1 //=-- lsan_common.cc ------------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of LeakSanitizer. 11 // Implementation of common leak checking functionality. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "lsan_common.h" 16 17 #include "sanitizer_common/sanitizer_common.h" 18 #include "sanitizer_common/sanitizer_flags.h" 19 #include "sanitizer_common/sanitizer_flag_parser.h" 20 #include "sanitizer_common/sanitizer_placement_new.h" 21 #include "sanitizer_common/sanitizer_procmaps.h" 22 #include "sanitizer_common/sanitizer_stackdepot.h" 23 #include "sanitizer_common/sanitizer_stacktrace.h" 24 #include "sanitizer_common/sanitizer_suppressions.h" 25 #include "sanitizer_common/sanitizer_report_decorator.h" 26 27 #if CAN_SANITIZE_LEAKS 28 namespace __lsan { 29 30 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and 31 // also to protect the global list of root regions. 32 BlockingMutex global_mutex(LINKER_INITIALIZED); 33 34 THREADLOCAL int disable_counter; 35 bool DisabledInThisThread() { return disable_counter > 0; } 36 37 Flags lsan_flags; 38 39 void Flags::SetDefaults() { 40 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue; 41 #include "lsan_flags.inc" 42 #undef LSAN_FLAG 43 } 44 45 void RegisterLsanFlags(FlagParser *parser, Flags *f) { 46 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \ 47 RegisterFlag(parser, #Name, Description, &f->Name); 48 #include "lsan_flags.inc" 49 #undef LSAN_FLAG 50 } 51 52 #define LOG_POINTERS(...) \ 53 do { \ 54 if (flags()->log_pointers) Report(__VA_ARGS__); \ 55 } while (0); 56 57 #define LOG_THREADS(...) \ 58 do { \ 59 if (flags()->log_threads) Report(__VA_ARGS__); \ 60 } while (0); 61 62 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)]; 63 static SuppressionContext *suppression_ctx = nullptr; 64 static const char kSuppressionLeak[] = "leak"; 65 static const char *kSuppressionTypes[] = { kSuppressionLeak }; 66 67 void InitializeSuppressions() { 68 CHECK_EQ(nullptr, suppression_ctx); 69 suppression_ctx = new (suppression_placeholder) // NOLINT 70 SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes)); 71 suppression_ctx->ParseFromFile(flags()->suppressions); 72 if (&__lsan_default_suppressions) 73 suppression_ctx->Parse(__lsan_default_suppressions()); 74 } 75 76 static SuppressionContext *GetSuppressionContext() { 77 CHECK(suppression_ctx); 78 return suppression_ctx; 79 } 80 81 struct RootRegion { 82 const void *begin; 83 uptr size; 84 }; 85 86 InternalMmapVector<RootRegion> *root_regions; 87 88 void InitializeRootRegions() { 89 CHECK(!root_regions); 90 ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)]; 91 root_regions = new(placeholder) InternalMmapVector<RootRegion>(1); 92 } 93 94 void InitCommonLsan() { 95 InitializeRootRegions(); 96 if (common_flags()->detect_leaks) { 97 // Initialization which can fail or print warnings should only be done if 98 // LSan is actually enabled. 99 InitializeSuppressions(); 100 InitializePlatformSpecificModules(); 101 } 102 } 103 104 class Decorator: public __sanitizer::SanitizerCommonDecorator { 105 public: 106 Decorator() : SanitizerCommonDecorator() { } 107 const char *Error() { return Red(); } 108 const char *Leak() { return Blue(); } 109 const char *End() { return Default(); } 110 }; 111 112 static inline bool CanBeAHeapPointer(uptr p) { 113 // Since our heap is located in mmap-ed memory, we can assume a sensible lower 114 // bound on heap addresses. 115 const uptr kMinAddress = 4 * 4096; 116 if (p < kMinAddress) return false; 117 #if defined(__x86_64__) 118 // Accept only canonical form user-space addresses. 119 return ((p >> 47) == 0); 120 #elif defined(__mips64) 121 return ((p >> 40) == 0); 122 #else 123 return true; 124 #endif 125 } 126 127 // Scans the memory range, looking for byte patterns that point into allocator 128 // chunks. Marks those chunks with |tag| and adds them to |frontier|. 