1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <cmath> 6 7 #include "include/v8stdint.h" 8 #include "src/base/logging.h" 9 #include "src/utils.h" 10 11 #include "src/bignum-dtoa.h" 12 13 #include "src/bignum.h" 14 #include "src/double.h" 15 16 namespace v8 { 17 namespace internal { 18 19 static int NormalizedExponent(uint64_t significand, int exponent) { 20 DCHECK(significand != 0); 21 while ((significand & Double::kHiddenBit) == 0) { 22 significand = significand << 1; 23 exponent = exponent - 1; 24 } 25 return exponent; 26 } 27 28 29 // Forward declarations: 30 // Returns an estimation of k such that 10^(k-1) <= v < 10^k. 31 static int EstimatePower(int exponent); 32 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator 33 // and denominator. 34 static void InitialScaledStartValues(double v, 35 int estimated_power, 36 bool need_boundary_deltas, 37 Bignum* numerator, 38 Bignum* denominator, 39 Bignum* delta_minus, 40 Bignum* delta_plus); 41 // Multiplies numerator/denominator so that its values lies in the range 1-10. 42 // Returns decimal_point s.t. 43 // v = numerator'/denominator' * 10^(decimal_point-1) 44 // where numerator' and denominator' are the values of numerator and 45 // denominator after the call to this function. 46 static void FixupMultiply10(int estimated_power, bool is_even, 47 int* decimal_point, 48 Bignum* numerator, Bignum* denominator, 49 Bignum* delta_minus, Bignum* delta_plus); 50 // Generates digits from the left to the right and stops when the generated 51 // digits yield the shortest decimal representation of v. 52 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, 53 Bignum* delta_minus, Bignum* delta_plus, 54 bool is_even, 55 Vector<char> buffer, int* length); 56 // Generates 'requested_digits' after the decimal point. 57 static void BignumToFixed(int requested_digits, int* decimal_point, 58 Bignum* numerator, Bignum* denominator, 59 Vector<char>(buffer), int* length); 60 // Generates 'count' digits of numerator/denominator. 61 // Once 'count' digits have been produced rounds the result depending on the 62 // remainder (remainders of exactly .5 round upwards). Might update the 63 // decimal_point when rounding up (for example for 0.9999). 64 static void GenerateCountedDigits(int count, int* decimal_point, 65 Bignum* numerator, Bignum* denominator, 66 Vector<char>(buffer), int* length); 67 68 69 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, 70 Vector<char> buffer, int* length, int* decimal_point) { 71 DCHECK(v > 0); 72 DCHECK(!Double(v).IsSpecial()); 73 uint64_t significand = Double(v).Significand(); 74 bool is_even = (significand & 1) == 0; 75 int exponent = Double(v).Exponent(); 76 int normalized_exponent = NormalizedExponent(significand, exponent); 77 // estimated_power might be too low by 1. 78 int estimated_power = EstimatePower(normalized_exponent); 79 80 // Shortcut for Fixed. 81 // The requested digits correspond to the digits after the point. If the 82 // number is much too small, then there is no need in trying to get any 83 // digits. 84 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { 85 buffer[0] = '\0'; 86 *length = 0; 87 // Set decimal-point to -requested_digits. This is what Gay does. 88 // Note that it should not have any effect anyways since the string is 89 // empty. 90 *decimal_point = -requested_digits; 91 return; 92 } 93 94 Bignum numerator; 95 Bignum denominator; 96 Bignum delta_minus; 97 Bignum delta_plus; 98 // Make sure the bignum can grow large enough. The smallest double equals 99 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. 100 // The maximum double is 1.7976931348623157e308 which needs fewer than 101 // 308*4 binary digits. 102 DCHECK(Bignum::kMaxSignificantBits >= 324*4); 103 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); 104 InitialScaledStartValues(v, estimated_power, need_boundary_deltas, 105 &numerator, &denominator, 106 &delta_minus, &delta_plus); 107 // We now have v = (numerator / denominator) * 10^estimated_power. 