Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_GC_HEAP_INL_H_
     18 #define ART_RUNTIME_GC_HEAP_INL_H_
     19 
     20 #include "heap.h"
     21 
     22 #include "base/time_utils.h"
     23 #include "debugger.h"
     24 #include "gc/accounting/card_table-inl.h"
     25 #include "gc/collector/semi_space.h"
     26 #include "gc/space/bump_pointer_space-inl.h"
     27 #include "gc/space/dlmalloc_space-inl.h"
     28 #include "gc/space/large_object_space.h"
     29 #include "gc/space/region_space-inl.h"
     30 #include "gc/space/rosalloc_space-inl.h"
     31 #include "runtime.h"
     32 #include "handle_scope-inl.h"
     33 #include "thread-inl.h"
     34 #include "utils.h"
     35 #include "verify_object-inl.h"
     36 
     37 namespace art {
     38 namespace gc {
     39 
     40 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
     41 inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass,
     42                                                       size_t byte_count, AllocatorType allocator,
     43                                                       const PreFenceVisitor& pre_fence_visitor) {
     44   if (kIsDebugBuild) {
     45     CheckPreconditionsForAllocObject(klass, byte_count);
     46     // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
     47     // done in the runnable state where suspension is expected.
     48     CHECK_EQ(self->GetState(), kRunnable);
     49     self->AssertThreadSuspensionIsAllowable();
     50   }
     51   // Need to check that we arent the large object allocator since the large object allocation code
     52   // path this function. If we didn't check we would have an infinite loop.
     53   mirror::Object* obj;
     54   if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
     55     obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count,
     56                                                            pre_fence_visitor);
     57     if (obj != nullptr) {
     58       return obj;
     59     } else {
     60       // There should be an OOM exception, since we are retrying, clear it.
     61       self->ClearException();
     62     }
     63     // If the large object allocation failed, try to use the normal spaces (main space,
     64     // non moving space). This can happen if there is significant virtual address space
     65     // fragmentation.
     66   }
     67   AllocationTimer alloc_timer(this, &obj);
     68   // bytes allocated for the (individual) object.
     69   size_t bytes_allocated;
     70   size_t usable_size;
     71   size_t new_num_bytes_allocated = 0;
     72   if (allocator == kAllocatorTypeTLAB || allocator == kAllocatorTypeRegionTLAB) {
     73     byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
     74   }
     75   // If we have a thread local allocation we don't need to update bytes allocated.
     76   if ((allocator == kAllocatorTypeTLAB || allocator == kAllocatorTypeRegionTLAB) &&
     77       byte_count <= self->TlabSize()) {
     78     obj = self->AllocTlab(byte_count);
     79     DCHECK(obj != nullptr) << "AllocTlab can't fail";
     80     obj->SetClass(klass);
     81     if (kUseBakerOrBrooksReadBarrier) {
     82       if (kUseBrooksReadBarrier) {
     83         obj->SetReadBarrierPointer(obj);
     84       }
     85       obj->AssertReadBarrierPointer();
     86     }
     87     bytes_allocated = byte_count;
     88     usable_size = bytes_allocated;
     89     pre_fence_visitor(obj, usable_size);
     90     QuasiAtomic::ThreadFenceForConstructor();
     91   } else if (!kInstrumented && allocator == kAllocatorTypeRosAlloc &&
     92              (obj = rosalloc_space_->AllocThreadLocal(self, byte_count, &bytes_allocated)) &&
     93              LIKELY(obj != nullptr)) {
     94     DCHECK(!running_on_valgrind_);
     95     obj->SetClass(klass);
     96     if (kUseBakerOrBrooksReadBarrier) {
     97       if (kUseBrooksReadBarrier) {
     98         obj->SetReadBarrierPointer(obj);
     99       }
    100       obj->AssertReadBarrierPointer();
    101     }
    102     usable_size = bytes_allocated;
    103     pre_fence_visitor(obj, usable_size);
    104     QuasiAtomic::ThreadFenceForConstructor();
    105   } else {
    106     // bytes allocated that takes bulk thread-local buffer allocations into account.
