Home | History | Annotate | Download | only in Support
      1 //===--- YAMLParser.cpp - Simple YAML parser ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements a YAML parser.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Support/YAMLParser.h"
     15 #include "llvm/ADT/SmallString.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/ADT/StringExtras.h"
     18 #include "llvm/ADT/Twine.h"
     19 #include "llvm/ADT/ilist.h"
     20 #include "llvm/ADT/ilist_node.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/MemoryBuffer.h"
     23 #include "llvm/Support/SourceMgr.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 
     26 using namespace llvm;
     27 using namespace yaml;
     28 
     29 enum UnicodeEncodingForm {
     30   UEF_UTF32_LE, ///< UTF-32 Little Endian
     31   UEF_UTF32_BE, ///< UTF-32 Big Endian
     32   UEF_UTF16_LE, ///< UTF-16 Little Endian
     33   UEF_UTF16_BE, ///< UTF-16 Big Endian
     34   UEF_UTF8,     ///< UTF-8 or ascii.
     35   UEF_Unknown   ///< Not a valid Unicode encoding.
     36 };
     37 
     38 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
     39 ///                it exists. Length is in {0, 2, 3, 4}.
     40 typedef std::pair<UnicodeEncodingForm, unsigned> EncodingInfo;
     41 
     42 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
     43 ///                      encoding form of \a Input.
     44 ///
     45 /// @param Input A string of length 0 or more.
     46 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
     47 ///          and how long the byte order mark is if one exists.
     48 static EncodingInfo getUnicodeEncoding(StringRef Input) {
     49   if (Input.size() == 0)
     50     return std::make_pair(UEF_Unknown, 0);
     51 
     52   switch (uint8_t(Input[0])) {
     53   case 0x00:
     54     if (Input.size() >= 4) {
     55       if (  Input[1] == 0
     56          && uint8_t(Input[2]) == 0xFE
     57          && uint8_t(Input[3]) == 0xFF)
     58         return std::make_pair(UEF_UTF32_BE, 4);
     59       if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
     60         return std::make_pair(UEF_UTF32_BE, 0);
     61     }
     62 
     63     if (Input.size() >= 2 && Input[1] != 0)
     64       return std::make_pair(UEF_UTF16_BE, 0);
     65     return std::make_pair(UEF_Unknown, 0);
     66   case 0xFF:
     67     if (  Input.size() >= 4
     68        && uint8_t(Input[1]) == 0xFE
     69        && Input[2] == 0
     70        && Input[3] == 0)
     71       return std::make_pair(UEF_UTF32_LE, 4);
     72 
     73     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
     74       return std::make_pair(UEF_UTF16_LE, 2);
     75     return std::make_pair(UEF_Unknown, 0);
     76   case 0xFE:
     77     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
     78       return std::make_pair(UEF_UTF16_BE, 2);
     79     return std::make_pair(UEF_Unknown, 0);
     80   case 0xEF:
     81     if (  Input.size() >= 3
     82        && uint8_t(Input[1]) == 0xBB
     83        && uint8_t(Input[2]) == 0xBF)
     84       return std::make_pair(UEF_UTF8, 3);
     85     return std::make_pair(UEF_Unknown, 0);
     86   }
     87 
     88   // It could still be utf-32 or utf-16.
     89   if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
     90     return std::make_pair(UEF_UTF32_LE, 0);
     91 
     92   if (Input.size() >= 2 && Input[1] == 0)
     93     return std::make_pair(UEF_UTF16_LE, 0);
     94 
     95   return std::make_pair(UEF_UTF8, 0);
     96 }
     97 
     98 namespace llvm {
     99 namespace yaml {
    100 /// Pin the vtables to this file.
    101 void Node::anchor() {}
    102 void NullNode::anchor() {}
    103 void ScalarNode::anchor() {}
    104 void KeyValueNode::anchor() {}
    105 void MappingNode::anchor() {}
    106 void SequenceNode::anchor() {}
    107 void AliasNode::anchor() {}
    108 
    109 /// Token - A single YAML token.
    110 struct Token : ilist_node<Token> {
    111   enum TokenKind {
    112     TK_Error, // Uninitialized token.
    113     TK_StreamStart,
    114     TK_StreamEnd,
    115     TK_VersionDirective,
    116     TK_TagDirective,
    117     TK_DocumentStart,
    118     TK_DocumentEnd,
    119     TK_BlockEntry,
    120     TK_BlockEnd,
    121     TK_BlockSequenceStart,
    122     TK_BlockMappingStart,
    123     TK_FlowEntry,
    124     TK_FlowSequenceStart,
    125     TK_FlowSequenceEnd,
    126     TK_FlowMappingStart,
    127     TK_FlowMappingEnd,
    128     TK_Key,
    129     TK_Value,
    130     TK_Scalar,
    131     TK_Alias,
    132     TK_Anchor,
    133     TK_Tag
    134   } Kind;
    135 
    136   /// A string of length 0 or more whose begin() points to the logical location
    137   /// of the token in the input.
    138   StringRef Range;
    139 
    140   Token() : Kind(TK_Error) {}
    141 };
    142 }
    143 }
    144 
    145 namespace llvm {
    146 template<>
    147 struct ilist_sentinel_traits<Token> {
    148   Token *createSentinel() const {
    149     return &Sentinel;
    150   }
    151   static void destroySentinel(Token*) {}
    152 
    153   Token *provideInitialHead() const { return createSentinel(); }
    154   Token *ensureHead(Token*) const { return createSentinel(); }
    155   static void noteHead(Token*, Token*) {}
    156 
    157 private:
    158   mutable Token Sentinel;
    159 };
    160 
    161 template<>
    162 struct ilist_node_traits<Token> {
    163   Token *createNode(const Token &V) {
    164     return new (Alloc.Allocate<Token>()) Token(V);
    165   }
    166   static void deleteNode(Token *V) {}
    167 
    168   void addNodeToList(Token *) {}
    169   void removeNodeFromList(Token *) {}
    170   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
    171                              ilist_iterator<Token> /*first*/,
    172                              ilist_iterator<Token> /*last*/) {}
    173 
    174   BumpPtrAllocator Alloc;
    175 };
    176 }
    177 
    178 typedef ilist<Token> TokenQueueT;
    179 
    180 namespace {
    181 /// @brief This struct is used to track simple keys.
    182 ///
    183 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
    184 /// which could legally be the start of a simple key. When peekNext is called,
    185 /// if the Token To be returned is referenced by a SimpleKey, we continue
    186 /// tokenizing until that potential simple key has either been found to not be
    187 /// a simple key (we moved on to the next line or went further than 1024 chars).
    188 /// Or when we run into a Value, and then insert a Key token (and possibly
    189 /// others) before the SimpleKey's Tok.
    190 struct SimpleKey {
    191   TokenQueueT::iterator Tok;
    192   unsigned Column;
    193   unsigned Line;
    194   unsigned FlowLevel;
    195   bool IsRequired;
    196 
    197   bool operator ==(const SimpleKey &Other) {
    198     return Tok == Other.Tok;
    199   }
    200 };
    201 }
    202 
    203 /// @brief The Unicode scalar value of a UTF-8 minimal well-formed code unit
    204 ///        subsequence and the subsequence's length in code units (uint8_t).
    205 ///        A length of 0 represents an error.
    206 typedef std::pair<uint32_t, unsigned> UTF8Decoded;
    207 
    208 static UTF8Decoded decodeUTF8(StringRef Range) {
    209   StringRef::iterator Position= Range.begin();
    210   StringRef::iterator End = Range.end();
    211   // 1 byte: [0x00, 0x7f]
    212   // Bit pattern: 0xxxxxxx
    213   if ((*Position & 0x80) == 0) {
    214      return std::make_pair(*Position, 1);
    215   }
    216   // 2 bytes: [0x80, 0x7ff]
    217   // Bit pattern: 110xxxxx 10xxxxxx
    218   if (Position + 1 != End &&
    219       ((*Position & 0xE0) == 0xC0) &&
    220       ((*(Position + 1) & 0xC0) == 0x80)) {
    221     uint32_t codepoint = ((*Position & 0x1F) << 6) |
    222                           (*(Position + 1) & 0x3F);
    223     if (codepoint >= 0x80)
    224       return std::make_pair(codepoint, 2);
    225   }
    226   // 3 bytes: [0x8000, 0xffff]
    227   // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
    228   if (Position + 2 != End &&
    229       ((*Position & 0xF0) == 0xE0) &&
    230       ((*(Position + 1) & 0xC0) == 0x80) &&
    231       ((*(Position + 2) & 0xC0) == 0x80)) {
    232     uint32_t codepoint = ((*Position & 0x0F) << 12) |
    233                          ((*(Position + 1) & 0x3F) << 6) |
    234                           (*(Position + 2) & 0x3F);
    235     // Codepoints between 0xD800 and 0xDFFF are invalid, as
    236     // they are high / low surrogate halves used by UTF-16.
    237     if (codepoint >= 0x800 &&
    238         (codepoint < 0xD800 || codepoint > 0xDFFF))
    239       return std::make_pair(codepoint, 3);
    240   }
    241   // 4 bytes: [0x10000, 0x10FFFF]
    242   // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
    243   if (Position + 3 != End &&
    244       ((*Position & 0xF8) == 0xF0) &&
    245       ((*(Position + 1) & 0xC0) == 0x80) &&
    246       ((*(Position + 2) & 0xC0) == 0x80) &&
    247       ((*(Position + 3) & 0xC0) == 0x80)) {
    248     uint32_t codepoint = ((*Position & 0x07) << 18) |
    249                          ((*(Position + 1) & 0x3F) << 12) |
    250                          ((*(Position + 2) & 0x3F) << 6) |
    251                           (*(Position + 3) & 0x3F);
    252     if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
    253       return std::make_pair(codepoint, 4);
    254   }
    255   return std::make_pair(0, 0);
    256 }
    257 
    258 namespace llvm {
    259 namespace yaml {
    260 /// @brief Scans YAML tokens from a MemoryBuffer.
