1 /* 2 ********************************************************************** 3 * Copyright (C) 2000-2015, International Business Machines 4 * Corporation and others. All Rights Reserved. 5 ********************************************************************** 6 * file name: ucnv_lmb.cpp 7 * encoding: US-ASCII 8 * tab size: 4 (not used) 9 * indentation:4 10 * 11 * created on: 2000feb09 12 * created by: Brendan Murray 13 * extensively hacked up by: Jim Snyder-Grant 14 * 15 * Modification History: 16 * 17 * Date Name Description 18 * 19 * 06/20/2000 helena OS/400 port changes; mostly typecast. 20 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers. 21 * Add comments to document LMBCS format and implementation 22 * restructured order & breakdown of functions 23 * 06/28/2000 helena Major rewrite for the callback API changes. 24 */ 25 26 #include "unicode/utypes.h" 27 28 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION 29 30 #include "unicode/ucnv_err.h" 31 #include "unicode/ucnv.h" 32 #include "unicode/uset.h" 33 #include "cmemory.h" 34 #include "cstring.h" 35 #include "uassert.h" 36 #include "ucnv_imp.h" 37 #include "ucnv_bld.h" 38 #include "ucnv_cnv.h" 39 40 #ifdef EBCDIC_RTL 41 #include "ascii_a.h" 42 #endif 43 44 /* 45 LMBCS 46 47 (Lotus Multi-Byte Character Set) 48 49 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes 50 databases and in Lotus 1-2-3 files. Programmers who work with the APIs 51 into these products will sometimes need to deal with strings in this format. 52 53 The code in this file provides an implementation for an ICU converter of 54 LMBCS to and from Unicode. 55 56 Since the LMBCS character set is only sparsely documented in existing 57 printed or online material, we have added extensive annotation to this 58 file to serve as a guide to understanding LMBCS. 59 60 LMBCS was originally designed with these four sometimes-competing design goals: 61 62 -Provide encodings for the characters in 12 existing national standards 63 (plus a few other characters) 64 -Minimal memory footprint 65 -Maximal speed of conversion into the existing national character sets 66 -No need to track a changing state as you interpret a string. 67 68 69 All of the national character sets LMBCS was trying to encode are 'ANSI' 70 based, in that the bytes from 0x20 - 0x7F are almost exactly the 71 same common Latin unaccented characters and symbols in all character sets. 72 73 So, in order to help meet the speed & memory design goals, the common ANSI 74 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS. 75 76 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as 77 follows: 78 79 [G] D1 [D2] 80 81 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2 82 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes: 83 */ 84 #define ULMBCS_CHARSIZE_MAX 3 85 /* 86 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes. 87 We often have to figure out if byte values are below or above this, so we 88 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control 89 characters just above & below the common lower-ANSI range */ 90 #define ULMBCS_C0END 0x1F 91 #define ULMBCS_C1START 0x80 92 /* 93 Since LMBCS is always dealing in byte units. we create a local type here for 94 dealing with these units of LMBCS code units: 95 96 */ 97 typedef uint8_t ulmbcs_byte_t; 98 99 /* 100 Most of the values less than 0x20 are reserved in LMBCS to announce 101 which national character standard is being used for the 'D' bytes. 102 In the comments we show the common name and the IBM character-set ID 103 for these character-set announcers: 104 */ 105 106 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */ 107 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */ 108 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */ 109 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */ 110 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */ 111 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */ 112 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */ 113 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */ 114 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */ 115 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */ 116 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */ 117 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */ 118 119 /* 120 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS 121 character is one of those 12 values, you can interpret the remaining bytes of 122 that character as coming from one of those character sets. Since the lower 123 ANSI bytes already are represented in single bytes, using one of the character 124 set announcers is used to announce a character that starts with a byte of 125 0x80 or greater. 126 127 The character sets are arranged so that the single byte sets all appear 128 before the multi-byte character sets. When we need to tell whether a 129 group byte is for a single byte char set or not we use this define: */ 130 131 #define ULMBCS_DOUBLEOPTGROUP_START 0x10 132 133 /* 134 However, to fully understand LMBCS, you must also understand a series of 135 exceptions & optimizations made in service of the design goals. 136 137 First, those of you who are character set mavens may have noticed that 138 the 'double-byte' character sets are actually multi-byte character sets 139 that can have 1 or two bytes, even in the upper-ascii range. To force 140 each group byte to introduce a fixed-width encoding (to make it faster to 141 count characters), we use a convention of doubling up on the group byte 142 to introduce any single-byte character > 0x80 in an otherwise double-byte 143 character set. So, for example, the LMBCS sequence x10 x10 xAE is the 144 same as '0xAE' in the Japanese code page 943. 145 146 Next, you will notice that the list of group bytes has some gaps. 147 These are used in various ways. 148 149 We reserve a few special single byte values for common control 150 characters. These are in the same place as their ANSI eqivalents for speed. 