    107     size_t bytes_tl_bulk_allocated = 0;
    108     obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
    109                                               &usable_size, &bytes_tl_bulk_allocated);
    110     if (UNLIKELY(obj == nullptr)) {
    111       bool is_current_allocator = allocator == GetCurrentAllocator();
    112       obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated, &usable_size,
    113                                    &bytes_tl_bulk_allocated, &klass);
    114       if (obj == nullptr) {
    115         bool after_is_current_allocator = allocator == GetCurrentAllocator();
    116         // If there is a pending exception, fail the allocation right away since the next one
    117         // could cause OOM and abort the runtime.
    118         if (!self->IsExceptionPending() && is_current_allocator && !after_is_current_allocator) {
    119           // If the allocator changed, we need to restart the allocation.
    120           return AllocObject<kInstrumented>(self, klass, byte_count, pre_fence_visitor);
    121         }
    122         return nullptr;
    123       }
    124     }
    125     DCHECK_GT(bytes_allocated, 0u);
    126     DCHECK_GT(usable_size, 0u);
    127     obj->SetClass(klass);
    128     if (kUseBakerOrBrooksReadBarrier) {
    129       if (kUseBrooksReadBarrier) {
    130         obj->SetReadBarrierPointer(obj);
    131       }
    132       obj->AssertReadBarrierPointer();
    133     }
    134     if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
    135       // (Note this if statement will be constant folded away for the
    136       // fast-path quick entry points.) Because SetClass() has no write
    137       // barrier, if a non-moving space allocation, we need a write
    138       // barrier as the class pointer may point to the bump pointer
    139       // space (where the class pointer is an "old-to-young" reference,
    140       // though rare) under the GSS collector with the remembered set
    141       // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
    142       // cases because we don't directly allocate into the main alloc
    143       // space (besides promotions) under the SS/GSS collector.
    144       WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
    145     }
    146     pre_fence_visitor(obj, usable_size);
    147     new_num_bytes_allocated = static_cast<size_t>(
    148         num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_tl_bulk_allocated))
    149         + bytes_tl_bulk_allocated;
    150   }
    151   if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
    152     CHECK_LE(obj->SizeOf(), usable_size);
    153   }
    154   // TODO: Deprecate.
    155   if (kInstrumented) {
    156     if (Runtime::Current()->HasStatsEnabled()) {
    157       RuntimeStats* thread_stats = self->GetStats();
    158       ++thread_stats->allocated_objects;
    159       thread_stats->allocated_bytes += bytes_allocated;
    160       RuntimeStats* global_stats = Runtime::Current()->GetStats();
    161       ++global_stats->allocated_objects;
    162       global_stats->allocated_bytes += bytes_allocated;
    163     }
    164   } else {
    165     DCHECK(!Runtime::Current()->HasStatsEnabled());
    166   }
    167   if (AllocatorHasAllocationStack(allocator)) {
    168     PushOnAllocationStack(self, &obj);
    169   }
    170   if (kInstrumented) {
    171     if (Dbg::IsAllocTrackingEnabled()) {
    172       Dbg::RecordAllocation(self, klass, bytes_allocated);
    173     }
    174   } else {
    175     DCHECK(!Dbg::IsAllocTrackingEnabled());
    176   }
    177   if (kInstrumented) {
    178     if (gc_stress_mode_) {
    179       CheckGcStressMode(self, &obj);
    180     }
    181   } else {
    182     DCHECK(!gc_stress_mode_);
    183   }
    184   // IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for
    185   // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
    186   // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
    187   // the allocator_type should be constant propagated.
    188   if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
    189     CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
    190   }
    191   VerifyObject(obj);
    192   self->VerifyStack();
    193   return obj;
    194 }
    195 
    196 // The size of a thread-local allocation stack in the number of references.
    197 static constexpr size_t kThreadLocalAllocationStackSize = 128;
    198 
    199 inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) {
    200   if (kUseThreadLocalAllocationStack) {
    201     if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(*obj))) {
    202       PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
    203     }
    204   } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(*obj))) {
    205     PushOnAllocationStackWithInternalGC(self, obj);
    206   }
    207 }
    208 
    209 template <bool kInstrumented, typename PreFenceVisitor>
    210 inline mirror::Object* Heap::AllocLargeObject(Thread* self, mirror::Class** klass,
    211                                               size_t byte_count,
    212                                               const PreFenceVisitor& pre_fence_visitor) {
    213   // Save and restore the class in case it moves.
