymTab(V, VST);
    260   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
    261 
    262   // If these values are both in the same symtab, we can do this very fast.
    263   // This works even if both values have no symtab yet.
    264   if (ST == VST) {
    265     // Take the name!
    266     setValueName(V->getValueName());
    267     V->setValueName(nullptr);
    268     getValueName()->setValue(this);
    269     return;
    270   }
    271 
    272   // Otherwise, things are slightly more complex.  Remove V's name from VST and
    273   // then reinsert it into ST.
    274 
    275   if (VST)
    276     VST->removeValueName(V->getValueName());
    277   setValueName(V->getValueName());
    278   V->setValueName(nullptr);
    279   getValueName()->setValue(this);
    280 
    281   if (ST)
    282     ST->reinsertValue(this);
    283 }
    284 
    285 #ifndef NDEBUG
    286 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
    287                      Constant *C) {
    288   if (!Cache.insert(Expr).second)
    289     return false;
    290 
    291   for (auto &O : Expr->operands()) {
    292     if (O == C)
    293       return true;
    294     auto *CE = dyn_cast<ConstantExpr>(O);
    295     if (!CE)
    296       continue;
    297     if (contains(Cache, CE, C))
    298       return true;
    299   }
    300   return false;
    301 }
    302 
    303 static bool contains(Value *Expr, Value *V) {
    304   if (Expr == V)
    305     return true;
    306 
    307   auto *C = dyn_cast<Constant>(V);
    308   if (!C)
    309     return false;
    310 
    311   auto *CE = dyn_cast<ConstantExpr>(Expr);
    312   if (!CE)
    313     return false;
    314 
    315   SmallPtrSet<ConstantExpr *, 4> Cache;
    316   return contains(Cache, CE, C);
    317 }
    318 #endif
    319 
    320 void Value::replaceAllUsesWith(Value *New) {
    321   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
    322   assert(!contains(New, this) &&
    323          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
    324   assert(New->getType() == getType() &&
    325          "replaceAllUses of value with new value of different type!");
    326 
    327   // Notify all ValueHandles (if present) that this value is going away.
    328   if (HasValueHandle)
    329     ValueHandleBase::ValueIsRAUWd(this, New);
    330   if (isUsedByMetadata())
    331     ValueAsMetadata::handleRAUW(this, New);
    332 
    333   while (!use_empty()) {
    334     Use &U = *UseList;
    335     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
    336     // constant because they are uniqued.
    337     if (auto *C = dyn_cast<Constant>(U.getUser())) {
    338       if (!isa<GlobalValue>(C)) {
    339         C->replaceUsesOfWithOnConstant(this, New, &U);
    340         continue;
    341       }
    342     }
    343 
    344     U.set(New);
    345   }
    346 
    347   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
    348     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
    349 }
    350 
    351 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
    352 // This routine leaves uses within BB.
    353 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
    354   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
    355   assert(!contains(New, this) &&
    356          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
    357   assert(New->getType() == getType() &&
    358          "replaceUses of value with new value of different type!");
    359   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
    360 
    361   use_iterator UI = use_begin(), E = use_end();
    362   for (; UI != E;) {
    363     Use &U = *UI;
    364     ++UI;
    365     auto *Usr = dyn_cast<Instruction>(U.getUser());
    366     if (Usr && Usr->getParent() == BB)
    367       continue;
    368     U.set(New);
    369   }
    370   return;
    371 }
    372 
    373 namespace {
    374 // Various metrics for how much to strip off of pointers.
    375 enum PointerStripKind {
    376   PSK_ZeroIndices,
    377   PSK_ZeroIndicesAndAliases,
    378   PSK_InBoundsConstantIndices,
    379   PSK_InBounds
    380 };
    381 
    382 template <PointerStripKind StripKind>
    383 static Value *stripPointerCastsAndOffsets(Value *V) {
    384   if (!V->getType()->isPointerTy())
    385     return V;
    386 
    387   // Even though we don't look through PHI nodes, we could be called on an
    388   // instruction in an unreachable block, which may be on a cycle.
