Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkGeometry.h"
      9 #include "SkMatrix.h"
     10 #include "SkNx.h"
     11 
     12 #if 0
     13 static Sk2s from_point(const SkPoint& point) {
     14     return Sk2s::Load(&point.fX);
     15 }
     16 
     17 static SkPoint to_point(const Sk2s& x) {
     18     SkPoint point;
     19     x.store(&point.fX);
     20     return point;
     21 }
     22 #endif
     23 
     24 static SkVector to_vector(const Sk2s& x) {
     25     SkVector vector;
     26     x.store(&vector.fX);
     27     return vector;
     28 }
     29 
     30 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
     31     involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
     32     May also introduce overflow of fixed when we compute our setup.
     33 */
     34 //    #define DIRECT_EVAL_OF_POLYNOMIALS
     35 
     36 ////////////////////////////////////////////////////////////////////////
     37 
     38 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
     39     SkScalar ab = a - b;
     40     SkScalar bc = b - c;
     41     if (ab < 0) {
     42         bc = -bc;
     43     }
     44     return ab == 0 || bc < 0;
     45 }
     46 
     47 ////////////////////////////////////////////////////////////////////////
     48 
     49 static bool is_unit_interval(SkScalar x) {
     50     return x > 0 && x < SK_Scalar1;
     51 }
     52 
     53 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
     54     SkASSERT(ratio);
     55 
     56     if (numer < 0) {
     57         numer = -numer;
     58         denom = -denom;
     59     }
     60 
     61     if (denom == 0 || numer == 0 || numer >= denom) {
     62         return 0;
     63     }
     64 
     65     SkScalar r = numer / denom;
     66     if (SkScalarIsNaN(r)) {
     67         return 0;
     68     }
     69     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
     70     if (r == 0) { // catch underflow if numer <<<< denom
     71         return 0;
     72     }
     73     *ratio = r;
     74     return 1;
     75 }
     76 
     77 /** From Numerical Recipes in C.
     78 
     79     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
     80     x1 = Q / A
     81     x2 = C / Q
     82 */
     83 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
     84     SkASSERT(roots);
     85 
     86     if (A == 0) {
     87         return valid_unit_divide(-C, B, roots);
     88     }
     89 
     90     SkScalar* r = roots;
     91 
     92     SkScalar R = B*B - 4*A*C;
     93     if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
     94         return 0;
     95     }
     96     R = SkScalarSqrt(R);
     97 
     98     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
     99     r += valid_unit_divide(Q, A, r);
    100     r += valid_unit_divide(C, Q, r);
    101     if (r - roots == 2) {
    102         if (roots[0] > roots[1])
    103             SkTSwap<SkScalar>(roots[0], roots[1]);
    104         else if (roots[0] == roots[1])  // nearly-equal?
    105             r -= 1; // skip the double root
    106     }
    107     return (int)(r - roots);
    108 }
    109 
    110 ///////////////////////////////////////////////////////////////////////////////
    111 ///////////////////////////////////////////////////////////////////////////////
    112 
    113 static Sk2s quad_poly_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& t) {
    114     return (A * t + B) * t + C;
    115 }
    116 
    117 static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
    118     SkASSERT(src);
    119     SkASSERT(t >= 0 && t <= SK_Scalar1);
    120 
    121 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
    122     SkScalar    C = src[0];
    123     SkScalar    A = src[4] - 2 * src[2] + C;
    124     SkScalar    B = 2 * (src[2] - C);
    125     return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
    126 #else
    127     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    128     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    129     return SkScalarInterp(ab, bc, t);
    130 #endif
    131 }
    132 
    133 static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
    134     SkScalar A = src[4] - 2 * src[2] + src[0];
    135     SkScalar B = src[2] - src[0];
    136 
    137     return 2 * SkScalarMulAdd(A, t, B);
    138 }
    139 
    140 void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) {
    141     Sk2s p0 = from_point(pts[0]);
    142     Sk2s p1 = from_point(pts[1]);
    143     Sk2s p2 = from_point(pts[2]);
    144 
    145     Sk2s p1minus2 = p1 - p0;
    146 
    147     coeff[0] = to_point(p2 - p1 - p1 + p0);     // A * t^2
    148     coeff[1] = to_point(p1minus2 + p1minus2);   // B * t
    149     coeff[2] = pts[0];                          // C
    150 }
    151 
    152 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
    153     SkASSERT(src);
    154     SkASSERT(t >= 0 && t <= SK_Scalar1);
    155 
    156     if (pt) {
    157         pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
    158     }
    159     if (tangent) {
    160         tangent->set(eval_quad_derivative(&src[0].fX, t),
    161                      eval_quad_derivative(&src[0].fY, t));
    162     }
    163 }
    164 
    165 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
    166     SkASSERT(src);
    167     SkASSERT(t >= 0 && t <= SK_Scalar1);
    168 
    169     const Sk2s t2(t);
    170 
    171     Sk2s P0 = from_point(src[0]);
    172     Sk2s P1 = from_point(src[1]);
    173     Sk2s P2 = from_point(src[2]);
    174 
    175     Sk2s B = P1 - P0;
    176     Sk2s A = P2 - P1 - B;
    177 
    178     return to_point((A * t2 + B+B) * t2 + P0);
    179 }
    180 
    181 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
    182     SkASSERT(src);
    183     SkASSERT(t >= 0 && t <= SK_Scalar1);
    184 
    185     Sk2s P0 = from_point(src[0]);
    186     Sk2s P1 = from_point(src[1]);
    187     Sk2s P2 = from_point(src[2]);
    188 
    189     Sk2s B = P1 - P0;
    190     Sk2s A = P2 - P1 - B;
    191     Sk2s T = A * Sk2s(t) + B;
    192 
    193     return to_vector(T + T);
    194 }
    195 
    196 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
    197     return v0 + (v1 - v0) * t;
    198 }
    199 
    200 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
    201     SkASSERT(t > 0 && t < SK_Scalar1);
    202 
    203     Sk2s p0 = from_point(src[0]);
    204     Sk2s p1 = from_point(src[1]);
    205     Sk2s p2 = from_point(src[2]);
    206     Sk2s tt(t);
    207 
    208     Sk2s p01 = interp(p0, p1, tt);
    209     Sk2s p12 = interp(p1, p2, tt);
    210 
    211     dst[0] = to_point(p0);
    212     dst[1] = to_point(p01);
    213     dst[2] = to_point(interp(p01, p12, tt));
    214     dst[3] = to_point(p12);
    215     dst[4] = to_point(p2);
    216 }
    217 
    218 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
    219     SkChopQuadAt(src, dst, 0.5f); return;
    220 }
    221 
    222 /** Quad'(t) = At + B, where
    223     A = 2(a - 2b + c)
    224     B = 2(b - a)
    225     Solve for t, only if it fits between 0 < t < 1
    226 */
    227 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
    228     /*  At + B == 0
    229         t = -B / A
    230     */
    231     return valid_unit_divide(a - b, a - b - b + c, tValue);
    232 }
    233 
    234 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
    235     coords[2] = coords[6] = coords[4];
    236 }
    237 
    238 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    239  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    240  */
    241 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
    242     SkASSERT(src);
    243     SkASSERT(dst);
    244 
    245     SkScalar a = src[0].fY;
    246     SkScalar b = src[1].fY;
    247     SkScalar c = src[2].fY;
    248 
    249     if (is_not_monotonic(a, b, c)) {
    250         SkScalar    tValue;
    251         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    252             SkChopQuadAt(src, dst, tValue);
    253             flatten_double_quad_extrema(&dst[0].fY);
    254             return 1;
    255         }
    256         // if we get here, we need to force dst to be monotonic, even though
    257         // we couldn't compute a unit_divide value (probably underflow).