    214   StackHandleScope<1> hs(self);
    215   auto klass_wrapper = hs.NewHandleWrapper(klass);
    216   return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, *klass, byte_count,
    217                                                                          kAllocatorTypeLOS,
    218                                                                          pre_fence_visitor);
    219 }
    220 
    221 template <const bool kInstrumented, const bool kGrow>
    222 inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type,
    223                                            size_t alloc_size, size_t* bytes_allocated,
    224                                            size_t* usable_size,
    225                                            size_t* bytes_tl_bulk_allocated) {
    226   if (allocator_type != kAllocatorTypeTLAB && allocator_type != kAllocatorTypeRegionTLAB &&
    227       allocator_type != kAllocatorTypeRosAlloc &&
    228       UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
    229     return nullptr;
    230   }
    231   mirror::Object* ret;
    232   switch (allocator_type) {
    233     case kAllocatorTypeBumpPointer: {
    234       DCHECK(bump_pointer_space_ != nullptr);
    235       alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
    236       ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
    237       if (LIKELY(ret != nullptr)) {
    238         *bytes_allocated = alloc_size;
    239         *usable_size = alloc_size;
    240         *bytes_tl_bulk_allocated = alloc_size;
    241       }
    242       break;
    243     }
    244     case kAllocatorTypeRosAlloc: {
    245       if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
    246         // If running on valgrind, we should be using the instrumented path.
    247         size_t max_bytes_tl_bulk_allocated = rosalloc_space_->MaxBytesBulkAllocatedFor(alloc_size);
    248         if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type,
    249                                                       max_bytes_tl_bulk_allocated))) {
    250           return nullptr;
    251         }
    252         ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
    253                                      bytes_tl_bulk_allocated);
    254       } else {
    255         DCHECK(!running_on_valgrind_);
    256         size_t max_bytes_tl_bulk_allocated =
    257             rosalloc_space_->MaxBytesBulkAllocatedForNonvirtual(alloc_size);
    258         if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type,
    259                                                       max_bytes_tl_bulk_allocated))) {
    260           return nullptr;
    261         }
    262         if (!kInstrumented) {
    263           DCHECK(!rosalloc_space_->CanAllocThreadLocal(self, alloc_size));
    264         }
    265         ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size,
    266                                                bytes_tl_bulk_allocated);
    267       }
    268       break;
    269     }
    270     case kAllocatorTypeDlMalloc: {
    271       if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
    272         // If running on valgrind, we should be using the instrumented path.
    273         ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
    274                                      bytes_tl_bulk_allocated);
    275       } else {
    276         DCHECK(!running_on_valgrind_);
    277         ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size,
    278                                                bytes_tl_bulk_allocated);
    279       }
    280       break;
    281     }
    282     case kAllocatorTypeNonMoving: {
    283       ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
    284                                      bytes_tl_bulk_allocated);
    285       break;
    286     }
    287     case kAllocatorTypeLOS: {
    288       ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
    289                                        bytes_tl_bulk_allocated);
    290       // Note that the bump pointer spaces aren't necessarily next to
    291       // the other continuous spaces like the non-moving alloc space or
    292       // the zygote space.
    293       DCHECK(ret == nullptr || large_object_space_->Contains(ret));
    294       break;
    295     }
    296     case kAllocatorTypeTLAB: {
    297       DCHECK_ALIGNED(alloc_size, space::BumpPointerSpace::kAlignment);
    298       if (UNLIKELY(self->TlabSize() < alloc_size)) {
    299         const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
    300         if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, new_tlab_size))) {
    301           return nullptr;
    302         }
    303         // Try allocating a new thread local buffer, if the allocaiton fails the space must be
    304         // full so return null.
    305         if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
    306           return nullptr;
    307         }
    308         *bytes_tl_bulk_allocated = new_tlab_size;
    309       } else {
    310         *bytes_tl_bulk_allocated = 0;
    311       }
    312       // The allocation can't fail.
    313       ret = self->AllocTlab(alloc_size);
    314       DCHECK(ret != nullptr);
    315       *bytes_allocated = alloc_size;
    316       *usable_size = alloc_size;
    317       break;
    318     }
    319     case kAllocatorTypeRegion: {
    320       DCHECK(region_space_ != nullptr);
    321       alloc_size = RoundUp(alloc_size, space::RegionSpace::kAlignment);
    322       ret = region_space_->AllocNonvirtual<false>(alloc_size, bytes_allocated, usable_size,
    323                                                   bytes_tl_bulk_allocated);
    324       break;
    325     }
    326     case kAllocatorTypeRegionTLAB: {
    327       DCHECK(region_space_ != nullptr);
    328       DCHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
    329       if (UNLIKELY(self->TlabSize() < alloc_size)) {
    330         if (space::RegionSpace::kRegionSize >= alloc_size) {
    331           // Non-large. Check OOME for a tlab.
