Home | History | Annotate | Download | only in MC
      1 //===-- llvm/MC/MCInstrItineraries.h - Scheduling ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the structures used for instruction
     11 // itineraries, stages, and operand reads/writes.  This is used by
     12 // schedulers to determine instruction stages and latencies.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_MC_MCINSTRITINERARIES_H
     17 #define LLVM_MC_MCINSTRITINERARIES_H
     18 
     19 #include "llvm/MC/MCSchedule.h"
     20 #include <algorithm>
     21 
     22 namespace llvm {
     23 
     24 //===----------------------------------------------------------------------===//
     25 /// These values represent a non-pipelined step in
     26 /// the execution of an instruction.  Cycles represents the number of
     27 /// discrete time slots needed to complete the stage.  Units represent
     28 /// the choice of functional units that can be used to complete the
     29 /// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
     30 /// cycles should elapse from the start of this stage to the start of
     31 /// the next stage in the itinerary. A value of -1 indicates that the
     32 /// next stage should start immediately after the current one.
     33 /// For example:
     34 ///
     35 ///   { 1, x, -1 }
     36 ///      indicates that the stage occupies FU x for 1 cycle and that
     37 ///      the next stage starts immediately after this one.
     38 ///
     39 ///   { 2, x|y, 1 }
     40 ///      indicates that the stage occupies either FU x or FU y for 2
     41 ///      consecuative cycles and that the next stage starts one cycle
     42 ///      after this stage starts. That is, the stage requirements
     43 ///      overlap in time.
     44 ///
     45 ///   { 1, x, 0 }
     46 ///      indicates that the stage occupies FU x for 1 cycle and that
     47 ///      the next stage starts in this same cycle. This can be used to
     48 ///      indicate that the instruction requires multiple stages at the
     49 ///      same time.
     50 ///
     51 /// FU reservation can be of two different kinds:
     52 ///  - FUs which instruction actually requires
     53 ///  - FUs which instruction just reserves. Reserved unit is not available for
     54 ///    execution of other instruction. However, several instructions can reserve
     55 ///    the same unit several times.
     56 /// Such two types of units reservation is used to model instruction domain
     57 /// change stalls, FUs using the same resource (e.g. same register file), etc.
     58 
     59 struct InstrStage {
     60   enum ReservationKinds {
     61     Required = 0,
     62     Reserved = 1
     63   };
     64 
     65   unsigned Cycles_;  ///< Length of stage in machine cycles
     66   unsigned Units_;   ///< Choice of functional units
     67   int NextCycles_;   ///< Number of machine cycles to next stage
     68   ReservationKinds Kind_; ///< Kind of the FU reservation
     69 
     70   /// Returns the number of cycles the stage is occupied.
     71   unsigned getCycles() const {
     72     return Cycles_;
     73   }
     74 
     75   /// Returns the choice of FUs.
     76   unsigned getUnits() const {
     77     return Units_;
     78   }
     79 
     80   ReservationKinds getReservationKind() const {
     81     return Kind_;
     82   }
     83 
     84   /// Returns the number of cycles from the start of
     85   /// this stage to the start of the next stage in the itinerary
     86   unsigned getNextCycles() const {
     87     return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
     88   }
     89 };
     90 
     91 
     92 //===----------------------------------------------------------------------===//
     93 /// An itinerary represents the scheduling information for an instruction.
     94 /// This includes a set of stages occupied by the instruction and the pipeline
     95 /// cycle in which operands are read and written.
     96 ///
     97 struct InstrItinerary {
     98   int      NumMicroOps;        ///< # of micro-ops, -1 means it's variable
     99   unsigned FirstStage;         ///< Index of first stage in itinerary
    100   unsigned LastStage;          ///< Index of last + 1 stage in itinerary
    101   unsigned FirstOperandCycle;  ///< Index of first operand rd/wr
    102   unsigned LastOperandCycle;   ///< Index of last + 1 operand rd/wr
    103 };
    104 
    105 
    106 //===----------------------------------------------------------------------===//
    107 /// Itinerary data supplied by a subtarget to be used by a target.
    108 ///
    109 class InstrItineraryData {
    110 public:
    111   MCSchedModel          SchedModel;     ///< Basic machine properties.
    112   const InstrStage     *Stages;         ///< Array of stages selected
    113   const unsigned       *OperandCycles;  ///< Array of operand cycles selected
    114   const unsigned       *Forwardings;    ///< Array of pipeline forwarding pathes
    115   const InstrItinerary *Itineraries;    ///< Array of itineraries selected
    116 
    117   /// Ctors.
