1 /* Written by Dr Stephen N Henson (steve (at) openssl.org) for the OpenSSL 2 * project 2005. 3 */ 4 /* ==================================================================== 5 * Copyright (c) 2005 The OpenSSL Project. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * 19 * 3. All advertising materials mentioning features or use of this 20 * software must display the following acknowledgment: 21 * "This product includes software developed by the OpenSSL Project 22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" 23 * 24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 25 * endorse or promote products derived from this software without 26 * prior written permission. For written permission, please contact 27 * licensing (at) OpenSSL.org. 28 * 29 * 5. Products derived from this software may not be called "OpenSSL" 30 * nor may "OpenSSL" appear in their names without prior written 31 * permission of the OpenSSL Project. 32 * 33 * 6. Redistributions of any form whatsoever must retain the following 34 * acknowledgment: 35 * "This product includes software developed by the OpenSSL Project 36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" 37 * 38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 49 * OF THE POSSIBILITY OF SUCH DAMAGE. 50 * ==================================================================== 51 * 52 * This product includes cryptographic software written by Eric Young 53 * (eay (at) cryptsoft.com). This product includes software written by Tim 54 * Hudson (tjh (at) cryptsoft.com). */ 55 56 #include <openssl/rsa.h> 57 58 #include <assert.h> 59 #include <string.h> 60 61 #include <openssl/digest.h> 62 #include <openssl/err.h> 63 #include <openssl/mem.h> 64 #include <openssl/rand.h> 65 #include <openssl/sha.h> 66 67 #include "internal.h" 68 69 /* TODO(fork): don't the check functions have to be constant time? */ 70 71 int RSA_padding_add_PKCS1_type_1(uint8_t *to, unsigned tlen, 72 const uint8_t *from, unsigned flen) { 73 unsigned j; 74 uint8_t *p; 75 76 if (tlen < RSA_PKCS1_PADDING_SIZE) { 77 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_type_1, 78 RSA_R_KEY_SIZE_TOO_SMALL); 79 return 0; 80 } 81 82 if (flen > tlen - RSA_PKCS1_PADDING_SIZE) { 83 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_type_1, 84 RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); 85 return 0; 86 } 87 88 p = (uint8_t *)to; 89 90 *(p++) = 0; 91 *(p++) = 1; /* Private Key BT (Block Type) */ 92 93 /* pad out with 0xff data */ 94 j = tlen - 3 - flen; 95 memset(p, 0xff, j); 96 p += j; 97 *(p++) = 0; 98 memcpy(p, from, (unsigned int)flen); 99 return 1; 100 } 101 102 int RSA_padding_check_PKCS1_type_1(uint8_t *to, unsigned tlen, 103 const uint8_t *from, unsigned flen) { 104 unsigned i, j; 105 const uint8_t *p; 106 107 if (flen < 2) { 108 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1, 109 RSA_R_DATA_TOO_SMALL); 110 return -1; 111 } 112 113 p = from; 114 if ((*(p++) != 0) || (*(p++) != 1)) { 115 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1, 116 RSA_R_BLOCK_TYPE_IS_NOT_01); 117 return -1; 118 } 119 120 /* scan over padding data */ 121 j = flen - 2; /* one for leading 00, one for type. */ 122 for (i = 0; i < j; i++) { 123 /* should decrypt to 0xff */ 124 if (*p != 0xff) { 125 if (*p == 0) { 126 p++; 127 break; 128 } else { 129 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1, 130 RSA_R_BAD_FIXED_HEADER_DECRYPT); 131 return -1; 132 } 133 } 134 p++; 135 } 136 137 if (i == j) { 138 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1, 139 RSA_R_NULL_BEFORE_BLOCK_MISSING); 140 return -1; 141 } 142 143 if (i < 8) { 144 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1, 145 RSA_R_BAD_PAD_BYTE_COUNT); 146 return -1; 147 } 148 i++; /* Skip over the '\0' */ 149 j -= i; 150 if (j > tlen) { 151 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1, 152 RSA_R_DATA_TOO_LARGE); 153 return -1; 154 } 155 memcpy(to, p, j); 156 157 return j; 158 } 159 160 int RSA_padding_add_PKCS1_type_2(uint8_t *to, unsigned tlen, 161 const uint8_t *from, unsigned flen) { 162 unsigned i, j; 163 uint8_t *p; 164 165 if (tlen < RSA_PKCS1_PADDING_SIZE) { 166 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_type_2, 167 RSA_R_KEY_SIZE_TOO_SMALL); 168 return 0; 169 } 170 171 if (flen > tlen - RSA_PKCS1_PADDING_SIZE) { 172 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_type_2, 173 RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); 174 return 0; 175 } 176 177 p = (unsigned char *)to; 178 179 *(p++) = 0; 180 *(p++) = 2; /* Public Key BT (Block Type) */ 181 182 /* pad out with non-zero random data */ 183 j = tlen - 3 - flen; 184 185 if (!RAND_bytes(p, j)) { 186 return 0; 187 } 188 189 for (i = 0; i < j; i++) { 190 while (*p == 0) { 191 if (!RAND_bytes(p, 1)) { 192 return 0; 193 } 194 } 195 p++; 196 } 197 198 *(p++) = 0; 199 200 memcpy(p, from, (unsigned int)flen); 201 return 1; 202 } 203 204 /* constant_time_byte_eq returns 1 if |x| == |y| and 0 otherwise. */ 205 static int constant_time_byte_eq(unsigned char a, unsigned char b) { 206 unsigned char z = ~(a ^ b); 207 z &= z >> 4; 208 z &= z >> 2; 209 z &= z >> 1; 210 211 return z; 212 } 213 214 /* constant_time_select returns |x| if |v| is 1 and |y| if |v| is 0. 215 * Its behavior is undefined if |v| takes any other value. */ 216 static int constant_time_select(int v, int x, int y) { 217 return ((~(v - 1)) & x) | ((v - 1) & y); 218 } 219 220 /* constant_time_le returns 1 if |x| <= |y| and 0 otherwise. 221 * |x| and |y| must be positive. */ 222 static int constant_time_le(int x, int y) { 223 return ((x - y - 1) >> (sizeof(int) * 8 - 1)) & 1; 224 } 225 226 int RSA_message_index_PKCS1_type_2(const uint8_t *from, size_t from_len, 227 size_t *out_index) { 228 size_t i; 229 int first_byte_is_zero, second_byte_is_two, looking_for_index; 230 int valid_index, zero_index = 0; 231 232 /* PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography 233 * Standard", section 7.2.2. */ 234 if (from_len < RSA_PKCS1_PADDING_SIZE) { 235 /* |from| is zero-padded to the size of the RSA modulus, a public value, so 236 * this can be rejected in non-constant time. */ 237 *out_index = 0; 238 return 0; 239 } 240 241 first_byte_is_zero = constant_time_byte_eq(from[0], 0); 242 second_byte_is_two = constant_time_byte_eq(from[1], 2); 243 244 looking_for_index = 1; 245 for (i = 2; i < from_len; i++) { 246 int equals0 = constant_time_byte_eq(from[i], 0); 247 zero_index = 248 constant_time_select(looking_for_index & equals0, i, zero_index); 249 looking_for_index = constant_time_select(equals0, 0, looking_for_index); 250 } 251 252 /* The input must begin with 00 02. */ 253 valid_index = first_byte_is_zero; 254 valid_index &= second_byte_is_two; 255 256 /* We must have found the end of PS. */ 257 valid_index &= ~looking_for_index; 258 259 /* PS must be at least 8 bytes