    258         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    259     }
    260     dst[0].set(src[0].fX, a);
    261     dst[1].set(src[1].fX, b);
    262     dst[2].set(src[2].fX, c);
    263     return 0;
    264 }
    265 
    266 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    267     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    268  */
    269 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
    270     SkASSERT(src);
    271     SkASSERT(dst);
    272 
    273     SkScalar a = src[0].fX;
    274     SkScalar b = src[1].fX;
    275     SkScalar c = src[2].fX;
    276 
    277     if (is_not_monotonic(a, b, c)) {
    278         SkScalar tValue;
    279         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    280             SkChopQuadAt(src, dst, tValue);
    281             flatten_double_quad_extrema(&dst[0].fX);
    282             return 1;
    283         }
    284         // if we get here, we need to force dst to be monotonic, even though
    285         // we couldn't compute a unit_divide value (probably underflow).
    286         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    287     }
    288     dst[0].set(a, src[0].fY);
    289     dst[1].set(b, src[1].fY);
    290     dst[2].set(c, src[2].fY);
    291     return 0;
    292 }
    293 
    294 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
    295 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
    296 //  F''(t)  = 2 (a - 2b + c)
    297 //
    298 //  A = 2 (b - a)
    299 //  B = 2 (a - 2b + c)
    300 //
    301 //  Maximum curvature for a quadratic means solving
    302 //  Fx' Fx'' + Fy' Fy'' = 0
    303 //
    304 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
    305 //
    306 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
    307     SkScalar    Ax = src[1].fX - src[0].fX;
    308     SkScalar    Ay = src[1].fY - src[0].fY;
    309     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    310     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    311     SkScalar    t = 0;  // 0 means don't chop
    312 
    313     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    314     return t;
    315 }
    316 
    317 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
    318     SkScalar t = SkFindQuadMaxCurvature(src);
    319     if (t == 0) {
    320         memcpy(dst, src, 3 * sizeof(SkPoint));
    321         return 1;
    322     } else {
    323         SkChopQuadAt(src, dst, t);
    324         return 2;
    325     }
    326 }
    327 
    328 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    329     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
    330     Sk2s s0 = from_point(src[0]);
    331     Sk2s s1 = from_point(src[1]);
    332     Sk2s s2 = from_point(src[2]);
    333 
    334     dst[0] = src[0];
    335     dst[1] = to_point(s0 + (s1 - s0) * scale);
    336     dst[2] = to_point(s2 + (s1 - s2) * scale);
    337     dst[3] = src[2];
    338 }
    339 
    340 //////////////////////////////////////////////////////////////////////////////
    341 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
    342 //////////////////////////////////////////////////////////////////////////////
    343 
    344 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
    345     SkASSERT(src);
    346     SkASSERT(t >= 0 && t <= SK_Scalar1);
    347 
    348     if (t == 0) {
    349         return src[0];
    350     }
    351 
    352 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
    353     SkScalar D = src[0];
    354     SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
    355     SkScalar B = 3*(src[4] - src[2] - src[2] + D);
    356     SkScalar C = 3*(src[2] - D);
    357 
    358     return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
    359 #else
    360     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    361     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    362     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    363     SkScalar    abc = SkScalarInterp(ab, bc, t);
    364     SkScalar    bcd = SkScalarInterp(bc, cd, t);
    365     return SkScalarInterp(abc, bcd, t);
    366 #endif
    367 }
    368 
    369 /** return At^2 + Bt + C
    370 */
    371 static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
    372     SkASSERT(t >= 0 && t <= SK_Scalar1);
    373 
    374     return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
    375 }
    376 
    377 static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
    378     SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    379     SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
    380     SkScalar C = src[2] - src[0];
    381 
    382     return eval_quadratic(A, B, C, t);
    383 }
    384 
    385 static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
    386     SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    387     SkScalar B = src[4] - 2 * src[2] + src[0];
    388 
    389     return SkScalarMulAdd(A, t, B);
    390 }
    391 
    392 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
    393                    SkVector* tangent, SkVector* curvature) {
    394     SkASSERT(src);
    395     SkASSERT(t >= 0 && t <= SK_Scalar1);
    396 
    397     if (loc) {
    398         loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
    399     }
    400     if (tangent) {
    401         tangent->set(eval_cubic_derivative(&src[0].fX, t),
    402                      eval_cubic_derivative(&src[0].fY, t));
    403     }
    404     if (curvature) {
    405         curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
    406                        eval_cubic_2ndDerivative(&src[0].fY, t));
    407     }
    408 }
    409 
    410 /** Cubic'(t) = At^2 + Bt + C, where
    411     A = 3(-a + 3(b - c) + d)
    412     B = 6(a - 2b + c)
    413     C = 3(b - a)
    414     Solve for t, keeping only those that fit betwee 0 < t < 1
    415 */
    416 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    417                        SkScalar tValues[2]) {
    418     // we divide A,B,C by 3 to simplify
    419     SkScalar A = d - a + 3*(b - c);
    420     SkScalar B = 2*(a - b - b + c);
    421     SkScalar C = b - a;
    422 
    423     return SkFindUnitQuadRoots(A, B, C, tValues);
    424 }
    425 
    426 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
    427     SkASSERT(t > 0 && t < SK_Scalar1);
    428 
    429     Sk2s    p0 = from_point(src[0]);
    430     Sk2s    p1 = from_point(src[1]);
    431     Sk2s    p2 = from_point(src[2]);
    432     Sk2s    p3 = from_point(src[3]);
    433     Sk2s    tt(t);
    434 
    435     Sk2s    ab = interp(p0, p1, tt);
    436     Sk2s    bc = interp(p1, p2, tt);
    437     Sk2s    cd = interp(p2, p3, tt);
    438     Sk2s    abc = interp(ab, bc, tt);
    439     Sk2s    bcd = interp(bc, cd, tt);
    440     Sk2s    abcd = interp(abc, bcd, tt);
    441 
    442     dst[0] = src[0];
    443     dst[1] = to_point(ab);
    444     dst[2] = to_point(abc);
    445     dst[3] = to_point(abcd);
    446     dst[4] = to_point(bcd);
    447     dst[5] = to_point(cd);
    448     dst[6] = src[3];
    449 }
    450 
    451 void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]) {
    452     Sk2s p0 = from_point(pts[0]);
    453     Sk2s p1 = from_point(pts[1]);
    454     Sk2s p2 = from_point(pts[2]);
    455     Sk2s p3 = from_point(pts[3]);
    456 
    457     const Sk2s three(3);
    458     Sk2s p1minusp2 = p1 - p2;
    459 
    460     Sk2s D = p0;
    461     Sk2s A = p3 + three * p1minusp2 - D;
    462     Sk2s B = three * (D - p1minusp2 - p1);