151 */ 152 153 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */ 154 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */ 155 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */ 156 157 /* Then, 1-2-3 reserved a special single-byte character to put at the 158 beginning of internal 'system' range names: */ 159 160 #define ULMBCS_123SYSTEMRANGE 0x19 161 162 /* Then we needed a place to put all the other ansi control characters 163 that must be moved to different values because LMBCS reserves those 164 values for other purposes. To represent the control characters, we start 165 with a first byte of 0xF & add the control chaarcter value as the 166 second byte */ 167 #define ULMBCS_GRP_CTRL 0x0F 168 169 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the 170 useful doctrine that any byte less than 0x20 in a LMBCS char must be 171 the first byte of a character:*/ 172 #define ULMBCS_CTRLOFFSET 0x20 173 174 /* 175 Where to put the characters that aren't part of any of the 12 national 176 character sets? The first thing that was done, in the earlier years of 177 LMBCS, was to use up the spaces of the form 178 179 [G] D1, 180 181 where 'G' was one of the single-byte character groups, and 182 D1 was less than 0x80. These sequences are gathered together 183 into a Lotus-invented doublebyte character set to represent a 184 lot of stray values. Internally, in this implementation, we track this 185 as group '0', as a place to tuck this exceptions list.*/ 186 187 #define ULMBCS_GRP_EXCEPT 0x00 188 /* 189 Finally, as the durability and usefulness of UNICODE became clear, 190 LOTUS added a new group 0x14 to hold Unicode values not otherwise 191 represented in LMBCS: */ 192 #define ULMBCS_GRP_UNICODE 0x14 193 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE 194 (Big-Endian) characters. The exception comes when the UTF16 195 representation would have a zero as the second byte. In that case, 196 'F6' is used in its place, and the bytes are swapped. (This prevents 197 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK: 198 0xF6xx is in the middle of the Private Use Area.)*/ 199 #define ULMBCS_UNICOMPATZERO 0xF6 200 201 /* It is also useful in our code to have a constant for the size of 202 a LMBCS char that holds a literal Unicode value */ 203 #define ULMBCS_UNICODE_SIZE 3 204 205 /* 206 To squish the LMBCS representations down even further, and to make 207 translations even faster,sometimes the optimization group byte can be dropped 208 from a LMBCS character. This is decided on a process-by-process basis. The 209 group byte that is dropped is called the 'optimization group'. 210 211 For Notes, the optimzation group is always 0x1.*/ 212 #define ULMBCS_DEFAULTOPTGROUP 0x1 213 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3 214 file. 215 216 In any case, when using ICU, you either pass in the 217 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2, 218 etc.). Using plain 'LMBCS' as the name of the converter will give you 219 LMBCS-1. 220 221 222 *** Implementation strategy *** 223 224 225 Because of the extensive use of other character sets, the LMBCS converter 226 keeps a mapping between optimization groups and IBM character sets, so that 227 ICU converters can be created and used as needed. */ 228 229 /* As you can see, even though any byte below 0x20 could be an optimization 230 byte, only those at 0x13 or below can map to an actual converter. To limit 231 some loops and searches, we define a value for that last group converter:*/ 232 233 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */ 234 235 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = { 236 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */ 237 /* 0x0001 */ "ibm-850", 238 /* 0x0002 */ "ibm-851", 239 /* 0x0003 */ "windows-1255", 240 /* 0x0004 */ "windows-1256", 241 /* 0x0005 */ "windows-1251", 242 /* 0x0006 */ "ibm-852", 243 /* 0x0007 */ NULL, /* Unused */ 244 /* 0x0008 */ "windows-1254", 245 /* 0x0009 */ NULL, /* Control char HT */ 246 /* 0x000A */ NULL, /* Control char LF */ 247 /* 0x000B */ "windows-874", 248 /* 0x000C */ NULL, /* Unused */ 249 /* 0x000D */ NULL, /* Control char CR */ 250 /* 0x000E */ NULL, /* Unused */ 251 /* 0x000F */ NULL, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */ 252 /* 0x0010 */ "windows-932", 253 /* 0x0011 */ "windows-949", 254 /* 0x0012 */ "windows-950", 255 /* 0x0013 */ "windows-936" 256 257 /* The rest are null, including the 0x0014 Unicode compatibility region 258 and 0x0019, the 1-2-3 system range control char */ 259 }; 260 261 262 /* That's approximately all the data that's needed for translating 263 LMBCS to Unicode. 264 265 266 However, to translate Unicode to LMBCS, we need some more support. 267 268 That's because there are often more than one possible mappings from a Unicode 269 code point back into LMBCS. The first thing we do is look up into a table 270 to figure out if there are more than one possible mappings. This table, 271 arranged by Unicode values (including ranges) either lists which group 272 to use, or says that it could go into one or more of the SBCS sets, or 273 into one or more of the DBCS sets. (If the character exists in both DBCS & 274 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point 275 length as small as possible. Here's the two special markers we use to indicate 276 ambiguous mappings: */ 277 278 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one 279 LMBCS sbcs native encoding 280 (example: most accented latin) */ 281 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one 282 LMBCS mbcs native encoding 283 (example: Unihan) */ 284 #define ULMBCS_AMBIGUOUS_ALL 0x82 285 /* And here's a simple way to see if a group falls in an appropriate range */ 286 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \ 287 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \ 288 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \ 289 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \ 290 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \ 291 ((agroup) == ULMBCS_AMBIGUOUS_ALL) 292 293 294 /* The table & some code to use it: */ 295 296 