    261 class Scanner {
    262 public:
    263   Scanner(StringRef Input, SourceMgr &SM);
    264   Scanner(MemoryBufferRef Buffer, SourceMgr &SM_);
    265 
    266   /// @brief Parse the next token and return it without popping it.
    267   Token &peekNext();
    268 
    269   /// @brief Parse the next token and pop it from the queue.
    270   Token getNext();
    271 
    272   void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
    273                   ArrayRef<SMRange> Ranges = None) {
    274     SM.PrintMessage(Loc, Kind, Message, Ranges);
    275   }
    276 
    277   void setError(const Twine &Message, StringRef::iterator Position) {
    278     if (Current >= End)
    279       Current = End - 1;
    280 
    281     // Don't print out more errors after the first one we encounter. The rest
    282     // are just the result of the first, and have no meaning.
    283     if (!Failed)
    284       printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
    285     Failed = true;
    286   }
    287 
    288   void setError(const Twine &Message) {
    289     setError(Message, Current);
    290   }
    291 
    292   /// @brief Returns true if an error occurred while parsing.
    293   bool failed() {
    294     return Failed;
    295   }
    296 
    297 private:
    298   void init(MemoryBufferRef Buffer);
    299 
    300   StringRef currentInput() {
    301     return StringRef(Current, End - Current);
    302   }
    303 
    304   /// @brief Decode a UTF-8 minimal well-formed code unit subsequence starting
    305   ///        at \a Position.
    306   ///
    307   /// If the UTF-8 code units starting at Position do not form a well-formed
    308   /// code unit subsequence, then the Unicode scalar value is 0, and the length
    309   /// is 0.
    310   UTF8Decoded decodeUTF8(StringRef::iterator Position) {
    311     return ::decodeUTF8(StringRef(Position, End - Position));
    312   }
    313 
    314   // The following functions are based on the gramar rules in the YAML spec. The
    315   // style of the function names it meant to closely match how they are written
    316   // in the spec. The number within the [] is the number of the grammar rule in
    317   // the spec.
    318   //
    319   // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
    320   //
    321   // c-
    322   //   A production starting and ending with a special character.
    323   // b-
    324   //   A production matching a single line break.
    325   // nb-
    326   //   A production starting and ending with a non-break character.
    327   // s-
    328   //   A production starting and ending with a white space character.
    329   // ns-
    330   //   A production starting and ending with a non-space character.
    331   // l-
    332   //   A production matching complete line(s).
    333 
    334   /// @brief Skip a single nb-char[27] starting at Position.
    335   ///
    336   /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
    337   ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
    338   ///
    339   /// @returns The code unit after the nb-char, or Position if it's not an
    340   ///          nb-char.
    341   StringRef::iterator skip_nb_char(StringRef::iterator Position);
    342 
    343   /// @brief Skip a single b-break[28] starting at Position.
    344   ///
    345   /// A b-break is 0xD 0xA | 0xD | 0xA
    346   ///
    347   /// @returns The code unit after the b-break, or Position if it's not a
    348   ///          b-break.
    349   StringRef::iterator skip_b_break(StringRef::iterator Position);
    350 
    351   /// @brief Skip a single s-white[33] starting at Position.
    352   ///
    353   /// A s-white is 0x20 | 0x9
    354   ///
    355   /// @returns The code unit after the s-white, or Position if it's not a
    356   ///          s-white.
    357   StringRef::iterator skip_s_white(StringRef::iterator Position);
    358 
    359   /// @brief Skip a single ns-char[34] starting at Position.
    360   ///
    361   /// A ns-char is nb-char - s-white
    362   ///
    363   /// @returns The code unit after the ns-char, or Position if it's not a
    364   ///          ns-char.
    365   StringRef::iterator skip_ns_char(StringRef::iterator Position);
    366 
    367   typedef StringRef::iterator (Scanner::*SkipWhileFunc)(StringRef::iterator);
    368   /// @brief Skip minimal well-formed code unit subsequences until Func
    369   ///        returns its input.
    370   ///
    371   /// @returns The code unit after the last minimal well-formed code unit
    372   ///          subsequence that Func accepted.
    373   StringRef::iterator skip_while( SkipWhileFunc Func
    374                                 , StringRef::iterator Position);
    375 
    376   /// @brief Scan ns-uri-char[39]s starting at Cur.
    377   ///
    378   /// This updates Cur and Column while scanning.
    379   ///
    380   /// @returns A StringRef starting at Cur which covers the longest contiguous
    381   ///          sequence of ns-uri-char.
    382   StringRef scan_ns_uri_char();
    383 
    384   /// @brief Consume a minimal well-formed code unit subsequence starting at
    385   ///        \a Cur. Return false if it is not the same Unicode scalar value as
    386   ///        \a Expected. This updates \a Column.
    387   bool consume(uint32_t Expected);
    388 
    389   /// @brief Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
    390   void skip(uint32_t Distance);
    391 
    392   /// @brief Return true if the minimal well-formed code unit subsequence at
    393   ///        Pos is whitespace or a new line
    394   bool isBlankOrBreak(StringRef::iterator Position);
    395 
    396   /// @brief If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
    397   void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
    398                              , unsigned AtColumn
    399                              , bool IsRequired);
    400 
    401   /// @brief Remove simple keys that can no longer be valid simple keys.
    402   ///
    403   /// Invalid simple keys are not on the current line or are further than 1024
    404   /// columns back.
    405   void removeStaleSimpleKeyCandidates();
    406 
    407   /// @brief Remove all simple keys on FlowLevel \a Level.
    408   void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
    409 
    410   /// @brief Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
    411   ///        tokens if needed.
    412   bool unrollIndent(int ToColumn);
    413 
    414   /// @brief Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
    415   ///        if needed.
    416   bool rollIndent( int ToColumn
    417                  , Token::TokenKind Kind
    418                  , TokenQueueT::iterator InsertPoint);
    419 
    420   /// @brief Skip whitespace and comments until the start of the next token.
    421   void scanToNextToken();
    422 
    423   /// @brief Must be the first token generated.
    424   bool scanStreamStart();
    425 
    426   /// @brief Generate tokens needed to close out the stream.
    427   bool scanStreamEnd();
    428 
    429   /// @brief Scan a %BLAH directive.
    430   bool scanDirective();
    431 
    432   /// @brief Scan a ... or ---.
    433   bool scanDocumentIndicator(bool IsStart);
    434 
    435   /// @brief Scan a [ or { and generate the proper flow collection start token.
    436   bool scanFlowCollectionStart(bool IsSequence);
    437 
    438   /// @brief Scan a ] or } and generate the proper flow collection end token.
    439   bool scanFlowCollectionEnd(bool IsSequence);
    440 
    441   /// @brief Scan the , that separates entries in a flow collection.
    442   bool scanFlowEntry();
    443 
    444   /// @brief Scan the - that starts block sequence entries.
    445   bool scanBlockEntry();
    446 
    447   /// @brief Scan an explicit ? indicating a key.
    448   bool scanKey();
    449 
    450   /// @brief Scan an explicit : indicating a value.
    451   bool scanValue();
    452 
    453   /// @brief Scan a quoted scalar.
    454   bool scanFlowScalar(bool IsDoubleQuoted);
    455 
    456   /// @brief Scan an unquoted scalar.
    457   bool scanPlainScalar();
    458 
    459   /// @brief Scan an Alias or Anchor starting with * or &.
    460   bool scanAliasOrAnchor(bool IsAlias);
    461 
    462   /// @brief Scan a block scalar starting with | or >.
    463   bool scanBlockScalar(bool IsLiteral);
    464 
    465   /// @brief Scan a tag of the form !stuff.
    466   bool scanTag();
    467 
    468   /// @brief Dispatch to the next scanning function based on \a *Cur.
    469   bool fetchMoreTokens();
    470 
    471   /// @brief The SourceMgr used for diagnostics and buffer management.
    472   SourceMgr &SM;
    473 
    474   /// @brief The original input.
    475   MemoryBufferRef InputBuffer;
    476 
    477   /// @brief The current position of the scanner.
    478   StringRef::iterator Current;
    479 
    480   /// @brief The end of the input (one past the last character).
    481   StringRef::iterator End;
    482 
    483   /// @brief Current YAML indentation level in spaces.
    484   int Indent;
    485 
    486   /// @brief Current column number in Unicode code points.
    487   unsigned Column;
    488 
    489   /// @brief Current line number.
    490   unsigned Line;
    491 
    492   /// @brief How deep we are in flow style containers. 0 Means at block level.
    493   unsigned FlowLevel;
    494 
    495   /// @brief Are we at the start of the stream?
    496   bool IsStartOfStream;
    497 
    498   /// @brief Can the next token be the start of a simple key?
    499   bool IsSimpleKeyAllowed;
    500 
    501   /// @brief True if an error has occurred.
    502   bool Failed;
    503 
    504   /// @brief Queue of tokens. This is required to queue up tokens while looking
    505   ///        for the end of a simple key. And for cases where a single character
    506   ///        can produce multiple tokens (e.g. BlockEnd).
    507   TokenQueueT TokenQueue;
    508 
    509   /// @brief Indentation levels.
