Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkGeometry_DEFINED
      9 #define SkGeometry_DEFINED
     10 
     11 #include "SkMatrix.h"
     12 #include "SkNx.h"
     13 
     14 static inline Sk2s from_point(const SkPoint& point) {
     15     return Sk2s::Load(&point.fX);
     16 }
     17 
     18 static inline SkPoint to_point(const Sk2s& x) {
     19     SkPoint point;
     20     x.store(&point.fX);
     21     return point;
     22 }
     23 
     24 static inline Sk2s sk2s_cubic_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& D,
     25                                    const Sk2s& t) {
     26     return ((A * t + B) * t + C) * t + D;
     27 }
     28 
     29 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
     30     equation.
     31 */
     32 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
     33 
     34 ///////////////////////////////////////////////////////////////////////////////
     35 
     36 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
     37 SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
     38 
     39 /** Set pt to the point on the src quadratic specified by t. t must be
     40     0 <= t <= 1.0
     41 */
     42 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL);
     43 
     44 /**
     45  *  output is : eval(t) == coeff[0] * t^2 + coeff[1] * t + coeff[2]
     46  */
     47 void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]);
     48 
     49 /**
     50  *  output is : eval(t) == coeff[0] * t^3 + coeff[1] * t^2 + coeff[2] * t + coeff[3]
     51  */
     52 void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]);
     53 
     54 /** Given a src quadratic bezier, chop it at the specified t value,
     55     where 0 < t < 1, and return the two new quadratics in dst:
     56     dst[0..2] and dst[2..4]
     57 */
     58 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
     59 
     60 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
     61     The new quads are returned in dst[0..2] and dst[2..4]
     62 */
     63 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
     64 
     65 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
     66     for extrema, and return the number of t-values that are found that represent
     67     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
     68     function returns 0.
     69     Returned count      tValues[]
     70     0                   ignored
     71     1                   0 < tValues[0] < 1
     72 */
     73 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
     74 
     75 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
     76     the resulting beziers are monotonic in Y. This is called by the scan converter.
     77     Depending on what is returned, dst[] is treated as follows
     78     0   dst[0..2] is the original quad
     79     1   dst[0..2] and dst[2..4] are the two new quads
     80 */
     81 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
     82 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
     83 
     84 /** Given 3 points on a quadratic bezier, if the point of maximum
     85     curvature exists on the segment, returns the t value for this
     86     point along the curve. Otherwise it will return a value of 0.
     87 */
     88 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
     89 
     90 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
     91     if the point of maximum curvature exists on the quad segment.
     92     Depending on what is returned, dst[] is treated as follows
     93     1   dst[0..2] is the original quad
     94     2   dst[0..2] and dst[2..4] are the two new quads
     95     If dst == null, it is ignored and only the count is returned.
     96 */
     97 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
     98 
     99 /** Given 3 points on a quadratic bezier, use degree elevation to
    100     convert it into the cubic fitting the same curve. The new cubic
    101     curve is returned in dst[0..3].
    102 */
    103 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
    104 
    105 ///////////////////////////////////////////////////////////////////////////////
    106 
    107 /** Set pt to the point on the src cubic specified by t. t must be
    108     0 <= t <= 1.0
    109 */
    110 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
    111                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
    112 
    113 /** Given a src cubic bezier, chop it at the specified t value,
    114     where 0 < t < 1, and return the two new cubics in dst:
    115     dst[0..3] and dst[3..6]
    116 */
    117 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
    118 
    119 /** Given a src cubic bezier, chop it at the specified t values,
    120     where 0 < t < 1, and return the new cubics in dst:
    121     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
    122 */
    123 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
    124                    int t_count);
    125 
    126 /** Given a src cubic bezier, chop it at the specified t == 1/2,
    127     The new cubics are returned in dst[0..3] and dst[3..6]
    128 */
    129 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
    130 
    131 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
    132     for extrema, and return the number of t-values that are found that represent
    133     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
    134     function returns 0.
    135     Returned count      tValues[]
    136     0                   ignored
    137     1                   0 < tValues[0] < 1
    138     2                   0 < tValues[0] < tValues[1] < 1
    139 */
    140 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    141                        SkScalar tValues[2]);
    142 
    143 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    144     the resulting beziers are monotonic in Y. This is called by the scan converter.
    145     Depending on what is returned, dst[] is treated as follows
    146     0   dst[0..3] is the original cubic
    147     1   dst[0..3] and dst[3..6] are the two new cubics
    148     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    149     If dst == null, it is ignored and only the count is returned.
    150 */
    151 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
    152 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
    153 
    154 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
    155     inflection points.
    156 */
    157 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
    158 
    159 /** Return 1 for no chop, 2 for having chopped the cubic at a single
    160     inflection point, 3 for having chopped at 2 inflection points.
    161     dst will hold the resulting 1, 2, or 3 cubics.
    162 */
    163 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
    164 
    165 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
    166 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    167                               SkScalar tValues[3] = NULL);
    168 
    169 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]);
    170 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]);
    171 
    172 enum SkCubicType {
    173     kSerpentine_SkCubicType,
    174     kCusp_SkCubicType,
    175     kLoop_SkCubicType,
    176     kQuadratic_SkCubicType,
    177     kLine_SkCubicType,
    178     kPoint_SkCubicType
    179 };
    180 
    181 /** Returns the cubic classification. Pass scratch storage for computing inflection data,
    182     which can be used with additional work to find the loop intersections and so on.