297 static const struct _UniLMBCSGrpMap 298 { 299 const UChar uniStartRange; 300 const UChar uniEndRange; 301 const ulmbcs_byte_t GrpType; 302 } UniLMBCSGrpMap[] 303 = 304 { 305 306 {0x0001, 0x001F, ULMBCS_GRP_CTRL}, 307 {0x0080, 0x009F, ULMBCS_GRP_CTRL}, 308 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS}, 309 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL}, 310 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS}, 311 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL}, 312 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS}, 313 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL}, 314 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS}, 315 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL}, 316 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS}, 317 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL}, 318 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS}, 319 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL}, 320 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS}, 321 {0x01CE, 0x01CE, ULMBCS_GRP_TW }, 322 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS}, 323 {0x02BA, 0x02BA, ULMBCS_GRP_CN}, 324 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS}, 325 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS}, 326 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS}, 327 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS}, 328 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL}, 329 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS}, 330 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL}, 331 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS}, 332 {0x0400, 0x0400, ULMBCS_GRP_RU}, 333 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL}, 334 {0x0402, 0x040F, ULMBCS_GRP_RU}, 335 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL}, 336 {0x0432, 0x044E, ULMBCS_GRP_RU}, 337 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL}, 338 {0x0450, 0x0491, ULMBCS_GRP_RU}, 339 {0x05B0, 0x05F2, ULMBCS_GRP_HE}, 340 {0x060C, 0x06AF, ULMBCS_GRP_AR}, 341 {0x0E01, 0x0E5B, ULMBCS_GRP_TH}, 342 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS}, 343 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS}, 344 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS}, 345 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS}, 346 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS}, 347 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS}, 348 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL}, 349 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS}, 350 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL}, 351 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS}, 352 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL}, 353 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS}, 354 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS}, 355 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL}, 356 {0x2027, 0x2027, ULMBCS_GRP_TW}, 357 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL}, 358 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS}, 359 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS}, 360 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS}, 361 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS}, 362 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS}, 363 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT}, 364 {0x2074, 0x2074, ULMBCS_GRP_KO}, 365 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT}, 366 {0x2081, 0x2084, ULMBCS_GRP_KO}, 367 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS}, 368 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS}, 369 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS}, 370 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/ 371 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS}, 372 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS}, 373 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS}, 374 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS}, 375 {0x2153, 0x2154, ULMBCS_GRP_KO}, 376 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT}, 377 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS}, 378 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL}, 379 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT}, 380 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS}, 381 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT}, 382 {0x21B8, 0x21B9, ULMBCS_GRP_CN}, 383 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT}, 384 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS}, 385 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT}, 386 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS}, 387 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT}, 388 {0x21E7, 0x21E7, ULMBCS_GRP_CN}, 389 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS}, 390 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT}, 391 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS}, 392 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS}, 393 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT}, 394 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS}, 395 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT}, 396 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS}, 397 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS}, 398 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT}, 399 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS}, 400 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT}, 401 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS}, 402 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT}, 403 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS}, 404 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS}, 405 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS}, 406 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT}, 407 {0x224C, 0x224C, ULMBCS_GRP_TW}, 408 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS}, 409 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS}, 