Home | History | Annotate | Download | only in rtl
      1 //===-- tsan_fd.cc --------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "tsan_fd.h"
     15 #include "tsan_rtl.h"
     16 #include <sanitizer_common/sanitizer_atomic.h>
     17 
     18 namespace __tsan {
     19 
     20 const int kTableSizeL1 = 1024;
     21 const int kTableSizeL2 = 1024;
     22 const int kTableSize = kTableSizeL1 * kTableSizeL2;
     23 
     24 struct FdSync {
     25   atomic_uint64_t rc;
     26 };
     27 
     28 struct FdDesc {
     29   FdSync *sync;
     30   int creation_tid;
     31   u32 creation_stack;
     32 };
     33 
     34 struct FdContext {
     35   atomic_uintptr_t tab[kTableSizeL1];
     36   // Addresses used for synchronization.
     37   FdSync globsync;
     38   FdSync filesync;
     39   FdSync socksync;
     40   u64 connectsync;
     41 };
     42 
     43 static FdContext fdctx;
     44 
     45 static bool bogusfd(int fd) {
     46   // Apparently a bogus fd value.
     47   return fd < 0 || fd >= kTableSize;
     48 }
     49 
     50 static FdSync *allocsync(ThreadState *thr, uptr pc) {
     51   FdSync *s = (FdSync*)user_alloc(thr, pc, sizeof(FdSync), kDefaultAlignment,
     52       false);
     53   atomic_store(&s->rc, 1, memory_order_relaxed);
     54   return s;
     55 }
     56 
     57 static FdSync *ref(FdSync *s) {
     58   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
     59     atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
     60   return s;
     61 }
     62 
     63 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
     64   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
     65     if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
     66       CHECK_NE(s, &fdctx.globsync);
     67       CHECK_NE(s, &fdctx.filesync);
     68       CHECK_NE(s, &fdctx.socksync);
     69       user_free(thr, pc, s, false);
     70     }
     71   }
     72 }
     73 
     74 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
     75   CHECK_GE(fd, 0);
     76   CHECK_LT(fd, kTableSize);
     77   atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
     78   uptr l1 = atomic_load(pl1, memory_order_consume);
     79   if (l1 == 0) {
     80     uptr size = kTableSizeL2 * sizeof(FdDesc);
     81     // We need this to reside in user memory to properly catch races on it.
     82     void *p = user_alloc(thr, pc, size, kDefaultAlignment, false);
     83     internal_memset(p, 0, size);
     84     MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
     85     if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
     86       l1 = (uptr)p;
     87     else
     88       user_free(thr, pc, p, false);
     89   }
     90   return &((FdDesc*)l1)[fd % kTableSizeL2];  // NOLINT
     91 }
     92 
     93 // pd must be already ref'ed.
     94 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s) {
     95   FdDesc *d = fddesc(thr, pc, fd);
     96   // As a matter of fact, we don't intercept all close calls.
     97   // See e.g. libc __res_iclose().
     98   if (d->sync) {
     99     unref(thr, pc, d->sync);
    100     d->sync = 0;
    101   }
    102   if (flags()->io_sync == 0) {
    103     unref(thr, pc, s);
    104   } else if (flags()->io_sync == 1) {
    105     d->sync = s;
    106   } else if (flags()->io_sync == 2) {
    107     unref(thr, pc, s);
    108     d->sync = &fdctx.globsync;
    109   }
    110   d->creation_tid = thr->tid;
    111   d->creation_stack = CurrentStackId(thr, pc);
    112   // To catch races between fd usage and open.
    113   MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
    114 }
    115 
    116 void FdInit() {
    117   atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
    118   atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
    119   atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
    120 }
    121 
    122 void FdOnFork(ThreadState *thr, uptr pc) {
    123   // On fork() we need to reset all fd's, because the child is going
    124   // close all them, and that will cause races between previous read/write
    125   // and the close.