    510   SmallVector<int, 4> Indents;
    511 
    512   /// @brief Potential simple keys.
    513   SmallVector<SimpleKey, 4> SimpleKeys;
    514 };
    515 
    516 } // end namespace yaml
    517 } // end namespace llvm
    518 
    519 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
    520 static void encodeUTF8( uint32_t UnicodeScalarValue
    521                       , SmallVectorImpl<char> &Result) {
    522   if (UnicodeScalarValue <= 0x7F) {
    523     Result.push_back(UnicodeScalarValue & 0x7F);
    524   } else if (UnicodeScalarValue <= 0x7FF) {
    525     uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
    526     uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
    527     Result.push_back(FirstByte);
    528     Result.push_back(SecondByte);
    529   } else if (UnicodeScalarValue <= 0xFFFF) {
    530     uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
    531     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
    532     uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
    533     Result.push_back(FirstByte);
    534     Result.push_back(SecondByte);
    535     Result.push_back(ThirdByte);
    536   } else if (UnicodeScalarValue <= 0x10FFFF) {
    537     uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
    538     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
    539     uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
    540     uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
    541     Result.push_back(FirstByte);
    542     Result.push_back(SecondByte);
    543     Result.push_back(ThirdByte);
    544     Result.push_back(FourthByte);
    545   }
    546 }
    547 
    548 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
    549   SourceMgr SM;
    550   Scanner scanner(Input, SM);
    551   while (true) {
    552     Token T = scanner.getNext();
    553     switch (T.Kind) {
    554     case Token::TK_StreamStart:
    555       OS << "Stream-Start: ";
    556       break;
    557     case Token::TK_StreamEnd:
    558       OS << "Stream-End: ";
    559       break;
    560     case Token::TK_VersionDirective:
    561       OS << "Version-Directive: ";
    562       break;
    563     case Token::TK_TagDirective:
    564       OS << "Tag-Directive: ";
    565       break;
    566     case Token::TK_DocumentStart:
    567       OS << "Document-Start: ";
    568       break;
    569     case Token::TK_DocumentEnd:
    570       OS << "Document-End: ";
    571       break;
    572     case Token::TK_BlockEntry:
    573       OS << "Block-Entry: ";
    574       break;
    575     case Token::TK_BlockEnd:
    576       OS << "Block-End: ";
    577       break;
    578     case Token::TK_BlockSequenceStart:
    579       OS << "Block-Sequence-Start: ";
    580       break;
    581     case Token::TK_BlockMappingStart:
    582       OS << "Block-Mapping-Start: ";
    583       break;
    584     case Token::TK_FlowEntry:
    585       OS << "Flow-Entry: ";
    586       break;
    587     case Token::TK_FlowSequenceStart:
    588       OS << "Flow-Sequence-Start: ";
    589       break;
    590     case Token::TK_FlowSequenceEnd:
    591       OS << "Flow-Sequence-End: ";
    592       break;
    593     case Token::TK_FlowMappingStart:
    594       OS << "Flow-Mapping-Start: ";
    595       break;
    596     case Token::TK_FlowMappingEnd:
    597       OS << "Flow-Mapping-End: ";
    598       break;
    599     case Token::TK_Key:
    600       OS << "Key: ";
    601       break;
    602     case Token::TK_Value:
    603       OS << "Value: ";
    604       break;
    605     case Token::TK_Scalar:
    606       OS << "Scalar: ";
    607       break;
    608     case Token::TK_Alias:
    609       OS << "Alias: ";
    610       break;
    611     case Token::TK_Anchor:
    612       OS << "Anchor: ";
    613       break;
    614     case Token::TK_Tag:
    615       OS << "Tag: ";
    616       break;
    617     case Token::TK_Error:
    618       break;
    619     }
    620     OS << T.Range << "\n";
    621     if (T.Kind == Token::TK_StreamEnd)
    622       break;
    623     else if (T.Kind == Token::TK_Error)
    624       return false;
    625   }
    626   return true;
    627 }
    628 
    629 bool yaml::scanTokens(StringRef Input) {
    630   llvm::SourceMgr SM;
    631   llvm::yaml::Scanner scanner(Input, SM);
    632   for (;;) {
    633     llvm::yaml::Token T = scanner.getNext();
    634     if (T.Kind == Token::TK_StreamEnd)
    635       break;
    636     else if (T.Kind == Token::TK_Error)
    637       return false;
    638   }
    639   return true;
    640 }
    641 
    642 std::string yaml::escape(StringRef Input) {
    643   std::string EscapedInput;
    644   for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
    645     if (*i == '\\')
    646       EscapedInput += "\\\\";
    647     else if (*i == '"')
    648       EscapedInput += "\\\"";
    649     else if (*i == 0)
    650       EscapedInput += "\\0";
    651     else if (*i == 0x07)
    652       EscapedInput += "\\a";
    653     else if (*i == 0x08)
    654       EscapedInput += "\\b";
    655     else if (*i == 0x09)
    656       EscapedInput += "\\t";
    657     else if (*i == 0x0A)
    658       EscapedInput += "\\n";
    659     else if (*i == 0x0B)
    660       EscapedInput += "\\v";
    661     else if (*i == 0x0C)
    662       EscapedInput += "\\f";
    663     else if (*i == 0x0D)
    664       EscapedInput += "\\r";
    665     else if (*i == 0x1B)
    666       EscapedInput += "\\e";
    667     else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
    668       std::string HexStr = utohexstr(*i);
    669       EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
    670     } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
    671       UTF8Decoded UnicodeScalarValue
    672         = decodeUTF8(StringRef(i, Input.end() - i));
    673       if (UnicodeScalarValue.second == 0) {
    674         // Found invalid char.
    675         SmallString<4> Val;
    676         encodeUTF8(0xFFFD, Val);
    677         EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
    678         // FIXME: Error reporting.
    679         return EscapedInput;
    680       }
    681       if (UnicodeScalarValue.first == 0x85)
    682         EscapedInput += "\\N";
    683       else if (UnicodeScalarValue.first == 0xA0)
    684         EscapedInput += "\\_";
    685       else if (UnicodeScalarValue.first == 0x2028)
    686         EscapedInput += "\\L";
    687       else if (UnicodeScalarValue.first == 0x2029)
    688         EscapedInput += "\\P";
    689       else {
    690         std::string HexStr = utohexstr(UnicodeScalarValue.first);
    691         if (HexStr.size() <= 2)
    692           EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
    693         else if (HexStr.size() <= 4)
    694           EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
    695         else if (HexStr.size() <= 8)
    696           EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
    697       }
    698       i += UnicodeScalarValue.second - 1;
    699     } else
    700       EscapedInput.push_back(*i);
    701   }
    702   return EscapedInput;
    703 }
    704 
    705 Scanner::Scanner(StringRef Input, SourceMgr &sm) : SM(sm) {
    706   init(MemoryBufferRef(Input, "YAML"));
    707 }
    708 
    709 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_) : SM(SM_) {
    710   init(Buffer);
    711 }
    712 
    713 void Scanner::init(MemoryBufferRef Buffer) {
    714   InputBuffer = Buffer;
    715   Current = InputBuffer.getBufferStart();
    716   End = InputBuffer.getBufferEnd();
    717   Indent = -1;
    718   Column = 0;
    719   Line = 0;
    720   FlowLevel = 0;
    721   IsStartOfStream = true;
    722   IsSimpleKeyAllowed = true;
    723   Failed = false;
    724   std::unique_ptr<MemoryBuffer> InputBufferOwner =
    725       MemoryBuffer::getMemBuffer(Buffer);
    726   SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
    727 }
    728 
    729 Token &Scanner::peekNext() {
    730   // If the current token is a possible simple key, keep parsing until we
    731   // can confirm.
    732   bool NeedMore = false;
    733   while (true) {
    734     if (TokenQueue.empty() || NeedMore) {
    735       if (!fetchMoreTokens()) {
    736         TokenQueue.clear();
    737         TokenQueue.push_back(Token());
    738         return TokenQueue.front();
    739       }
    740     }
    741     assert(!TokenQueue.empty() &&
    742             "fetchMoreTokens lied about getting tokens!");
    743 
    744     removeStaleSimpleKeyCandidates();
    745     SimpleKey SK;
    746     SK.Tok = TokenQueue.front();
    747     if (std::find(SimpleKeys.begin(), SimpleKeys.end(), SK)
    748         == SimpleKeys.end())
    749       break;
    750     else
    751       NeedMore = true;
    752   }
    753   return TokenQueue.front();
    754 }
    755 
    756 Token Scanner::getNext() {
    757   Token Ret = peekNext();
    758   // TokenQueue can be empty if there was an error getting the next token.
    759   if (!TokenQueue.empty())
    760     TokenQueue.pop_front();
    761 
    762   // There cannot be any referenced Token's if the TokenQueue is empty. So do a
    763   // quick deallocation of them all.
    764   if (TokenQueue.empty()) {
    765     TokenQueue.Alloc.Reset();
    766   }
    767 
    768   return Ret;
    769 }
    770 
    771 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
    772   if (Position == End)
    773     return Position;
    774   // Check 7 bit c-printable - b-char.
    775   if (   *Position == 0x09
    776       || (*Position >= 0x20 && *Position <= 0x7E))
    777     return Position + 1;
    778 
    779   // Check for valid UTF-8.