410 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT}, 411 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS}, 412 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS}, 413 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT}, 414 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS}, 415 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT}, 416 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS}, 417 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT}, 418 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT}, 419 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS}, 420 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT}, 421 {0x2318, 0x2321, ULMBCS_GRP_CN}, 422 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS}, 423 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS}, 424 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS}, 425 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL}, 426 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS}, 427 {0x2504, 0x2505, ULMBCS_GRP_TW}, 428 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL}, 429 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT}, 430 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS}, 431 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL}, 432 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS}, 433 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS}, 434 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS}, 435 {0x266F, 0x266F, ULMBCS_GRP_JA}, 436 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS}, 437 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS}, 438 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT}, 439 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS}, 440 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS}, 441 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS}, 442 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE} 443 }; 444 445 static ulmbcs_byte_t 446 FindLMBCSUniRange(UChar uniChar) 447 { 448 const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap; 449 450 while (uniChar > pTable->uniEndRange) 451 { 452 pTable++; 453 } 454 455 if (uniChar >= pTable->uniStartRange) 456 { 457 return pTable->GrpType; 458 } 459 return ULMBCS_GRP_UNICODE; 460 } 461 462 /* 463 We also ask the creator of a converter to send in a preferred locale 464 that we can use in resolving ambiguous mappings. They send the locale 465 in as a string, and we map it, if possible, to one of the 466 LMBCS groups. We use this table, and the associated code, to 467 do the lookup: */ 468 469 /************************************************** 470 This table maps locale ID's to LMBCS opt groups. 471 The default return is group 0x01. Note that for 472 performance reasons, the table is sorted in 473 increasing alphabetic order, with the notable 474 exception of zhTW. This is to force the check 475 for Traditonal Chinese before dropping back to 476 Simplified. 477 478 Note too that the Latin-1 groups have been 479 commented out because it's the default, and 480 this shortens the table, allowing a serial 481 search to go quickly. 482 *************************************************/ 483 484 static const struct _LocaleLMBCSGrpMap 485 { 486 const char *LocaleID; 487 const ulmbcs_byte_t OptGroup; 488 } LocaleLMBCSGrpMap[] = 489 { 490 {"ar", ULMBCS_GRP_AR}, 491 {"be", ULMBCS_GRP_RU}, 492 {"bg", ULMBCS_GRP_L2}, 493 /* {"ca", ULMBCS_GRP_L1}, */ 494 {"cs", ULMBCS_GRP_L2}, 495 /* {"da", ULMBCS_GRP_L1}, */ 496 /* {"de", ULMBCS_GRP_L1}, */ 497 {"el", ULMBCS_GRP_GR}, 498 /* {"en", ULMBCS_GRP_L1}, */ 499 /* {"es", ULMBCS_GRP_L1}, */ 500 /* {"et", ULMBCS_GRP_L1}, */ 501 /* {"fi", ULMBCS_GRP_L1}, */ 502 /* {"fr", ULMBCS_GRP_L1}, */ 503 {"he", ULMBCS_GRP_HE}, 504 {"hu", ULMBCS_GRP_L2}, 505 /* {"is", ULMBCS_GRP_L1}, */ 506 /* {"it", ULMBCS_GRP_L1}, */ 507 {"iw", ULMBCS_GRP_HE}, 508 {"ja", ULMBCS_GRP_JA}, 509 {"ko", ULMBCS_GRP_KO}, 510 /* {"lt", ULMBCS_GRP_L1}, */ 511 /* {"lv", ULMBCS_GRP_L1}, */ 512 {"mk", ULMBCS_GRP_RU}, 513 /* {"nl", ULMBCS_GRP_L1}, */ 514 /* {"no", ULMBCS_GRP_L1}, */ 515 {"pl", ULMBCS_GRP_L2}, 516 /* {"pt", ULMBCS_GRP_L1}, */ 517 {"ro", ULMBCS_GRP_L2}, 518 {"ru", ULMBCS_GRP_RU}, 519 {"sh", ULMBCS_GRP_L2}, 520 {"sk", ULMBCS_GRP_L2}, 521 {"sl", ULMBCS_GRP_L2}, 522 {"sq", ULMBCS_GRP_L2}, 523 {"sr", ULMBCS_GRP_RU}, 524 /* {"sv", ULMBCS_GRP_L1}, */ 525 {"th", ULMBCS_GRP_TH}, 526 {"tr", ULMBCS_GRP_TR}, 527 {"uk", ULMBCS_GRP_RU}, 528 /* {"vi", ULMBCS_GRP_L1}, */ 529 {"zhTW", ULMBCS_GRP_TW}, 530 {"zh", ULMBCS_GRP_CN}, 531 {NULL, ULMBCS_GRP_L1} 532 }; 533 534 535 static ulmbcs_byte_t 536 FindLMBCSLocale(const char *LocaleID) 537 { 538 const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap; 539 540 if ((!LocaleID) || (!*LocaleID)) 541 { 542 return 0; 543 } 544 545 while (pTable->LocaleID) 546 { 547 if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */ 548 { 549 /* First char matches - check whole name, for entry-length */ 550 if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0) 551 return pTable->OptGroup; 552 } 553 else 554 if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */ 555 break; 556 pTable++; 557 } 558 return ULMBCS_GRP_L1; 559 } 560 561 562 /* 563 Before we get to the main body of code, here's how we hook up to the rest 564 of ICU. ICU converters are required to define a structure that includes 565 some function pointers, and some common data, in the style of a C++ 566 vtable. There is also room in there for converter-specific data. LMBCS 567 uses that converter-specific data to keep track of the 12 subconverters 568 we use, the optimization group, and the group (if any) that matches the 569 locale. We have one structure instantiated for each of the 12 possible 570 optimization groups. To avoid typos & to avoid boring the reader, we 571 put the declarations of these structures and functions into macros. To see 572 the definitions of these structures, see unicode\ucnv_bld.h 573 */ 574 575 typedef struct 576 { 577 UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1]; /* Converter