    126   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
    127     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
    128     if (tab == 0)
    129       break;
    130     for (int l2 = 0; l2 < kTableSizeL2; l2++) {
    131       FdDesc *d = &tab[l2];
    132       MemoryResetRange(thr, pc, (uptr)d, 8);
    133     }
    134   }
    135 }
    136 
    137 bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
    138   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
    139     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
    140     if (tab == 0)
    141       break;
    142     if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
    143       int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
    144       FdDesc *d = &tab[l2];
    145       *fd = l1 * kTableSizeL1 + l2;
    146       *tid = d->creation_tid;
    147       *stack = d->creation_stack;
    148       return true;
    149     }
    150   }
    151   return false;
    152 }
    153 
    154 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
    155   if (bogusfd(fd))
    156     return;
    157   FdDesc *d = fddesc(thr, pc, fd);
    158   FdSync *s = d->sync;
    159   DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
    160   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    161   if (s)
    162     Acquire(thr, pc, (uptr)s);
    163 }
    164 
    165 void FdRelease(ThreadState *thr, uptr pc, int fd) {
    166   if (bogusfd(fd))
    167     return;
    168   FdDesc *d = fddesc(thr, pc, fd);
    169   FdSync *s = d->sync;
    170   DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
    171   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    172   if (s)
    173     Release(thr, pc, (uptr)s);
    174 }
    175 
    176 void FdAccess(ThreadState *thr, uptr pc, int fd) {
    177   DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
    178   if (bogusfd(fd))
    179     return;
    180   FdDesc *d = fddesc(thr, pc, fd);
    181   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    182 }
    183 
    184 void FdClose(ThreadState *thr, uptr pc, int fd) {
    185   DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
    186   if (bogusfd(fd))
    187     return;
    188   FdDesc *d = fddesc(thr, pc, fd);
    189   // To catch races between fd usage and close.
    190   MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
    191   // We need to clear it, because if we do not intercept any call out there
    192   // that creates fd, we will hit false postives.
    193   MemoryResetRange(thr, pc, (uptr)d, 8);
    194   unref(thr, pc, d->sync);
    195   d->sync = 0;
    196   d->creation_tid = 0;
    197   d->creation_stack = 0;
    198 }
    199 
    200 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
    201   DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
    202   if (bogusfd(fd))
    203     return;
    204   init(thr, pc, fd, &fdctx.filesync);
    205 }
    206 
    207 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd) {
    208   DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
    209   if (bogusfd(oldfd) || bogusfd(newfd))
    210     return;
    211   // Ignore the case when user dups not yet connected socket.
    212   FdDesc *od = fddesc(thr, pc, oldfd);
    213   MemoryRead(thr, pc, (uptr)od, kSizeLog8);
    214   FdClose(thr, pc, newfd);
    215   init(thr, pc, newfd, ref(od->sync));
    216 }
    217 
    218 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
    219   DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
    220   FdSync *s = allocsync(thr, pc);
    221   init(thr, pc, rfd, ref(s));
    222   init(thr, pc, wfd, ref(s));
    223   unref(thr, pc, s);
    224 }
    225 
    226 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
    227   DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
    228   if (bogusfd(fd))
    229     return;
    230   init(thr, pc, fd, allocsync(thr, pc));
    231 }
    232 
    233 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
    234   DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
    235   if (bogusfd(fd))
    236     return;
    237   init(thr, pc, fd, 0);
    238 }
    239 
    240 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
    241   DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
    242   if (bogusfd(fd))
    243     return;
    244   init(thr, pc, fd, 0);
    245 }
    246 
    247 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
    248   DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
    249   if (bogusfd(fd))
    250     return;
    251   init(thr, pc, fd, allocsync(thr, pc));
    252 }
    253 
    254 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
    255   DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
    256   if (bogusfd(fd))
    257     return;
    258   // It can be a UDP socket.
    259   init(thr, pc, fd, &fdctx.socksync);
    260 }
    261 
    262 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
    263   DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
    264   if (bogusfd(fd))
    265     return;
    266   // Synchronize connect->accept.
    267   Acquire(thr, pc, (uptr)&fdctx.connectsync);
    268   init(thr, pc, newfd, &fdctx.socksync);
    269 }
    270 
    271 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
    272   DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
    273   if (bogusfd(fd))
    274     return;
    275   // Synchronize connect->accept.
    276   Release(thr, pc, (uptr)&fdctx.connectsync);
    277 }
    278 
    279 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
    280   DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
    281   if (bogusfd(fd))
    282     return;
    283   init(thr, pc, fd, &fdctx.socksync);
    284 }
    285 
    286 uptr File2addr(const char *path) {
    287   (void)path;
    288   static u64 addr;
    289   return (uptr)&addr;
    290 }
    291 
    292 uptr Dir2addr(const char *path) {
    293   (void)path;
    294   static u64 addr;
    295   return (uptr)&addr;
    296 }
    297 
    298 }  //  namespace __tsan
    299