long, and it starts two bytes into |from|. */ 260 valid_index &= constant_time_le(2 + 8, zero_index); 261 262 /* Skip the zero byte. */ 263 zero_index++; 264 265 *out_index = constant_time_select(valid_index, zero_index, 0); 266 return valid_index; 267 } 268 269 int RSA_padding_check_PKCS1_type_2(uint8_t *to, unsigned tlen, 270 const uint8_t *from, unsigned flen) { 271 size_t msg_index, msg_len; 272 273 if (flen == 0) { 274 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_2, 275 RSA_R_EMPTY_PUBLIC_KEY); 276 return -1; 277 } 278 279 /* NOTE: Although |RSA_message_index_PKCS1_type_2| itself is constant time, 280 * the API contracts of this function and |RSA_decrypt| with 281 * |RSA_PKCS1_PADDING| make it impossible to completely avoid Bleichenbacher's 282 * attack. */ 283 if (!RSA_message_index_PKCS1_type_2(from, flen, &msg_index)) { 284 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_2, 285 RSA_R_PKCS_DECODING_ERROR); 286 return -1; 287 } 288 289 msg_len = flen - msg_index; 290 if (msg_len > tlen) { 291 /* This shouldn't happen because this function is always called with |tlen| 292 * the key size and |flen| is bounded by the key size. */ 293 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_2, 294 RSA_R_PKCS_DECODING_ERROR); 295 return -1; 296 } 297 memcpy(to, &from[msg_index], msg_len); 298 return msg_len; 299 } 300 301 int RSA_padding_add_none(uint8_t *to, unsigned tlen, const uint8_t *from, unsigned flen) { 302 if (flen > tlen) { 303 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_none, 304 RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); 305 return 0; 306 } 307 308 if (flen < tlen) { 309 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_none, 310 RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE); 311 return 0; 312 } 313 314 memcpy(to, from, (unsigned int)flen); 315 return 1; 316 } 317 318 int RSA_padding_check_none(uint8_t *to, unsigned tlen, const uint8_t *from, 319 unsigned flen) { 320 if (flen > tlen) { 321 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_none, RSA_R_DATA_TOO_LARGE); 322 return -1; 323 } 324 325 memcpy(to, from, flen); 326 return flen; 327 } 328 329 int PKCS1_MGF1(uint8_t *mask, unsigned len, const uint8_t *seed, 330 unsigned seedlen, const EVP_MD *dgst) { 331 unsigned outlen = 0; 332 uint32_t i; 333 uint8_t cnt[4]; 334 EVP_MD_CTX c; 335 uint8_t md[EVP_MAX_MD_SIZE]; 336 unsigned mdlen; 337 int ret = -1; 338 339 EVP_MD_CTX_init(&c); 340 mdlen = EVP_MD_size(dgst); 341 342 for (i = 0; outlen < len; i++) { 343 cnt[0] = (uint8_t)((i >> 24) & 255); 344 cnt[1] = (uint8_t)((i >> 16) & 255); 345 cnt[2] = (uint8_t)((i >> 8)) & 255; 346 cnt[3] = (uint8_t)(i & 255); 347 if (!EVP_DigestInit_ex(&c, dgst, NULL) || 348 !EVP_DigestUpdate(&c, seed, seedlen) || !EVP_DigestUpdate(&c, cnt, 4)) { 349 goto err; 350 } 351 352 if (outlen + mdlen <= len) { 353 if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL)) { 354 goto err; 355 } 356 outlen += mdlen; 357 } else { 358 if (!EVP_DigestFinal_ex(&c, md, NULL)) { 359 goto err; 360 } 361 memcpy(mask + outlen, md, len - outlen); 362 outlen = len; 363 } 364 } 365 ret = 0; 366 367 err: 368 EVP_MD_CTX_cleanup(&c); 369 return ret; 370 } 371 372 int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, unsigned tlen, 373 const uint8_t *from, unsigned flen, 374 const uint8_t *param, unsigned plen, 375 const EVP_MD *md, const EVP_MD *mgf1md) { 376 unsigned i, emlen, mdlen; 