Home | History | Annotate | Download | only in RuntimeDyld
      1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of the MC-JIT runtime dynamic linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
     15 #include "RuntimeDyldCheckerImpl.h"
     16 #include "RuntimeDyldCOFF.h"
     17 #include "RuntimeDyldELF.h"
     18 #include "RuntimeDyldImpl.h"
     19 #include "RuntimeDyldMachO.h"
     20 #include "llvm/Object/ELFObjectFile.h"
     21 #include "llvm/Object/COFF.h"
     22 #include "llvm/Support/MathExtras.h"
     23 #include "llvm/Support/MutexGuard.h"
     24 
     25 using namespace llvm;
     26 using namespace llvm::object;
     27 
     28 #define DEBUG_TYPE "dyld"
     29 
     30 // Empty out-of-line virtual destructor as the key function.
     31 RuntimeDyldImpl::~RuntimeDyldImpl() {}
     32 
     33 // Pin LoadedObjectInfo's vtables to this file.
     34 void RuntimeDyld::LoadedObjectInfo::anchor() {}
     35 
     36 namespace llvm {
     37 
     38 void RuntimeDyldImpl::registerEHFrames() {}
     39 
     40 void RuntimeDyldImpl::deregisterEHFrames() {}
     41 
     42 #ifndef NDEBUG
     43 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
     44   dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
     45 
     46   if (S.Address == nullptr) {
     47     dbgs() << "\n          <section not emitted>\n";
     48     return;
     49   }
     50 
     51   const unsigned ColsPerRow = 16;
     52 
     53   uint8_t *DataAddr = S.Address;
     54   uint64_t LoadAddr = S.LoadAddress;
     55 
     56   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
     57   unsigned BytesRemaining = S.Size;
     58 
     59   if (StartPadding) {
     60     dbgs() << "\n" << format("0x%016" PRIx64,
     61                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
     62     while (StartPadding--)
     63       dbgs() << "   ";
     64   }
     65 
     66   while (BytesRemaining > 0) {
     67     if ((LoadAddr & (ColsPerRow - 1)) == 0)
     68       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
     69 
     70     dbgs() << " " << format("%02x", *DataAddr);
     71 
     72     ++DataAddr;
     73     ++LoadAddr;
     74     --BytesRemaining;
     75   }
     76 
     77   dbgs() << "\n";
     78 }
     79 #endif
     80 
     81 // Resolve the relocations for all symbols we currently know about.
     82 void RuntimeDyldImpl::resolveRelocations() {
     83   MutexGuard locked(lock);
     84 
     85   // First, resolve relocations associated with external symbols.
     86   resolveExternalSymbols();
     87 
     88   // Just iterate over the sections we have and resolve all the relocations
     89   // in them. Gross overkill, but it gets the job done.
     90   for (int i = 0, e = Sections.size(); i != e; ++i) {
     91     // The Section here (Sections[i]) refers to the section in which the
     92     // symbol for the relocation is located.  The SectionID in the relocation
     93     // entry provides the section to which the relocation will be applied.
     94     uint64_t Addr = Sections[i].LoadAddress;
     95     DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
     96                  << format("%p", (uintptr_t)Addr) << "\n");
     97     DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
     98     resolveRelocationList(Relocations[i], Addr);
     99     DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
    100     Relocations.erase(i);
    101   }
    102 }
    103 
    104 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
    105                                         uint64_t TargetAddress) {
    106   MutexGuard locked(lock);
    107   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
    108     if (Sections[i].Address == LocalAddress) {
    109       reassignSectionAddress(i, TargetAddress);
    110       return;
    111     }
    112   }
    113   llvm_unreachable("Attempting to remap address of unknown section!");
    114 }
    115 
    116 static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
    117   uint64_t Address;
    118   if (std::error_code EC = Sym.getAddress(Address))
    119     return EC;
    120 
    121   if (Address == UnknownAddressOrSize) {
    122     Result = UnknownAddressOrSize;
    123     return object_error::success;
    124   }
    125 
    126   const ObjectFile *Obj = Sym.getObject();
    127   section_iterator SecI(Obj->section_begin());
    128   if (std::error_code EC = Sym.getSection(SecI))
    129     return EC;
    130 
    131   if (SecI == Obj->section_end()) {
    132     Result = UnknownAddressOrSize;
    133     return object_error::success;
    134   }
    135 
    136   uint64_t SectionAddress = SecI->getAddress();
    137   Result = Address - SectionAddress;
    138   return object_error::success;
    139 }
    140 
    141 std::pair<unsigned, unsigned>
    142 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
    143   MutexGuard locked(lock);
    144 
    145   // Grab the first Section ID. We'll use this later to construct the underlying
    146   // range for the returned LoadedObjectInfo.