    389   SmallPtrSet<Value *, 4> Visited;
    390 
    391   Visited.insert(V);
    392   do {
    393     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    394       switch (StripKind) {
    395       case PSK_ZeroIndicesAndAliases:
    396       case PSK_ZeroIndices:
    397         if (!GEP->hasAllZeroIndices())
    398           return V;
    399         break;
    400       case PSK_InBoundsConstantIndices:
    401         if (!GEP->hasAllConstantIndices())
    402           return V;
    403         // fallthrough
    404       case PSK_InBounds:
    405         if (!GEP->isInBounds())
    406           return V;
    407         break;
    408       }
    409       V = GEP->getPointerOperand();
    410     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
    411                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
    412       V = cast<Operator>(V)->getOperand(0);
    413     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    414       if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
    415         return V;
    416       V = GA->getAliasee();
    417     } else {
    418       return V;
    419     }
    420     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    421   } while (Visited.insert(V).second);
    422 
    423   return V;
    424 }
    425 } // namespace
    426 
    427 Value *Value::stripPointerCasts() {
    428   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
    429 }
    430 
    431 Value *Value::stripPointerCastsNoFollowAliases() {
    432   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
    433 }
    434 
    435 Value *Value::stripInBoundsConstantOffsets() {
    436   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
    437 }
    438 
    439 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
    440                                                         APInt &Offset) {
    441   if (!getType()->isPointerTy())
    442     return this;
    443 
    444   assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
    445                                      getType())->getAddressSpace()) &&
    446          "The offset must have exactly as many bits as our pointer.");
    447 
    448   // Even though we don't look through PHI nodes, we could be called on an
    449   // instruction in an unreachable block, which may be on a cycle.
    450   SmallPtrSet<Value *, 4> Visited;
    451   Visited.insert(this);
    452   Value *V = this;
    453   do {
    454     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    455       if (!GEP->isInBounds())
    456         return V;
    457       APInt GEPOffset(Offset);
    458       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
    459         return V;
    460       Offset = GEPOffset;
    461       V = GEP->getPointerOperand();
    462     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
    463                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
    464       V = cast<Operator>(V)->getOperand(0);
    465     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    466       V = GA->getAliasee();
    467     } else {
    468       return V;
    469     }
    470     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    471   } while (Visited.insert(V).second);
    472 
    473   return V;
    474 }
    475 
    476 Value *Value::stripInBoundsOffsets() {
    477   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
    478 }
    479 
    480 /// \brief Check if Value is always a dereferenceable pointer.
    481 ///
    482 /// Test if V is always a pointer to allocated and suitably aligned memory for
    483 /// a simple load or store.
    484 static bool isDereferenceablePointer(const Value *V, const DataLayout &DL,
    485                                      SmallPtrSetImpl<const Value *> &Visited) {
    486   // Note that it is not safe to speculate into a malloc'd region because
    487   // malloc may return null.
    488 
    489   // These are obviously ok.
    490   if (isa<AllocaInst>(V)) return true;
    491 
    492   // It's not always safe to follow a bitcast, for example:
    493   //   bitcast i8* (alloca i8) to i32*
    494   // would result in a 4-byte load from a 1-byte alloca. However,
    495   // if we're casting from a pointer from a type of larger size
    496   // to a type of smaller size (or the same size), and the alignment
    497   // is at least as large as for the resulting pointer type, then
    498   // we can look through the bitcast.
    499   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
    500     Type *STy = BC->getSrcTy()->getPointerElementType(),
    501          *DTy = BC->getDestTy()->getPointerElementType();
    502     if (STy->isSized() && DTy->isSized() &&
    503         (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
    504         (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
    505       return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
    506   }
    507 
    508   // Global variables which can't collapse to null are ok.
    509   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    510     return !GV->hasExternalWeakLinkage();
    511 
    512   // byval arguments are okay. Arguments specifically marked as
    513   // dereferenceable are okay too.