129 // There are two usage modes for this function: finding reachable or ignored 130 // chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks 131 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill, 132 // so |frontier| = 0. 133 void ScanRangeForPointers(uptr begin, uptr end, 134 Frontier *frontier, 135 const char *region_type, ChunkTag tag) { 136 const uptr alignment = flags()->pointer_alignment(); 137 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end); 138 uptr pp = begin; 139 if (pp % alignment) 140 pp = pp + alignment - pp % alignment; 141 for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT 142 void *p = *reinterpret_cast<void **>(pp); 143 if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue; 144 uptr chunk = PointsIntoChunk(p); 145 if (!chunk) continue; 146 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked. 147 if (chunk == begin) continue; 148 LsanMetadata m(chunk); 149 // Reachable beats ignored beats leaked. 150 if (m.tag() == kReachable) continue; 151 if (m.tag() == kIgnored && tag != kReachable) continue; 152 153 // Do this check relatively late so we can log only the interesting cases. 154 if (!flags()->use_poisoned && WordIsPoisoned(pp)) { 155 LOG_POINTERS( 156 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size " 157 "%zu.\n", 158 pp, p, chunk, chunk + m.requested_size(), m.requested_size()); 159 continue; 160 } 161 162 m.set_tag(tag); 163 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p, 164 chunk, chunk + m.requested_size(), m.requested_size()); 165 if (frontier) 166 frontier->push_back(chunk); 167 } 168 } 169 170 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) { 171 Frontier *frontier = reinterpret_cast<Frontier *>(arg); 172 ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable); 173 } 174 175 // Scans thread data (stacks and TLS) for heap pointers. 176 static void ProcessThreads(SuspendedThreadsList const &suspended_threads, 177 Frontier *frontier) { 178 InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount()); 179 uptr registers_begin = reinterpret_cast<uptr>(registers.data()); 180 uptr registers_end = registers_begin + registers.size(); 181 for (uptr i = 0; i < suspended_threads.thread_count(); i++) { 182 uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i)); 183 LOG_THREADS("Processing thread %d.\n", os_id); 184 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end; 185 bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end, 186 &tls_begin, &tls_end, 187 &cache_begin, &cache_end); 188 if (!thread_found) { 189 // If a thread can't be found in the thread registry, it's probably in the 190 // process of destruction. Log this event and move on. 191 LOG_THREADS("Thread %d not found in registry.\n", os_id); 192 continue; 193 } 194 uptr sp; 195 bool have_registers = 196 (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0); 197 if (!have_registers) { 198 Report("Unable to get registers from thread %d.\n"); 199 // If unable to get SP, consider the entire stack to be reachable. 200 sp = stack_begin; 201 } 202 203 if (flags()->use_registers && have_registers) 204 ScanRangeForPointers(registers_begin, registers_end, frontier, 205 "REGISTERS", kReachable); 206 207 if (flags()->use_stacks) { 208 LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp); 209 if (sp < stack_begin || sp >= stack_end) { 210 // SP is outside the recorded stack range (e.g. the thread is running a 211 // signal handler on alternate stack). Again, consider the entire stack 212 // range to be reachable. 213 LOG_THREADS("WARNING: stack pointer not in stack range.\n"); 214 } else { 215 // Shrink the stack range to ignore out-of-scope values. 