    147   unsigned SectionsAddedBeginIdx = Sections.size();
    148 
    149   // Save information about our target
    150   Arch = (Triple::ArchType)Obj.getArch();
    151   IsTargetLittleEndian = Obj.isLittleEndian();
    152 
    153   // Compute the memory size required to load all sections to be loaded
    154   // and pass this information to the memory manager
    155   if (MemMgr.needsToReserveAllocationSpace()) {
    156     uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
    157     computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
    158     MemMgr.reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
    159   }
    160 
    161   // Used sections from the object file
    162   ObjSectionToIDMap LocalSections;
    163 
    164   // Common symbols requiring allocation, with their sizes and alignments
    165   CommonSymbolList CommonSymbols;
    166 
    167   // Parse symbols
    168   DEBUG(dbgs() << "Parse symbols:\n");
    169   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
    170        ++I) {
    171     uint32_t Flags = I->getFlags();
    172 
    173     bool IsCommon = Flags & SymbolRef::SF_Common;
    174     if (IsCommon)
    175       CommonSymbols.push_back(*I);
    176     else {
    177       object::SymbolRef::Type SymType;
    178       Check(I->getType(SymType));
    179 
    180       if (SymType == object::SymbolRef::ST_Function ||
    181           SymType == object::SymbolRef::ST_Data ||
    182           SymType == object::SymbolRef::ST_Unknown) {
    183 
    184         StringRef Name;
    185         uint64_t SectOffset;
    186         Check(I->getName(Name));
    187         Check(getOffset(*I, SectOffset));
    188         section_iterator SI = Obj.section_end();
    189         Check(I->getSection(SI));
    190         if (SI == Obj.section_end())
    191           continue;
    192         StringRef SectionData;
    193         Check(SI->getContents(SectionData));
    194         bool IsCode = SI->isText();
    195         unsigned SectionID =
    196             findOrEmitSection(Obj, *SI, IsCode, LocalSections);
    197         DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
    198                      << " SID: " << SectionID << " Offset: "
    199                      << format("%p", (uintptr_t)SectOffset)
    200                      << " flags: " << Flags << "\n");
    201         JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
    202         if (Flags & SymbolRef::SF_Weak)
    203           RTDyldSymFlags |= JITSymbolFlags::Weak;
    204         if (Flags & SymbolRef::SF_Exported)
    205           RTDyldSymFlags |= JITSymbolFlags::Exported;
    206         GlobalSymbolTable[Name] =
    207           SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
    208       }
    209     }
    210   }
    211 
    212   // Allocate common symbols
    213   emitCommonSymbols(Obj, CommonSymbols);
    214 
    215   // Parse and process relocations
    216   DEBUG(dbgs() << "Parse relocations:\n");
    217   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    218        SI != SE; ++SI) {
    219     unsigned SectionID = 0;
    220     StubMap Stubs;
    221     section_iterator RelocatedSection = SI->getRelocatedSection();
    222 
    223     if (RelocatedSection == SE)
    224       continue;
    225 
    226     relocation_iterator I = SI->relocation_begin();
    227     relocation_iterator E = SI->relocation_end();
    228 
    229     if (I == E && !ProcessAllSections)
    230       continue;
    231 
    232     bool IsCode = RelocatedSection->isText();
    233     SectionID =
    234         findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
    235     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
    236 
    237     for (; I != E;)
    238       I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
    239 
    240     // If there is an attached checker, notify it about the stubs for this
    241     // section so that they can be verified.
    242     if (Checker)
    243       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
    244   }
    245 
    246   // Give the subclasses a chance to tie-up any loose ends.
