1 2 /* 3 * Copyright 2012 Google Inc. 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 #include "SkBitmapProcState.h" 9 #include "SkBitmapProcState_filter.h" 10 #include "SkColorPriv.h" 11 #include "SkFilterProc.h" 12 #include "SkPaint.h" 13 #include "SkShader.h" // for tilemodes 14 #include "SkUtilsArm.h" 15 16 // Required to ensure the table is part of the final binary. 17 extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; 18 extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; 19 20 #define NAME_WRAP(x) x ## _neon 21 #include "SkBitmapProcState_filter_neon.h" 22 #include "SkBitmapProcState_procs.h" 23 24 const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { 25 S32_opaque_D32_nofilter_DXDY_neon, 26 S32_alpha_D32_nofilter_DXDY_neon, 27 S32_opaque_D32_nofilter_DX_neon, 28 S32_alpha_D32_nofilter_DX_neon, 29 S32_opaque_D32_filter_DXDY_neon, 30 S32_alpha_D32_filter_DXDY_neon, 31 S32_opaque_D32_filter_DX_neon, 32 S32_alpha_D32_filter_DX_neon, 33 34 S16_opaque_D32_nofilter_DXDY_neon, 35 S16_alpha_D32_nofilter_DXDY_neon, 36 S16_opaque_D32_nofilter_DX_neon, 37 S16_alpha_D32_nofilter_DX_neon, 38 S16_opaque_D32_filter_DXDY_neon, 39 S16_alpha_D32_filter_DXDY_neon, 40 S16_opaque_D32_filter_DX_neon, 41 S16_alpha_D32_filter_DX_neon, 42 43 SI8_opaque_D32_nofilter_DXDY_neon, 44 SI8_alpha_D32_nofilter_DXDY_neon, 45 SI8_opaque_D32_nofilter_DX_neon, 46 SI8_alpha_D32_nofilter_DX_neon, 47 SI8_opaque_D32_filter_DXDY_neon, 48 SI8_alpha_D32_filter_DXDY_neon, 49 SI8_opaque_D32_filter_DX_neon, 50 SI8_alpha_D32_filter_DX_neon, 51 52 S4444_opaque_D32_nofilter_DXDY_neon, 53 S4444_alpha_D32_nofilter_DXDY_neon, 54 S4444_opaque_D32_nofilter_DX_neon, 55 S4444_alpha_D32_nofilter_DX_neon, 56 S4444_opaque_D32_filter_DXDY_neon, 57 S4444_alpha_D32_filter_DXDY_neon, 58 S4444_opaque_D32_filter_DX_neon, 59 S4444_alpha_D32_filter_DX_neon, 60 61 // A8 treats alpha/opauqe the same (equally efficient) 62 SA8_alpha_D32_nofilter_DXDY_neon, 63 SA8_alpha_D32_nofilter_DXDY_neon, 64 SA8_alpha_D32_nofilter_DX_neon, 65 SA8_alpha_D32_nofilter_DX_neon, 66 SA8_alpha_D32_filter_DXDY_neon, 67 SA8_alpha_D32_filter_DXDY_neon, 68 SA8_alpha_D32_filter_DX_neon, 69 SA8_alpha_D32_filter_DX_neon, 70 71 // todo: possibly specialize on opaqueness 72 SG8_alpha_D32_nofilter_DXDY_neon, 73 SG8_alpha_D32_nofilter_DXDY_neon, 74 SG8_alpha_D32_nofilter_DX_neon, 75 SG8_alpha_D32_nofilter_DX_neon, 76 SG8_alpha_D32_filter_DXDY_neon, 77 SG8_alpha_D32_filter_DXDY_neon, 78 SG8_alpha_D32_filter_DX_neon, 79 SG8_alpha_D32_filter_DX_neon, 80 }; 81 82 const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = { 83 S32_D16_nofilter_DXDY_neon, 84 S32_D16_nofilter_DX_neon, 85 S32_D16_filter_DXDY_neon, 86 S32_D16_filter_DX_neon, 87 88 S16_D16_nofilter_DXDY_neon, 89 S16_D16_nofilter_DX_neon, 90 S16_D16_filter_DXDY_neon, 91 S16_D16_filter_DX_neon, 92 93 SI8_D16_nofilter_DXDY_neon, 94 SI8_D16_nofilter_DX_neon, 95 SI8_D16_filter_DXDY_neon, 96 SI8_D16_filter_DX_neon, 97 98 // Don't support 4444 -> 565 99 NULL, NULL, NULL, NULL, 100 // Don't support A8 -> 565 101 NULL, NULL, NULL, NULL, 102 // Don't support G8 -> 565 (but we could) 103 NULL, NULL, NULL, NULL, 104 }; 105 106 /////////////////////////////////////////////////////////////////////////////// 107 108 #include <arm_neon.h> 109 #include "SkConvolver.h" 110 111 // Convolves horizontally along a single row. The row data is given in 112 // |srcData| and continues for the numValues() of the filter. 113 void convolveHorizontally_neon(const unsigned char* srcData, 114 const SkConvolutionFilter1D& filter, 115 unsigned char* outRow, 116 bool hasAlpha) { 117 // Loop over each pixel on this row in the output image. 118 int numValues = filter.numValues(); 119 for (int outX = 0; outX < numValues; outX++) { 120 uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); 121 uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); 122 uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); 123 uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); 124 // Get the filter that determines the current output pixel. 125 int filterOffset, filterLength; 126 const SkConvolutionFilter1D::ConvolutionFixed* filterValues = 127 filter.FilterForValue(outX, &filterOffset, &filterLength); 128 129 // Compute the first pixel in this row that the filter affects. It will 130 // touch |filterLength| pixels (4 bytes each) after this. 131 const unsigned char* rowToFilter = &srcData[filterOffset * 4]; 132 133 // Apply the filter to the row to get the destination pixel in |accum|. 