    463     Sk2s C = three * (p1 - D);
    464 
    465     coeff[0] = to_point(A);
    466     coeff[1] = to_point(B);
    467     coeff[2] = to_point(C);
    468     coeff[3] = to_point(D);
    469 }
    470 
    471 /*  http://code.google.com/p/skia/issues/detail?id=32
    472 
    473     This test code would fail when we didn't check the return result of
    474     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    475     that after the first chop, the parameters to valid_unit_divide are equal
    476     (thanks to finite float precision and rounding in the subtracts). Thus
    477     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    478     up with 1.0, hence the need to check and just return the last cubic as
    479     a degenerate clump of 4 points in the sampe place.
    480 
    481     static void test_cubic() {
    482         SkPoint src[4] = {
    483             { 556.25000, 523.03003 },
    484             { 556.23999, 522.96002 },
    485             { 556.21997, 522.89001 },
    486             { 556.21997, 522.82001 }
    487         };
    488         SkPoint dst[10];
    489         SkScalar tval[] = { 0.33333334f, 0.99999994f };
    490         SkChopCubicAt(src, dst, tval, 2);
    491     }
    492  */
    493 
    494 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
    495                    const SkScalar tValues[], int roots) {
    496 #ifdef SK_DEBUG
    497     {
    498         for (int i = 0; i < roots - 1; i++)
    499         {
    500             SkASSERT(is_unit_interval(tValues[i]));
    501             SkASSERT(is_unit_interval(tValues[i+1]));
    502             SkASSERT(tValues[i] < tValues[i+1]);
    503         }
    504     }
    505 #endif
    506 
    507     if (dst) {
    508         if (roots == 0) { // nothing to chop
    509             memcpy(dst, src, 4*sizeof(SkPoint));
    510         } else {
    511             SkScalar    t = tValues[0];
    512             SkPoint     tmp[4];
    513 
    514             for (int i = 0; i < roots; i++) {
    515                 SkChopCubicAt(src, dst, t);
    516                 if (i == roots - 1) {
    517                     break;
    518                 }
    519 
    520                 dst += 3;
    521                 // have src point to the remaining cubic (after the chop)
    522                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
    523                 src = tmp;
    524 
    525                 // watch out in case the renormalized t isn't in range
    526                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
    527                                        SK_Scalar1 - tValues[i], &t)) {
    528                     // if we can't, just create a degenerate cubic
    529                     dst[4] = dst[5] = dst[6] = src[3];
    530                     break;
    531                 }
    532             }
    533         }
    534     }
    535 }
    536 
    537 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
    538     SkChopCubicAt(src, dst, 0.5f);
    539 }
    540 
    541 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
    542     coords[4] = coords[8] = coords[6];
    543 }
    544 
    545 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    546     the resulting beziers are monotonic in Y. This is called by the scan
    547     converter.  Depending on what is returned, dst[] is treated as follows:
    548     0   dst[0..3] is the original cubic
    549     1   dst[0..3] and dst[3..6] are the two new cubics
    550     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    551     If dst == null, it is ignored and only the count is returned.
    552 */
    553 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    554     SkScalar    tValues[2];
    555     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
    556                                            src[3].fY, tValues);
    557 
    558     SkChopCubicAt(src, dst, tValues, roots);
    559     if (dst && roots > 0) {
    560         // we do some cleanup to ensure our Y extrema are flat
    561         flatten_double_cubic_extrema(&dst[0].fY);
    562         if (roots == 2) {
    563             flatten_double_cubic_extrema(&dst[3].fY);
    564         }
    565     }
    566     return roots;
    567 }
    568 
    569 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    570     SkScalar    tValues[2];
    571     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
    572                                            src[3].fX, tValues);
    573 
    574     SkChopCubicAt(src, dst, tValues, roots);
    575     if (dst && roots > 0) {
    576         // we do some cleanup to ensure our Y extrema are flat
    577         flatten_double_cubic_extrema(&dst[0].fX);
    578         if (roots == 2) {
    579             flatten_double_cubic_extrema(&dst[3].fX);
    580         }
    581     }
    582     return roots;
    583 }
    584 
    585 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
    586 
    587     Inflection means that curvature is zero.
    588     Curvature is [F' x F''] / [F'^3]
    589     So we solve F'x X F''y - F'y X F''y == 0
    590     After some canceling of the cubic term, we get
    591     A = b - a
    592     B = c - 2b + a
    593     C = d - 3c + 3b - a
    594     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
    595 */
    596 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
    597     SkScalar    Ax = src[1].fX - src[0].fX;
    598     SkScalar    Ay = src[1].fY - src[0].fY;
    599     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    600     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    601     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    602     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
    603 
    604     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
    605                                Ax*Cy - Ay*Cx,
    606                                Ax*By - Ay*Bx,
    607                                tValues);
    608 }
    609 
    610 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
    611     SkScalar    tValues[2];
    612     int         count = SkFindCubicInflections(src, tValues);
    613 
    614     if (dst) {
    615         if (count == 0) {
    616             memcpy(dst, src, 4 * sizeof(SkPoint));
    617         } else {
    618             SkChopCubicAt(src, dst, tValues, count);
    619         }
    620     }
    621     return count + 1;
    622 }
    623 
    624 // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
    625 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
    626 // Classification:
    627 // discr(I) > 0        Serpentine
    628 // discr(I) = 0        Cusp
    629 // discr(I) < 0        Loop
    630 // d0 = d1 = 0         Quadratic
    631 // d0 = d1 = d2 = 0    Line
    632 // p0 = p1 = p2 = p3   Point
    633 static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
    634     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
    635         return kPoint_SkCubicType;
    636     }
    637     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
    638     if (discr > SK_ScalarNearlyZero) {
    639         return kSerpentine_SkCubicType;
    640     } else if (discr < -SK_ScalarNearlyZero) {
    641         return kLoop_SkCubicType;
    642     } else {
    643         if (0.f == d[0] && 0.f == d[1]) {
    644             return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType);
    645         } else {
    646             return kCusp_SkCubicType;
    647         }
    648     }
    649 }
    650 
    651 // Assumes the third component of points is 1.