    118   ///
    119   InstrItineraryData() : SchedModel(MCSchedModel::GetDefaultSchedModel()),
    120                          Stages(nullptr), OperandCycles(nullptr),
    121                          Forwardings(nullptr), Itineraries(nullptr) {}
    122 
    123   InstrItineraryData(const MCSchedModel &SM, const InstrStage *S,
    124                      const unsigned *OS, const unsigned *F)
    125     : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
    126       Itineraries(SchedModel.InstrItineraries) {}
    127 
    128   /// Returns true if there are no itineraries.
    129   bool isEmpty() const { return Itineraries == nullptr; }
    130 
    131   /// Returns true if the index is for the end marker itinerary.
    132   bool isEndMarker(unsigned ItinClassIndx) const {
    133     return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
    134             (Itineraries[ItinClassIndx].LastStage == ~0U));
    135   }
    136 
    137   /// Return the first stage of the itinerary.
    138   const InstrStage *beginStage(unsigned ItinClassIndx) const {
    139     unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
    140     return Stages + StageIdx;
    141   }
    142 
    143   /// Return the last+1 stage of the itinerary.
    144   const InstrStage *endStage(unsigned ItinClassIndx) const {
    145     unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
    146     return Stages + StageIdx;
    147   }
    148 
    149   /// Return the total stage latency of the given class.
    150   /// The latency is the maximum completion time for any stage in the itinerary.
    151   /// If no stages exist, it defaults to one cycle.
    152   unsigned getStageLatency(unsigned ItinClassIndx) const {
    153     // If the target doesn't provide itinerary information, use a simple
    154     // non-zero default value for all instructions.
    155     if (isEmpty())
    156       return 1;
    157 
    158     // Calculate the maximum completion time for any stage.
    159     unsigned Latency = 0, StartCycle = 0;
    160     for (const InstrStage *IS = beginStage(ItinClassIndx),
    161            *E = endStage(ItinClassIndx); IS != E; ++IS) {
    162       Latency = std::max(Latency, StartCycle + IS->getCycles());
    163       StartCycle += IS->getNextCycles();
    164     }
    165     return Latency;
    166   }
    167 
    168   /// Return the cycle for the given class and operand.
    169   /// Return -1 if no cycle is specified for the operand.
    170   int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
    171     if (isEmpty())
    172       return -1;
    173 
    174     unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
    175     unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
    176     if ((FirstIdx + OperandIdx) >= LastIdx)
    177       return -1;
    178 
    179     return (int)OperandCycles[FirstIdx + OperandIdx];
    180   }
    181 
    182   /// Return true if there is a pipeline forwarding
    183   /// between instructions of itinerary classes DefClass and UseClasses so that
    184   /// value produced by an instruction of itinerary class DefClass, operand
    185   /// index DefIdx can be bypassed when it's read by an instruction of
    186   /// itinerary class UseClass, operand index UseIdx.
    187   bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
    188                              unsigned UseClass, unsigned UseIdx) const {
    189     unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
    190     unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
    191     if ((FirstDefIdx + DefIdx) >= LastDefIdx)
    192       return false;
    193     if (Forwardings[FirstDefIdx + DefIdx] == 0)
    194       return false;
    195 
    196     unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
    197     unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
    198     if ((FirstUseIdx + UseIdx) >= LastUseIdx)
    199       return false;
    200 
    201     return Forwardings[FirstDefIdx + DefIdx] ==
    202       Forwardings[FirstUseIdx + UseIdx];
    203   }
    204 
    205   /// Compute and return the use operand latency of a given
    206   /// itinerary class and operand index if the value is produced by an
    207   /// instruction of the specified itinerary class and def operand index.
    208   int getOperandLatency(unsigned DefClass, unsigned DefIdx,
    209                         unsigned UseClass, unsigned UseIdx) const {
    210     if (isEmpty())
    211       return -1;
    212 
    213     int DefCycle = getOperandCycle(DefClass, DefIdx);
    214     if (DefCycle == -1)
    215       return -1;
    216 
    217     int UseCycle = getOperandCycle(UseClass, UseIdx);
    218     if (UseCycle == -1)
    219       return -1;
    220 
    221     UseCycle = DefCycle - UseCycle + 1;
    222     if (UseCycle > 0 &&
    223         hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
    224       // FIXME: This assumes one cycle benefit for every pipeline forwarding.
    225       --UseCycle;
    226     return UseCycle;
    227   }
    228 
    229   /// Return the number of micro-ops that the given class decodes to.
    230   /// Return -1 for classes that require dynamic lookup via TargetInstrInfo.
    231   int getNumMicroOps(unsigned ItinClassIndx) const {
    232     if (isEmpty())
    233       return 1;
    234     return Itineraries[ItinClassIndx].NumMicroOps;
    235   }
    236 };
    237 
    238 } // End llvm namespace
    239 
    240 #endif
    241