    247   finalizeLoad(Obj, LocalSections);
    248 
    249   unsigned SectionsAddedEndIdx = Sections.size();
    250 
    251   return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
    252 }
    253 
    254 // A helper method for computeTotalAllocSize.
    255 // Computes the memory size required to allocate sections with the given sizes,
    256 // assuming that all sections are allocated with the given alignment
    257 static uint64_t
    258 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
    259                                  uint64_t Alignment) {
    260   uint64_t TotalSize = 0;
    261   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
    262     uint64_t AlignedSize =
    263         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
    264     TotalSize += AlignedSize;
    265   }
    266   return TotalSize;
    267 }
    268 
    269 static bool isRequiredForExecution(const SectionRef &Section) {
    270   const ObjectFile *Obj = Section.getObject();
    271   if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
    272     return ELFObj->getSectionFlags(Section) & ELF::SHF_ALLOC;
    273   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
    274     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
    275     // Avoid loading zero-sized COFF sections.
    276     // In PE files, VirtualSize gives the section size, and SizeOfRawData
    277     // may be zero for sections with content. In Obj files, SizeOfRawData
    278     // gives the section size, and VirtualSize is always zero. Hence
    279     // the need to check for both cases below.
    280     bool HasContent = (CoffSection->VirtualSize > 0)
    281       || (CoffSection->SizeOfRawData > 0);
    282     bool IsDiscardable = CoffSection->Characteristics &
    283       (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
    284     return HasContent && !IsDiscardable;
    285   }
    286 
    287   assert(isa<MachOObjectFile>(Obj));
    288   return true;
    289  }
    290 
    291 static bool isReadOnlyData(const SectionRef &Section) {
    292   const ObjectFile *Obj = Section.getObject();
    293   if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
    294     return !(ELFObj->getSectionFlags(Section) &
    295              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
    296   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
    297     return ((COFFObj->getCOFFSection(Section)->Characteristics &
    298              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
    299              | COFF::IMAGE_SCN_MEM_READ
    300              | COFF::IMAGE_SCN_MEM_WRITE))
    301              ==
    302              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
    303              | COFF::IMAGE_SCN_MEM_READ));
    304 
    305   assert(isa<MachOObjectFile>(Obj));
    306   return false;
    307 }
    308 
    309 static bool isZeroInit(const SectionRef &Section) {
    310   const ObjectFile *Obj = Section.getObject();
    311   if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
    312     return ELFObj->getSectionType(Section) == ELF::SHT_NOBITS;
    313   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
    314     return COFFObj->getCOFFSection(Section)->Characteristics &
    315             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
    316 
    317   auto *MachO = cast<MachOObjectFile>(Obj);
    318   unsigned SectionType = MachO->getSectionType(Section);
    319   return SectionType == MachO::S_ZEROFILL ||
    320          SectionType == MachO::S_GB_ZEROFILL;
    321 }
    322 
    323 // Compute an upper bound of the memory size that is required to load all
    324 // sections
    325 void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
    326                                             uint64_t &CodeSize,
    327                                             uint64_t &DataSizeRO,
    328                                             uint64_t &DataSizeRW) {
    329   // Compute the size of all sections required for execution
    330   std::vector<uint64_t> CodeSectionSizes;
    331   std::vector<uint64_t> ROSectionSizes;
    332   std::vector<uint64_t> RWSectionSizes;
    333   uint64_t MaxAlignment = sizeof(void *);
    334 
    335   // Collect sizes of all sections to be loaded;
    336   // also determine the max alignment of all sections
    337   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    338        SI != SE; ++SI) {
    339     const SectionRef &Section = *SI;
    340 
    341     bool IsRequired = isRequiredForExecution(Section);
    342 
    343     // Consider only the sections that are required to be loaded for execution
    344     if (IsRequired) {
    345       StringRef Name;
    346       uint64_t DataSize = Section.getSize();
    347       uint64_t Alignment64 = Section.getAlignment();
    348       bool IsCode = Section.isText();
    349       bool IsReadOnly = isReadOnlyData(Section);
    350       Check(Section.getName(Name));
    351       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    352 
    353       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
    354       uint64_t SectionSize = DataSize + StubBufSize;
    355 
    356       // The .eh_frame section (at least on Linux) needs an extra four bytes
    357       // padded
    358       // with zeroes added at the end.  For MachO objects, this section has a
    359       // slightly different name, so this won't have any effect for MachO
    360       // objects.