per Opt. grp. */ 578 uint8_t OptGroup; /* default Opt. grp. for this LMBCS session */ 579 uint8_t localeConverterIndex; /* reasonable locale match for index */ 580 } 581 UConverterDataLMBCS; 582 583 static void _LMBCSClose(UConverter * _this); 584 585 #define DECLARE_LMBCS_DATA(n) \ 586 static const UConverterImpl _LMBCSImpl##n={\ 587 UCNV_LMBCS_##n,\ 588 NULL,NULL,\ 589 _LMBCSOpen##n,\ 590 _LMBCSClose,\ 591 NULL,\ 592 _LMBCSToUnicodeWithOffsets,\ 593 _LMBCSToUnicodeWithOffsets,\ 594 _LMBCSFromUnicode,\ 595 _LMBCSFromUnicode,\ 596 NULL,\ 597 NULL,\ 598 NULL,\ 599 NULL,\ 600 _LMBCSSafeClone,\ 601 ucnv_getCompleteUnicodeSet\ 602 };\ 603 static const UConverterStaticData _LMBCSStaticData##n={\ 604 sizeof(UConverterStaticData),\ 605 "LMBCS-" #n,\ 606 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\ 607 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \ 608 };\ 609 const UConverterSharedData _LMBCSData##n={\ 610 sizeof(UConverterSharedData), ~((uint32_t) 0),\ 611 NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \ 612 0 \ 613 }; 614 615 /* The only function we needed to duplicate 12 times was the 'open' 616 function, which will do basically the same thing except set a different 617 optimization group. So, we put the common stuff into a worker function, 618 and set up another macro to stamp out the 12 open functions:*/ 619 #define DEFINE_LMBCS_OPEN(n) \ 620 static void \ 621 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \ 622 { _LMBCSOpenWorker(_this, pArgs, err, n); } 623 624 625 626 /* Here's the open worker & the common close function */ 627 static void 628 _LMBCSOpenWorker(UConverter* _this, 629 UConverterLoadArgs *pArgs, 630 UErrorCode* err, 631 ulmbcs_byte_t OptGroup) 632 { 633 UConverterDataLMBCS * extraInfo = _this->extraInfo = 634 (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS)); 635 if(extraInfo != NULL) 636 { 637 UConverterNamePieces stackPieces; 638 UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) }; 639 ulmbcs_byte_t i; 640 641 uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS)); 642 643 stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable; 644 645 for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++) 646 { 647 if(OptGroupByteToCPName[i] != NULL) { 648 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err); 649 } 650 } 651 652 if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) { 653 _LMBCSClose(_this); 654 return; 655 } 656 extraInfo->OptGroup = OptGroup; 657 extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale); 658 } 659 else 660 { 661 *err = U_MEMORY_ALLOCATION_ERROR; 662 } 663 } 664 665 static void 666 _LMBCSClose(UConverter * _this) 667 { 668 if (_this->extraInfo != NULL) 669 { 670 ulmbcs_byte_t Ix; 671 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo; 672 673 for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++) 674 { 675 if (extraInfo->OptGrpConverter[Ix] != NULL) 676 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]); 677 } 678 if (!_this->isExtraLocal) { 679 uprv_free (_this->extraInfo); 680 _this->extraInfo = NULL; 681 } 682 } 683 } 684 685 typedef struct LMBCSClone { 686 UConverter cnv; 687 UConverterDataLMBCS lmbcs; 688 } LMBCSClone; 689 690 static UConverter * 691 _LMBCSSafeClone(const UConverter *cnv, 692 void *stackBuffer, 693 int32_t *pBufferSize, 694 UErrorCode *status) { 695 LMBCSClone *newLMBCS; 696 UConverterDataLMBCS *extraInfo; 697 int32_t i; 698 699 if(*pBufferSize<=0) { 700 *pBufferSize=(int32_t)sizeof(LMBCSClone); 701 return NULL; 702 } 703 704 extraInfo=(UConverterDataLMBCS *)cnv->extraInfo; 705 newLMBCS=(LMBCSClone *)stackBuffer; 706 707 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */ 708 709 uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS)); 710 711 /* share the subconverters */ 712 for(i = 0; i <= ULMBCS_GRP_LAST; ++i) { 713 if(extraInfo->OptGrpConverter[i] != NULL) { 714 ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]); 715 } 716 } 717 718 newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs; 719 newLMBCS->cnv.isExtraLocal = TRUE; 720 return &newLMBCS->cnv; 721 } 722 723 /* 724 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117) 725 * which added all code points except for U+F6xx 726 * because those cannot be represented in the Unicode group. 727 * However, it turns out that windows-950 has roundtrips for all of U+F6xx 728 * which means that LMBCS can convert all Unicode code points after all. 729 * We now simply use ucnv_getCompleteUnicodeSet(). 730 * 731 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216) 732 */ 733 734 /* 735 Here's the basic helper function that we use when converting from 736 Unicode to LMBCS, and we suspect that a Unicode character will fit into 737 one of the 12 groups. The return value is the number of bytes written 738 starting at pStartLMBCS (if any). 739 */ 740 741 static size_t 742 LMBCSConversionWorker ( 743 UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */ 744 ulmbcs_byte_t group, /* The group to try */ 745 ulmbcs_byte_t * pStartLMBCS, /* where to put the results */ 746 UChar * pUniChar, /* The input unicode character */ 747 ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */ 748 UBool * groups_tried /* output: track any unsuccessful groups */ 749 ) 750 { 751 ulmbcs_byte_t * pLMBCS = pStartLMBCS; 752 UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group]; 753 754 int bytesConverted; 755 uint32_t value; 756 ulmbcs_byte_t firstByte; 757 758 U_ASSERT(xcnv); 759 U_ASSERT(group<ULMBCS_GRP_UNICODE); 760 761 bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE); 762 763 /* get the first result byte */ 764 if(bytesConverted > 0) { 765 firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8)); 766 } else { 767 /* most common failure mode is an unassigned character */ 768 groups_tried[group] = TRUE; 769 return 0; 770 } 771 772 *lastConverterIndex = group; 773 774 /* All initial byte values in lower ascii range should have been caught by now, 775 except with the exception group. 