216 stack_begin = sp; 217 } 218 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK", 219 kReachable); 220 ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier); 221 } 222 223 if (flags()->use_tls) { 224 LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end); 225 if (cache_begin == cache_end) { 226 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable); 227 } else { 228 // Because LSan should not be loaded with dlopen(), we can assume 229 // that allocator cache will be part of static TLS image. 230 CHECK_LE(tls_begin, cache_begin); 231 CHECK_GE(tls_end, cache_end); 232 if (tls_begin < cache_begin) 233 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS", 234 kReachable); 235 if (tls_end > cache_end) 236 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable); 237 } 238 } 239 } 240 } 241 242 static void ProcessRootRegion(Frontier *frontier, uptr root_begin, 243 uptr root_end) { 244 MemoryMappingLayout proc_maps(/*cache_enabled*/true); 245 uptr begin, end, prot; 246 while (proc_maps.Next(&begin, &end, 247 /*offset*/ 0, /*filename*/ 0, /*filename_size*/ 0, 248 &prot)) { 249 uptr intersection_begin = Max(root_begin, begin); 250 uptr intersection_end = Min(end, root_end); 251 if (intersection_begin >= intersection_end) continue; 252 bool is_readable = prot & MemoryMappingLayout::kProtectionRead; 253 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n", 254 root_begin, root_end, begin, end, 255 is_readable ? "readable" : "unreadable"); 256 if (is_readable) 257 ScanRangeForPointers(intersection_begin, intersection_end, frontier, 258 "ROOT", kReachable); 259 } 260 } 261 262 // Scans root regions for heap pointers. 263 static void ProcessRootRegions(Frontier *frontier) { 264 if (!flags()->use_root_regions) return; 265 CHECK(root_regions); 266 for (uptr i = 0; i < root_regions->size(); i++) { 267 RootRegion region = (*root_regions)[i]; 268 uptr begin_addr = reinterpret_cast<uptr>(region.begin); 269 ProcessRootRegion(frontier, begin_addr, begin_addr + region.size); 270 } 271 } 272 273 static void FloodFillTag(Frontier *frontier, ChunkTag tag) { 274 while (frontier->size()) { 275 uptr next_chunk = frontier->back(); 276 frontier->pop_back(); 277 LsanMetadata m(next_chunk); 278 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier, 279 "HEAP", tag); 280 } 281 } 282 283 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks 284 // which are reachable from it as indirectly leaked. 285 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) { 286 chunk = GetUserBegin(chunk); 287 LsanMetadata m(chunk); 288 if (m.allocated() && m.tag() != kReachable) { 289 ScanRangeForPointers(chunk, chunk + m.requested_size(), 290 /* frontier */ 0, "HEAP", kIndirectlyLeaked); 291 } 292 } 293 294 // ForEachChunk callback. If chunk is marked as ignored, adds its address to 295 // frontier. 296 static void CollectIgnoredCb(uptr chunk, void *arg) { 297 CHECK(arg); 298 chunk = GetUserBegin(chunk); 299 LsanMetadata m(chunk); 300 if (m.allocated() && m.tag() == kIgnored) 301 reinterpret_cast<Frontier *>(arg)->push_back(chunk); 302 } 303 304 // Sets the appropriate tag on each chunk. 305 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) { 306 // Holds the flood fill frontier. 307 Frontier frontier(1); 308 309 ProcessGlobalRegions(&frontier); 310 ProcessThreads(suspended_threads, &frontier); 311 ProcessRootRegions(&frontier); 312 FloodFillTag(&frontier, kReachable); 313 // The check here is relatively expensive, so we do this in a separate flood 314 // fill. That way we can skip the check for chunks that are reachable 315 // otherwise. 316 LOG_POINTERS("Processing platform-specific allocations.\n"); 317 ProcessPlatformSpecificAllocations(&frontier); 318 FloodFillTag(&frontier, kReachable); 319 320 LOG_POINTERS("Scanning ignored chunks.\n"); 321 CHECK_EQ(0, frontier.size()); 322 ForEachChunk(CollectIgnoredCb, &frontier); 323 FloodFillTag(&frontier, kIgnored); 324 325 // Iterate over leaked chunks and mark those that are reachable from other 326 // leaked chunks. 