    514   if (const Argument *A = dyn_cast<Argument>(V)) {
    515     if (A->hasByValAttr())
    516       return true;
    517     else if (uint64_t Bytes = A->getDereferenceableBytes()) {
    518       Type *Ty = V->getType()->getPointerElementType();
    519       if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes)
    520         return true;
    521     }
    522 
    523     return false;
    524   }
    525 
    526   // Return values from call sites specifically marked as dereferenceable are
    527   // also okay.
    528   if (auto CS = ImmutableCallSite(V)) {
    529     if (uint64_t Bytes = CS.getDereferenceableBytes(0)) {
    530       Type *Ty = V->getType()->getPointerElementType();
    531       if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes)
    532         return true;
    533     }
    534   }
    535 
    536   // For GEPs, determine if the indexing lands within the allocated object.
    537   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    538     // Conservatively require that the base pointer be fully dereferenceable.
    539     if (!Visited.insert(GEP->getOperand(0)).second)
    540       return false;
    541     if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
    542       return false;
    543     // Check the indices.
    544     gep_type_iterator GTI = gep_type_begin(GEP);
    545     for (User::const_op_iterator I = GEP->op_begin()+1,
    546          E = GEP->op_end(); I != E; ++I) {
    547       Value *Index = *I;
    548       Type *Ty = *GTI++;
    549       // Struct indices can't be out of bounds.
    550       if (isa<StructType>(Ty))
    551         continue;
    552       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
    553       if (!CI)
    554         return false;
    555       // Zero is always ok.
    556       if (CI->isZero())
    557         continue;
    558       // Check to see that it's within the bounds of an array.
    559       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
    560       if (!ATy)
    561         return false;
    562       if (CI->getValue().getActiveBits() > 64)
    563         return false;
    564       if (CI->getZExtValue() >= ATy->getNumElements())
    565         return false;
    566     }
    567     // Indices check out; this is dereferenceable.
    568     return true;
    569   }
    570 
    571   // For gc.relocate, look through relocations
    572   if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
    573     if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
    574       GCRelocateOperands RelocateInst(I);
    575       return isDereferenceablePointer(RelocateInst.derivedPtr(), DL, Visited);
    576     }
    577 
    578   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
    579     return isDereferenceablePointer(ASC->getOperand(0), DL, Visited);
    580 
    581   // If we don't know, assume the worst.
    582   return false;
    583 }
    584 
    585 bool Value::isDereferenceablePointer(const DataLayout &DL) const {
    586   // When dereferenceability information is provided by a dereferenceable
    587   // attribute, we know exactly how many bytes are dereferenceable. If we can
    588   // determine the exact offset to the attributed variable, we can use that
    589   // information here.
    590   Type *Ty = getType()->getPointerElementType();
    591   if (Ty->isSized()) {
    592     APInt Offset(DL.getTypeStoreSizeInBits(getType()), 0);
    593     const Value *BV = stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
    594 
    595     APInt DerefBytes(Offset.getBitWidth(), 0);
    596     if (const Argument *A = dyn_cast<Argument>(BV))
    597       DerefBytes = A->getDereferenceableBytes();
    598     else if (auto CS = ImmutableCallSite(BV))
    599       DerefBytes = CS.getDereferenceableBytes(0);
    600 
    601     if (DerefBytes.getBoolValue() && Offset.isNonNegative()) {
    602       if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
    603         return true;
    604     }
    605   }
    606 
    607   SmallPtrSet<const Value *, 32> Visited;
    608   return ::isDereferenceablePointer(this, DL, Visited);
    609 }
    610 
    611 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
    612                                const BasicBlock *PredBB) {
    613   PHINode *PN = dyn_cast<PHINode>(this);
    614   if (PN && PN->getParent() == CurBB)
    615     return PN->getIncomingValueForBlock(PredBB);
    616   return this;
    617 }
    618 
    619 LLVMContext &Value::getContext() const { return VTy->getContext(); }
    620 
    621 void Value::reverseUseList() {
    622   if (!UseList || !UseList->Next)
    623     // No need to reverse 0 or 1 uses.