108 FixupMultiply10(estimated_power, is_even, decimal_point, 109 &numerator, &denominator, 110 &delta_minus, &delta_plus); 111 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and 112 // 1 <= (numerator + delta_plus) / denominator < 10 113 switch (mode) { 114 case BIGNUM_DTOA_SHORTEST: 115 GenerateShortestDigits(&numerator, &denominator, 116 &delta_minus, &delta_plus, 117 is_even, buffer, length); 118 break; 119 case BIGNUM_DTOA_FIXED: 120 BignumToFixed(requested_digits, decimal_point, 121 &numerator, &denominator, 122 buffer, length); 123 break; 124 case BIGNUM_DTOA_PRECISION: 125 GenerateCountedDigits(requested_digits, decimal_point, 126 &numerator, &denominator, 127 buffer, length); 128 break; 129 default: 130 UNREACHABLE(); 131 } 132 buffer[*length] = '\0'; 133 } 134 135 136 // The procedure starts generating digits from the left to the right and stops 137 // when the generated digits yield the shortest decimal representation of v. A 138 // decimal representation of v is a number lying closer to v than to any other 139 // double, so it converts to v when read. 140 // 141 // This is true if d, the decimal representation, is between m- and m+, the 142 // upper and lower boundaries. d must be strictly between them if !is_even. 143 // m- := (numerator - delta_minus) / denominator 144 // m+ := (numerator + delta_plus) / denominator 145 // 146 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. 147 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit 148 // will be produced. This should be the standard precondition. 149 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, 150 Bignum* delta_minus, Bignum* delta_plus, 151 bool is_even, 152 Vector<char> buffer, int* length) { 153 // Small optimization: if delta_minus and delta_plus are the same just reuse 154 // one of the two bignums. 155 if (Bignum::Equal(*delta_minus, *delta_plus)) { 156 delta_plus = delta_minus; 157 } 158 *length = 0; 159 while (true) { 160 uint16_t digit; 161 digit = numerator->DivideModuloIntBignum(*denominator); 162 DCHECK(digit <= 9); // digit is a uint16_t and therefore always positive. 163 // digit = numerator / denominator (integer division). 164 // numerator = numerator % denominator. 165 buffer[(*length)++] = digit + '0'; 166 167 // Can we stop already? 168 // If the remainder of the division is less than the distance to the lower 169 // boundary we can stop. In this case we simply round down (discarding the 170 // remainder). 171 // Similarly we test if we can round up (using the upper boundary). 172 bool in_delta_room_minus; 173 bool in_delta_room_plus; 174 if (is_even) { 175 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); 176 } else { 177 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); 178 } 179 if (is_even) { 180 in_delta_room_plus = 181 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; 182 } else { 183 in_delta_room_plus = 184 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; 185 } 186 if (!in_delta_room_minus && !in_delta_room_plus) { 187 // Prepare for next iteration. 188 numerator->Times10(); 189 delta_minus->Times10(); 190 // We optimized delta_plus to be equal to delta_minus (if they share the 191 // same value). So don't multiply delta_plus if they point to the same 192 // object. 193 if (delta_minus != delta_plus) { 194 delta_plus->Times10(); 195 } 196 } else if (in_delta_room_minus && in_delta_room_plus) { 197 // Let's see if 2*numerator < denominator. 198 // If yes, then the next digit would be < 5 and we can round down. 199 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); 200 if (compare < 0) { 201 // Remaining digits are less than .5. -> Round down (== do nothing). 202 } else if (compare > 0) { 203 // Remaining digits are more than .5 of denominator. -> Round up. 204 // Note that the last digit could not be a '9' as otherwise the whole 205 // loop would have stopped earlier. 206 // We still have an assert here in case the preconditions were not 207 // satisfied. 208 DCHECK(buffer[(*length) - 1] != '9'); 209 buffer[(*length) - 1]++; 210 } else { 211 // Halfway case. 212 // TODO(floitsch): need a way to solve half-way cases. 213 // For now let's round towards even (since this is what Gay seems to 214 // do). 215 216 if ((buffer[(*length) - 1] - '0') % 2 == 0) { 217 // Round down => Do nothing. 218 } else { 219 DCHECK(buffer[(*length) - 1] != '9'); 220 buffer[(*length) - 1]++; 221 } 222 } 223 return; 224 } else if (in_delta_room_minus) { 225 // Round down (== do nothing). 