    332           if (LIKELY(!IsOutOfMemoryOnAllocation<kGrow>(allocator_type, space::RegionSpace::kRegionSize))) {
    333             // Try to allocate a tlab.
    334             if (!region_space_->AllocNewTlab(self)) {
    335               // Failed to allocate a tlab. Try non-tlab.
    336               ret = region_space_->AllocNonvirtual<false>(alloc_size, bytes_allocated, usable_size,
    337                                                           bytes_tl_bulk_allocated);
    338               return ret;
    339             }
    340             *bytes_tl_bulk_allocated = space::RegionSpace::kRegionSize;
    341             // Fall-through.
    342           } else {
    343             // Check OOME for a non-tlab allocation.
    344             if (!IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size)) {
    345               ret = region_space_->AllocNonvirtual<false>(alloc_size, bytes_allocated, usable_size,
    346                                                           bytes_tl_bulk_allocated);
    347               return ret;
    348             } else {
    349               // Neither tlab or non-tlab works. Give up.
    350               return nullptr;
    351             }
    352           }
    353         } else {
    354           // Large. Check OOME.
    355           if (LIKELY(!IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
    356             ret = region_space_->AllocNonvirtual<false>(alloc_size, bytes_allocated, usable_size,
    357                                                         bytes_tl_bulk_allocated);
    358             return ret;
    359           } else {
    360             return nullptr;
    361           }
    362         }
    363       } else {
    364         *bytes_tl_bulk_allocated = 0;  // Allocated in an existing buffer.
    365       }
    366       // The allocation can't fail.
    367       ret = self->AllocTlab(alloc_size);
    368       DCHECK(ret != nullptr);
    369       *bytes_allocated = alloc_size;
    370       *usable_size = alloc_size;
    371       break;
    372     }
    373     default: {
    374       LOG(FATAL) << "Invalid allocator type";
    375       ret = nullptr;
    376     }
    377   }
    378   return ret;
    379 }
    380 
    381 inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
    382     : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr),
    383       allocation_start_time_(kMeasureAllocationTime ? NanoTime() / kTimeAdjust : 0u) { }
    384 
    385 inline Heap::AllocationTimer::~AllocationTimer() {
    386   if (kMeasureAllocationTime) {
    387     mirror::Object* allocated_obj = *allocated_obj_ptr_;
    388     // Only if the allocation succeeded, record the time.
    389     if (allocated_obj != nullptr) {
    390       uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
    391       heap_->total_allocation_time_.FetchAndAddSequentiallyConsistent(allocation_end_time - allocation_start_time_);
    392     }
    393   }
    394 }
    395 
    396 inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const {
    397   // We need to have a zygote space or else our newly allocated large object can end up in the
    398   // Zygote resulting in it being prematurely freed.
    399   // We can only do this for primitive objects since large objects will not be within the card table
    400   // range. This also means that we rely on SetClass not dirtying the object's card.
    401   return byte_count >= large_object_threshold_ && (c->IsPrimitiveArray() || c->IsStringClass());
    402 }
    403 
    404 template <bool kGrow>
    405 inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) {
    406   size_t new_footprint = num_bytes_allocated_.LoadSequentiallyConsistent() + alloc_size;
    407   if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
    408     if (UNLIKELY(new_footprint > growth_limit_)) {
    409       return true;
    410     }
    411     if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) {
    412       if (!kGrow) {
    413         return true;
    414       }
    415       // TODO: Grow for allocation is racy, fix it.
    416       VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to "
    417           << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
    418       max_allowed_footprint_ = new_footprint;
    419     }
    420   }
    421   return false;
    422 }
    423 
    424 inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
    425                                     mirror::Object** obj) {
    426   if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
    427     RequestConcurrentGCAndSaveObject(self, false, obj);
    428   }
    429 }
    430 
    431 }  // namespace gc
    432 }  // namespace art
    433 
    434 #endif  // ART_RUNTIME_GC_HEAP_INL_H_
    435