327 LOG_POINTERS("Scanning leaked chunks.\n"); 328 ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */); 329 } 330 331 static void PrintStackTraceById(u32 stack_trace_id) { 332 CHECK(stack_trace_id); 333 StackDepotGet(stack_trace_id).Print(); 334 } 335 336 // ForEachChunk callback. Aggregates information about unreachable chunks into 337 // a LeakReport. 338 static void CollectLeaksCb(uptr chunk, void *arg) { 339 CHECK(arg); 340 LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg); 341 chunk = GetUserBegin(chunk); 342 LsanMetadata m(chunk); 343 if (!m.allocated()) return; 344 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) { 345 u32 resolution = flags()->resolution; 346 u32 stack_trace_id = 0; 347 if (resolution > 0) { 348 StackTrace stack = StackDepotGet(m.stack_trace_id()); 349 stack.size = Min(stack.size, resolution); 350 stack_trace_id = StackDepotPut(stack); 351 } else { 352 stack_trace_id = m.stack_trace_id(); 353 } 354 leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(), 355 m.tag()); 356 } 357 } 358 359 static void PrintMatchedSuppressions() { 360 InternalMmapVector<Suppression *> matched(1); 361 GetSuppressionContext()->GetMatched(&matched); 362 if (!matched.size()) 363 return; 364 const char *line = "-----------------------------------------------------"; 365 Printf("%s\n", line); 366 Printf("Suppressions used:\n"); 367 Printf(" count bytes template\n"); 368 for (uptr i = 0; i < matched.size(); i++) 369 Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count), 370 matched[i]->weight, matched[i]->templ); 371 Printf("%s\n\n", line); 372 } 373 374 struct DoLeakCheckParam { 375 bool success; 376 LeakReport leak_report; 377 }; 378 379 static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads, 380 void *arg) { 381 DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg); 382 CHECK(param); 383 CHECK(!param->success); 384 ClassifyAllChunks(suspended_threads); 385 ForEachChunk(CollectLeaksCb, ¶m->leak_report); 386 param->success = true; 387 } 388 389 void DoLeakCheck() { 390 EnsureMainThreadIDIsCorrect(); 391 BlockingMutexLock l(&global_mutex); 392 static bool already_done; 393 if (already_done) return; 394 already_done = true; 395 if (&__lsan_is_turned_off && __lsan_is_turned_off()) 396 return; 397 398 DoLeakCheckParam param; 399 param.success = false; 400 LockThreadRegistry(); 401 LockAllocator(); 402 DoStopTheWorld(DoLeakCheckCallback, ¶m); 403 UnlockAllocator(); 404 UnlockThreadRegistry(); 405 406 if (!param.success) { 407 Report("LeakSanitizer has encountered a fatal error.\n"); 408 Die(); 409 } 410 param.leak_report.ApplySuppressions(); 411 uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount(); 412 if (unsuppressed_count > 0) { 413 Decorator d; 414 Printf("\n" 415 "=================================================================" 416 "\n"); 417 Printf("%s", d.Error()); 418 Report("ERROR: LeakSanitizer: detected memory leaks\n"); 419 Printf("%s", d.End()); 420 param.leak_report.ReportTopLeaks(flags()->max_leaks); 421 } 422 if (common_flags()->print_suppressions) 423 PrintMatchedSuppressions(); 424 if (unsuppressed_count > 0) { 425 param.leak_report.PrintSummary(); 426 if (flags()->exitcode) { 427 if (common_flags()->coverage) 428 __sanitizer_cov_dump(); 429 internal__exit(flags()->exitcode); 430 } 431 } 432 } 433 434 static Suppression *GetSuppressionForAddr(uptr addr) { 435 Suppression *s = nullptr; 436 437 // Suppress by module name. 438 SuppressionContext *suppressions = GetSuppressionContext(); 439 if (const char *module_name = 440 Symbolizer::GetOrInit()->GetModuleNameForPc(addr)) 441 if (suppressions->Match(module_name, kSuppressionLeak, &s)) 442 return s; 443 444 // Suppress by file or function name. 445 SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr); 