    652 // Calcs p0 . (p1 x p2)
    653 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
    654     const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
    655     const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
    656     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
    657     return (xComp + yComp + wComp);
    658 }
    659 
    660 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
    661 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
    662 // d0 = a1 - 2*a2+3*a3
    663 // d1 = -a2 + 3*a3
    664 // d2 = 3*a3
    665 // a1 = p0 . (p3 x p2)
    666 // a2 = p1 . (p0 x p3)
    667 // a3 = p2 . (p1 x p0)
    668 // Places the values of d1, d2, d3 in array d passed in
    669 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
    670     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
    671     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
    672     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
    673 
    674     // need to scale a's or values in later calculations will grow to high
    675     SkScalar max = SkScalarAbs(a1);
    676     max = SkMaxScalar(max, SkScalarAbs(a2));
    677     max = SkMaxScalar(max, SkScalarAbs(a3));
    678     max = 1.f/max;
    679     a1 = a1 * max;
    680     a2 = a2 * max;
    681     a3 = a3 * max;
    682 
    683     d[2] = 3.f * a3;
    684     d[1] = d[2] - a2;
    685     d[0] = d[1] - a2 + a1;
    686 }
    687 
    688 SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
    689     calc_cubic_inflection_func(src, d);
    690     return classify_cubic(src, d);
    691 }
    692 
    693 template <typename T> void bubble_sort(T array[], int count) {
    694     for (int i = count - 1; i > 0; --i)
    695         for (int j = i; j > 0; --j)
    696             if (array[j] < array[j-1])
    697             {
    698                 T   tmp(array[j]);
    699                 array[j] = array[j-1];
    700                 array[j-1] = tmp;
    701             }
    702 }
    703 
    704 /**
    705  *  Given an array and count, remove all pair-wise duplicates from the array,
    706  *  keeping the existing sorting, and return the new count
    707  */
    708 static int collaps_duplicates(SkScalar array[], int count) {
    709     for (int n = count; n > 1; --n) {
    710         if (array[0] == array[1]) {
    711             for (int i = 1; i < n; ++i) {
    712                 array[i - 1] = array[i];
    713             }
    714             count -= 1;
    715         } else {
    716             array += 1;
    717         }
    718     }
    719     return count;
    720 }
    721 
    722 #ifdef SK_DEBUG
    723 
    724 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
    725 
    726 static void test_collaps_duplicates() {
    727     static bool gOnce;
    728     if (gOnce) { return; }
    729     gOnce = true;
    730     const SkScalar src0[] = { 0 };
    731     const SkScalar src1[] = { 0, 0 };
    732     const SkScalar src2[] = { 0, 1 };
    733     const SkScalar src3[] = { 0, 0, 0 };
    734     const SkScalar src4[] = { 0, 0, 1 };
    735     const SkScalar src5[] = { 0, 1, 1 };
    736     const SkScalar src6[] = { 0, 1, 2 };
    737     const struct {
    738         const SkScalar* fData;
    739         int fCount;
    740         int fCollapsedCount;
    741     } data[] = {
    742         { TEST_COLLAPS_ENTRY(src0), 1 },
    743         { TEST_COLLAPS_ENTRY(src1), 1 },
    744         { TEST_COLLAPS_ENTRY(src2), 2 },
    745         { TEST_COLLAPS_ENTRY(src3), 1 },
    746         { TEST_COLLAPS_ENTRY(src4), 2 },
    747         { TEST_COLLAPS_ENTRY(src5), 2 },
    748         { TEST_COLLAPS_ENTRY(src6), 3 },
    749     };
    750     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
    751         SkScalar dst[3];
    752         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
    753         int count = collaps_duplicates(dst, data[i].fCount);
    754         SkASSERT(data[i].fCollapsedCount == count);
    755         for (int j = 1; j < count; ++j) {
    756             SkASSERT(dst[j-1] < dst[j]);
    757         }
    758     }
    759 }
    760 #endif
    761 
    762 static SkScalar SkScalarCubeRoot(SkScalar x) {
    763     return SkScalarPow(x, 0.3333333f);
    764 }
    765 
    766 /*  Solve coeff(t) == 0, returning the number of roots that
    767     lie withing 0 < t < 1.
    768     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
    769 
    770     Eliminates repeated roots (so that all tValues are distinct, and are always
    771     in increasing order.