    780   if (uint8_t(*Position) & 0x80) {
    781     UTF8Decoded u8d = decodeUTF8(Position);
    782     if (   u8d.second != 0
    783         && u8d.first != 0xFEFF
    784         && ( u8d.first == 0x85
    785           || ( u8d.first >= 0xA0
    786             && u8d.first <= 0xD7FF)
    787           || ( u8d.first >= 0xE000
    788             && u8d.first <= 0xFFFD)
    789           || ( u8d.first >= 0x10000
    790             && u8d.first <= 0x10FFFF)))
    791       return Position + u8d.second;
    792   }
    793   return Position;
    794 }
    795 
    796 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
    797   if (Position == End)
    798     return Position;
    799   if (*Position == 0x0D) {
    800     if (Position + 1 != End && *(Position + 1) == 0x0A)
    801       return Position + 2;
    802     return Position + 1;
    803   }
    804 
    805   if (*Position == 0x0A)
    806     return Position + 1;
    807   return Position;
    808 }
    809 
    810 
    811 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
    812   if (Position == End)
    813     return Position;
    814   if (*Position == ' ' || *Position == '\t')
    815     return Position + 1;
    816   return Position;
    817 }
    818 
    819 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
    820   if (Position == End)
    821     return Position;
    822   if (*Position == ' ' || *Position == '\t')
    823     return Position;
    824   return skip_nb_char(Position);
    825 }
    826 
    827 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
    828                                        , StringRef::iterator Position) {
    829   while (true) {
    830     StringRef::iterator i = (this->*Func)(Position);
    831     if (i == Position)
    832       break;
    833     Position = i;
    834   }
    835   return Position;
    836 }
    837 
    838 static bool is_ns_hex_digit(const char C) {
    839   return    (C >= '0' && C <= '9')
    840          || (C >= 'a' && C <= 'z')
    841          || (C >= 'A' && C <= 'Z');
    842 }
    843 
    844 static bool is_ns_word_char(const char C) {
    845   return    C == '-'
    846          || (C >= 'a' && C <= 'z')
    847          || (C >= 'A' && C <= 'Z');
    848 }
    849 
    850 StringRef Scanner::scan_ns_uri_char() {
    851   StringRef::iterator Start = Current;
    852   while (true) {
    853     if (Current == End)
    854       break;
    855     if ((   *Current == '%'
    856           && Current + 2 < End
    857           && is_ns_hex_digit(*(Current + 1))
    858           && is_ns_hex_digit(*(Current + 2)))
    859         || is_ns_word_char(*Current)
    860         || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
    861           != StringRef::npos) {
    862       ++Current;
    863       ++Column;
    864     } else
    865       break;
    866   }
    867   return StringRef(Start, Current - Start);
    868 }
    869 
    870 bool Scanner::consume(uint32_t Expected) {
    871   if (Expected >= 0x80)
    872     report_fatal_error("Not dealing with this yet");
    873   if (Current == End)
    874     return false;
    875   if (uint8_t(*Current) >= 0x80)
    876     report_fatal_error("Not dealing with this yet");
    877   if (uint8_t(*Current) == Expected) {
    878     ++Current;
    879     ++Column;
    880     return true;
    881   }
    882   return false;
    883 }
    884 
    885 void Scanner::skip(uint32_t Distance) {
    886   Current += Distance;
    887   Column += Distance;
    888   assert(Current <= End && "Skipped past the end");
    889 }
    890 
    891 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
    892   if (Position == End)
    893     return false;
    894   if (   *Position == ' ' || *Position == '\t'
    895       || *Position == '\r' || *Position == '\n')
    896     return true;
    897   return false;
    898 }
    899 
    900 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
    901                                     , unsigned AtColumn
    902                                     , bool IsRequired) {
    903   if (IsSimpleKeyAllowed) {
    904     SimpleKey SK;
    905     SK.Tok = Tok;
    906     SK.Line = Line;
    907     SK.Column = AtColumn;
    908     SK.IsRequired = IsRequired;
    909     SK.FlowLevel = FlowLevel;
    910     SimpleKeys.push_back(SK);
    911   }
    912 }
    913 
    914 void Scanner::removeStaleSimpleKeyCandidates() {
    915   for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
    916                                             i != SimpleKeys.end();) {
    917     if (i->Line != Line || i->Column + 1024 < Column) {
    918       if (i->IsRequired)
    919         setError( "Could not find expected : for simple key"
    920                 , i->Tok->Range.begin());
    921       i = SimpleKeys.erase(i);
    922     } else
    923       ++i;
    924   }
    925 }
    926 
    927 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
    928   if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
    929     SimpleKeys.pop_back();
    930 }
    931 
    932 bool Scanner::unrollIndent(int ToColumn) {
    933   Token T;
    934   // Indentation is ignored in flow.
    935   if (FlowLevel != 0)
    936     return true;
    937 
    938   while (Indent > ToColumn) {
    939     T.Kind = Token::TK_BlockEnd;
    940     T.Range = StringRef(Current, 1);
    941     TokenQueue.push_back(T);
    942     Indent = Indents.pop_back_val();
    943   }
    944 
    945   return true;
    946 }
    947 
    948 bool Scanner::rollIndent( int ToColumn
    949                         , Token::TokenKind Kind
    950                         , TokenQueueT::iterator InsertPoint) {
    951   if (FlowLevel)
    952     return true;
    953   if (Indent < ToColumn) {
    954     Indents.push_back(Indent);
    955     Indent = ToColumn;
    956 
    957     Token T;
    958     T.Kind = Kind;
    959     T.Range = StringRef(Current, 0);
    960     TokenQueue.insert(InsertPoint, T);
    961   }
    962   return true;
    963 }
    964 
    965 void Scanner::scanToNextToken() {
    966   while (true) {
    967     while (*Current == ' ' || *Current == '\t') {
    968       skip(1);
    969     }
    970 
    971     // Skip comment.
    972     if (*Current == '#') {
    973       while (true) {
    974         // This may skip more than one byte, thus Column is only incremented
    975         // for code points.
    976         StringRef::iterator i = skip_nb_char(Current);
    977         if (i == Current)
    978           break;
    979         Current = i;
    980         ++Column;
    981       }
    982     }
    983 
    984     // Skip EOL.
    985     StringRef::iterator i = skip_b_break(Current);
    986     if (i == Current)
    987       break;
    988     Current = i;
    989     ++Line;
    990     Column = 0;
    991     // New lines may start a simple key.
    992     if (!FlowLevel)
    993       IsSimpleKeyAllowed = true;
    994   }
    995 }
    996 
    997 bool Scanner::scanStreamStart() {
    998   IsStartOfStream = false;
    999 
   1000   EncodingInfo EI = getUnicodeEncoding(currentInput());
   1001 
   1002   Token T;
   1003   T.Kind = Token::TK_StreamStart;
   1004   T.Range = StringRef(Current, EI.second);
   1005   TokenQueue.push_back(T);
   1006   Current += EI.second;
   1007   return true;
   1008 }
   1009 
   1010 bool Scanner::scanStreamEnd() {
   1011   // Force an ending new line if one isn't present.
   1012   if (Column != 0) {
   1013     Column = 0;
   1014     ++Line;
   1015   }
   1016 
   1017   unrollIndent(-1);
   1018   SimpleKeys.clear();
   1019   IsSimpleKeyAllowed = false;
   1020 
   1021   Token T;
   1022   T.Kind = Token::TK_StreamEnd;
   1023   T.Range = StringRef(Current, 0);
   1024   TokenQueue.push_back(T);
   1025   return true;
   1026 }
   1027 
   1028 bool Scanner::scanDirective() {
   1029   // Reset the indentation level.
   1030   unrollIndent(-1);
   1031   SimpleKeys.clear();
   1032   IsSimpleKeyAllowed = false;
   1033 
   1034   StringRef::iterator Start = Current;
   1035   consume('%');
   1036   StringRef::iterator NameStart = Current;
   1037   Current = skip_while(&Scanner::skip_ns_char, Current);
   1038   StringRef Name(NameStart, Current - NameStart);
   1039   Current = skip_while(&Scanner::skip_s_white, Current);
   1040 
   1041   Token T;
   1042   if (Name == "YAML") {
   1043     Current = skip_while(&Scanner::skip_ns_char, Current);
   1044     T.Kind = Token::TK_VersionDirective;
   1045     T.Range = StringRef(Start, Current - Start);
   1046     TokenQueue.push_back(T);
   1047     return true;
   1048   } else if(Name == "TAG") {
   1049     Current = skip_while(&Scanner::skip_ns_char, Current);
   1050     Current = skip_while(&Scanner::skip_s_white, Current);
   1051     Current = skip_while(&Scanner::skip_ns_char, Current);
   1052     T.Kind = Token::TK_TagDirective;
   1053     T.Range = StringRef(Start, Current - Start);
   1054     TokenQueue.push_back(T);
   1055     return true;
   1056   }
   1057   return false;
   1058 }
   1059 
   1060 bool Scanner::scanDocumentIndicator(bool IsStart) {
   1061   unrollIndent(-1);
   1062   SimpleKeys.clear();
   1063   IsSimpleKeyAllowed = false;
   1064 
   1065   Token T;
   1066   T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
   1067   T.Range = StringRef(Current, 3);
   1068   skip(3);
   1069   TokenQueue.push_back(T);
   1070   return true;
   1071 }
   1072 
   1073 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
   1074   Token T;
   1075   T.Kind = IsSequence ? Token::TK_FlowSequenceStart
   1076                       : Token::TK_FlowMappingStart;
   1077   T.Range = StringRef(Current, 1);
   1078   skip(1);
   1079   TokenQueue.push_back(T);
   1080 
   1081   // [ and { may begin a simple key.