446 for (SymbolizedStack *cur = frames; cur; cur = cur->next) { 447 if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) || 448 suppressions->Match(cur->info.file, kSuppressionLeak, &s)) { 449 break; 450 } 451 } 452 frames->ClearAll(); 453 return s; 454 } 455 456 static Suppression *GetSuppressionForStack(u32 stack_trace_id) { 457 StackTrace stack = StackDepotGet(stack_trace_id); 458 for (uptr i = 0; i < stack.size; i++) { 459 Suppression *s = GetSuppressionForAddr( 460 StackTrace::GetPreviousInstructionPc(stack.trace[i])); 461 if (s) return s; 462 } 463 return 0; 464 } 465 466 ///// LeakReport implementation. ///// 467 468 // A hard limit on the number of distinct leaks, to avoid quadratic complexity 469 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks 470 // in real-world applications. 471 // FIXME: Get rid of this limit by changing the implementation of LeakReport to 472 // use a hash table. 473 const uptr kMaxLeaksConsidered = 5000; 474 475 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id, 476 uptr leaked_size, ChunkTag tag) { 477 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked); 478 bool is_directly_leaked = (tag == kDirectlyLeaked); 479 uptr i; 480 for (i = 0; i < leaks_.size(); i++) { 481 if (leaks_[i].stack_trace_id == stack_trace_id && 482 leaks_[i].is_directly_leaked == is_directly_leaked) { 483 leaks_[i].hit_count++; 484 leaks_[i].total_size += leaked_size; 485 break; 486 } 487 } 488 if (i == leaks_.size()) { 489 if (leaks_.size() == kMaxLeaksConsidered) return; 490 Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id, 491 is_directly_leaked, /* is_suppressed */ false }; 492 leaks_.push_back(leak); 493 } 494 if (flags()->report_objects) { 495 LeakedObject obj = {leaks_[i].id, chunk, leaked_size}; 496 leaked_objects_.push_back(obj); 497 } 498 } 499 500 static bool LeakComparator(const Leak &leak1, const Leak &leak2) { 501 if (leak1.is_directly_leaked == leak2.is_directly_leaked) 502 return leak1.total_size > leak2.total_size; 503 else 504 return leak1.is_directly_leaked; 505 } 506 507 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) { 508 CHECK(leaks_.size() <= kMaxLeaksConsidered); 509 Printf("\n"); 510 if (leaks_.size() == kMaxLeaksConsidered) 511 Printf("Too many leaks! Only the first %zu leaks encountered will be " 512 "reported.\n", 513 kMaxLeaksConsidered); 514 515 uptr unsuppressed_count = UnsuppressedLeakCount(); 516 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count) 517 Printf("The %zu top leak(s):\n", num_leaks_to_report); 518 InternalSort(&leaks_, leaks_.size(), LeakComparator); 519 uptr leaks_reported = 0; 520 for (uptr i = 0; i < leaks_.size(); i++) { 521 if (leaks_[i].is_suppressed) continue; 522 PrintReportForLeak(i); 523 leaks_reported++; 524 if (leaks_reported == num_leaks_to_report) break; 525 } 526 if (leaks_reported < unsuppressed_count) { 527 uptr remaining = unsuppressed_count - leaks_reported; 528 Printf("Omitting %zu more leak(s).\n", remaining); 529 } 530 } 531 532 void LeakReport::PrintReportForLeak(uptr index) { 533 Decorator d; 534 Printf("%s", d.Leak()); 535 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n", 536 leaks_[index].is_directly_leaked ? "Direct" : "Indirect", 537 leaks_[index].total_size, leaks_[index].hit_count); 538 Printf("%s", d.End()); 539 540 PrintStackTraceById(leaks_[index].stack_trace_id); 541 542 if (flags()->report_objects) { 543 Printf("Objects leaked above:\n"); 544 PrintLeakedObjectsForLeak(index); 545 Printf("\n"); 546 } 547 } 548 549 void LeakReport::PrintLeakedObjectsForLeak(uptr index) { 550 u32 leak_id = leaks_[index].id; 551 for (uptr j = 0; j < leaked_objects_.size(); j++) { 552 if (leaked_objects_[j].leak_id == leak_id) 553 Printf("%p (%zu bytes)\n", leaked_objects_[j].addr, 554 leaked_objects_[j].size); 555 } 556 } 557 558 void