    772 */
    773 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
    774     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
    775         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    776     }
    777 
    778     SkScalar a, b, c, Q, R;
    779 
    780     {
    781         SkASSERT(coeff[0] != 0);
    782 
    783         SkScalar inva = SkScalarInvert(coeff[0]);
    784         a = coeff[1] * inva;
    785         b = coeff[2] * inva;
    786         c = coeff[3] * inva;
    787     }
    788     Q = (a*a - b*3) / 9;
    789     R = (2*a*a*a - 9*a*b + 27*c) / 54;
    790 
    791     SkScalar Q3 = Q * Q * Q;
    792     SkScalar R2MinusQ3 = R * R - Q3;
    793     SkScalar adiv3 = a / 3;
    794 
    795     SkScalar*   roots = tValues;
    796     SkScalar    r;
    797 
    798     if (R2MinusQ3 < 0) { // we have 3 real roots
    799         SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
    800         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
    801 
    802         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
    803         if (is_unit_interval(r)) {
    804             *roots++ = r;
    805         }
    806         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
    807         if (is_unit_interval(r)) {
    808             *roots++ = r;
    809         }
    810         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
    811         if (is_unit_interval(r)) {
    812             *roots++ = r;
    813         }
    814         SkDEBUGCODE(test_collaps_duplicates();)
    815 
    816         // now sort the roots
    817         int count = (int)(roots - tValues);
    818         SkASSERT((unsigned)count <= 3);
    819         bubble_sort(tValues, count);
    820         count = collaps_duplicates(tValues, count);
    821         roots = tValues + count;    // so we compute the proper count below
    822     } else {              // we have 1 real root
    823         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
    824         A = SkScalarCubeRoot(A);
    825         if (R > 0) {
    826             A = -A;
    827         }
    828         if (A != 0) {
    829             A += Q / A;
    830         }
    831         r = A - adiv3;
    832         if (is_unit_interval(r)) {
    833             *roots++ = r;
    834         }
    835     }
    836 
    837     return (int)(roots - tValues);
    838 }
    839 
    840 /*  Looking for F' dot F'' == 0
    841 
    842     A = b - a
    843     B = c - 2b + a
    844     C = d - 3c + 3b - a
    845 
    846     F' = 3Ct^2 + 6Bt + 3A
    847     F'' = 6Ct + 6B
    848 
    849     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    850 */
    851 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
    852     SkScalar    a = src[2] - src[0];
    853     SkScalar    b = src[4] - 2 * src[2] + src[0];
    854     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
    855 
    856     coeff[0] = c * c;
    857     coeff[1] = 3 * b * c;
    858     coeff[2] = 2 * b * b + c * a;
    859     coeff[3] = a * b;
    860 }
    861 
    862 /*  Looking for F' dot F'' == 0
    863 
    864     A = b - a
    865     B = c - 2b + a
    866     C = d - 3c + 3b - a
    867 
    868     F' = 3Ct^2 + 6Bt + 3A
    869     F'' = 6Ct + 6B
    870 
    871     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    872 */
    873 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
    874     SkScalar coeffX[4], coeffY[4];
    875     int      i;
    876 
    877     formulate_F1DotF2(&src[0].fX, coeffX);
    878     formulate_F1DotF2(&src[0].fY, coeffY);
    879 
    880     for (i = 0; i < 4; i++) {
    881         coeffX[i] += coeffY[i];
    882     }
    883 
    884     SkScalar    t[3];
    885     int         count = solve_cubic_poly(coeffX, t);
    886     int         maxCount = 0;
    887 
    888     // now remove extrema where the curvature is zero (mins)
    889     // !!!! need a test for this !!!!
    890     for (i = 0; i < count; i++) {
    891         // if (not_min_curvature())
    892         if (t[i] > 0 && t[i] < SK_Scalar1) {
    893             tValues[maxCount++] = t[i];
    894         }
    895     }
    896     return maxCount;
    897 }
    898 
    899 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    900                               SkScalar tValues[3]) {
    901     SkScalar    t_storage[3];
    902 
    903     if (tValues == NULL) {
    904         tValues = t_storage;
    905     }
    906 
    907     int count = SkFindCubicMaxCurvature(src, tValues);
    908 
    909     if (dst) {
    910         if (count == 0) {
    911             memcpy(dst, src, 4 * sizeof(SkPoint));
    912         } else {
    913             SkChopCubicAt(src, dst, tValues, count);
    914         }
    915     }
    916     return count + 1;
    917 }
    918 
    919 #include "../pathops/SkPathOpsCubic.h"
    920 
    921 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
    922 
    923 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
    924                                      InterceptProc method) {
    925     SkDCubic cubic;
    926     double roots[3];
    927     int count = (cubic.set(src).*method)(intercept, roots);
    928     if (count > 0) {
    929         SkDCubicPair pair = cubic.chopAt(roots[0]);
    930         for (int i = 0; i < 7; ++i) {
    931             dst[i] = pair.pts[i].asSkPoint();
    932         }
    933         return true;
    934     }
    935     return false;
    936 }
    937 
    938 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
    939     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
    940 }
    941 
    942 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
    943     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
    944 }
    945 
    946 ///////////////////////////////////////////////////////////////////////////////
    947 
    948 /*  Find t value for quadratic [a, b, c] = d.
    949     Return 0 if there is no solution within [0, 1)
    950 */
    951 static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
    952     // At^2 + Bt + C = d
    953     SkScalar A = a - 2 * b + c;
    954     SkScalar B = 2 * (b - a);
    955     SkScalar C = a - d;
    956 
    957     SkScalar    roots[2];
    958     int         count = SkFindUnitQuadRoots(A, B, C, roots);
    959 
    960     SkASSERT(count <= 1);
    961     return count == 1 ? roots[0] : 0;
    962 }
    963 
    964 /*  given a quad-curve and a point (x,y), chop the quad at that point and place
    965     the new off-curve point and endpoint into 'dest'.
    966     Should only return false if the computed pos is the start of the curve
    967     (i.e. root == 0)
    968 */
    969 static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
    970                                 SkPoint* dest) {
    971     const SkScalar* base;
    972     SkScalar        value;
    973 
    974     if (SkScalarAbs(x) < SkScalarAbs(y)) {
    975         base = &quad[0].fX;
    976         value = x;
    977     } else {
    978         base = &quad[0].fY;
    979         value = y;
    980     }
    981 
    982     // note: this returns 0 if it thinks value is out of range, meaning the
    983     // root might return something outside of [0, 1)
    984     SkScalar t = quad_solve(base[0], base[2], base[4], value);
    985 
    986     if (t > 0) {
    987         SkPoint tmp[5];
    988         SkChopQuadAt(quad, tmp, t);
    989         dest[0] = tmp[1];
    990         dest[1].set(x, y);
    991         return true;
    992     } else {
    993         /*  t == 0 means either the value triggered a root outside of [0, 1)
    994             For our purposes, we can ignore the <= 0 roots, but we want to
    995             catch the >= 1 roots (which given our caller, will basically mean
    996             a root of 1, give-or-take numerical instability). If we are in the
    997             >= 1 case, return the existing offCurve point.
    998 
    999             The test below checks to see if we are close to the "end" of the
   1000             curve (near base[4]). Rather than specifying a tolerance, I just
   1001             check to see if value is on to the right/left of the middle point
   1002             (depending on the direction/sign of the end points).
   1003         */
   1004         if ((base[0] < base[4] && value > base[2]) ||
   1005             (base[0] > base[4] && value < base[2]))   // should root have been 1
   1006         {
   1007             dest[0] = quad[1];
   1008             dest[1].set(x, y);
   1009             return true;
   1010         }
   1011     }
   1012     return false;
   1013 }
   1014 
   1015 static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
   1016 // The mid point of the quadratic arc approximation is half way between the two
   1017 // control points. The float epsilon adjustment moves the on curve point out by
   1018 // two bits, distributing the convex test error between the round rect
   1019 // approximation and the convex cross product sign equality test.