   1082   saveSimpleKeyCandidate(TokenQueue.back(), Column - 1, false);
   1083 
   1084   // And may also be followed by a simple key.
   1085   IsSimpleKeyAllowed = true;
   1086   ++FlowLevel;
   1087   return true;
   1088 }
   1089 
   1090 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
   1091   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1092   IsSimpleKeyAllowed = false;
   1093   Token T;
   1094   T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
   1095                       : Token::TK_FlowMappingEnd;
   1096   T.Range = StringRef(Current, 1);
   1097   skip(1);
   1098   TokenQueue.push_back(T);
   1099   if (FlowLevel)
   1100     --FlowLevel;
   1101   return true;
   1102 }
   1103 
   1104 bool Scanner::scanFlowEntry() {
   1105   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1106   IsSimpleKeyAllowed = true;
   1107   Token T;
   1108   T.Kind = Token::TK_FlowEntry;
   1109   T.Range = StringRef(Current, 1);
   1110   skip(1);
   1111   TokenQueue.push_back(T);
   1112   return true;
   1113 }
   1114 
   1115 bool Scanner::scanBlockEntry() {
   1116   rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
   1117   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1118   IsSimpleKeyAllowed = true;
   1119   Token T;
   1120   T.Kind = Token::TK_BlockEntry;
   1121   T.Range = StringRef(Current, 1);
   1122   skip(1);
   1123   TokenQueue.push_back(T);
   1124   return true;
   1125 }
   1126 
   1127 bool Scanner::scanKey() {
   1128   if (!FlowLevel)
   1129     rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
   1130 
   1131   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1132   IsSimpleKeyAllowed = !FlowLevel;
   1133 
   1134   Token T;
   1135   T.Kind = Token::TK_Key;
   1136   T.Range = StringRef(Current, 1);
   1137   skip(1);
   1138   TokenQueue.push_back(T);
   1139   return true;
   1140 }
   1141 
   1142 bool Scanner::scanValue() {
   1143   // If the previous token could have been a simple key, insert the key token
   1144   // into the token queue.
   1145   if (!SimpleKeys.empty()) {
   1146     SimpleKey SK = SimpleKeys.pop_back_val();
   1147     Token T;
   1148     T.Kind = Token::TK_Key;
   1149     T.Range = SK.Tok->Range;
   1150     TokenQueueT::iterator i, e;
   1151     for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
   1152       if (i == SK.Tok)
   1153         break;
   1154     }
   1155     assert(i != e && "SimpleKey not in token queue!");
   1156     i = TokenQueue.insert(i, T);
   1157 
   1158     // We may also need to add a Block-Mapping-Start token.
   1159     rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
   1160 
   1161     IsSimpleKeyAllowed = false;
   1162   } else {
   1163     if (!FlowLevel)
   1164       rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
   1165     IsSimpleKeyAllowed = !FlowLevel;
   1166   }
   1167 
   1168   Token T;
   1169   T.Kind = Token::TK_Value;
   1170   T.Range = StringRef(Current, 1);
   1171   skip(1);
   1172   TokenQueue.push_back(T);
   1173   return true;
   1174 }
   1175 
   1176 // Forbidding inlining improves performance by roughly 20%.
   1177 // FIXME: Remove once llvm optimizes this to the faster version without hints.
   1178 LLVM_ATTRIBUTE_NOINLINE static bool
   1179 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
   1180 
   1181 // Returns whether a character at 'Position' was escaped with a leading '\'.
   1182 // 'First' specifies the position of the first character in the string.
   1183 static bool wasEscaped(StringRef::iterator First,
   1184                        StringRef::iterator Position) {
   1185   assert(Position - 1 >= First);
   1186   StringRef::iterator I = Position - 1;
   1187   // We calculate the number of consecutive '\'s before the current position
   1188   // by iterating backwards through our string.
   1189   while (I >= First && *I == '\\') --I;
   1190   // (Position - 1 - I) now contains the number of '\'s before the current
   1191   // position. If it is odd, the character at 'Position' was escaped.
   1192   return (Position - 1 - I) % 2 == 1;
   1193 }
   1194 
   1195 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
   1196   StringRef::iterator Start = Current;
   1197   unsigned ColStart = Column;
   1198   if (IsDoubleQuoted) {
   1199     do {
   1200       ++Current;
   1201       while (Current != End && *Current != '"')
   1202         ++Current;
   1203       // Repeat until the previous character was not a '\' or was an escaped
   1204       // backslash.
   1205     } while (   Current != End
   1206              && *(Current - 1) == '\\'
   1207              && wasEscaped(Start + 1, Current));
   1208   } else {
   1209     skip(1);
   1210     while (true) {
   1211       // Skip a ' followed by another '.
   1212       if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
   1213         skip(2);
   1214         continue;
   1215       } else if (*Current == '\'')
   1216         break;
   1217       StringRef::iterator i = skip_nb_char(Current);
   1218       if (i == Current) {
   1219         i = skip_b_break(Current);
   1220         if (i == Current)
   1221           break;
   1222         Current = i;
   1223         Column = 0;
   1224         ++Line;
   1225       } else {
   1226         if (i == End)
   1227           break;
   1228         Current = i;
   1229         ++Column;
   1230       }
   1231     }
   1232   }
   1233 
   1234   if (Current == End) {
   1235     setError("Expected quote at end of scalar", Current);
   1236     return false;
   1237   }
   1238 
   1239   skip(1); // Skip ending quote.
   1240   Token T;
   1241   T.Kind = Token::TK_Scalar;
   1242   T.Range = StringRef(Start, Current - Start);
   1243   TokenQueue.push_back(T);
   1244 
   1245   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1246 
   1247   IsSimpleKeyAllowed = false;
   1248 
   1249   return true;
   1250 }
   1251 
   1252 bool Scanner::scanPlainScalar() {
   1253   StringRef::iterator Start = Current;
   1254   unsigned ColStart = Column;
   1255   unsigned LeadingBlanks = 0;
   1256   assert(Indent >= -1 && "Indent must be >= -1 !");
   1257   unsigned indent = static_cast<unsigned>(Indent + 1);
   1258   while (true) {
   1259     if (*Current == '#')
   1260       break;
   1261 
   1262     while (!isBlankOrBreak(Current)) {
   1263       if (  FlowLevel && *Current == ':'
   1264           && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
   1265         setError("Found unexpected ':' while scanning a plain scalar", Current);
   1266         return false;
   1267       }
   1268 
   1269       // Check for the end of the plain scalar.
   1270       if (  (*Current == ':' && isBlankOrBreak(Current + 1))
   1271           || (  FlowLevel
   1272           && (StringRef(Current, 1).find_first_of(",:?[]{}")
   1273               != StringRef::npos)))
   1274         break;
   1275 
   1276       StringRef::iterator i = skip_nb_char(Current);
   1277       if (i == Current)
   1278         break;
   1279       Current = i;
   1280       ++Column;
   1281     }
   1282 
   1283     // Are we at the end?
   1284     if (!isBlankOrBreak(Current))
   1285       break;
   1286 
   1287     // Eat blanks.
   1288     StringRef::iterator Tmp = Current;
   1289     while (isBlankOrBreak(Tmp)) {
   1290       StringRef::iterator i = skip_s_white(Tmp);
   1291       if (i != Tmp) {
   1292         if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
   1293           setError("Found invalid tab character in indentation", Tmp);
   1294           return false;
   1295         }
   1296         Tmp = i;
   1297         ++Column;
   1298       } else {
   1299         i = skip_b_break(Tmp);
   1300         if (!LeadingBlanks)
   1301           LeadingBlanks = 1;
   1302         Tmp = i;
   1303         Column = 0;
   1304         ++Line;
   1305       }
   1306     }
   1307 
   1308     if (!FlowLevel && Column < indent)
   1309       break;
   1310 
   1311     Current = Tmp;
   1312   }
   1313   if (Start == Current) {
   1314     setError("Got empty plain scalar", Start);
   1315     return false;
   1316   }
   1317   Token T;
   1318   T.Kind = Token::TK_Scalar;
   1319   T.Range = StringRef(Start, Current - Start);
   1320   TokenQueue.push_back(T);
   1321 
   1322   // Plain scalars can be simple keys.
   1323   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1324 
   1325   IsSimpleKeyAllowed = false;
   1326 
   1327   return true;
   1328 }
   1329 
   1330 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
   1331   StringRef::iterator Start = Current;
   1332   unsigned ColStart = Column;
   1333   skip(1);
   1334   while(true) {
   1335     if (   *Current == '[' || *Current == ']'
   1336         || *Current == '{' || *Current == '}'
   1337         || *Current == ','
   1338         || *Current == ':')
   1339       break;
   1340     StringRef::iterator i = skip_ns_char(Current);
   1341     if (i == Current)
   1342       break;
   1343     Current = i;
   1344     ++Column;
   1345   }
   1346 
   1347   if (Start == Current) {
   1348     setError("Got empty alias or anchor", Start);
   1349     return false;
   1350   }
   1351 
   1352   Token T;
   1353   T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
   1354   T.Range = StringRef(Start, Current - Start);
   1355   TokenQueue.push_back(T);
   1356 
   1357   // Alias and anchors can be simple keys.
   1358   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1359 
   1360   IsSimpleKeyAllowed = false;
   1361 
   1362   return true;
   1363 }
   1364 
   1365 bool Scanner::scanBlockScalar(bool IsLiteral) {
   1366   StringRef::iterator Start = Current;
   1367   skip(1); // Eat | or >
   1368   while(true) {
   1369     StringRef::iterator i = skip_nb_char(Current);
   1370     if (i == Current) {
   1371       if (Column == 0)
   1372         break;
   1373       i = skip_b_break(Current);
   1374       if (i != Current) {
   1375         // We got a line break.