LeakReport::PrintSummary() { 559 CHECK(leaks_.size() <= kMaxLeaksConsidered); 560 uptr bytes = 0, allocations = 0; 561 for (uptr i = 0; i < leaks_.size(); i++) { 562 if (leaks_[i].is_suppressed) continue; 563 bytes += leaks_[i].total_size; 564 allocations += leaks_[i].hit_count; 565 } 566 InternalScopedString summary(kMaxSummaryLength); 567 summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes, 568 allocations); 569 ReportErrorSummary(summary.data()); 570 } 571 572 void LeakReport::ApplySuppressions() { 573 for (uptr i = 0; i < leaks_.size(); i++) { 574 Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id); 575 if (s) { 576 s->weight += leaks_[i].total_size; 577 s->hit_count += leaks_[i].hit_count; 578 leaks_[i].is_suppressed = true; 579 } 580 } 581 } 582 583 uptr LeakReport::UnsuppressedLeakCount() { 584 uptr result = 0; 585 for (uptr i = 0; i < leaks_.size(); i++) 586 if (!leaks_[i].is_suppressed) result++; 587 return result; 588 } 589 590 } // namespace __lsan 591 #endif // CAN_SANITIZE_LEAKS 592 593 using namespace __lsan; // NOLINT 594 595 extern "C" { 596 SANITIZER_INTERFACE_ATTRIBUTE 597 void __lsan_ignore_object(const void *p) { 598 #if CAN_SANITIZE_LEAKS 599 if (!common_flags()->detect_leaks) 600 return; 601 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not 602 // locked. 603 BlockingMutexLock l(&global_mutex); 604 IgnoreObjectResult res = IgnoreObjectLocked(p); 605 if (res == kIgnoreObjectInvalid) 606 VReport(1, "__lsan_ignore_object(): no heap object found at %p", p); 607 if (res == kIgnoreObjectAlreadyIgnored) 608 VReport(1, "__lsan_ignore_object(): " 609 "heap object at %p is already being ignored\n", p); 610 if (res == kIgnoreObjectSuccess) 611 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p); 612 #endif // CAN_SANITIZE_LEAKS 613 } 614 615 SANITIZER_INTERFACE_ATTRIBUTE 616 void __lsan_register_root_region(const void *begin, uptr size) { 617 #if CAN_SANITIZE_LEAKS 618 BlockingMutexLock l(&global_mutex); 619 CHECK(root_regions); 620 RootRegion region = {begin, size}; 621 root_regions->push_back(region); 622 VReport(1, "Registered root region at %p of size %llu\n", begin, size); 623 #endif // CAN_SANITIZE_LEAKS 624 } 625 626 SANITIZER_INTERFACE_ATTRIBUTE 627 void __lsan_unregister_root_region(const void *begin, uptr size) { 628 #if CAN_SANITIZE_LEAKS 629 BlockingMutexLock l(&global_mutex); 630 CHECK(root_regions); 631 bool removed = false; 632 for (uptr i = 0; i < root_regions->size(); i++) { 633 RootRegion region = (*root_regions)[i]; 634 if (region.begin == begin && region.size == size) { 635 removed = true; 636 uptr last_index = root_regions->size() - 1; 637 (*root_regions)[i] = (*root_regions)[last_index]; 638 root_regions->pop_back(); 639 VReport(1, "Unregistered root region at %p of size %llu\n", begin, size); 640 break; 641 } 642 } 643 if (!removed) { 644 Report( 645 "__lsan_unregister_root_region(): region at %p of size %llu has not " 646 "been registered.\n", 647 begin, size); 648 Die(); 649 } 650 #endif // CAN_SANITIZE_LEAKS 651 } 652 653 SANITIZER_INTERFACE_ATTRIBUTE 654 void __lsan_disable() { 655 #if CAN_SANITIZE_LEAKS 656 __lsan::disable_counter++; 657 #endif 658 } 659 660 SANITIZER_INTERFACE_ATTRIBUTE 661 void __lsan_enable() { 662 #if CAN_SANITIZE_LEAKS 663 if (!__lsan::disable_counter && common_flags()->detect_leaks) { 664 Report("Unmatched call to __lsan_enable().\n"); 665 Die(); 666 } 667 __lsan::disable_counter--; 668 #endif 669 } 670 671 SANITIZER_INTERFACE_ATTRIBUTE 672 void __lsan_do_leak_check() { 673 #if CAN_SANITIZE_LEAKS 674 if (common_flags()->detect_leaks) 675 __lsan::DoLeakCheck(); 676 #endif // CAN_SANITIZE_LEAKS 677 } 678 679 #if !SANITIZER_SUPPORTS_WEAK_HOOKS 680 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE 681 int __lsan_is_turned_off() { 682 return 0; 683 } 684 #endif 685 } // extern "C" 686