    361       if (Name == ".eh_frame")
    362         SectionSize += 4;
    363 
    364       if (!SectionSize)
    365         SectionSize = 1;
    366 
    367       if (IsCode) {
    368         CodeSectionSizes.push_back(SectionSize);
    369       } else if (IsReadOnly) {
    370         ROSectionSizes.push_back(SectionSize);
    371       } else {
    372         RWSectionSizes.push_back(SectionSize);
    373       }
    374 
    375       // update the max alignment
    376       if (Alignment > MaxAlignment) {
    377         MaxAlignment = Alignment;
    378       }
    379     }
    380   }
    381 
    382   // Compute the size of all common symbols
    383   uint64_t CommonSize = 0;
    384   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
    385        ++I) {
    386     uint32_t Flags = I->getFlags();
    387     if (Flags & SymbolRef::SF_Common) {
    388       // Add the common symbols to a list.  We'll allocate them all below.
    389       uint64_t Size = 0;
    390       Check(I->getSize(Size));
    391       CommonSize += Size;
    392     }
    393   }
    394   if (CommonSize != 0) {
    395     RWSectionSizes.push_back(CommonSize);
    396   }
    397 
    398   // Compute the required allocation space for each different type of sections
    399   // (code, read-only data, read-write data) assuming that all sections are
    400   // allocated with the max alignment. Note that we cannot compute with the
    401   // individual alignments of the sections, because then the required size
    402   // depends on the order, in which the sections are allocated.
    403   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
    404   DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
    405   DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
    406 }
    407 
    408 // compute stub buffer size for the given section
    409 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
    410                                                     const SectionRef &Section) {
    411   unsigned StubSize = getMaxStubSize();
    412   if (StubSize == 0) {
    413     return 0;
    414   }
    415   // FIXME: this is an inefficient way to handle this. We should computed the
    416   // necessary section allocation size in loadObject by walking all the sections
    417   // once.
    418   unsigned StubBufSize = 0;
    419   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    420        SI != SE; ++SI) {
    421     section_iterator RelSecI = SI->getRelocatedSection();
    422     if (!(RelSecI == Section))
    423       continue;
    424 
    425     for (const RelocationRef &Reloc : SI->relocations()) {
    426       (void)Reloc;
    427       StubBufSize += StubSize;
    428     }
    429   }
    430 
    431   // Get section data size and alignment
    432   uint64_t DataSize = Section.getSize();
    433   uint64_t Alignment64 = Section.getAlignment();
    434 
    435   // Add stubbuf size alignment
    436   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    437   unsigned StubAlignment = getStubAlignment();
    438   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
    439   if (StubAlignment > EndAlignment)
    440     StubBufSize += StubAlignment - EndAlignment;
    441   return StubBufSize;
    442 }
    443 
    444 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
    445                                              unsigned Size) const {
    446   uint64_t Result = 0;
    447   if (IsTargetLittleEndian) {
    448     Src += Size - 1;
    449     while (Size--)
    450       Result = (Result << 8) | *Src--;
    451   } else
    452     while (Size--)
    453       Result = (Result << 8) | *Src++;
    454 
    455   return Result;
    456 }
    457 
    458 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
    459                                           unsigned Size) const {
    460   if (IsTargetLittleEndian) {
    461     while (Size--) {
    462       *Dst++ = Value & 0xFF;
    463       Value >>= 8;
    464     }
    465   } else {
    466     Dst += Size - 1;
    467     while (Size--) {
    468       *Dst-- = Value & 0xFF;
    469       Value >>= 8;
    470     }
    471   }
    472 }
    473 
    474 void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
    475                                         CommonSymbolList &CommonSymbols) {
    476   if (CommonSymbols.empty())
    477     return;
    478 
    479   uint64_t CommonSize = 0;
    480   CommonSymbolList SymbolsToAllocate;
    481 
    482   DEBUG(dbgs() << "Processing common symbols...\n");
    483 
    484   for (const auto &Sym : CommonSymbols) {
    485     StringRef Name;
    486     Check(Sym.getName(Name));
    487 
    488     // Skip common symbols already elsewhere.