134 int32x4_t accum = vdupq_n_s32(0); 135 for (int filterX = 0; filterX < filterLength >> 2; filterX++) { 136 // Load 4 coefficients 137 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 138 coeffs = vld1_s16(filterValues); 139 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 140 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 141 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 142 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 143 144 // Load pixels and calc 145 uint8x16_t pixels = vld1q_u8(rowToFilter); 146 int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); 147 int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); 148 149 int16x4_t p0_src = vget_low_s16(p01_16); 150 int16x4_t p1_src = vget_high_s16(p01_16); 151 int16x4_t p2_src = vget_low_s16(p23_16); 152 int16x4_t p3_src = vget_high_s16(p23_16); 153 154 int32x4_t p0 = vmull_s16(p0_src, coeff0); 155 int32x4_t p1 = vmull_s16(p1_src, coeff1); 156 int32x4_t p2 = vmull_s16(p2_src, coeff2); 157 int32x4_t p3 = vmull_s16(p3_src, coeff3); 158 159 accum += p0; 160 accum += p1; 161 accum += p2; 162 accum += p3; 163 164 // Advance the pointers 165 rowToFilter += 16; 166 filterValues += 4; 167 } 168 int r = filterLength & 3; 169 if (r) { 170 const uint16_t mask[4][4] = { 171 {0, 0, 0, 0}, 172 {0xFFFF, 0, 0, 0}, 173 {0xFFFF, 0xFFFF, 0, 0}, 174 {0xFFFF, 0xFFFF, 0xFFFF, 0} 175 }; 176 uint16x4_t coeffs; 177 int16x4_t coeff0, coeff1, coeff2; 178 coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues)); 179 coeffs &= vld1_u16(&mask[r][0]); 180 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); 181 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); 182 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); 183 184 // Load pixels and calc 185 uint8x16_t pixels = vld1q_u8(rowToFilter); 186 int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); 187 int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); 188 int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); 189 int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); 190 int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); 191 192 accum += p0; 193 accum += p1; 194 accum += p2; 195 } 196 197 // Bring this value back in range. All of the filter scaling factors 198 // are in fixed point with kShiftBits bits of fractional part. 199 accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); 200 201 // Pack and store the new pixel. 202 int16x4_t accum16 = vqmovn_s32(accum); 203 uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); 204 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0); 205 outRow += 4; 206 } 207 } 208 209 // Does vertical convolution to produce one output row. The filter values and 210 // length are given in the first two parameters. These are applied to each 211 // of the rows pointed to in the |sourceDataRows| array, with each row 212 // being |pixelWidth| wide. 213 // 214 // The output must have room for |pixelWidth * 4| bytes. 215 template<bool hasAlpha> 216 void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, 217 int filterLength, 218 unsigned char* const* sourceDataRows, 219 int pixelWidth, 220 unsigned char* outRow) { 221 int width = pixelWidth & ~3; 222 223 int32x4_t accum0, accum1, accum2, accum3; 224 int16x4_t coeff16; 225 226 // Output four pixels per iteration (16 bytes). 227 for (int outX = 0; outX < width; outX += 4) { 228 229 // Accumulated result for each pixel. 32 bits per RGBA channel. 230 accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); 231 232 // Convolve with one filter coefficient per iteration. 233 for (int filterY = 0; filterY < filterLength; filterY++) { 234 235 // Duplicate the filter coefficient 4 times. 236 // [16] cj cj cj cj 237 coeff16 = vdup_n_s16(filterValues[filterY]); 238 239 // Load four pixels (16 bytes) together. 240 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 241 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); 242 243 int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); 244 int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); 245 int16x4_t src16_0 = vget_low_s16(src16_01); 246 int16x4_t src16_1 = vget_high_s16(src16_01); 247 int16x4_t src16_2 = vget_low_s16(src16_23); 248 int16x4_t src16_3 = vget_high_s16(src16_23); 249 250 accum0 += vmull_s16(src16_0, coeff16); 251 accum1 += vmull_s16(src16_1, coeff16); 252 accum2 += vmull_s16(src16_2, coeff16); 253 accum3 += vmull_s16(src16_3, coeff16); 254 } 255 256 // Shift right for fixed point implementation. 257 accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); 258 accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); 259 accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); 260 accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); 261 262 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). 263 // [16] a1 b1 g1 r1 a0 b0 g0 r0 264 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); 265 // [16] a3 b3 g3 r3 a2 b2 g2 r2 266 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); 267 268 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). 