Home | History | Annotate | Download | only in bin
      1 #!/usr/bin/env python
      2 
      3 import sys
      4 from scipy.stats import mannwhitneyu
      5 
      6 SIGNIFICANCE_THRESHOLD = 0.0001
      7 
      8 a,b = {},{}
      9 for (path, d) in [(sys.argv[1], a), (sys.argv[2], b)]:
     10     for line in open(path):
     11         try:
     12             tokens  = line.split()
     13             samples = tokens[:-1]
     14             label   = tokens[-1]
     15             d[label] = map(float, samples)
     16         except:
     17             pass
     18 
     19 common = set(a.keys()).intersection(b.keys())
     20 
     21 ps = []
     22 for key in common:
     23     _, p = mannwhitneyu(a[key], b[key])    # Non-parametric t-test.  Doesn't assume normal dist.
     24     am, bm = min(a[key]), min(b[key])
     25     ps.append((bm/am, p, key, am, bm))
     26 ps.sort(reverse=True)
     27 
     28 def humanize(ns):
     29     for threshold, suffix in [(1e9, 's'), (1e6, 'ms'), (1e3, 'us'), (1e0, 'ns')]:
     30         if ns > threshold:
     31             return "%.3g%s" % (ns/threshold, suffix)
     32 
     33 maxlen = max(map(len, common))
     34 
     35 # We print only signficant changes in benchmark timing distribution.
     36 bonferroni = SIGNIFICANCE_THRESHOLD / len(ps)  # Adjust for the fact we've run multiple tests.
     37 for ratio, p, key, am, bm in ps:
     38     if p < bonferroni:
     39         str_ratio = ('%.2gx' if ratio < 1 else '%.3gx') % ratio
     40         print '%*s\t%6s -> %6s\t%s' % (maxlen, key, humanize(am), humanize(bm), str_ratio)
     41