226 return; 227 } else { // in_delta_room_plus 228 // Round up. 229 // Note again that the last digit could not be '9' since this would have 230 // stopped the loop earlier. 231 // We still have an DCHECK here, in case the preconditions were not 232 // satisfied. 233 DCHECK(buffer[(*length) -1] != '9'); 234 buffer[(*length) - 1]++; 235 return; 236 } 237 } 238 } 239 240 241 // Let v = numerator / denominator < 10. 242 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) 243 // from left to right. Once 'count' digits have been produced we decide wether 244 // to round up or down. Remainders of exactly .5 round upwards. Numbers such 245 // as 9.999999 propagate a carry all the way, and change the 246 // exponent (decimal_point), when rounding upwards. 247 static void GenerateCountedDigits(int count, int* decimal_point, 248 Bignum* numerator, Bignum* denominator, 249 Vector<char>(buffer), int* length) { 250 DCHECK(count >= 0); 251 for (int i = 0; i < count - 1; ++i) { 252 uint16_t digit; 253 digit = numerator->DivideModuloIntBignum(*denominator); 254 DCHECK(digit <= 9); // digit is a uint16_t and therefore always positive. 255 // digit = numerator / denominator (integer division). 256 // numerator = numerator % denominator. 257 buffer[i] = digit + '0'; 258 // Prepare for next iteration. 259 numerator->Times10(); 260 } 261 // Generate the last digit. 262 uint16_t digit; 263 digit = numerator->DivideModuloIntBignum(*denominator); 264 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { 265 digit++; 266 } 267 buffer[count - 1] = digit + '0'; 268 // Correct bad digits (in case we had a sequence of '9's). Propagate the 269 // carry until we hat a non-'9' or til we reach the first digit. 270 for (int i = count - 1; i > 0; --i) { 271 if (buffer[i] != '0' + 10) break; 272 buffer[i] = '0'; 273 buffer[i - 1]++; 274 } 275 if (buffer[0] == '0' + 10) { 276 // Propagate a carry past the top place. 277 buffer[0] = '1'; 278 (*decimal_point)++; 279 } 280 *length = count; 281 } 282 283 284 // Generates 'requested_digits' after the decimal point. It might omit 285 // trailing '0's. If the input number is too small then no digits at all are 286 // generated (ex.: 2 fixed digits for 0.00001). 287 // 288 // Input verifies: 1 <= (numerator + delta) / denominator < 10. 289 static void BignumToFixed(int requested_digits, int* decimal_point, 290 Bignum* numerator, Bignum* denominator, 291 Vector<char>(buffer), int* length) { 292 // Note that we have to look at more than just the requested_digits, since 293 // a number could be rounded up. Example: v=0.5 with requested_digits=0. 294 // Even though the power of v equals 0 we can't just stop here. 295 if (-(*decimal_point) > requested_digits) { 296 // The number is definitively too small. 297 // Ex: 0.001 with requested_digits == 1. 298 // Set decimal-point to -requested_digits. This is what Gay does. 299 // Note that it should not have any effect anyways since the string is 300 // empty. 301 *decimal_point = -requested_digits; 302 *length = 0; 303 return; 304 } else if (-(*decimal_point) == requested_digits) { 305 // We only need to verify if the number rounds down or up. 306 // Ex: 0.04 and 0.06 with requested_digits == 1. 307 DCHECK(*decimal_point == -requested_digits); 308 // Initially the fraction lies in range (1, 10]. Multiply the denominator 309 // by 10 so that we can compare more easily. 310 denominator->Times10(); 311 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { 312 // If the fraction is >= 0.5 then we have to include the rounded 313 // digit. 314 buffer[0] = '1'; 315 *length = 1; 316 (*decimal_point)++; 317 } else { 318 // Note that we caught most of similar cases earlier. 319 *length = 0; 320 } 321 return; 322 } else { 323 // The requested digits correspond to the digits after the point. 324 // The variable 'needed_digits' includes the digits before the point. 325 int needed_digits = (*decimal_point) + requested_digits; 326 GenerateCountedDigits(needed_digits, decimal_point, 327 numerator, denominator, 328 buffer, length); 329 } 330 } 331 332 333 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where 334 // v = f * 2^exponent and 2^52 <= f < 2^53. 