269 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 270 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); 271 272 if (hasAlpha) { 273 // Compute the max(ri, gi, bi) for each pixel. 274 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 275 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); 276 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 277 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g 278 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 279 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); 280 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 281 b = vmaxq_u8(a, b); // Max of r and g and b. 282 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 283 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); 284 285 // Make sure the value of alpha channel is always larger than maximum 286 // value of color channels. 287 accum8 = vmaxq_u8(b, accum8); 288 } else { 289 // Set value of alpha channels to 0xFF. 290 accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); 291 } 292 293 // Store the convolution result (16 bytes) and advance the pixel pointers. 294 vst1q_u8(outRow, accum8); 295 outRow += 16; 296 } 297 298 // Process the leftovers when the width of the output is not divisible 299 // by 4, that is at most 3 pixels. 300 int r = pixelWidth & 3; 301 if (r) { 302 303 accum0 = accum1 = accum2 = vdupq_n_s32(0); 304 305 for (int filterY = 0; filterY < filterLength; ++filterY) { 306 coeff16 = vdup_n_s16(filterValues[filterY]); 307 308 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 309 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); 310 311 int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); 312 int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); 313 int16x4_t src16_0 = vget_low_s16(src16_01); 314 int16x4_t src16_1 = vget_high_s16(src16_01); 315 int16x4_t src16_2 = vget_low_s16(src16_23); 316 317 accum0 += vmull_s16(src16_0, coeff16); 318 accum1 += vmull_s16(src16_1, coeff16); 319 accum2 += vmull_s16(src16_2, coeff16); 320 } 321 322 accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); 323 accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); 324 accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); 325 326 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); 327 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); 328 329 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); 330 331 if (hasAlpha) { 332 // Compute the max(ri, gi, bi) for each pixel. 333 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 334 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); 335 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 336 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g 337 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 338 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); 339 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 340 b = vmaxq_u8(a, b); // Max of r and g and b. 341 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 342 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); 343 344 // Make sure the value of alpha channel is always larger than maximum 345 // value of color channels. 346 accum8 = vmaxq_u8(b, accum8); 347 } else { 348 // Set value of alpha channels to 0xFF. 349 accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); 350 } 351 352 switch(r) { 353 case 1: 354 vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0); 355 break; 356 case 2: 357 vst1_u32(reinterpret_cast<uint32_t*>(outRow), 358 vreinterpret_u32_u8(vget_low_u8(accum8))); 359 break; 360 case 3: 361 vst1_u32(reinterpret_cast<uint32_t*>(outRow), 362 vreinterpret_u32_u8(vget_low_u8(accum8))); 363 vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2); 364 break; 365 } 366 } 367 } 368 369 void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, 370 int filterLength, 371 unsigned char* const* sourceDataRows, 372 int pixelWidth, 373 unsigned char* outRow, 374 bool sourceHasAlpha) { 375 if (sourceHasAlpha) { 376 convolveVertically_neon<true>(filterValues, filterLength, 377 sourceDataRows, pixelWidth, 378 outRow); 379 } else { 380 convolveVertically_neon<false>(filterValues, filterLength, 381 sourceDataRows, pixelWidth, 382 outRow); 383 } 384 } 385 386 // Convolves horizontally along four rows. The row data is given in 387 // |src_data| and continues for the num_values() of the filter. 388 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please 389 // refer to that function for detailed comments. 