377 uint8_t *db, *seed; 378 uint8_t *dbmask = NULL, seedmask[EVP_MAX_MD_SIZE]; 379 int ret = 0; 380 381 if (md == NULL) { 382 md = EVP_sha1(); 383 } 384 if (mgf1md == NULL) { 385 mgf1md = md; 386 } 387 388 mdlen = EVP_MD_size(md); 389 390 if (tlen < 2 * mdlen + 2) { 391 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_OAEP_mgf1, 392 RSA_R_KEY_SIZE_TOO_SMALL); 393 return 0; 394 } 395 396 emlen = tlen - 1; 397 if (flen > emlen - 2 * mdlen - 1) { 398 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_OAEP_mgf1, 399 RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); 400 return 0; 401 } 402 403 if (emlen < 2 * mdlen + 1) { 404 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_OAEP_mgf1, 405 RSA_R_KEY_SIZE_TOO_SMALL); 406 return 0; 407 } 408 409 to[0] = 0; 410 seed = to + 1; 411 db = to + mdlen + 1; 412 413 if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL)) { 414 return 0; 415 } 416 memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1); 417 db[emlen - flen - mdlen - 1] = 0x01; 418 memcpy(db + emlen - flen - mdlen, from, flen); 419 if (!RAND_bytes(seed, mdlen)) { 420 return 0; 421 } 422 423 dbmask = OPENSSL_malloc(emlen - mdlen); 424 if (dbmask == NULL) { 425 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_OAEP_mgf1, 426 ERR_R_MALLOC_FAILURE); 427 return 0; 428 } 429 430 if (PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md) < 0) { 431 goto out; 432 } 433 for (i = 0; i < emlen - mdlen; i++) { 434 db[i] ^= dbmask[i]; 435 } 436 437 if (PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md) < 0) { 438 goto out; 439 } 440 for (i = 0; i < mdlen; i++) { 441 seed[i] ^= seedmask[i]; 442 } 443 ret = 1; 444 445 out: 446 OPENSSL_free(dbmask); 447 return ret; 448 } 449 450 int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *to, unsigned tlen, 451 const uint8_t *from, unsigned flen, 452 const uint8_t *param, unsigned plen, 453 const EVP_MD *md, const EVP_MD *mgf1md) { 454 unsigned i, dblen, mlen = -1, mdlen; 455 const uint8_t *maskeddb, *maskedseed; 456 uint8_t *db = NULL, seed[EVP_MAX_MD_SIZE], phash[EVP_MAX_MD_SIZE]; 457 int bad, looking_for_one_byte, one_index = 0; 458 459 if (md == NULL) { 460 md = EVP_sha1(); 461 } 462 if (mgf1md == NULL) { 463 mgf1md = md; 464 } 465 466 mdlen = EVP_MD_size(md); 467 468 /* The encoded message is one byte smaller than the modulus to ensure that it 469 * doesn't end up greater than the modulus. Thus there's an extra "+1" here 470 * compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. */ 471 if (flen < 1 + 2*mdlen + 1) { 472 /* 'flen' is the length of the modulus, i.e. does not depend on the 473 * particular ciphertext. */ 474 goto decoding_err; 475 } 476 477 dblen = flen - mdlen - 1; 478 db = OPENSSL_malloc(dblen); 479 if (db == NULL) { 480 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_OAEP_mgf1, 481 ERR_R_MALLOC_FAILURE); 482 goto err; 483 } 484 485 maskedseed = from + 1; 486 maskeddb = from + 1 + mdlen; 487 488 if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) { 489 goto err; 490 } 491 for (i = 0; i < mdlen; i++) { 492 seed[i] ^= maskedseed[i]; 493 } 494 495 if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) { 496 goto err; 497 } 498 for (i = 0; i < dblen; i++) { 499 db[i] ^= maskeddb[i]; 500 } 501 502 if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL)) { 503 goto err; 504 } 505 506 bad = CRYPTO_memcmp(db, phash, mdlen); 507 bad |= from[0]; 