1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "ssa_builder.h" 18 19 #include "nodes.h" 20 #include "primitive_type_propagation.h" 21 #include "ssa_phi_elimination.h" 22 23 namespace art { 24 25 /** 26 * A debuggable application may require to reviving phis, to ensure their 27 * associated DEX register is available to a debugger. This class implements 28 * the logic for statement (c) of the SsaBuilder (see ssa_builder.h). It 29 * also makes sure that phis with incompatible input types are not revived 30 * (statement (b) of the SsaBuilder). 31 * 32 * This phase must be run after detecting dead phis through the 33 * DeadPhiElimination phase, and before deleting the dead phis. 34 */ 35 class DeadPhiHandling : public ValueObject { 36 public: 37 explicit DeadPhiHandling(HGraph* graph) 38 : graph_(graph), worklist_(graph->GetArena(), kDefaultWorklistSize) {} 39 40 void Run(); 41 42 private: 43 void VisitBasicBlock(HBasicBlock* block); 44 void ProcessWorklist(); 45 void AddToWorklist(HPhi* phi); 46 void AddDependentInstructionsToWorklist(HPhi* phi); 47 bool UpdateType(HPhi* phi); 48 49 HGraph* const graph_; 50 GrowableArray<HPhi*> worklist_; 51 52 static constexpr size_t kDefaultWorklistSize = 8; 53 54 DISALLOW_COPY_AND_ASSIGN(DeadPhiHandling); 55 }; 56 57 bool DeadPhiHandling::UpdateType(HPhi* phi) { 58 Primitive::Type existing = phi->GetType(); 59 DCHECK(phi->IsLive()); 60 61 bool conflict = false; 62 Primitive::Type new_type = existing; 63 for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { 64 HInstruction* input = phi->InputAt(i); 65 if (input->IsPhi() && input->AsPhi()->IsDead()) { 66 // We are doing a reverse post order visit of the graph, reviving 67 // phis that have environment uses and updating their types. If an 68 // input is a phi, and it is dead (because its input types are 69 // conflicting), this phi must be marked dead as well. 70 conflict = true; 71 break; 72 } 73 Primitive::Type input_type = HPhi::ToPhiType(input->GetType()); 74 75 // The only acceptable transitions are: 76 // - From void to typed: first time we update the type of this phi. 77 // - From int to reference (or reference to int): the phi has to change 78 // to reference type. If the integer input cannot be converted to a 79 // reference input, the phi will remain dead. 80 if (new_type == Primitive::kPrimVoid) { 81 new_type = input_type; 82 } else if (new_type == Primitive::kPrimNot && input_type == Primitive::kPrimInt) { 83 HInstruction* equivalent = SsaBuilder::GetReferenceTypeEquivalent(input); 84 if (equivalent == nullptr) { 85 conflict = true; 86 break; 87 } else { 88 phi->ReplaceInput(equivalent, i); 89 if (equivalent->IsPhi()) { 90 DCHECK_EQ(equivalent->GetType(), Primitive::kPrimNot); 91 // We created a new phi, but that phi has the same inputs as the old phi. We 92 // add it to the worklist to ensure its inputs can also be converted to reference. 93 // If not, it will remain dead, and the algorithm will make the current phi dead 94 // as well. 95 equivalent->AsPhi()->SetLive(); 96 AddToWorklist(equivalent->AsPhi()); 97 } 98 } 99 } else if (new_type == Primitive::kPrimInt && input_type == Primitive::kPrimNot) { 100 new_type = Primitive::kPrimNot; 101 // Start over, we may request reference equivalents for the inputs of the phi. 102 i = -1; 103 } else if (new_type != input_type) { 104 conflict = true; 105 break; 106 } 107 } 108 109 if (conflict) { 110 phi->SetType(Primitive::kPrimVoid); 111 phi->SetDead(); 112 return true; 113 } else { 114 DCHECK(phi->IsLive()); 115 phi->SetType(new_type); 116 return existing != new_type; 117 } 118 } 119 120 void DeadPhiHandling::VisitBasicBlock(HBasicBlock* block) { 121 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { 122 HPhi* phi = it.Current()->AsPhi(); 123 if (phi->IsDead() && phi->HasEnvironmentUses()) { 124 phi->SetLive(); 125 if (block->IsLoopHeader()) { 126 // Give a type to the loop phi, to guarantee convergence of the algorithm. 127 phi->SetType(phi->InputAt(0)->GetType()); 128 AddToWorklist(phi); 129 } else { 130 // Because we are doing a reverse post order visit, all inputs of 131 // this phi have been visited and therefore had their (initial) type set. 132 UpdateType(phi); 133 } 134 } 135 } 136 } 137 138 void DeadPhiHandling::ProcessWorklist() { 139 while (!worklist_.IsEmpty()) { 140 HPhi* instruction = worklist_.Pop(); 141 // Note that the same equivalent phi can be added multiple times in the work list, if 142 // used by multiple phis. The first call to `UpdateType` will know whether the phi is 143 // dead or live. 144 if (instruction->IsLive() && UpdateType(instruction)) { 145 AddDependentInstructionsToWorklist(instruction); 146 } 147 } 148 } 149 150 void DeadPhiHandling::AddToWorklist(HPhi* instruction) { 151 DCHECK(instruction->IsLive()); 152 worklist_.Add(instruction); 153 } 154 155 void DeadPhiHandling::AddDependentInstructionsToWorklist(HPhi* instruction) { 156 for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) { 