    624     return;
    625 
    626   Use *Head = UseList;
    627   Use *Current = UseList->Next;
    628   Head->Next = nullptr;
    629   while (Current) {
    630     Use *Next = Current->Next;
    631     Current->Next = Head;
    632     Head->setPrev(&Current->Next);
    633     Head = Current;
    634     Current = Next;
    635   }
    636   UseList = Head;
    637   Head->setPrev(&UseList);
    638 }
    639 
    640 //===----------------------------------------------------------------------===//
    641 //                             ValueHandleBase Class
    642 //===----------------------------------------------------------------------===//
    643 
    644 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
    645   assert(List && "Handle list is null?");
    646 
    647   // Splice ourselves into the list.
    648   Next = *List;
    649   *List = this;
    650   setPrevPtr(List);
    651   if (Next) {
    652     Next->setPrevPtr(&Next);
    653     assert(V == Next->V && "Added to wrong list?");
    654   }
    655 }
    656 
    657 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
    658   assert(List && "Must insert after existing node");
    659 
    660   Next = List->Next;
    661   setPrevPtr(&List->Next);
    662   List->Next = this;
    663   if (Next)
    664     Next->setPrevPtr(&Next);
    665 }
    666 
    667 void ValueHandleBase::AddToUseList() {
    668   assert(V && "Null pointer doesn't have a use list!");
    669 
    670   LLVMContextImpl *pImpl = V->getContext().pImpl;
    671 
    672   if (V->HasValueHandle) {
    673     // If this value already has a ValueHandle, then it must be in the
    674     // ValueHandles map already.
    675     ValueHandleBase *&Entry = pImpl->ValueHandles[V];
    676     assert(Entry && "Value doesn't have any handles?");
    677     AddToExistingUseList(&Entry);
    678     return;
    679   }
    680 
    681   // Ok, it doesn't have any handles yet, so we must insert it into the
    682   // DenseMap.  However, doing this insertion could cause the DenseMap to
    683   // reallocate itself, which would invalidate all of the PrevP pointers that
    684   // point into the old table.  Handle this by checking for reallocation and
    685   // updating the stale pointers only if needed.
    686   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    687   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
    688 
    689   ValueHandleBase *&Entry = Handles[V];
    690   assert(!Entry && "Value really did already have handles?");
    691   AddToExistingUseList(&Entry);
    692   V->HasValueHandle = true;
    693 
    694   // If reallocation didn't happen or if this was the first insertion, don't
    695   // walk the table.
    696   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
    697       Handles.size() == 1) {
    698     return;
    699   }
    700 
    701   // Okay, reallocation did happen.  Fix the Prev Pointers.
    702   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
    703        E = Handles.end(); I != E; ++I) {
    704     assert(I->second && I->first == I->second->V &&
    705            "List invariant broken!");
    706     I->second->setPrevPtr(&I->second);
    707   }
    708 }
    709 
    710 void ValueHandleBase::RemoveFromUseList() {
    711   assert(V && V->HasValueHandle &&
    712          "Pointer doesn't have a use list!");
    713 
    714   // Unlink this from its use list.
    715   ValueHandleBase **PrevPtr = getPrevPtr();
    716   assert(*PrevPtr == this && "List invariant broken");
    717 
    718   *PrevPtr = Next;
    719   if (Next) {
    720     assert(Next->getPrevPtr() == &Next && "List invariant broken");
    721     Next->setPrevPtr(PrevPtr);
    722     return;
    723   }
    724 
    725   // If the Next pointer was null, then it is possible that this was the last
    726   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
    727   // map.
    728   LLVMContextImpl *pImpl = V->getContext().pImpl;
    729   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    730   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
    731     Handles.erase(V);
    732     V->HasValueHandle = false;
    733   }
    734 }
    735 
    736 
    737 void ValueHandleBase::ValueIsDeleted(Value *V) {
    738   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
    739 
    740   // Get the linked list base, which is guaranteed to exist since the
    741   // HasValueHandle flag is set.