   1020 #define SK_MID_RRECT_OFFSET \
   1021     (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
   1022     { SK_Scalar1,            0                      },
   1023     { SK_Scalar1,            SK_ScalarTanPIOver8    },
   1024     { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
   1025     { SK_ScalarTanPIOver8,   SK_Scalar1             },
   1026 
   1027     { 0,                     SK_Scalar1             },
   1028     { -SK_ScalarTanPIOver8,  SK_Scalar1             },
   1029     { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
   1030     { -SK_Scalar1,           SK_ScalarTanPIOver8    },
   1031 
   1032     { -SK_Scalar1,           0                      },
   1033     { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
   1034     { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
   1035     { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
   1036 
   1037     { 0,                     -SK_Scalar1            },
   1038     { SK_ScalarTanPIOver8,   -SK_Scalar1            },
   1039     { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
   1040     { SK_Scalar1,            -SK_ScalarTanPIOver8   },
   1041 
   1042     { SK_Scalar1,            0                      }
   1043 #undef SK_MID_RRECT_OFFSET
   1044 };
   1045 
   1046 int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
   1047                    SkRotationDirection dir, const SkMatrix* userMatrix,
   1048                    SkPoint quadPoints[]) {
   1049     // rotate by x,y so that uStart is (1.0)
   1050     SkScalar x = SkPoint::DotProduct(uStart, uStop);
   1051     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
   1052 
   1053     SkScalar absX = SkScalarAbs(x);
   1054     SkScalar absY = SkScalarAbs(y);
   1055 
   1056     int pointCount;
   1057 
   1058     // check for (effectively) coincident vectors
   1059     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
   1060     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
   1061     if (absY <= SK_ScalarNearlyZero && x > 0 &&
   1062         ((y >= 0 && kCW_SkRotationDirection == dir) ||
   1063          (y <= 0 && kCCW_SkRotationDirection == dir))) {
   1064 
   1065         // just return the start-point
   1066         quadPoints[0].set(SK_Scalar1, 0);
   1067         pointCount = 1;
   1068     } else {
   1069         if (dir == kCCW_SkRotationDirection) {
   1070             y = -y;
   1071         }
   1072         // what octant (quadratic curve) is [xy] in?
   1073         int oct = 0;
   1074         bool sameSign = true;
   1075 
   1076         if (0 == y) {
   1077             oct = 4;        // 180
   1078             SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
   1079         } else if (0 == x) {
   1080             SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
   1081             oct = y > 0 ? 2 : 6; // 90 : 270
   1082         } else {
   1083             if (y < 0) {
   1084                 oct += 4;
   1085             }
   1086             if ((x < 0) != (y < 0)) {
   1087                 oct += 2;
   1088                 sameSign = false;
   1089             }
   1090             if ((absX < absY) == sameSign) {
   1091                 oct += 1;
   1092             }
   1093         }
   1094 
   1095         int wholeCount = oct << 1;
   1096         memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
   1097 
   1098         const SkPoint* arc = &gQuadCirclePts[wholeCount];
   1099         if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
   1100             wholeCount += 2;
   1101         }
   1102         pointCount = wholeCount + 1;
   1103     }
   1104 
   1105     // now handle counter-clockwise and the initial unitStart rotation
   1106     SkMatrix    matrix;
   1107     matrix.setSinCos(uStart.fY, uStart.fX);
   1108     if (dir == kCCW_SkRotationDirection) {
   1109         matrix.preScale(SK_Scalar1, -SK_Scalar1);
   1110     }
   1111     if (userMatrix) {
   1112         matrix.postConcat(*userMatrix);
   1113     }
   1114     matrix.mapPoints(quadPoints, pointCount);
   1115     return pointCount;
   1116 }
   1117 
   1118 
   1119 ///////////////////////////////////////////////////////////////////////////////
   1120 //
   1121 // NURB representation for conics.  Helpful explanations at:
   1122 //
   1123 // http://citeseerx.ist.psu.edu/viewdoc/
   1124 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
   1125 // and
   1126 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
   1127 //
   1128 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
   1129 //     ------------------------------------------
   1130 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
   1131 //
   1132 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
   1133 //     ------------------------------------------------
   1134 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
   1135 //
   1136 
   1137 static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
   1138     SkASSERT(src);
   1139     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1140 
   1141     SkScalar    src2w = SkScalarMul(src[2], w);
   1142     SkScalar    C = src[0];
   1143     SkScalar    A = src[4] - 2 * src2w + C;
   1144     SkScalar    B = 2 * (src2w - C);
   1145     SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
   1146 
   1147     B = 2 * (w - SK_Scalar1);
   1148     C = SK_Scalar1;
   1149     A = -B;
   1150     SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
   1151 
   1152     return numer / denom;
   1153 }
   1154 
   1155 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
   1156 //
   1157 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
   1158 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
   1159 //  t^0 : -2 P0 w + 2 P1 w
   1160 //
   1161 //  We disregard magnitude, so we can freely ignore the denominator of F', and
   1162 //  divide the numerator by 2
   1163 //
   1164 //    coeff[0] for t^2
   1165 //    coeff[1] for t^1
   1166 //    coeff[2] for t^0
   1167 //
   1168 static void conic_deriv_coeff(const SkScalar src[],
   1169                               SkScalar w,
   1170                               SkScalar coeff[3]) {
   1171     const SkScalar P20 = src[4] - src[0];
   1172     const SkScalar P10 = src[2] - src[0];
   1173     const SkScalar wP10 = w * P10;
   1174     coeff[0] = w * P20 - P20;
   1175     coeff[1] = P20 - 2 * wP10;
   1176     coeff[2] = wP10;
   1177 }
   1178 
   1179 static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
   1180     SkScalar coeff[3];
   1181     conic_deriv_coeff(coord, w, coeff);
   1182     return t * (t * coeff[0] + coeff[1]) + coeff[2];
   1183 }
   1184 