335 // v is hence a normalized double with the given exponent. The output is an 336 // approximation for the exponent of the decimal approimation .digits * 10^k. 337 // 338 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. 339 // Note: this property holds for v's upper boundary m+ too. 340 // 10^k <= m+ < 10^k+1. 341 // (see explanation below). 342 // 343 // Examples: 344 // EstimatePower(0) => 16 345 // EstimatePower(-52) => 0 346 // 347 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. 348 static int EstimatePower(int exponent) { 349 // This function estimates log10 of v where v = f*2^e (with e == exponent). 350 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). 351 // Note that f is bounded by its container size. Let p = 53 (the double's 352 // significand size). Then 2^(p-1) <= f < 2^p. 353 // 354 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close 355 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). 356 // The computed number undershoots by less than 0.631 (when we compute log3 357 // and not log10). 358 // 359 // Optimization: since we only need an approximated result this computation 360 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is 361 // not really measurable, though. 362 // 363 // Since we want to avoid overshooting we decrement by 1e10 so that 364 // floating-point imprecisions don't affect us. 365 // 366 // Explanation for v's boundary m+: the computation takes advantage of 367 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement 368 // (even for denormals where the delta can be much more important). 369 370 const double k1Log10 = 0.30102999566398114; // 1/lg(10) 371 372 // For doubles len(f) == 53 (don't forget the hidden bit). 373 const int kSignificandSize = 53; 374 double estimate = 375 std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); 376 return static_cast<int>(estimate); 377 } 378 379 380 // See comments for InitialScaledStartValues. 381 static void InitialScaledStartValuesPositiveExponent( 382 double v, int estimated_power, bool need_boundary_deltas, 383 Bignum* numerator, Bignum* denominator, 384 Bignum* delta_minus, Bignum* delta_plus) { 385 // A positive exponent implies a positive power. 386 DCHECK(estimated_power >= 0); 387 // Since the estimated_power is positive we simply multiply the denominator 388 // by 10^estimated_power. 389 390 // numerator = v. 391 numerator->AssignUInt64(Double(v).Significand()); 392 numerator->ShiftLeft(Double(v).Exponent()); 393 // denominator = 10^estimated_power. 394 denominator->AssignPowerUInt16(10, estimated_power); 395 396 if (need_boundary_deltas) { 397 // Introduce a common denominator so that the deltas to the boundaries are 398 // integers. 399 denominator->ShiftLeft(1); 400 numerator->ShiftLeft(1); 401 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common 402 // denominator (of 2) delta_plus equals 2^e. 403 delta_plus->AssignUInt16(1); 404 delta_plus->ShiftLeft(Double(v).Exponent()); 405 // Same for delta_minus (with adjustments below if f == 2^p-1). 406 delta_minus->AssignUInt16(1); 407 delta_minus->ShiftLeft(Double(v).Exponent()); 408 409 // If the significand (without the hidden bit) is 0, then the lower 410 // boundary is closer than just half a ulp (unit in the last place). 411 // There is only one exception: if the next lower number is a denormal then 412 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we 413 // have to test it in the other function where exponent < 0). 414 uint64_t v_bits = Double(v).AsUint64(); 415 if ((v_bits & Double::kSignificandMask) == 0) { 416 // The lower boundary is closer at half the distance of "normal" numbers. 417 // Increase the common denominator and adapt all but the delta_minus. 418 denominator->ShiftLeft(1); // *2 419 numerator->ShiftLeft(1); // *2 420 delta_plus->ShiftLeft(1); // *2 421 } 422 } 423 } 424 425 426 // See comments for InitialScaledStartValues 427 static void InitialScaledStartValuesNegativeExponentPositivePower( 428 double v, int estimated_power, bool need_boundary_deltas, 429 Bignum* numerator, Bignum* denominator, 430 Bignum* delta_minus, Bignum* delta_plus) { 431 uint64_t significand = Double(v).Significand(); 432 int exponent = Double(v).Exponent(); 433 // v = f * 2^e with e < 0, and with estimated_power >= 0. 