    742   LLVMContextImpl *pImpl = V->getContext().pImpl;
    743   ValueHandleBase *Entry = pImpl->ValueHandles[V];
    744   assert(Entry && "Value bit set but no entries exist");
    745 
    746   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
    747   // and remove themselves from the list without breaking our iteration.  This
    748   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
    749   // Note that we deliberately do not the support the case when dropping a value
    750   // handle results in a new value handle being permanently added to the list
    751   // (as might occur in theory for CallbackVH's): the new value handle will not
    752   // be processed and the checking code will mete out righteous punishment if
    753   // the handle is still present once we have finished processing all the other
    754   // value handles (it is fine to momentarily add then remove a value handle).
    755   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    756     Iterator.RemoveFromUseList();
    757     Iterator.AddToExistingUseListAfter(Entry);
    758     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    759 
    760     switch (Entry->getKind()) {
    761     case Assert:
    762       break;
    763     case Tracking:
    764       // Mark that this value has been deleted by setting it to an invalid Value
    765       // pointer.
    766       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
    767       break;
    768     case Weak:
    769       // Weak just goes to null, which will unlink it from the list.
    770       Entry->operator=(nullptr);
    771       break;
    772     case Callback:
    773       // Forward to the subclass's implementation.
    774       static_cast<CallbackVH*>(Entry)->deleted();
    775       break;
    776     }
    777   }
    778 
    779   // All callbacks, weak references, and assertingVHs should be dropped by now.
    780   if (V->HasValueHandle) {
    781 #ifndef NDEBUG      // Only in +Asserts mode...
    782     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
    783            << "\n";
    784     if (pImpl->ValueHandles[V]->getKind() == Assert)
    785       llvm_unreachable("An asserting value handle still pointed to this"
    786                        " value!");
    787 
    788 #endif
    789     llvm_unreachable("All references to V were not removed?");
    790   }
    791 }
    792 
    793 
    794 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
    795   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
    796   assert(Old != New && "Changing value into itself!");
    797   assert(Old->getType() == New->getType() &&
    798          "replaceAllUses of value with new value of different type!");
    799 
    800   // Get the linked list base, which is guaranteed to exist since the
    801   // HasValueHandle flag is set.
    802   LLVMContextImpl *pImpl = Old->getContext().pImpl;
    803   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
    804 
    805   assert(Entry && "Value bit set but no entries exist");
    806 
    807   // We use a local ValueHandleBase as an iterator so that
    808   // ValueHandles can add and remove themselves from the list without
    809   // breaking our iteration.  This is not really an AssertingVH; we
    810   // just have to give ValueHandleBase some kind.
    811   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    812     Iterator.RemoveFromUseList();
    813     Iterator.AddToExistingUseListAfter(Entry);
    814     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    815 
    816     switch (Entry->getKind()) {
    817     case Assert:
    818       // Asserting handle does not follow RAUW implicitly.
    819       break;
    820     case Tracking:
    821       // Tracking goes to new value like a WeakVH. Note that this may make it
    822       // something incompatible with its templated type. We don't want to have a
    823       // virtual (or inline) interface to handle this though, so instead we make
    824       // the TrackingVH accessors guarantee that a client never sees this value.
    825 
    826       // FALLTHROUGH
    827     case Weak:
    828       // Weak goes to the new value, which will unlink it from Old's list.
    829       Entry->operator=(New);
    830       break;
    831     case Callback:
    832       // Forward to the subclass's implementation.
    833       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
    834       break;
    835     }
    836   }
    837 
    838 #ifndef NDEBUG
    839   // If any new tracking or weak value handles were added while processing the
    840   // list, then complain about it now.
    841   if (Old->HasValueHandle)
    842     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
    843       switch (Entry->getKind()) {
    844       case Tracking:
    845       case Weak:
    846         dbgs() << "After RAUW from " << *Old->getType() << " %"
    847                << Old->getName() << " to " << *New->getType() << " %"
    848                << New->getName() << "\n";
    849         llvm_unreachable("A tracking or weak value handle still pointed to the"
    850                          " old value!\n");
    851       default:
    852         break;
    853       }
    854 #endif
    855 }
    856 
    857 // Pin the vtable to this file.
    858 void CallbackVH::anchor() {}
    859