    489     if (GlobalSymbolTable.count(Name) ||
    490         Resolver.findSymbolInLogicalDylib(Name)) {
    491       DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
    492                    << "'\n");
    493       continue;
    494     }
    495 
    496     uint32_t Align = 0;
    497     uint64_t Size = 0;
    498     Check(Sym.getAlignment(Align));
    499     Check(Sym.getSize(Size));
    500 
    501     CommonSize += Align + Size;
    502     SymbolsToAllocate.push_back(Sym);
    503   }
    504 
    505   // Allocate memory for the section
    506   unsigned SectionID = Sections.size();
    507   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, sizeof(void *),
    508                                              SectionID, StringRef(), false);
    509   if (!Addr)
    510     report_fatal_error("Unable to allocate memory for common symbols!");
    511   uint64_t Offset = 0;
    512   Sections.push_back(SectionEntry("<common symbols>", Addr, CommonSize, 0));
    513   memset(Addr, 0, CommonSize);
    514 
    515   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
    516                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
    517 
    518   // Assign the address of each symbol
    519   for (auto &Sym : SymbolsToAllocate) {
    520     uint32_t Align;
    521     uint64_t Size;
    522     StringRef Name;
    523     Check(Sym.getAlignment(Align));
    524     Check(Sym.getSize(Size));
    525     Check(Sym.getName(Name));
    526     if (Align) {
    527       // This symbol has an alignment requirement.
    528       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
    529       Addr += AlignOffset;
    530       Offset += AlignOffset;
    531     }
    532     uint32_t Flags = Sym.getFlags();
    533     JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
    534     if (Flags & SymbolRef::SF_Weak)
    535       RTDyldSymFlags |= JITSymbolFlags::Weak;
    536     if (Flags & SymbolRef::SF_Exported)
    537       RTDyldSymFlags |= JITSymbolFlags::Exported;
    538     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
    539                  << format("%p", Addr) << "\n");
    540     GlobalSymbolTable[Name] =
    541       SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
    542     Offset += Size;
    543     Addr += Size;
    544   }
    545 }
    546 
    547 unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
    548                                       const SectionRef &Section, bool IsCode) {
    549 
    550   StringRef data;
    551   uint64_t Alignment64 = Section.getAlignment();
    552 
    553   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    554   unsigned PaddingSize = 0;
    555   unsigned StubBufSize = 0;
    556   StringRef Name;
    557   bool IsRequired = isRequiredForExecution(Section);
    558   bool IsVirtual = Section.isVirtual();
    559   bool IsZeroInit = isZeroInit(Section);
    560   bool IsReadOnly = isReadOnlyData(Section);
    561   uint64_t DataSize = Section.getSize();
    562   Check(Section.getName(Name));
    563 
    564   StubBufSize = computeSectionStubBufSize(Obj, Section);
    565 
    566   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
    567   // with zeroes added at the end.  For MachO objects, this section has a
    568   // slightly different name, so this won't have any effect for MachO objects.
    569   if (Name == ".eh_frame")
    570     PaddingSize = 4;
    571 
    572   uintptr_t Allocate;
    573   unsigned SectionID = Sections.size();
    574   uint8_t *Addr;
    575   const char *pData = nullptr;
    576 
    577   // Some sections, such as debug info, don't need to be loaded for execution.
    578   // Leave those where they are.
    579   if (IsRequired) {
    580     Check(Section.getContents(data));
    581     Allocate = DataSize + PaddingSize + StubBufSize;
    582     if (!Allocate)
    583       Allocate = 1;
    584     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
    585                                                Name)
    586                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
    587                                                Name, IsReadOnly);
    588     if (!Addr)
    589       report_fatal_error("Unable to allocate section memory!");
    590 
    591     // Virtual sections have no data in the object image, so leave pData = 0
    592     if (!IsVirtual)
    593       pData = data.data();
    594 
    595     // Zero-initialize or copy the data from the image
    596     if (IsZeroInit || IsVirtual)
    597       memset(Addr, 0, DataSize);
    598     else
    599       memcpy(Addr, pData, DataSize);
    600 
    601     // Fill in any extra bytes we allocated for padding
    602     if (PaddingSize != 0) {
    603       memset(Addr + DataSize, 0, PaddingSize);
    604       // Update the DataSize variable so that the stub offset is set correctly.