434 // This means that e is close to 0 (have a look at how estimated_power is 435 // computed). 436 437 // numerator = significand 438 // since v = significand * 2^exponent this is equivalent to 439 // numerator = v * / 2^-exponent 440 numerator->AssignUInt64(significand); 441 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) 442 denominator->AssignPowerUInt16(10, estimated_power); 443 denominator->ShiftLeft(-exponent); 444 445 if (need_boundary_deltas) { 446 // Introduce a common denominator so that the deltas to the boundaries are 447 // integers. 448 denominator->ShiftLeft(1); 449 numerator->ShiftLeft(1); 450 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common 451 // denominator (of 2) delta_plus equals 2^e. 452 // Given that the denominator already includes v's exponent the distance 453 // to the boundaries is simply 1. 454 delta_plus->AssignUInt16(1); 455 // Same for delta_minus (with adjustments below if f == 2^p-1). 456 delta_minus->AssignUInt16(1); 457 458 // If the significand (without the hidden bit) is 0, then the lower 459 // boundary is closer than just one ulp (unit in the last place). 460 // There is only one exception: if the next lower number is a denormal 461 // then the distance is 1 ulp. Since the exponent is close to zero 462 // (otherwise estimated_power would have been negative) this cannot happen 463 // here either. 464 uint64_t v_bits = Double(v).AsUint64(); 465 if ((v_bits & Double::kSignificandMask) == 0) { 466 // The lower boundary is closer at half the distance of "normal" numbers. 467 // Increase the denominator and adapt all but the delta_minus. 468 denominator->ShiftLeft(1); // *2 469 numerator->ShiftLeft(1); // *2 470 delta_plus->ShiftLeft(1); // *2 471 } 472 } 473 } 474 475 476 // See comments for InitialScaledStartValues 477 static void InitialScaledStartValuesNegativeExponentNegativePower( 478 double v, int estimated_power, bool need_boundary_deltas, 479 Bignum* numerator, Bignum* denominator, 480 Bignum* delta_minus, Bignum* delta_plus) { 481 const uint64_t kMinimalNormalizedExponent = 482 V8_2PART_UINT64_C(0x00100000, 00000000); 483 uint64_t significand = Double(v).Significand(); 484 int exponent = Double(v).Exponent(); 485 // Instead of multiplying the denominator with 10^estimated_power we 486 // multiply all values (numerator and deltas) by 10^-estimated_power. 487 488 // Use numerator as temporary container for power_ten. 489 Bignum* power_ten = numerator; 490 power_ten->AssignPowerUInt16(10, -estimated_power); 491 492 if (need_boundary_deltas) { 493 // Since power_ten == numerator we must make a copy of 10^estimated_power 494 // before we complete the computation of the numerator. 495 // delta_plus = delta_minus = 10^estimated_power 496 delta_plus->AssignBignum(*power_ten); 497 delta_minus->AssignBignum(*power_ten); 498 } 499 500 // numerator = significand * 2 * 10^-estimated_power 501 // since v = significand * 2^exponent this is equivalent to 502 // numerator = v * 10^-estimated_power * 2 * 2^-exponent. 503 // Remember: numerator has been abused as power_ten. So no need to assign it 504 // to itself. 505 DCHECK(numerator == power_ten); 506 numerator->MultiplyByUInt64(significand); 507 508 // denominator = 2 * 2^-exponent with exponent < 0. 509 denominator->AssignUInt16(1); 510 denominator->ShiftLeft(-exponent); 511 512 if (need_boundary_deltas) { 513 // Introduce a common denominator so that the deltas to the boundaries are 514 // integers. 515 numerator->ShiftLeft(1); 516 denominator->ShiftLeft(1); 517 // With this shift the boundaries have their correct value, since 518 // delta_plus = 10^-estimated_power, and 519 // delta_minus = 10^-estimated_power. 520 // These assignments have been done earlier. 521 522 // The special case where the lower boundary is twice as close. 523 // This time we have to look out for the exception too. 524 uint64_t v_bits = Double(v).AsUint64(); 525 if ((v_bits & Double::kSignificandMask) == 0 && 526 // The only exception where a significand == 0 has its boundaries at 527 // "normal" distances: 528 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { 529 numerator->ShiftLeft(1); // *2 530 denominator->ShiftLeft(1); // *2 531 delta_plus->ShiftLeft(1); // *2 532 } 533 } 534 } 535 536 537 // Let v = significand * 2^exponent. 