   1185 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
   1186     SkScalar coeff[3];
   1187     conic_deriv_coeff(src, w, coeff);
   1188 
   1189     SkScalar tValues[2];
   1190     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
   1191     SkASSERT(0 == roots || 1 == roots);
   1192 
   1193     if (1 == roots) {
   1194         *t = tValues[0];
   1195         return true;
   1196     }
   1197     return false;
   1198 }
   1199 
   1200 struct SkP3D {
   1201     SkScalar fX, fY, fZ;
   1202 
   1203     void set(SkScalar x, SkScalar y, SkScalar z) {
   1204         fX = x; fY = y; fZ = z;
   1205     }
   1206 
   1207     void projectDown(SkPoint* dst) const {
   1208         dst->set(fX / fZ, fY / fZ);
   1209     }
   1210 };
   1211 
   1212 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
   1213 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
   1214     SkScalar ab = SkScalarInterp(src[0], src[3], t);
   1215     SkScalar bc = SkScalarInterp(src[3], src[6], t);
   1216     dst[0] = ab;
   1217     dst[3] = SkScalarInterp(ab, bc, t);
   1218     dst[6] = bc;
   1219 }
   1220 
   1221 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
   1222     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
   1223     dst[1].set(src[1].fX * w, src[1].fY * w, w);
   1224     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
   1225 }
   1226 
   1227 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
   1228     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1229 
   1230     if (pt) {
   1231         pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
   1232                 conic_eval_pos(&fPts[0].fY, fW, t));
   1233     }
   1234     if (tangent) {
   1235         tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
   1236                      conic_eval_tan(&fPts[0].fY, fW, t));
   1237     }
   1238 }
   1239 
   1240 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
   1241     SkP3D tmp[3], tmp2[3];
   1242 
   1243     ratquad_mapTo3D(fPts, fW, tmp);
   1244 
   1245     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
   1246     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
   1247     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
   1248 
   1249     dst[0].fPts[0] = fPts[0];
   1250     tmp2[0].projectDown(&dst[0].fPts[1]);
   1251     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
   1252     tmp2[2].projectDown(&dst[1].fPts[1]);
   1253     dst[1].fPts[2] = fPts[2];
   1254 
   1255     // to put in "standard form", where w0 and w2 are both 1, we compute the
   1256     // new w1 as sqrt(w1*w1/w0*w2)
   1257     // or
   1258     // w1 /= sqrt(w0*w2)
   1259     //
   1260     // However, in our case, we know that for dst[0]:
   1261     //     w0 == 1, and for dst[1], w2 == 1
   1262     //
   1263     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
   1264     dst[0].fW = tmp2[0].fZ / root;
   1265     dst[1].fW = tmp2[2].fZ / root;
   1266 }
   1267 
   1268 static Sk2s times_2(const Sk2s& value) {
   1269     return value + value;
   1270 }
   1271 
   1272 SkPoint SkConic::evalAt(SkScalar t) const {
   1273     Sk2s p0 = from_point(fPts[0]);
   1274     Sk2s p1 = from_point(fPts[1]);
   1275     Sk2s p2 = from_point(fPts[2]);
   1276     Sk2s tt(t);
   1277     Sk2s ww(fW);
   1278     Sk2s one(1);
   1279 
   1280     Sk2s p1w = p1 * ww;
   1281     Sk2s C = p0;
   1282     Sk2s A = p2 - times_2(p1w) + p0;
   1283     Sk2s B = times_2(p1w - C);
   1284     Sk2s numer = quad_poly_eval(A, B, C, tt);
   1285 
   1286     B = times_2(ww - one);
   1287     A = -B;
   1288     Sk2s denom = quad_poly_eval(A, B, one, tt);
   1289 
   1290     return to_point(numer / denom);
   1291 }
   1292 
   1293 SkVector SkConic::evalTangentAt(SkScalar t) const {
   1294     Sk2s p0 = from_point(fPts[0]);
   1295     Sk2s p1 = from_point(fPts[1]);
   1296     Sk2s p2 = from_point(fPts[2]);
   1297     Sk2s ww(fW);
   1298 
   1299     Sk2s p20 = p2 - p0;
   1300     Sk2s p10 = p1 - p0;
   1301 
   1302     Sk2s C = ww * p10;
   1303     Sk2s A = ww * p20 - p20;
   1304     Sk2s B = p20 - C - C;
   1305 
   1306     return to_vector(quad_poly_eval(A, B, C, Sk2s(t)));
   1307 }
   1308 
   1309 static SkScalar subdivide_w_value(SkScalar w) {
   1310     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
   1311 }
   1312 
   1313 static Sk2s twice(const Sk2s& value) {
   1314     return value + value;
   1315 }
   1316 
   1317 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
   1318     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
   1319     SkScalar newW = subdivide_w_value(fW);
   1320 
   1321     Sk2s p0 = from_point(fPts[0]);
   1322     Sk2s p1 = from_point(fPts[1]);
   1323     Sk2s p2 = from_point(fPts[2]);
   1324     Sk2s ww(fW);
   1325 
   1326     Sk2s wp1 = ww * p1;
   1327     Sk2s m = (p0 + twice(wp1) + p2) * scale * Sk2s(0.5f);
   1328 
   1329     dst[0].fPts[0] = fPts[0];
   1330     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
   1331     dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
   1332     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
   1333     dst[1].fPts[2] = fPts[2];
   1334 
   1335     dst[0].fW = dst[1].fW = newW;
   1336 }
   1337 
   1338 /*
   1339  *  "High order approximation of conic sections by quadratic splines"
   1340  *      by Michael Floater, 1993
   1341  */
   1342 #define AS_QUAD_ERROR_SETUP                                         \
   1343     SkScalar a = fW - 1;                                            \
   1344     SkScalar k = a / (4 * (2 + a));                                 \
   1345     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
   1346     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
   1347 
   1348 void SkConic::computeAsQuadError(SkVector* err) const {
   1349     AS_QUAD_ERROR_SETUP
   1350     err->set(x, y);
   1351 }
   1352 
   1353 bool SkConic::asQuadTol(SkScalar tol) const {
   1354     AS_QUAD_ERROR_SETUP
   1355     return (x * x + y * y) <= tol * tol;
   1356 }
   1357 
   1358 // Limit the number of suggested quads to approximate a conic
   1359 #define kMaxConicToQuadPOW2     5
   1360 
   1361 int SkConic::computeQuadPOW2(SkScalar tol) const {
   1362     if (tol < 0 || !SkScalarIsFinite(tol)) {
   1363         return 0;
   1364     }
   1365 
   1366     AS_QUAD_ERROR_SETUP
   1367 
   1368     SkScalar error = SkScalarSqrt(x * x + y * y);
   1369     int pow2;
   1370     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
   1371         if (error <= tol) {
   1372             break;
   1373         }
   1374         error *= 0.25f;
   1375     }
   1376     // float version -- using ceil gives the same results as the above.