    605       DataSize += PaddingSize;
    606     }
    607 
    608     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
    609                  << " obj addr: " << format("%p", pData)
    610                  << " new addr: " << format("%p", Addr)
    611                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
    612                  << " Allocate: " << Allocate << "\n");
    613   } else {
    614     // Even if we didn't load the section, we need to record an entry for it
    615     // to handle later processing (and by 'handle' I mean don't do anything
    616     // with these sections).
    617     Allocate = 0;
    618     Addr = nullptr;
    619     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
    620                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
    621                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
    622                  << " Allocate: " << Allocate << "\n");
    623   }
    624 
    625   Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
    626 
    627   if (Checker)
    628     Checker->registerSection(Obj.getFileName(), SectionID);
    629 
    630   return SectionID;
    631 }
    632 
    633 unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
    634                                             const SectionRef &Section,
    635                                             bool IsCode,
    636                                             ObjSectionToIDMap &LocalSections) {
    637 
    638   unsigned SectionID = 0;
    639   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
    640   if (i != LocalSections.end())
    641     SectionID = i->second;
    642   else {
    643     SectionID = emitSection(Obj, Section, IsCode);
    644     LocalSections[Section] = SectionID;
    645   }
    646   return SectionID;
    647 }
    648 
    649 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
    650                                               unsigned SectionID) {
    651   Relocations[SectionID].push_back(RE);
    652 }
    653 
    654 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
    655                                              StringRef SymbolName) {
    656   // Relocation by symbol.  If the symbol is found in the global symbol table,
    657   // create an appropriate section relocation.  Otherwise, add it to
    658   // ExternalSymbolRelocations.
    659   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
    660   if (Loc == GlobalSymbolTable.end()) {
    661     ExternalSymbolRelocations[SymbolName].push_back(RE);
    662   } else {
    663     // Copy the RE since we want to modify its addend.
    664     RelocationEntry RECopy = RE;
    665     const auto &SymInfo = Loc->second;
    666     RECopy.Addend += SymInfo.getOffset();
    667     Relocations[SymInfo.getSectionID()].push_back(RECopy);
    668   }
    669 }
    670 
    671 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
    672                                              unsigned AbiVariant) {
    673   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
    674     // This stub has to be able to access the full address space,
    675     // since symbol lookup won't necessarily find a handy, in-range,
    676     // PLT stub for functions which could be anywhere.
    677     // Stub can use ip0 (== x16) to calculate address
    678     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
    679     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
    680     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
    681     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
    682     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
    683 
    684     return Addr;
    685   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
    686     // TODO: There is only ARM far stub now. We should add the Thumb stub,
    687     // and stubs for branches Thumb - ARM and ARM - Thumb.
    688     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
    689     return Addr + 4;
    690   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
    691     // 0:   3c190000        lui     t9,%hi(addr).
    692     // 4:   27390000        addiu   t9,t9,%lo(addr).
    693     // 8:   03200008        jr      t9.
    694     // c:   00000000        nop.
    695     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
    696     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
    697 
    698     writeBytesUnaligned(LuiT9Instr, Addr, 4);
    699     writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
    700     writeBytesUnaligned(JrT9Instr, Addr+8, 4);
    701     writeBytesUnaligned(NopInstr, Addr+12, 4);
    702     return Addr;
    703   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    704     // Depending on which version of the ELF ABI is in use, we need to
    705     // generate one of two variants of the stub.  They both start with
    706     // the same sequence to load the target address into r12.
    707     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
    708     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
    709     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
    710     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
    711     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
    712     if (AbiVariant == 2) {
    713       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
    714       // The address is already in r12 as required by the ABI.  Branch to it.
    715       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
    716       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
    717       writeInt32BE(Addr+28, 0x4E800420); // bctr
    718     } else {
    719       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
    720       // Load the function address on r11 and sets it to control register. Also
    721       // loads the function TOC in r2 and environment pointer to r11.