   1376         Column = 0;
   1377         ++Line;
   1378         Current = i;
   1379         continue;
   1380       } else {
   1381         // There was an error, which should already have been printed out.
   1382         return false;
   1383       }
   1384     }
   1385     Current = i;
   1386     ++Column;
   1387   }
   1388 
   1389   if (Start == Current) {
   1390     setError("Got empty block scalar", Start);
   1391     return false;
   1392   }
   1393 
   1394   Token T;
   1395   T.Kind = Token::TK_Scalar;
   1396   T.Range = StringRef(Start, Current - Start);
   1397   TokenQueue.push_back(T);
   1398   return true;
   1399 }
   1400 
   1401 bool Scanner::scanTag() {
   1402   StringRef::iterator Start = Current;
   1403   unsigned ColStart = Column;
   1404   skip(1); // Eat !.
   1405   if (Current == End || isBlankOrBreak(Current)); // An empty tag.
   1406   else if (*Current == '<') {
   1407     skip(1);
   1408     scan_ns_uri_char();
   1409     if (!consume('>'))
   1410       return false;
   1411   } else {
   1412     // FIXME: Actually parse the c-ns-shorthand-tag rule.
   1413     Current = skip_while(&Scanner::skip_ns_char, Current);
   1414   }
   1415 
   1416   Token T;
   1417   T.Kind = Token::TK_Tag;
   1418   T.Range = StringRef(Start, Current - Start);
   1419   TokenQueue.push_back(T);
   1420 
   1421   // Tags can be simple keys.
   1422   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1423 
   1424   IsSimpleKeyAllowed = false;
   1425 
   1426   return true;
   1427 }
   1428 
   1429 bool Scanner::fetchMoreTokens() {
   1430   if (IsStartOfStream)
   1431     return scanStreamStart();
   1432 
   1433   scanToNextToken();
   1434 
   1435   if (Current == End)
   1436     return scanStreamEnd();
   1437 
   1438   removeStaleSimpleKeyCandidates();
   1439 
   1440   unrollIndent(Column);
   1441 
   1442   if (Column == 0 && *Current == '%')
   1443     return scanDirective();
   1444 
   1445   if (Column == 0 && Current + 4 <= End
   1446       && *Current == '-'
   1447       && *(Current + 1) == '-'
   1448       && *(Current + 2) == '-'
   1449       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
   1450     return scanDocumentIndicator(true);
   1451 
   1452   if (Column == 0 && Current + 4 <= End
   1453       && *Current == '.'
   1454       && *(Current + 1) == '.'
   1455       && *(Current + 2) == '.'
   1456       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
   1457     return scanDocumentIndicator(false);
   1458 
   1459   if (*Current == '[')
   1460     return scanFlowCollectionStart(true);
   1461 
   1462   if (*Current == '{')
   1463     return scanFlowCollectionStart(false);
   1464 
   1465   if (*Current == ']')
   1466     return scanFlowCollectionEnd(true);
   1467 
   1468   if (*Current == '}')
   1469     return scanFlowCollectionEnd(false);
   1470 
   1471   if (*Current == ',')
   1472     return scanFlowEntry();
   1473 
   1474   if (*Current == '-' && isBlankOrBreak(Current + 1))
   1475     return scanBlockEntry();
   1476 
   1477   if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
   1478     return scanKey();
   1479 
   1480   if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
   1481     return scanValue();
   1482 
   1483   if (*Current == '*')
   1484     return scanAliasOrAnchor(true);
   1485 
   1486   if (*Current == '&')
   1487     return scanAliasOrAnchor(false);
   1488 
   1489   if (*Current == '!')
   1490     return scanTag();
   1491 
   1492   if (*Current == '|' && !FlowLevel)
   1493     return scanBlockScalar(true);
   1494 
   1495   if (*Current == '>' && !FlowLevel)
   1496     return scanBlockScalar(false);
   1497 
   1498   if (*Current == '\'')
   1499     return scanFlowScalar(false);
   1500 
   1501   if (*Current == '"')
   1502     return scanFlowScalar(true);
   1503 
   1504   // Get a plain scalar.
   1505   StringRef FirstChar(Current, 1);
   1506   if (!(isBlankOrBreak(Current)
   1507         || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
   1508       || (*Current == '-' && !isBlankOrBreak(Current + 1))
   1509       || (!FlowLevel && (*Current == '?' || *Current == ':')
   1510           && isBlankOrBreak(Current + 1))
   1511       || (!FlowLevel && *Current == ':'
   1512                       && Current + 2 < End
   1513                       && *(Current + 1) == ':'
   1514                       && !isBlankOrBreak(Current + 2)))
   1515     return scanPlainScalar();
   1516 
   1517   setError("Unrecognized character while tokenizing.");
   1518   return false;
   1519 }
   1520 
   1521 Stream::Stream(StringRef Input, SourceMgr &SM)
   1522     : scanner(new Scanner(Input, SM)), CurrentDoc() {}
   1523 
   1524 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM)
   1525     : scanner(new Scanner(InputBuffer, SM)), CurrentDoc() {}
   1526 
   1527 Stream::~Stream() {}
   1528 
   1529 bool Stream::failed() { return scanner->failed(); }
   1530 
   1531 void Stream::printError(Node *N, const Twine &Msg) {
   1532   scanner->printError( N->getSourceRange().Start
   1533                      , SourceMgr::DK_Error
   1534                      , Msg
   1535                      , N->getSourceRange());
   1536 }
   1537 
   1538 document_iterator Stream::begin() {
   1539   if (CurrentDoc)
   1540     report_fatal_error("Can only iterate over the stream once");
   1541 
   1542   // Skip Stream-Start.
   1543   scanner->getNext();
   1544 
   1545   CurrentDoc.reset(new Document(*this));
   1546   return document_iterator(CurrentDoc);
   1547 }
   1548 
   1549 document_iterator Stream::end() {
   1550   return document_iterator();
   1551 }
   1552 
   1553 void Stream::skip() {
   1554   for (document_iterator i = begin(), e = end(); i != e; ++i)
   1555     i->skip();
   1556 }
   1557 
   1558 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
   1559            StringRef T)
   1560     : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
   1561   SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
   1562   SourceRange = SMRange(Start, Start);
   1563 }
   1564 
   1565 std::string Node::getVerbatimTag() const {
   1566   StringRef Raw = getRawTag();
   1567   if (!Raw.empty() && Raw != "!") {
   1568     std::string Ret;
   1569     if (Raw.find_last_of('!') == 0) {
   1570       Ret = Doc->getTagMap().find("!")->second;
   1571       Ret += Raw.substr(1);
   1572       return Ret;
   1573     } else if (Raw.startswith("!!")) {
   1574       Ret = Doc->getTagMap().find("!!")->second;
   1575       Ret += Raw.substr(2);
   1576       return Ret;
   1577     } else {
   1578       StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
   1579       std::map<StringRef, StringRef>::const_iterator It =
   1580           Doc->getTagMap().find(TagHandle);
   1581       if (It != Doc->getTagMap().end())
   1582         Ret = It->second;
   1583       else {
   1584         Token T;
   1585         T.Kind = Token::TK_Tag;
   1586         T.Range = TagHandle;
   1587         setError(Twine("Unknown tag handle ") + TagHandle, T);
   1588       }
   1589       Ret += Raw.substr(Raw.find_last_of('!') + 1);
   1590       return Ret;
   1591     }
   1592   }
   1593 
   1594   switch (getType()) {
   1595   case NK_Null:
   1596     return "tag:yaml.org,2002:null";
   1597   case NK_Scalar:
   1598     // TODO: Tag resolution.
   1599     return "tag:yaml.org,2002:str";
   1600   case NK_Mapping:
   1601     return "tag:yaml.org,2002:map";
   1602   case NK_Sequence:
   1603     return "tag:yaml.org,2002:seq";
   1604   }
   1605 
   1606   return "";
   1607 }
   1608 
   1609 Token &Node::peekNext() {
   1610   return Doc->peekNext();
   1611 }
   1612 
   1613 Token Node::getNext() {
   1614   return Doc->getNext();
   1615 }
   1616 
   1617 Node *Node::parseBlockNode() {
   1618   return Doc->parseBlockNode();
   1619 }
   1620 
   1621 BumpPtrAllocator &Node::getAllocator() {
   1622   return Doc->NodeAllocator;
   1623 }
   1624 
   1625 void Node::setError(const Twine &Msg, Token &Tok) const {
   1626   Doc->setError(Msg, Tok);
   1627 }
   1628 
   1629 bool Node::failed() const {
   1630   return Doc->failed();
   1631 }
   1632 
   1633 
   1634 
   1635 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
   1636   // TODO: Handle newlines properly. We need to remove leading whitespace.
   1637   if (Value[0] == '"') { // Double quoted.
   1638     // Pull off the leading and trailing "s.
   1639     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
   1640     // Search for characters that would require unescaping the value.
   1641     StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
   1642     if (i != StringRef::npos)
   1643       return unescapeDoubleQuoted(UnquotedValue, i, Storage);
   1644     return UnquotedValue;
   1645   } else if (Value[0] == '\'') { // Single quoted.
   1646     // Pull off the leading and trailing 's.
   1647     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
   1648     StringRef::size_type i = UnquotedValue.find('\'');
   1649     if (i != StringRef::npos) {
   1650       // We're going to need Storage.