   1377     if (false) {
   1378         SkScalar err = SkScalarSqrt(x * x + y * y);
   1379         if (err <= tol) {
   1380             return 0;
   1381         }
   1382         SkScalar tol2 = tol * tol;
   1383         if (tol2 == 0) {
   1384             return kMaxConicToQuadPOW2;
   1385         }
   1386         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
   1387         int altPow2 = SkScalarCeilToInt(fpow2);
   1388         if (altPow2 != pow2) {
   1389             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
   1390         }
   1391         pow2 = altPow2;
   1392     }
   1393     return pow2;
   1394 }
   1395 
   1396 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
   1397     SkASSERT(level >= 0);
   1398 
   1399     if (0 == level) {
   1400         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
   1401         return pts + 2;
   1402     } else {
   1403         SkConic dst[2];
   1404         src.chop(dst);
   1405         --level;
   1406         pts = subdivide(dst[0], pts, level);
   1407         return subdivide(dst[1], pts, level);
   1408     }
   1409 }
   1410 
   1411 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
   1412     SkASSERT(pow2 >= 0);
   1413     *pts = fPts[0];
   1414     SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
   1415     SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
   1416     return 1 << pow2;
   1417 }
   1418 
   1419 bool SkConic::findXExtrema(SkScalar* t) const {
   1420     return conic_find_extrema(&fPts[0].fX, fW, t);
   1421 }
   1422 
   1423 bool SkConic::findYExtrema(SkScalar* t) const {
   1424     return conic_find_extrema(&fPts[0].fY, fW, t);
   1425 }
   1426 
   1427 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
   1428     SkScalar t;
   1429     if (this->findXExtrema(&t)) {
   1430         this->chopAt(t, dst);
   1431         // now clean-up the middle, since we know t was meant to be at
   1432         // an X-extrema
   1433         SkScalar value = dst[0].fPts[2].fX;
   1434         dst[0].fPts[1].fX = value;
   1435         dst[1].fPts[0].fX = value;
   1436         dst[1].fPts[1].fX = value;
   1437         return true;
   1438     }
   1439     return false;
   1440 }
   1441 
   1442 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
   1443     SkScalar t;
   1444     if (this->findYExtrema(&t)) {
   1445         this->chopAt(t, dst);
   1446         // now clean-up the middle, since we know t was meant to be at
   1447         // an Y-extrema
   1448         SkScalar value = dst[0].fPts[2].fY;
   1449         dst[0].fPts[1].fY = value;
   1450         dst[1].fPts[0].fY = value;
   1451         dst[1].fPts[1].fY = value;
   1452         return true;
   1453     }
   1454     return false;
   1455 }
   1456 
   1457 void SkConic::computeTightBounds(SkRect* bounds) const {
   1458     SkPoint pts[4];
   1459     pts[0] = fPts[0];
   1460     pts[1] = fPts[2];
   1461     int count = 2;
   1462 
   1463     SkScalar t;
   1464     if (this->findXExtrema(&t)) {
   1465         this->evalAt(t, &pts[count++]);
   1466     }
   1467     if (this->findYExtrema(&t)) {
   1468         this->evalAt(t, &pts[count++]);
   1469     }
   1470     bounds->set(pts, count);
   1471 }
   1472 
   1473 void SkConic::computeFastBounds(SkRect* bounds) const {
   1474     bounds->set(fPts, 3);
   1475 }
   1476 
   1477 bool SkConic::findMaxCurvature(SkScalar* t) const {
   1478     // TODO: Implement me
   1479     return false;
   1480 }
   1481 
   1482 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
   1483                              const SkMatrix& matrix) {
   1484     if (!matrix.hasPerspective()) {
   1485         return w;
   1486     }
   1487 
   1488     SkP3D src[3], dst[3];
   1489 
   1490     ratquad_mapTo3D(pts, w, src);
   1491 
   1492     matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
   1493 
   1494     // w' = sqrt(w1*w1/w0*w2)
   1495     SkScalar w0 = dst[0].fZ;
   1496     SkScalar w1 = dst[1].fZ;
   1497     SkScalar w2 = dst[2].fZ;
   1498     w = SkScalarSqrt((w1 * w1) / (w0 * w2));
   1499     return w;
   1500 }
   1501 
   1502 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
   1503                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
   1504     // rotate by x,y so that uStart is (1.0)
   1505     SkScalar x = SkPoint::DotProduct(uStart, uStop);
   1506     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
   1507 
   1508     SkScalar absY = SkScalarAbs(y);
   1509 
   1510     // check for (effectively) coincident vectors
   1511     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
   1512     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
   1513     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
   1514                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
   1515         return 0;
   1516     }
   1517 
   1518     if (dir == kCCW_SkRotationDirection) {
   1519         y = -y;
   1520     }
   1521 
   1522     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
   1523     //      0 == [0  .. 90)
   1524     //      1 == [90 ..180)
   1525     //      2 == [180..270)
   1526     //      3 == [270..360)
   1527     //
   1528     int quadrant = 0;
   1529     if (0 == y) {
   1530         quadrant = 2;        // 180
   1531         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
   1532     } else if (0 == x) {
   1533         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
   1534         quadrant = y > 0 ? 1 : 3; // 90 : 270
   1535     } else {
   1536         if (y < 0) {
   1537             quadrant += 2;
   1538         }
   1539         if ((x < 0) != (y < 0)) {
   1540             quadrant += 1;
   1541         }
   1542     }
   1543 
   1544     const SkPoint quadrantPts[] = {
   1545         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
   1546     };
   1547     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
   1548 
   1549     int conicCount = quadrant;
   1550     for (int i = 0; i < conicCount; ++i) {
   1551         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
   1552     }
   1553 
   1554     // Now compute any remaing (sub-90-degree) arc for the last conic
   1555     const SkPoint finalP = { x, y };
   1556     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
   1557     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
   1558     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
   1559 
   1560     if (dot < 1) {
   1561         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
   1562         // compute the bisector vector, and then rescale to be the off-curve point.
   1563         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
   1564         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
   1565         // This is nice, since our computed weight is cos(theta/2) as well!
   1566         //
   1567         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
   1568         offCurve.setLength(SkScalarInvert(cosThetaOver2));
   1569         dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
   1570         conicCount += 1;
   1571     }
   1572 
   1573     // now handle counter-clockwise and the initial unitStart rotation
   1574     SkMatrix    matrix;
   1575     matrix.setSinCos(uStart.fY, uStart.fX);
   1576     if (dir == kCCW_SkRotationDirection) {
   1577         matrix.preScale(SK_Scalar1, -SK_Scalar1);
   1578     }
   1579     if (userMatrix) {
   1580         matrix.postConcat(*userMatrix);
   1581     }
   1582     for (int i = 0; i < conicCount; ++i) {
   1583         matrix.mapPoints(dst[i].fPts, 3);
   1584     }
   1585     return conicCount;
   1586 }
   1587