    722       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
    723       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
    724       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
    725       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
    726       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
    727       writeInt32BE(Addr+40, 0x4E800420); // bctr
    728     }
    729     return Addr;
    730   } else if (Arch == Triple::systemz) {
    731     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
    732     writeInt16BE(Addr+2,  0x0000);
    733     writeInt16BE(Addr+4,  0x0004);
    734     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
    735     // 8-byte address stored at Addr + 8
    736     return Addr;
    737   } else if (Arch == Triple::x86_64) {
    738     *Addr      = 0xFF; // jmp
    739     *(Addr+1)  = 0x25; // rip
    740     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
    741   } else if (Arch == Triple::x86) {
    742     *Addr      = 0xE9; // 32-bit pc-relative jump.
    743   }
    744   return Addr;
    745 }
    746 
    747 // Assign an address to a symbol name and resolve all the relocations
    748 // associated with it.
    749 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
    750                                              uint64_t Addr) {
    751   // The address to use for relocation resolution is not
    752   // the address of the local section buffer. We must be doing
    753   // a remote execution environment of some sort. Relocations can't
    754   // be applied until all the sections have been moved.  The client must
    755   // trigger this with a call to MCJIT::finalize() or
    756   // RuntimeDyld::resolveRelocations().
    757   //
    758   // Addr is a uint64_t because we can't assume the pointer width
    759   // of the target is the same as that of the host. Just use a generic
    760   // "big enough" type.
    761   DEBUG(dbgs() << "Reassigning address for section "
    762                << SectionID << " (" << Sections[SectionID].Name << "): "
    763                << format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
    764                << format("0x%016" PRIx64, Addr) << "\n");
    765   Sections[SectionID].LoadAddress = Addr;
    766 }
    767 
    768 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
    769                                             uint64_t Value) {
    770   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    771     const RelocationEntry &RE = Relocs[i];
    772     // Ignore relocations for sections that were not loaded
    773     if (Sections[RE.SectionID].Address == nullptr)
    774       continue;
    775     resolveRelocation(RE, Value);
    776   }
    777 }
    778 
    779 void RuntimeDyldImpl::resolveExternalSymbols() {
    780   while (!ExternalSymbolRelocations.empty()) {
    781     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
    782 
    783     StringRef Name = i->first();
    784     if (Name.size() == 0) {
    785       // This is an absolute symbol, use an address of zero.
    786       DEBUG(dbgs() << "Resolving absolute relocations."
    787                    << "\n");
    788       RelocationList &Relocs = i->second;
    789       resolveRelocationList(Relocs, 0);
    790     } else {
    791       uint64_t Addr = 0;
    792       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
    793       if (Loc == GlobalSymbolTable.end()) {
    794         // This is an external symbol, try to get its address from the symbol
    795         // resolver.
    796         Addr = Resolver.findSymbol(Name.data()).getAddress();
    797         // The call to getSymbolAddress may have caused additional modules to
    798         // be loaded, which may have added new entries to the
    799         // ExternalSymbolRelocations map.  Consquently, we need to update our
    800         // iterator.  This is also why retrieval of the relocation list
    801         // associated with this symbol is deferred until below this point.
    802         // New entries may have been added to the relocation list.
    803         i = ExternalSymbolRelocations.find(Name);
    804       } else {
    805         // We found the symbol in our global table.  It was probably in a
    806         // Module that we loaded previously.
    807         const auto &SymInfo = Loc->second;
    808         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
    809                SymInfo.getOffset();
    810       }
    811 
    812       // FIXME: Implement error handling that doesn't kill the host program!
    813       if (!Addr)
    814         report_fatal_error("Program used external function '" + Name +
    815                            "' which could not be resolved!");
    816 
    817       DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
    818                    << format("0x%lx", Addr) << "\n");
    819       // This list may have been updated when we called getSymbolAddress, so
    820       // don't change this code to get the list earlier.