    183 */
    184 SkCubicType SkClassifyCubic(const SkPoint p[4], SkScalar inflection[3]);
    185 
    186 ///////////////////////////////////////////////////////////////////////////////
    187 
    188 enum SkRotationDirection {
    189     kCW_SkRotationDirection,
    190     kCCW_SkRotationDirection
    191 };
    192 
    193 /** Maximum number of points needed in the quadPoints[] parameter for
    194     SkBuildQuadArc()
    195 */
    196 #define kSkBuildQuadArcStorage  17
    197 
    198 /** Given 2 unit vectors and a rotation direction, fill out the specified
    199     array of points with quadratic segments. Return is the number of points
    200     written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
    201 
    202     matrix, if not null, is appled to the points before they are returned.
    203 */
    204 int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
    205                    SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
    206 
    207 struct SkConic {
    208     SkConic() {}
    209     SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
    210         fPts[0] = p0;
    211         fPts[1] = p1;
    212         fPts[2] = p2;
    213         fW = w;
    214     }
    215     SkConic(const SkPoint pts[3], SkScalar w) {
    216         memcpy(fPts, pts, sizeof(fPts));
    217         fW = w;
    218     }
    219 
    220     SkPoint  fPts[3];
    221     SkScalar fW;
    222 
    223     void set(const SkPoint pts[3], SkScalar w) {
    224         memcpy(fPts, pts, 3 * sizeof(SkPoint));
    225         fW = w;
    226     }
    227 
    228     void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
    229         fPts[0] = p0;
    230         fPts[1] = p1;
    231         fPts[2] = p2;
    232         fW = w;
    233     }
    234 
    235     /**
    236      *  Given a t-value [0...1] return its position and/or tangent.
    237      *  If pos is not null, return its position at the t-value.
    238      *  If tangent is not null, return its tangent at the t-value. NOTE the
    239      *  tangent value's length is arbitrary, and only its direction should
    240      *  be used.
    241      */
    242     void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
    243     void chopAt(SkScalar t, SkConic dst[2]) const;
    244     void chop(SkConic dst[2]) const;
    245 
    246     SkPoint evalAt(SkScalar t) const;
    247     SkVector evalTangentAt(SkScalar t) const;
    248 
    249     void computeAsQuadError(SkVector* err) const;
    250     bool asQuadTol(SkScalar tol) const;
    251 
    252     /**
    253      *  return the power-of-2 number of quads needed to approximate this conic
    254      *  with a sequence of quads. Will be >= 0.
    255      */
    256     int computeQuadPOW2(SkScalar tol) const;
    257 
    258     /**
    259      *  Chop this conic into N quads, stored continguously in pts[], where
    260      *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
    261      */
    262     int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
    263 
    264     bool findXExtrema(SkScalar* t) const;
    265     bool findYExtrema(SkScalar* t) const;
    266     bool chopAtXExtrema(SkConic dst[2]) const;
    267     bool chopAtYExtrema(SkConic dst[2]) const;
    268 
    269     void computeTightBounds(SkRect* bounds) const;
    270     void computeFastBounds(SkRect* bounds) const;
    271 
    272     /** Find the parameter value where the conic takes on its maximum curvature.
    273      *
    274      *  @param t   output scalar for max curvature.  Will be unchanged if
    275      *             max curvature outside 0..1 range.
    276      *
    277      *  @return  true if max curvature found inside 0..1 range, false otherwise
    278      */
    279     bool findMaxCurvature(SkScalar* t) const;
    280 
    281     static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
    282 
    283     enum {
    284         kMaxConicsForArc = 5
    285     };
    286     static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
    287                             const SkMatrix*, SkConic conics[kMaxConicsForArc]);
    288 };
    289 
    290 #include "SkTemplates.h"
    291 
    292 /**
    293  *  Help class to allocate storage for approximating a conic with N quads.
    294  */
    295 class SkAutoConicToQuads {
    296 public:
    297     SkAutoConicToQuads() : fQuadCount(0) {}
    298 
    299     /**
    300      *  Given a conic and a tolerance, return the array of points for the
    301      *  approximating quad(s). Call countQuads() to know the number of quads
    302      *  represented in these points.
    303      *
    304      *  The quads are allocated to share end-points. e.g. if there are 4 quads,
    305      *  there will be 9 points allocated as follows
    306      *      quad[0] == pts[0..2]
    307      *      quad[1] == pts[2..4]
    308      *      quad[2] == pts[4..6]
    309      *      quad[3] == pts[6..8]
    310      */
    311     const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
    312         int pow2 = conic.computeQuadPOW2(tol);
    313         fQuadCount = 1 << pow2;
    314         SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
    315         conic.chopIntoQuadsPOW2(pts, pow2);
    316         return pts;
    317     }
    318 
    319     const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
    320                                 SkScalar tol) {
    321         SkConic conic;
    322         conic.set(pts, weight);
    323         return computeQuads(conic, tol);
    324     }
    325 
    326     int countQuads() const { return fQuadCount; }
    327 
    328 private:
    329     enum {
    330         kQuadCount = 8, // should handle most conics
    331         kPointCount = 1 + 2 * kQuadCount,
    332     };
    333     SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
    334     int fQuadCount; // #quads for current usage
    335 };
    336 
    337 #endif
    338