776 */ 777 U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT)); 778 779 /* use converted data: first write 0, 1 or two group bytes */ 780 if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group) 781 { 782 *pLMBCS++ = group; 783 if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START) 784 { 785 *pLMBCS++ = group; 786 } 787 } 788 789 /* don't emit control chars */ 790 if ( bytesConverted == 1 && firstByte < 0x20 ) 791 return 0; 792 793 794 /* then move over the converted data */ 795 switch(bytesConverted) 796 { 797 case 4: 798 *pLMBCS++ = (ulmbcs_byte_t)(value >> 24); 799 case 3: /*fall through*/ 800 *pLMBCS++ = (ulmbcs_byte_t)(value >> 16); 801 case 2: /*fall through*/ 802 *pLMBCS++ = (ulmbcs_byte_t)(value >> 8); 803 case 1: /*fall through*/ 804 *pLMBCS++ = (ulmbcs_byte_t)value; 805 default: 806 /* will never occur */ 807 break; 808 } 809 810 return (pLMBCS - pStartLMBCS); 811 } 812 813 814 /* This is a much simpler version of above, when we 815 know we are writing LMBCS using the Unicode group 816 */ 817 static size_t 818 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar) 819 { 820 /* encode into LMBCS Unicode range */ 821 uint8_t LowCh = (uint8_t)(uniChar & 0x00FF); 822 uint8_t HighCh = (uint8_t)(uniChar >> 8); 823 824 *pLMBCS++ = ULMBCS_GRP_UNICODE; 825 826 if (LowCh == 0) 827 { 828 *pLMBCS++ = ULMBCS_UNICOMPATZERO; 829 *pLMBCS++ = HighCh; 830 } 831 else 832 { 833 *pLMBCS++ = HighCh; 834 *pLMBCS++ = LowCh; 835 } 836 return ULMBCS_UNICODE_SIZE; 837 } 838 839 840 841 /* The main Unicode to LMBCS conversion function */ 842 static void 843 _LMBCSFromUnicode(UConverterFromUnicodeArgs* args, 844 UErrorCode* err) 845 { 846 ulmbcs_byte_t lastConverterIndex = 0; 847 UChar uniChar; 848 ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX]; 849 ulmbcs_byte_t * pLMBCS; 850 int32_t bytes_written; 851 UBool groups_tried[ULMBCS_GRP_LAST+1]; 852 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 853 int sourceIndex = 0; 854 855 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS) 856 If that succeeds, see if it will all fit into the target & copy it over 857 if it does. 858 859 We try conversions in the following order: 860 861 1. Single-byte ascii & special fixed control chars (&null) 862 2. Look up group in table & try that (could be 863 A) Unicode group 864 B) control group, 865 C) national encoding, 866 or ambiguous SBCS or MBCS group (on to step 4...) 867 868 3. If its ambiguous, try this order: 869 A) The optimization group 870 B) The locale group 871 C) The last group that succeeded with this string. 872 D) every other group that's relevent (single or double) 873 E) If its single-byte ambiguous, try the exceptions group 874 875 4. And as a grand fallback: Unicode 876 */ 877 878 /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 879 ulmbcs_byte_t OldConverterIndex = 0; 880 881 while (args->source < args->sourceLimit && !U_FAILURE(*err)) 882 { 883 /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 884 OldConverterIndex = extraInfo->localeConverterIndex; 885 886 if (args->target >= args->targetLimit) 887 { 888 *err = U_BUFFER_OVERFLOW_ERROR; 889 break; 890 } 891 uniChar = *(args->source); 892 bytes_written = 0; 893 pLMBCS = LMBCS; 894 895 /* check cases in rough order of how common they are, for speed */ 896 897 /* single byte matches: strategy 1 */ 898 /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 899 if((uniChar>=0x80) && (uniChar<=0xff) 900 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7) 901 &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8)) 902 { 903 extraInfo->localeConverterIndex = ULMBCS_GRP_L1; 904 } 905 if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) || 906 uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR || 907 uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE 908 ) 909 { 910 *pLMBCS++ = (ulmbcs_byte_t ) uniChar; 911 bytes_written = 1; 912 } 913 914 915 if (!bytes_written) 916 { 917 /* Check by UNICODE range (Strategy 2) */ 918 ulmbcs_byte_t group = FindLMBCSUniRange(uniChar); 919 920 if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */ 921 { 922 pLMBCS += LMBCSConvertUni(pLMBCS,uniChar); 923 924 bytes_written = (int32_t)(pLMBCS - LMBCS); 925 } 926 else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */ 927 { 928 /* Handle control characters here */ 929 if (uniChar <= ULMBCS_C0END) 930 { 931 *pLMBCS++ = ULMBCS_GRP_CTRL; 932 *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar); 933 } 934 else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET) 935 { 936 *pLMBCS++ = ULMBCS_GRP_CTRL; 937 *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF); 938 } 939 bytes_written = (int32_t)(pLMBCS - LMBCS); 940 } 941 else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */ 942 { 943 /* a specific converter has been identified - use it */ 944 bytes_written = (int32_t)LMBCSConversionWorker ( 945 extraInfo, group, pLMBCS, &uniChar, 946 &lastConverterIndex, groups_tried); 947 } 948 if (!bytes_written) /* the ambiguous group cases (Strategy 3) */ 949 { 950 uprv_memset(groups_tried, 0, sizeof(groups_tried)); 951 952 /* check for non-default optimization group (Strategy 3A )*/ 953 if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup))) 954 { 955 /*zhujin: upgrade, merge #39299 here (Lotus) */ 956 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/ 957 958 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START) 959 { 960 bytes_written = LMBCSConversionWorker (extraInfo, 961 ULMBCS_GRP_L1, pLMBCS, &uniChar, 962 &lastConverterIndex, groups_tried); 963 964 if(!bytes_written) 965 { 966 bytes_written = LMBCSConversionWorker (extraInfo, 967 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar, 968 &lastConverterIndex, groups_tried); 969 } 970 if(!bytes_written) 971 { 972 bytes_written = LMBCSConversionWorker (extraInfo, 973 extraInfo->localeConverterIndex, pLMBCS, &uniChar, 974 &lastConverterIndex, groups_tried); 975 } 976 } 977 else 978 { 979 bytes_written = LMBCSConversionWorker (extraInfo, 980 extraInfo->localeConverterIndex, pLMBCS, &uniChar, 981 &lastConverterIndex, groups_tried); 982 } 983 } 