    821       RelocationList &Relocs = i->second;
    822       resolveRelocationList(Relocs, Addr);
    823     }
    824 
    825     ExternalSymbolRelocations.erase(i);
    826   }
    827 }
    828 
    829 //===----------------------------------------------------------------------===//
    830 // RuntimeDyld class implementation
    831 
    832 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
    833                                                   StringRef SectionName) const {
    834   for (unsigned I = BeginIdx; I != EndIdx; ++I)
    835     if (RTDyld.Sections[I].Name == SectionName)
    836       return RTDyld.Sections[I].LoadAddress;
    837 
    838   return 0;
    839 }
    840 
    841 void RuntimeDyld::MemoryManager::anchor() {}
    842 void RuntimeDyld::SymbolResolver::anchor() {}
    843 
    844 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
    845                          RuntimeDyld::SymbolResolver &Resolver)
    846     : MemMgr(MemMgr), Resolver(Resolver) {
    847   // FIXME: There's a potential issue lurking here if a single instance of
    848   // RuntimeDyld is used to load multiple objects.  The current implementation
    849   // associates a single memory manager with a RuntimeDyld instance.  Even
    850   // though the public class spawns a new 'impl' instance for each load,
    851   // they share a single memory manager.  This can become a problem when page
    852   // permissions are applied.
    853   Dyld = nullptr;
    854   ProcessAllSections = false;
    855   Checker = nullptr;
    856 }
    857 
    858 RuntimeDyld::~RuntimeDyld() {}
    859 
    860 static std::unique_ptr<RuntimeDyldCOFF>
    861 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
    862                       RuntimeDyld::SymbolResolver &Resolver,
    863                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
    864   std::unique_ptr<RuntimeDyldCOFF> Dyld =
    865     RuntimeDyldCOFF::create(Arch, MM, Resolver);
    866   Dyld->setProcessAllSections(ProcessAllSections);
    867   Dyld->setRuntimeDyldChecker(Checker);
    868   return Dyld;
    869 }
    870 
    871 static std::unique_ptr<RuntimeDyldELF>
    872 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
    873                      RuntimeDyld::SymbolResolver &Resolver,
    874                      bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
    875   std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
    876   Dyld->setProcessAllSections(ProcessAllSections);
    877   Dyld->setRuntimeDyldChecker(Checker);
    878   return Dyld;
    879 }
    880 
    881 static std::unique_ptr<RuntimeDyldMachO>
    882 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
    883                        RuntimeDyld::SymbolResolver &Resolver,
    884                        bool ProcessAllSections,
    885                        RuntimeDyldCheckerImpl *Checker) {
    886   std::unique_ptr<RuntimeDyldMachO> Dyld =
    887     RuntimeDyldMachO::create(Arch, MM, Resolver);
    888   Dyld->setProcessAllSections(ProcessAllSections);
    889   Dyld->setRuntimeDyldChecker(Checker);
    890   return Dyld;
    891 }
    892 
    893 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
    894 RuntimeDyld::loadObject(const ObjectFile &Obj) {
    895   if (!Dyld) {
    896     if (Obj.isELF())
    897       Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
    898     else if (Obj.isMachO())
    899       Dyld = createRuntimeDyldMachO(
    900                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
    901                ProcessAllSections, Checker);
    902     else if (Obj.isCOFF())
    903       Dyld = createRuntimeDyldCOFF(
    904                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
    905                ProcessAllSections, Checker);
    906     else
    907       report_fatal_error("Incompatible object format!");
    908   }
    909 
    910   if (!Dyld->isCompatibleFile(Obj))
    911     report_fatal_error("Incompatible object format!");
    912 
    913   return Dyld->loadObject(Obj);
    914 }
    915 
    916 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
    917   if (!Dyld)
    918     return nullptr;
    919   return Dyld->getSymbolLocalAddress(Name);
    920 }
    921 
    922 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
    923   if (!Dyld)
    924     return nullptr;
    925   return Dyld->getSymbol(Name);
    926 }
    927 
    928 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
    929 
    930 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
    931   Dyld->reassignSectionAddress(SectionID, Addr);
    932 }
    933 
    934 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
    935                                     uint64_t TargetAddress) {
    936   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
    937 }
    938 
    939 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
    940 
    941 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
    942 
    943 void RuntimeDyld::registerEHFrames() {
    944   if (Dyld)
    945     Dyld->registerEHFrames();
    946 }
    947 
    948 void RuntimeDyld::deregisterEHFrames() {
    949   if (Dyld)
    950     Dyld->deregisterEHFrames();
    951 }
    952 
    953 } // end namespace llvm
    954