390 void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], 391 const SkConvolutionFilter1D& filter, 392 unsigned char* outRow[4]) { 393 394 uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); 395 uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); 396 uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); 397 uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); 398 int num_values = filter.numValues(); 399 400 int filterOffset, filterLength; 401 // |mask| will be used to decimate all extra filter coefficients that are 402 // loaded by SIMD when |filter_length| is not divisible by 4. 403 // mask[0] is not used in following algorithm. 404 const uint16_t mask[4][4] = { 405 {0, 0, 0, 0}, 406 {0xFFFF, 0, 0, 0}, 407 {0xFFFF, 0xFFFF, 0, 0}, 408 {0xFFFF, 0xFFFF, 0xFFFF, 0} 409 }; 410 411 // Output one pixel each iteration, calculating all channels (RGBA) together. 412 for (int outX = 0; outX < num_values; outX++) { 413 414 const SkConvolutionFilter1D::ConvolutionFixed* filterValues = 415 filter.FilterForValue(outX, &filterOffset, &filterLength); 416 417 // four pixels in a column per iteration. 418 int32x4_t accum0 = vdupq_n_s32(0); 419 int32x4_t accum1 = vdupq_n_s32(0); 420 int32x4_t accum2 = vdupq_n_s32(0); 421 int32x4_t accum3 = vdupq_n_s32(0); 422 423 int start = (filterOffset<<2); 424 425 // We will load and accumulate with four coefficients per iteration. 426 for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { 427 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 428 429 coeffs = vld1_s16(filterValues); 430 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 431 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 432 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 433 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 434 435 uint8x16_t pixels; 436 int16x8_t p01_16, p23_16; 437 int32x4_t p0, p1, p2, p3; 438 439 440 #define ITERATION(src, accum) \ 441 pixels = vld1q_u8(src); \ 442 p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ 443 p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ 444 p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ 445 p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ 446 p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ 447 p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ 448 accum += p0; \ 449 accum += p1; \ 450 accum += p2; \ 451 accum += p3 452 453 ITERATION(srcData[0] + start, accum0); 454 ITERATION(srcData[1] + start, accum1); 455 ITERATION(srcData[2] + start, accum2); 456 ITERATION(srcData[3] + start, accum3); 457 458 start += 16; 459 filterValues += 4; 460 } 461 462 int r = filterLength & 3; 463 if (r) { 464 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 465 coeffs = vld1_s16(filterValues); 466 coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); 467 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 468 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 469 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 470 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 471 472 uint8x16_t pixels; 473 int16x8_t p01_16, p23_16; 474 int32x4_t p0, p1, p2, p3; 475 476 ITERATION(srcData[0] + start, accum0); 477 ITERATION(srcData[1] + start, accum1); 478 ITERATION(srcData[2] + start, accum2); 479 ITERATION(srcData[3] + start, accum3); 480 } 481 482 int16x4_t accum16; 483 uint8x8_t res0, res1, res2, res3; 484 485 #define PACK_RESULT(accum, res) \ 486 accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ 487 accum16 = vqmovn_s32(accum); \ 488 res = vqmovun_s16(vcombine_s16(accum16, accum16)); 489 490 PACK_RESULT(accum0, res0); 491 PACK_RESULT(accum1, res1); 492 PACK_RESULT(accum2, res2); 493 PACK_RESULT(accum3, res3); 494 495 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0); 496 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0); 497 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0); 498 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0); 499 outRow[0] += 4; 500 outRow[1] += 4; 501 outRow[2] += 4; 502 outRow[3] += 4; 503 } 504 } 505 506 void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { 507 // Padding |paddingCount| of more dummy coefficients after the coefficients 508 // of last filter to prevent SIMD instructions which load 8 or 16 bytes 509 // together to access invalid memory areas. We are not trying to align the 510 // coefficients right now due to the opaqueness of <vector> implementation. 511 // This has to be done after all |AddFilter| calls. 512 for (int i = 0; i < 8; ++i) { 513 filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0)); 514 } 515 } 516 517 void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { 518 procs->fExtraHorizontalReads = 3; 519 procs->fConvolveVertically = &convolveVertically_neon; 520 procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; 521 procs->fConvolveHorizontally = &convolveHorizontally_neon; 522 procs->fApplySIMDPadding = &applySIMDPadding_neon; 523 } 524