   1651       Storage.clear();
   1652       Storage.reserve(UnquotedValue.size());
   1653       for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
   1654         StringRef Valid(UnquotedValue.begin(), i);
   1655         Storage.insert(Storage.end(), Valid.begin(), Valid.end());
   1656         Storage.push_back('\'');
   1657         UnquotedValue = UnquotedValue.substr(i + 2);
   1658       }
   1659       Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
   1660       return StringRef(Storage.begin(), Storage.size());
   1661     }
   1662     return UnquotedValue;
   1663   }
   1664   // Plain or block.
   1665   return Value.rtrim(" ");
   1666 }
   1667 
   1668 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
   1669                                           , StringRef::size_type i
   1670                                           , SmallVectorImpl<char> &Storage)
   1671                                           const {
   1672   // Use Storage to build proper value.
   1673   Storage.clear();
   1674   Storage.reserve(UnquotedValue.size());
   1675   for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
   1676     // Insert all previous chars into Storage.
   1677     StringRef Valid(UnquotedValue.begin(), i);
   1678     Storage.insert(Storage.end(), Valid.begin(), Valid.end());
   1679     // Chop off inserted chars.
   1680     UnquotedValue = UnquotedValue.substr(i);
   1681 
   1682     assert(!UnquotedValue.empty() && "Can't be empty!");
   1683 
   1684     // Parse escape or line break.
   1685     switch (UnquotedValue[0]) {
   1686     case '\r':
   1687     case '\n':
   1688       Storage.push_back('\n');
   1689       if (   UnquotedValue.size() > 1
   1690           && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
   1691         UnquotedValue = UnquotedValue.substr(1);
   1692       UnquotedValue = UnquotedValue.substr(1);
   1693       break;
   1694     default:
   1695       if (UnquotedValue.size() == 1)
   1696         // TODO: Report error.
   1697         break;
   1698       UnquotedValue = UnquotedValue.substr(1);
   1699       switch (UnquotedValue[0]) {
   1700       default: {
   1701           Token T;
   1702           T.Range = StringRef(UnquotedValue.begin(), 1);
   1703           setError("Unrecognized escape code!", T);
   1704           return "";
   1705         }
   1706       case '\r':
   1707       case '\n':
   1708         // Remove the new line.
   1709         if (   UnquotedValue.size() > 1
   1710             && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
   1711           UnquotedValue = UnquotedValue.substr(1);
   1712         // If this was just a single byte newline, it will get skipped
   1713         // below.
   1714         break;
   1715       case '0':
   1716         Storage.push_back(0x00);
   1717         break;
   1718       case 'a':
   1719         Storage.push_back(0x07);
   1720         break;
   1721       case 'b':
   1722         Storage.push_back(0x08);
   1723         break;
   1724       case 't':
   1725       case 0x09:
   1726         Storage.push_back(0x09);
   1727         break;
   1728       case 'n':
   1729         Storage.push_back(0x0A);
   1730         break;
   1731       case 'v':
   1732         Storage.push_back(0x0B);
   1733         break;
   1734       case 'f':
   1735         Storage.push_back(0x0C);
   1736         break;
   1737       case 'r':
   1738         Storage.push_back(0x0D);
   1739         break;
   1740       case 'e':
   1741         Storage.push_back(0x1B);
   1742         break;
   1743       case ' ':
   1744         Storage.push_back(0x20);
   1745         break;
   1746       case '"':
   1747         Storage.push_back(0x22);
   1748         break;
   1749       case '/':
   1750         Storage.push_back(0x2F);
   1751         break;
   1752       case '\\':
   1753         Storage.push_back(0x5C);
   1754         break;
   1755       case 'N':
   1756         encodeUTF8(0x85, Storage);
   1757         break;
   1758       case '_':
   1759         encodeUTF8(0xA0, Storage);
   1760         break;
   1761       case 'L':
   1762         encodeUTF8(0x2028, Storage);
   1763         break;
   1764       case 'P':
   1765         encodeUTF8(0x2029, Storage);
   1766         break;
   1767       case 'x': {
   1768           if (UnquotedValue.size() < 3)
   1769             // TODO: Report error.
   1770             break;
   1771           unsigned int UnicodeScalarValue;
   1772           if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
   1773             // TODO: Report error.
   1774             UnicodeScalarValue = 0xFFFD;
   1775           encodeUTF8(UnicodeScalarValue, Storage);
   1776           UnquotedValue = UnquotedValue.substr(2);
   1777           break;
   1778         }
   1779       case 'u': {
   1780           if (UnquotedValue.size() < 5)
   1781             // TODO: Report error.
   1782             break;
   1783           unsigned int UnicodeScalarValue;
   1784           if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
   1785             // TODO: Report error.
   1786             UnicodeScalarValue = 0xFFFD;
   1787           encodeUTF8(UnicodeScalarValue, Storage);
   1788           UnquotedValue = UnquotedValue.substr(4);
   1789           break;
   1790         }
   1791       case 'U': {
   1792           if (UnquotedValue.size() < 9)
   1793             // TODO: Report error.
   1794             break;
   1795           unsigned int UnicodeScalarValue;
   1796           if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
   1797             // TODO: Report error.
   1798             UnicodeScalarValue = 0xFFFD;
   1799           encodeUTF8(UnicodeScalarValue, Storage);
   1800           UnquotedValue = UnquotedValue.substr(8);
   1801           break;
   1802         }
   1803       }
   1804       UnquotedValue = UnquotedValue.substr(1);
   1805     }
   1806   }
   1807   Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
   1808   return StringRef(Storage.begin(), Storage.size());
   1809 }
   1810 
   1811 Node *KeyValueNode::getKey() {
   1812   if (Key)
   1813     return Key;
   1814   // Handle implicit null keys.
   1815   {
   1816     Token &t = peekNext();
   1817     if (   t.Kind == Token::TK_BlockEnd
   1818         || t.Kind == Token::TK_Value
   1819         || t.Kind == Token::TK_Error) {
   1820       return Key = new (getAllocator()) NullNode(Doc);
   1821     }
   1822     if (t.Kind == Token::TK_Key)
   1823       getNext(); // skip TK_Key.
   1824   }
   1825 
   1826   // Handle explicit null keys.
   1827   Token &t = peekNext();
   1828   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
   1829     return Key = new (getAllocator()) NullNode(Doc);
   1830   }
   1831 
   1832   // We've got a normal key.
   1833   return Key = parseBlockNode();
   1834 }
   1835 
   1836 Node *KeyValueNode::getValue() {
   1837   if (Value)
   1838     return Value;
   1839   getKey()->skip();
   1840   if (failed())
   1841     return Value = new (getAllocator()) NullNode(Doc);
   1842 
   1843   // Handle implicit null values.
   1844   {
   1845     Token &t = peekNext();
   1846     if (   t.Kind == Token::TK_BlockEnd
   1847         || t.Kind == Token::TK_FlowMappingEnd
   1848         || t.Kind == Token::TK_Key
   1849         || t.Kind == Token::TK_FlowEntry
   1850         || t.Kind == Token::TK_Error) {
   1851       return Value = new (getAllocator()) NullNode(Doc);
   1852     }
   1853 
   1854     if (t.Kind != Token::TK_Value) {
   1855       setError("Unexpected token in Key Value.", t);
   1856       return Value = new (getAllocator()) NullNode(Doc);
   1857     }
   1858     getNext(); // skip TK_Value.
   1859   }
   1860 
   1861   // Handle explicit null values.
   1862   Token &t = peekNext();
   1863   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
   1864     return Value = new (getAllocator()) NullNode(Doc);
   1865   }
   1866 
   1867   // We got a normal value.
   1868   return Value = parseBlockNode();
   1869 }
   1870 
   1871 void MappingNode::increment() {
   1872   if (failed()) {
   1873     IsAtEnd = true;
   1874     CurrentEntry = nullptr;
   1875     return;
   1876   }
   1877   if (CurrentEntry) {
   1878     CurrentEntry->skip();
   1879     if (Type == MT_Inline) {
   1880       IsAtEnd = true;
   1881       CurrentEntry = nullptr;
   1882       return;
   1883     }
   1884   }
   1885   Token T = peekNext();
   1886   if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
   1887     // KeyValueNode eats the TK_Key. That way it can detect null keys.
   1888     CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
   1889   } else if (Type == MT_Block) {
   1890     switch (T.Kind) {
   1891     case Token::TK_BlockEnd:
   1892       getNext();
   1893       IsAtEnd = true;
   1894       CurrentEntry = nullptr;
   1895       break;
   1896     default:
   1897       setError("Unexpected token. Expected Key or Block End", T);
   1898     case Token::TK_Error:
   1899       IsAtEnd = true;
   1900       CurrentEntry = nullptr;
   1901     }
   1902   } else {
   1903     switch (T.Kind) {
   1904     case Token::TK_FlowEntry:
   1905       // Eat the flow entry and recurse.
   1906       getNext();
   1907       return increment();
   1908     case Token::TK_FlowMappingEnd:
   1909       getNext();
   1910     case Token::TK_Error:
   1911       // Set this to end iterator.
   1912       IsAtEnd = true;
   1913       CurrentEntry = nullptr;
   1914       break;
   1915     default:
   1916       setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
   1917                 "Mapping End."
   1918               , T);
   1919       IsAtEnd = true;
   1920       CurrentEntry = nullptr;
   1921     }
   1922   }
   1923 }
   1924 
   1925 void SequenceNode::increment() {
   1926   if (failed()) {
   1927     IsAtEnd = true;
   1928     CurrentEntry = nullptr;
   1929     return;
   1930   }
   1931   if (CurrentEntry)
   1932     CurrentEntry->skip();
   1933   Token T = peekNext();
   1934   if (SeqType == ST_Block) {
   1935     switch (T.Kind) {
   1936     case Token::TK_BlockEntry:
   1937       getNext();
   1938       CurrentEntry = parseBlockNode();
   1939       if (!CurrentEntry) { // An error occurred.