984 /* check for locale optimization group (Strategy 3B) */ 985 if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex))) 986 { 987 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 988 extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried); 989 } 990 /* check for last optimization group used for this string (Strategy 3C) */ 991 if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex))) 992 { 993 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 994 lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried); 995 } 996 if (!bytes_written) 997 { 998 /* just check every possible matching converter (Strategy 3D) */ 999 ulmbcs_byte_t grp_start; 1000 ulmbcs_byte_t grp_end; 1001 ulmbcs_byte_t grp_ix; 1002 grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS) 1003 ? ULMBCS_DOUBLEOPTGROUP_START 1004 : ULMBCS_GRP_L1); 1005 grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS) 1006 ? ULMBCS_GRP_LAST 1007 : ULMBCS_GRP_TH); 1008 if(group == ULMBCS_AMBIGUOUS_ALL) 1009 { 1010 grp_start = ULMBCS_GRP_L1; 1011 grp_end = ULMBCS_GRP_LAST; 1012 } 1013 for (grp_ix = grp_start; 1014 grp_ix <= grp_end && !bytes_written; 1015 grp_ix++) 1016 { 1017 if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix]) 1018 { 1019 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 1020 grp_ix, pLMBCS, &uniChar, 1021 &lastConverterIndex, groups_tried); 1022 } 1023 } 1024 /* a final conversion fallback to the exceptions group if its likely 1025 to be single byte (Strategy 3E) */ 1026 if (!bytes_written && grp_start == ULMBCS_GRP_L1) 1027 { 1028 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 1029 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar, 1030 &lastConverterIndex, groups_tried); 1031 } 1032 } 1033 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/ 1034 if (!bytes_written) 1035 { 1036 1037 pLMBCS += LMBCSConvertUni(pLMBCS, uniChar); 1038 bytes_written = (int32_t)(pLMBCS - LMBCS); 1039 } 1040 } 1041 } 1042 1043 /* we have a translation. increment source and write as much as posible to target */ 1044 args->source++; 1045 pLMBCS = LMBCS; 1046 while (args->target < args->targetLimit && bytes_written--) 1047 { 1048 *(args->target)++ = *pLMBCS++; 1049 if (args->offsets) 1050 { 1051 *(args->offsets)++ = sourceIndex; 1052 } 1053 } 1054 sourceIndex++; 1055 if (bytes_written > 0) 1056 { 1057 /* write any bytes that didn't fit in target to the error buffer, 1058 common code will move this to target if we get called back with 1059 enough target room 1060 */ 1061 uint8_t * pErrorBuffer = args->converter->charErrorBuffer; 1062 *err = U_BUFFER_OVERFLOW_ERROR; 1063 args->converter->charErrorBufferLength = (int8_t)bytes_written; 1064 while (bytes_written--) 1065 { 1066 *pErrorBuffer++ = *pLMBCS++; 1067 } 1068 } 1069 /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 1070 extraInfo->localeConverterIndex = OldConverterIndex; 1071 } 1072 } 1073 1074 1075 /* Now, the Unicode from LMBCS section */ 1076 1077 1078 /* A function to call when we are looking at the Unicode group byte in LMBCS */ 1079 static UChar 1080 GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */ 1081 { 1082 uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/ 1083 uint8_t LowCh = *(*ppLMBCSin)++; 1084 1085 if (HighCh == ULMBCS_UNICOMPATZERO ) 1086 { 1087 HighCh = LowCh; 1088 LowCh = 0; /* zero-byte in LSB special character */ 1089 } 1090 return (UChar)((HighCh << 8) | LowCh); 1091 } 1092 1093 1094 1095 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index' 1096 bytes left in source up to sourceLimit.Errors appropriately if not. 1097 If we reach the limit, then update the source pointer to there to consume 1098 all input as required by ICU converter semantics. 1099 */ 1100 1101 #define CHECK_SOURCE_LIMIT(index) \ 1102 if (args->source+index > args->sourceLimit){\ 1103 *err = U_TRUNCATED_CHAR_FOUND;\ 1104 args->source = args->sourceLimit;\ 1105 return 0xffff;} 1106 1107 /* Return the Unicode representation for the current LMBCS character */ 1108 1109 static UChar32 1110 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args, 1111 UErrorCode* err) 1112 { 1113 UChar32 uniChar = 0; /* an output UNICODE char */ 1114 ulmbcs_byte_t CurByte; /* A byte from the input stream */ 1115 1116 /* error check */ 1117 if (args->source >= args->sourceLimit) 1118 { 1119 *err = U_ILLEGAL_ARGUMENT_ERROR; 1120 return 0xffff; 1121 } 1122 /* Grab first byte & save address for error recovery */ 1123 CurByte = *((ulmbcs_byte_t *) (args->source++)); 1124 1125 /* 1126 * at entry of each if clause: 1127 * 1. 'CurByte' points at the first byte of a LMBCS character 1128 * 2. '*source'points to the next byte of the source stream after 'CurByte' 1129 * 1130 * the job of each if clause is: 1131 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte) 1132 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately 1133 */ 1134 1135 /* First lets check the simple fixed values. */ 1136 1137 if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */ 1138 || (CurByte == 0) 1139 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR 1140 || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE) 1141 { 1142 uniChar = CurByte; 1143 } 1144 else 1145 { 1146 UConverterDataLMBCS * extraInfo; 1147 ulmbcs_byte_t group; 1148 UConverterSharedData *cnv; 1149 1150 if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */ 1151 { 1152 ulmbcs_byte_t C0C1byte; 1153 CHECK_SOURCE_LIMIT(1); 1154 C0C1byte = *(args->source)++; 1155 uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte; 1156 } 1157 else 1158 if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */ 1159 { 1160 CHECK_SOURCE_LIMIT(2); 1161 1162 /* don't check for error indicators fffe/ffff below */ 1163 return GetUniFromLMBCSUni(&(args->source)); 1164 } 1165 else if (CurByte <= ULMBCS_CTRLOFFSET) 1166 { 1167 group = CurByte; /* group byte is in the source */ 1168 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 1169 if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL) 1170 { 1171 /* this is not a valid group byte - no converter*/ 1172 *err = U_INVALID_CHAR_FOUND; 