508 509 looking_for_one_byte = 1; 510 for (i = mdlen; i < dblen; i++) { 511 int equals1 = constant_time_byte_eq(db[i], 1); 512 int equals0 = constant_time_byte_eq(db[i], 0); 513 one_index = 514 constant_time_select(looking_for_one_byte & equals1, i, one_index); 515 looking_for_one_byte = 516 constant_time_select(equals1, 0, looking_for_one_byte); 517 bad |= looking_for_one_byte & ~equals0; 518 } 519 520 bad |= looking_for_one_byte; 521 522 if (bad) { 523 goto decoding_err; 524 } 525 526 one_index++; 527 mlen = dblen - one_index; 528 if (tlen < mlen) { 529 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_OAEP_mgf1, 530 RSA_R_DATA_TOO_LARGE); 531 mlen = -1; 532 } else { 533 memcpy(to, db + one_index, mlen); 534 } 535 536 OPENSSL_free(db); 537 return mlen; 538 539 decoding_err: 540 /* to avoid chosen ciphertext attacks, the error message should not reveal 541 * which kind of decoding error happened */ 542 OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_OAEP_mgf1, 543 RSA_R_OAEP_DECODING_ERROR); 544 err: 545 OPENSSL_free(db); 546 return -1; 547 } 548 549 static const unsigned char zeroes[] = {0,0,0,0,0,0,0,0}; 550 551 int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const uint8_t *mHash, 552 const EVP_MD *Hash, const EVP_MD *mgf1Hash, 553 const uint8_t *EM, int sLen) { 554 int i; 555 int ret = 0; 556 int maskedDBLen, MSBits, emLen; 557 size_t hLen; 558 const uint8_t *H; 559 uint8_t *DB = NULL; 560 EVP_MD_CTX ctx; 561 uint8_t H_[EVP_MAX_MD_SIZE]; 562 EVP_MD_CTX_init(&ctx); 563 564 if (mgf1Hash == NULL) { 565 mgf1Hash = Hash; 566 } 567 568 hLen = EVP_MD_size(Hash); 569 570 /* Negative sLen has special meanings: 571 * -1 sLen == hLen 572 * -2 salt length is autorecovered from signature 573 * -N reserved */ 574 if (sLen == -1) { 575 sLen = hLen; 576 } else if (sLen == -2) { 577 sLen = -2; 578 } else if (sLen < -2) { 579 OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_SLEN_CHECK_FAILED); 580 goto err; 581 } 582 583 MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; 584 emLen = RSA_size(rsa); 585 if (EM[0] & (0xFF << MSBits)) { 586 OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, 587 RSA_R_FIRST_OCTET_INVALID); 588 goto err; 589 } 590 if (MSBits == 0) { 591 EM++; 592 emLen--; 593 } 594 if (emLen < ((int)hLen + sLen + 2)) { 595 /* sLen can be small negative */ 596 OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_DATA_TOO_LARGE); 597 goto err; 598 } 599 if (EM[emLen - 1] != 0xbc) { 600 OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_LAST_OCTET_INVALID); 601 goto err; 602 } 603 maskedDBLen = emLen - hLen - 1; 604 H = EM + maskedDBLen; 605 DB = OPENSSL_malloc(maskedDBLen); 606 if (!DB) { 607 OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, ERR_R_MALLOC_FAILURE); 608 goto err; 609 } 610 if (PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash) < 0) { 611 goto err; 612 } 613 for (i = 0; i < maskedDBLen; i++) { 614 DB[i] ^= EM[i]; 615 } 616 if (MSBits) { 617 DB[0] &= 0xFF >> (8 - MSBits); 618 } 619 for (i = 0; DB[i] == 0 && i < (maskedDBLen - 1); i++) { 620 ; 621 } 622 if (DB[i++] != 0x1) { 623 OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, 624 RSA_R_SLEN_RECOVERY_FAILED); 625 goto err; 626 } 627 if (sLen >= 0 && (maskedDBLen - i) != sLen) { 628 OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_SLEN_CHECK_FAILED); 629 goto err; 630 } 631 if (!EVP_DigestInit_ex(&ctx, Hash, NULL) || 632 !EVP_DigestUpdate(&ctx, zeroes, sizeof zeroes) || 633 !EVP_DigestUpdate(&ctx, mHash, hLen)) { 634 goto err; 635 } 636 if (maskedDBLen - i) { 637 if (!EVP_DigestUpdate(&ctx, DB + i, maskedDBLen - i)) { 638 goto err; 639 } 640 } 641 if (!EVP_DigestFinal_ex(&ctx, H_, NULL)) { 642 goto err; 643 } 644 if (memcmp(H_, H, hLen)) { 645 OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_BAD_SIGNATURE); 646 ret = 0; 647 } else { 648 ret = 1; 649 } 650 651 err: 652 OPENSSL_free(DB); 653 EVP_MD_CTX_cleanup(&ctx); 654 655 return ret; 656 } 657 658 int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, unsigned char *EM, 659 const unsigned char *mHash, 660 const EVP_MD *Hash, const EVP_MD *mgf1Hash, 661 int sLen) { 662 int i; 663 int ret = 0; 664 size_t maskedDBLen, MSBits, emLen; 665 size_t hLen; 666 unsigned char *H, *salt = NULL, *p; 667 EVP_MD_CTX ctx; 668 669 if (mgf1Hash == NULL) { 670 mgf1Hash = Hash; 671 } 672 673 hLen = EVP_MD_size(Hash); 674 675 /* Negative sLen has special meanings: 676 * -1 sLen == hLen 677 * -2 salt length is maximized 678 * -N reserved */ 679 if (sLen == -1) { 680 sLen = hLen; 681 } else if (sLen == -2) { 682 sLen = -2; 683 } else if (sLen < -2) { 684 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_PSS_mgf1, 685 RSA_R_SLEN_CHECK_FAILED); 686 goto err; 687 } 688 689 if (BN_is_zero(rsa->n)) { 690 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_PSS_mgf1, 691 RSA_R_EMPTY_PUBLIC_KEY); 692 goto err; 693 } 694 695 MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; 696 emLen = RSA_size(rsa); 697 if (MSBits == 0) { 698 assert(emLen >= 1); 699 *EM++ = 0; 700 emLen--; 701 } 702 if (sLen == -2) { 703 if (emLen < hLen + 2) { 704 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_PSS_mgf1, 705 RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); 706 goto err; 707 } 708 sLen = emLen - hLen - 2; 709 } else if (emLen < hLen + sLen + 2) { 710 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_PSS_mgf1, 711 RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); 712 goto err; 713 } 714 if (sLen > 0) { 715 salt = OPENSSL_malloc(sLen); 716 if (!salt) { 717 OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_PSS_mgf1, 718 ERR_R_MALLOC_FAILURE); 719 goto err; 720 } 721 if (!RAND_bytes(salt, sLen)) { 722 goto err; 723 } 724 } 725 maskedDBLen = emLen - hLen - 1; 726 H = EM + maskedDBLen; 727 EVP_MD_CTX_init(&ctx); 728 if (!EVP_DigestInit_ex(&ctx, Hash, NULL) || 729 !EVP_DigestUpdate(&ctx, zeroes, sizeof zeroes) || 730 !EVP_DigestUpdate(&ctx, mHash, hLen)) { 731 goto err; 732 } 733 if (sLen && !EVP_DigestUpdate(&ctx, salt, sLen)) { 734 goto err; 735 } 736 if (!EVP_DigestFinal_ex(&ctx, H, NULL)) { 737 goto err; 738 } 739 EVP_MD_CTX_cleanup(&ctx); 740 741 /* Generate dbMask in place then perform XOR on it */ 742 if (PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) { 743 goto err; 744 } 745 746 p = EM; 747 748 /* Initial PS XORs with all zeroes which is a NOP so just update 749 * pointer. Note from a test above this value is guaranteed to 750 * be non-negative. */ 751 p += emLen - sLen - hLen - 2; 752 *p++ ^= 0x1; 753 if (sLen > 0) { 754 for (i = 0; i < sLen; i++) { 755 *p++ ^= salt[i]; 756 } 757 } 758 if (MSBits) { 759 EM[0] &= 0xFF >> (8 - MSBits); 760 } 761 762 /* H is already in place so just set final 0xbc */ 763 764 EM[emLen - 1] = 0xbc; 765 766 ret = 1; 767 768 err: 769 OPENSSL_free(salt); 770 771 return ret; 772 } 773