   1940         IsAtEnd = true;
   1941         CurrentEntry = nullptr;
   1942       }
   1943       break;
   1944     case Token::TK_BlockEnd:
   1945       getNext();
   1946       IsAtEnd = true;
   1947       CurrentEntry = nullptr;
   1948       break;
   1949     default:
   1950       setError( "Unexpected token. Expected Block Entry or Block End."
   1951               , T);
   1952     case Token::TK_Error:
   1953       IsAtEnd = true;
   1954       CurrentEntry = nullptr;
   1955     }
   1956   } else if (SeqType == ST_Indentless) {
   1957     switch (T.Kind) {
   1958     case Token::TK_BlockEntry:
   1959       getNext();
   1960       CurrentEntry = parseBlockNode();
   1961       if (!CurrentEntry) { // An error occurred.
   1962         IsAtEnd = true;
   1963         CurrentEntry = nullptr;
   1964       }
   1965       break;
   1966     default:
   1967     case Token::TK_Error:
   1968       IsAtEnd = true;
   1969       CurrentEntry = nullptr;
   1970     }
   1971   } else if (SeqType == ST_Flow) {
   1972     switch (T.Kind) {
   1973     case Token::TK_FlowEntry:
   1974       // Eat the flow entry and recurse.
   1975       getNext();
   1976       WasPreviousTokenFlowEntry = true;
   1977       return increment();
   1978     case Token::TK_FlowSequenceEnd:
   1979       getNext();
   1980     case Token::TK_Error:
   1981       // Set this to end iterator.
   1982       IsAtEnd = true;
   1983       CurrentEntry = nullptr;
   1984       break;
   1985     case Token::TK_StreamEnd:
   1986     case Token::TK_DocumentEnd:
   1987     case Token::TK_DocumentStart:
   1988       setError("Could not find closing ]!", T);
   1989       // Set this to end iterator.
   1990       IsAtEnd = true;
   1991       CurrentEntry = nullptr;
   1992       break;
   1993     default:
   1994       if (!WasPreviousTokenFlowEntry) {
   1995         setError("Expected , between entries!", T);
   1996         IsAtEnd = true;
   1997         CurrentEntry = nullptr;
   1998         break;
   1999       }
   2000       // Otherwise it must be a flow entry.
   2001       CurrentEntry = parseBlockNode();
   2002       if (!CurrentEntry) {
   2003         IsAtEnd = true;
   2004       }
   2005       WasPreviousTokenFlowEntry = false;
   2006       break;
   2007     }
   2008   }
   2009 }
   2010 
   2011 Document::Document(Stream &S) : stream(S), Root(nullptr) {
   2012   // Tag maps starts with two default mappings.
   2013   TagMap["!"] = "!";
   2014   TagMap["!!"] = "tag:yaml.org,2002:";
   2015 
   2016   if (parseDirectives())
   2017     expectToken(Token::TK_DocumentStart);
   2018   Token &T = peekNext();
   2019   if (T.Kind == Token::TK_DocumentStart)
   2020     getNext();
   2021 }
   2022 
   2023 bool Document::skip()  {
   2024   if (stream.scanner->failed())
   2025     return false;
   2026   if (!Root)
   2027     getRoot();
   2028   Root->skip();
   2029   Token &T = peekNext();
   2030   if (T.Kind == Token::TK_StreamEnd)
   2031     return false;
   2032   if (T.Kind == Token::TK_DocumentEnd) {
   2033     getNext();
   2034     return skip();
   2035   }
   2036   return true;
   2037 }
   2038 
   2039 Token &Document::peekNext() {
   2040   return stream.scanner->peekNext();
   2041 }
   2042 
   2043 Token Document::getNext() {
   2044   return stream.scanner->getNext();
   2045 }
   2046 
   2047 void Document::setError(const Twine &Message, Token &Location) const {
   2048   stream.scanner->setError(Message, Location.Range.begin());
   2049 }
   2050 
   2051 bool Document::failed() const {
   2052   return stream.scanner->failed();
   2053 }
   2054 
   2055 Node *Document::parseBlockNode() {
   2056   Token T = peekNext();
   2057   // Handle properties.
   2058   Token AnchorInfo;
   2059   Token TagInfo;
   2060 parse_property:
   2061   switch (T.Kind) {
   2062   case Token::TK_Alias:
   2063     getNext();
   2064     return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
   2065   case Token::TK_Anchor:
   2066     if (AnchorInfo.Kind == Token::TK_Anchor) {
   2067       setError("Already encountered an anchor for this node!", T);
   2068       return nullptr;
   2069     }
   2070     AnchorInfo = getNext(); // Consume TK_Anchor.
   2071     T = peekNext();
   2072     goto parse_property;
   2073   case Token::TK_Tag:
   2074     if (TagInfo.Kind == Token::TK_Tag) {
   2075       setError("Already encountered a tag for this node!", T);
   2076       return nullptr;
   2077     }
   2078     TagInfo = getNext(); // Consume TK_Tag.
   2079     T = peekNext();
   2080     goto parse_property;
   2081   default:
   2082     break;
   2083   }
   2084 
   2085   switch (T.Kind) {
   2086   case Token::TK_BlockEntry:
   2087     // We got an unindented BlockEntry sequence. This is not terminated with
   2088     // a BlockEnd.
   2089     // Don't eat the TK_BlockEntry, SequenceNode needs it.
   2090     return new (NodeAllocator) SequenceNode( stream.CurrentDoc
   2091                                            , AnchorInfo.Range.substr(1)
   2092                                            , TagInfo.Range
   2093                                            , SequenceNode::ST_Indentless);
   2094   case Token::TK_BlockSequenceStart:
   2095     getNext();
   2096     return new (NodeAllocator)
   2097       SequenceNode( stream.CurrentDoc
   2098                   , AnchorInfo.Range.substr(1)
   2099                   , TagInfo.Range
   2100                   , SequenceNode::ST_Block);
   2101   case Token::TK_BlockMappingStart:
   2102     getNext();
   2103     return new (NodeAllocator)
   2104       MappingNode( stream.CurrentDoc
   2105                  , AnchorInfo.Range.substr(1)
   2106                  , TagInfo.Range
   2107                  , MappingNode::MT_Block);
   2108   case Token::TK_FlowSequenceStart:
   2109     getNext();
   2110     return new (NodeAllocator)
   2111       SequenceNode( stream.CurrentDoc
   2112                   , AnchorInfo.Range.substr(1)
   2113                   , TagInfo.Range
   2114                   , SequenceNode::ST_Flow);
   2115   case Token::TK_FlowMappingStart:
   2116     getNext();
   2117     return new (NodeAllocator)
   2118       MappingNode( stream.CurrentDoc
   2119                  , AnchorInfo.Range.substr(1)
   2120                  , TagInfo.Range
   2121                  , MappingNode::MT_Flow);
   2122   case Token::TK_Scalar:
   2123     getNext();
   2124     return new (NodeAllocator)
   2125       ScalarNode( stream.CurrentDoc
   2126                 , AnchorInfo.Range.substr(1)
   2127                 , TagInfo.Range
   2128                 , T.Range);
   2129   case Token::TK_Key:
   2130     // Don't eat the TK_Key, KeyValueNode expects it.
   2131     return new (NodeAllocator)
   2132       MappingNode( stream.CurrentDoc
   2133                  , AnchorInfo.Range.substr(1)
   2134                  , TagInfo.Range
   2135                  , MappingNode::MT_Inline);
   2136   case Token::TK_DocumentStart:
   2137   case Token::TK_DocumentEnd:
   2138   case Token::TK_StreamEnd:
   2139   default:
   2140     // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
   2141     //       !!null null.
   2142     return new (NodeAllocator) NullNode(stream.CurrentDoc);
   2143   case Token::TK_Error:
   2144     return nullptr;
   2145   }
   2146   llvm_unreachable("Control flow shouldn't reach here.");
   2147   return nullptr;
   2148 }
   2149 
   2150 bool Document::parseDirectives() {
   2151   bool isDirective = false;
   2152   while (true) {
   2153     Token T = peekNext();
   2154     if (T.Kind == Token::TK_TagDirective) {
   2155       parseTAGDirective();
   2156       isDirective = true;
   2157     } else if (T.Kind == Token::TK_VersionDirective) {
   2158       parseYAMLDirective();
   2159       isDirective = true;
   2160     } else
   2161       break;
   2162   }
   2163   return isDirective;
   2164 }
   2165 
   2166 void Document::parseYAMLDirective() {
   2167   getNext(); // Eat %YAML <version>
   2168 }
   2169 
   2170 void Document::parseTAGDirective() {
   2171   Token Tag = getNext(); // %TAG <handle> <prefix>
   2172   StringRef T = Tag.Range;
   2173   // Strip %TAG
   2174   T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
   2175   std::size_t HandleEnd = T.find_first_of(" \t");
   2176   StringRef TagHandle = T.substr(0, HandleEnd);
   2177   StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
   2178   TagMap[TagHandle] = TagPrefix;
   2179 }
   2180 
   2181 bool Document::expectToken(int TK) {
   2182   Token T = getNext();
   2183   if (T.Kind != TK) {
   2184     setError("Unexpected token", T);
   2185     return false;
   2186   }
   2187   return true;
   2188 }
   2189