1173 } 1174 else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */ 1175 { 1176 1177 CHECK_SOURCE_LIMIT(2); 1178 1179 /* check for LMBCS doubled-group-byte case */ 1180 if (*args->source == group) { 1181 /* single byte */ 1182 ++args->source; 1183 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE); 1184 ++args->source; 1185 } else { 1186 /* double byte */ 1187 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE); 1188 args->source += 2; 1189 } 1190 } 1191 else { /* single byte conversion */ 1192 CHECK_SOURCE_LIMIT(1); 1193 CurByte = *(args->source)++; 1194 1195 if (CurByte >= ULMBCS_C1START) 1196 { 1197 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte); 1198 } 1199 else 1200 { 1201 /* The non-optimizable oddballs where there is an explicit byte 1202 * AND the second byte is not in the upper ascii range 1203 */ 1204 char bytes[2]; 1205 1206 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 1207 cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT]; 1208 1209 /* Lookup value must include opt group */ 1210 bytes[0] = group; 1211 bytes[1] = CurByte; 1212 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE); 1213 } 1214 } 1215 } 1216 else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */ 1217 { 1218 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 1219 group = extraInfo->OptGroup; 1220 cnv = extraInfo->OptGrpConverter[group]; 1221 if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */ 1222 { 1223 if (!ucnv_MBCSIsLeadByte(cnv, CurByte)) 1224 { 1225 CHECK_SOURCE_LIMIT(0); 1226 1227 /* let the MBCS conversion consume CurByte again */ 1228 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE); 1229 } 1230 else 1231 { 1232 CHECK_SOURCE_LIMIT(1); 1233 /* let the MBCS conversion consume CurByte again */ 1234 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE); 1235 ++args->source; 1236 } 1237 } 1238 else /* single byte conversion */ 1239 { 1240 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte); 1241 } 1242 } 1243 } 1244 return uniChar; 1245 } 1246 1247 1248 /* The exported function that converts lmbcs to one or more 1249 UChars - currently UTF-16 1250 */ 1251 static void 1252 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args, 1253 UErrorCode* err) 1254 { 1255 char LMBCS [ULMBCS_CHARSIZE_MAX]; 1256 UChar uniChar; /* one output UNICODE char */ 1257 const char * saveSource; /* beginning of current code point */ 1258 const char * pStartLMBCS = args->source; /* beginning of whole string */ 1259 const char * errSource = NULL; /* pointer to actual input in case an error occurs */ 1260 int8_t savebytes = 0; 1261 1262 /* Process from source to limit, or until error */ 1263 while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target) 1264 { 1265 saveSource = args->source; /* beginning of current code point */ 1266 1267 if (args->converter->toULength) /* reassemble char from previous call */ 1268 { 1269 const char *saveSourceLimit; 1270 size_t size_old = args->converter->toULength; 1271 1272 /* limit from source is either remainder of temp buffer, or user limit on source */ 1273 size_t size_new_maybe_1 = sizeof(LMBCS) - size_old; 1274 size_t size_new_maybe_2 = args->sourceLimit - args->source; 1275 size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2; 1276 1277 1278 uprv_memcpy(LMBCS, args->converter->toUBytes, size_old); 1279 uprv_memcpy(LMBCS + size_old, args->source, size_new); 1280 saveSourceLimit = args->sourceLimit; 1281 args->source = errSource = LMBCS; 1282 args->sourceLimit = LMBCS+size_old+size_new; 1283 savebytes = (int8_t)(size_old+size_new); 1284 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err); 1285 args->source = saveSource + ((args->source - LMBCS) - size_old); 1286 args->sourceLimit = saveSourceLimit; 1287 1288 if (*err == U_TRUNCATED_CHAR_FOUND) 1289 { 1290 /* evil special case: source buffers so small a char spans more than 2 buffers */ 1291 args->converter->toULength = savebytes; 1292 uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes); 1293 args->source = args->sourceLimit; 1294 *err = U_ZERO_ERROR; 1295 return; 1296 } 1297 else 1298 { 1299 /* clear the partial-char marker */ 1300 args->converter->toULength = 0; 1301 } 1302 } 1303 else 1304 { 1305 errSource = saveSource; 1306 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err); 1307 savebytes = (int8_t)(args->source - saveSource); 1308 } 1309 if (U_SUCCESS(*err)) 1310 { 1311 if (uniChar < 0xfffe) 1312 { 1313 *(args->target)++ = uniChar; 1314 if(args->offsets) 1315 { 1316 *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS); 1317 } 1318 } 1319 else if (uniChar == 0xfffe) 1320 { 1321 *err = U_INVALID_CHAR_FOUND; 1322 } 1323 else /* if (uniChar == 0xffff) */ 1324 { 1325 *err = U_ILLEGAL_CHAR_FOUND; 1326 } 1327 } 1328 } 1329 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */ 1330 if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target) 1331 { 1332 *err = U_BUFFER_OVERFLOW_ERROR; 1333 } 1334 else if (U_FAILURE(*err)) 1335 { 1336 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */ 1337 args->converter->toULength = savebytes; 1338 if (savebytes > 0) { 1339 uprv_memcpy(args->converter->toUBytes, errSource, savebytes); 1340 } 1341 if (*err == U_TRUNCATED_CHAR_FOUND) { 1342 *err = U_ZERO_ERROR; 1343 } 1344 } 1345 } 1346 1347 /* And now, the macroized declarations of data & functions: */ 1348 DEFINE_LMBCS_OPEN(1) 1349 DEFINE_LMBCS_OPEN(2) 1350 DEFINE_LMBCS_OPEN(3) 1351 DEFINE_LMBCS_OPEN(4) 1352 DEFINE_LMBCS_OPEN(5) 1353 DEFINE_LMBCS_OPEN(6) 1354 DEFINE_LMBCS_OPEN(8) 1355 DEFINE_LMBCS_OPEN(11) 1356 DEFINE_LMBCS_OPEN(16) 1357 DEFINE_LMBCS_OPEN(17) 1358 DEFINE_LMBCS_OPEN(18) 1359 DEFINE_LMBCS_OPEN(19) 1360 1361 1362 DECLARE_LMBCS_DATA(1) 1363 DECLARE_LMBCS_DATA(2) 1364 DECLARE_LMBCS_DATA(3) 1365 DECLARE_LMBCS_DATA(4) 1366 DECLARE_LMBCS_DATA(5) 1367 DECLARE_LMBCS_DATA(6) 1368 DECLARE_LMBCS_DATA(8) 1369 DECLARE_LMBCS_DATA(11) 1370 DECLARE_LMBCS_DATA(16) 1371 DECLARE_LMBCS_DATA(17) 1372 DECLARE_LMBCS_DATA(18) 1373 DECLARE_LMBCS_DATA(19) 1374 1375 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ 1376