538 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator 539 // and denominator. The functions GenerateShortestDigits and 540 // GenerateCountedDigits will then convert this ratio to its decimal 541 // representation d, with the required accuracy. 542 // Then d * 10^estimated_power is the representation of v. 543 // (Note: the fraction and the estimated_power might get adjusted before 544 // generating the decimal representation.) 545 // 546 // The initial start values consist of: 547 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. 548 // - a scaled (common) denominator. 549 // optionally (used by GenerateShortestDigits to decide if it has the shortest 550 // decimal converting back to v): 551 // - v - m-: the distance to the lower boundary. 552 // - m+ - v: the distance to the upper boundary. 553 // 554 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. 555 // 556 // Let ep == estimated_power, then the returned values will satisfy: 557 // v / 10^ep = numerator / denominator. 558 // v's boundarys m- and m+: 559 // m- / 10^ep == v / 10^ep - delta_minus / denominator 560 // m+ / 10^ep == v / 10^ep + delta_plus / denominator 561 // Or in other words: 562 // m- == v - delta_minus * 10^ep / denominator; 563 // m+ == v + delta_plus * 10^ep / denominator; 564 // 565 // Since 10^(k-1) <= v < 10^k (with k == estimated_power) 566 // or 10^k <= v < 10^(k+1) 567 // we then have 0.1 <= numerator/denominator < 1 568 // or 1 <= numerator/denominator < 10 569 // 570 // It is then easy to kickstart the digit-generation routine. 571 // 572 // The boundary-deltas are only filled if need_boundary_deltas is set. 573 static void InitialScaledStartValues(double v, 574 int estimated_power, 575 bool need_boundary_deltas, 576 Bignum* numerator, 577 Bignum* denominator, 578 Bignum* delta_minus, 579 Bignum* delta_plus) { 580 if (Double(v).Exponent() >= 0) { 581 InitialScaledStartValuesPositiveExponent( 582 v, estimated_power, need_boundary_deltas, 583 numerator, denominator, delta_minus, delta_plus); 584 } else if (estimated_power >= 0) { 585 InitialScaledStartValuesNegativeExponentPositivePower( 586 v, estimated_power, need_boundary_deltas, 587 numerator, denominator, delta_minus, delta_plus); 588 } else { 589 InitialScaledStartValuesNegativeExponentNegativePower( 590 v, estimated_power, need_boundary_deltas, 591 numerator, denominator, delta_minus, delta_plus); 592 } 593 } 594 595 596 // This routine multiplies numerator/denominator so that its values lies in the 597 // range 1-10. That is after a call to this function we have: 598 // 1 <= (numerator + delta_plus) /denominator < 10. 599 // Let numerator the input before modification and numerator' the argument 600 // after modification, then the output-parameter decimal_point is such that 601 // numerator / denominator * 10^estimated_power == 602 // numerator' / denominator' * 10^(decimal_point - 1) 603 // In some cases estimated_power was too low, and this is already the case. We 604 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == 605 // estimated_power) but do not touch the numerator or denominator. 606 // Otherwise the routine multiplies the numerator and the deltas by 10. 607 static void FixupMultiply10(int estimated_power, bool is_even, 608 int* decimal_point, 609 Bignum* numerator, Bignum* denominator, 610 Bignum* delta_minus, Bignum* delta_plus) { 611 bool in_range; 612 if (is_even) { 613 // For IEEE doubles half-way cases (in decimal system numbers ending with 5) 614 // are rounded to the closest floating-point number with even significand. 615 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; 616 } else { 617 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; 618 } 619 if (in_range) { 620 // Since numerator + delta_plus >= denominator we already have 621 // 1 <= numerator/denominator < 10. Simply update the estimated_power. 622 *decimal_point = estimated_power + 1; 623 } else { 624 *decimal_point = estimated_power; 625 numerator->Times10(); 626 if (Bignum::Equal(*delta_minus, *delta_plus)) { 627 delta_minus->Times10(); 628 delta_plus->AssignBignum(*delta_minus); 629 } else { 630 delta_minus->Times10(); 631 delta_plus->Times10(); 632 } 633 } 634 } 635 636 } } // namespace v8::internal 637