157 HPhi* phi = it.Current()->GetUser()->AsPhi(); 158 if (phi != nullptr && !phi->IsDead()) { 159 AddToWorklist(phi); 160 } 161 } 162 } 163 164 void DeadPhiHandling::Run() { 165 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { 166 VisitBasicBlock(it.Current()); 167 } 168 ProcessWorklist(); 169 } 170 171 static bool IsPhiEquivalentOf(HInstruction* instruction, HPhi* phi) { 172 return instruction != nullptr 173 && instruction->IsPhi() 174 && instruction->AsPhi()->GetRegNumber() == phi->GetRegNumber(); 175 } 176 177 void SsaBuilder::FixNullConstantType() { 178 // The order doesn't matter here. 179 for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) { 180 for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) { 181 HInstruction* equality_instr = it.Current(); 182 if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) { 183 continue; 184 } 185 HInstruction* left = equality_instr->InputAt(0); 186 HInstruction* right = equality_instr->InputAt(1); 187 HInstruction* int_operand = nullptr; 188 189 if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) { 190 int_operand = right; 191 } else if ((right->GetType() == Primitive::kPrimNot) 192 && (left->GetType() == Primitive::kPrimInt)) { 193 int_operand = left; 194 } else { 195 continue; 196 } 197 198 // If we got here, we are comparing against a reference and the int constant 199 // should be replaced with a null constant. 200 // Both type propagation and redundant phi elimination ensure `int_operand` 201 // can only be the 0 constant. 202 DCHECK(int_operand->IsIntConstant()); 203 DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue()); 204 equality_instr->ReplaceInput(GetGraph()->GetNullConstant(), int_operand == right ? 1 : 0); 205 } 206 } 207 } 208 209 void SsaBuilder::EquivalentPhisCleanup() { 210 // The order doesn't matter here. 211 for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) { 212 for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) { 213 HPhi* phi = it.Current()->AsPhi(); 214 HPhi* next = phi->GetNextEquivalentPhiWithSameType(); 215 if (next != nullptr) { 216 // Make sure we do not replace a live phi with a dead phi. A live phi has been 217 // handled by the type propagation phase, unlike a dead phi. 218 if (next->IsLive()) { 219 phi->ReplaceWith(next); 220 } else { 221 next->ReplaceWith(phi); 222 } 223 DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr) 224 << "More then one phi equivalent with type " << phi->GetType() 225 << " found for phi" << phi->GetId(); 226 } 227 } 228 } 229 } 230 231 void SsaBuilder::BuildSsa() { 232 // 1) Visit in reverse post order. We need to have all predecessors of a block visited 233 // (with the exception of loops) in order to create the right environment for that 234 // block. For loops, we create phis whose inputs will be set in 2). 235 for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { 236 VisitBasicBlock(it.Current()); 237 } 238 239 // 2) Set inputs of loop phis. 240 for (size_t i = 0; i < loop_headers_.Size(); i++) { 241 HBasicBlock* block = loop_headers_.Get(i); 242 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { 243 HPhi* phi = it.Current()->AsPhi(); 244 for (size_t pred = 0; pred < block->GetPredecessors().Size(); pred++) { 245 HInstruction* input = ValueOfLocal(block->GetPredecessors().Get(pred), phi->GetRegNumber()); 246 phi->AddInput(input); 247 } 248 } 249 } 250 251 // 3) Mark dead phis. This will mark phis that are only used by environments: 252 // at the DEX level, the type of these phis does not need to be consistent, but 253 // our code generator will complain if the inputs of a phi do not have the same 254 // type. The marking allows the type propagation to know which phis it needs 255 // to handle. We mark but do not eliminate: the elimination will be done in 256 // step 9). 257 SsaDeadPhiElimination dead_phis_for_type_propagation(GetGraph()); 258 dead_phis_for_type_propagation.MarkDeadPhis(); 259 260 // 4) Propagate types of phis. At this point, phis are typed void in the general 261 // case, or float/double/reference when we created an equivalent phi. So we 262 // need to propagate the types across phis to give them a correct type. 263 PrimitiveTypePropagation type_propagation(GetGraph()); 264 type_propagation.Run(); 265 266 // 5) When creating equivalent phis we copy the inputs of the original phi which 267 // may be improperly typed. This was fixed during the type propagation in 4) but 268 // as a result we may end up with two equivalent phis with the same type for 269 // the same dex register. This pass cleans them up. 270 EquivalentPhisCleanup(); 271 272 // 6) Mark dead phis again. Step 4) may have introduced new phis. 273 // Step 5) might enable the death of new phis. 274 SsaDeadPhiElimination dead_phis(GetGraph()); 275 dead_phis.MarkDeadPhis(); 276 277 // 7) Now that the graph is correctly typed, we can get rid of redundant phis. 278 // Note that we cannot do this phase before type propagation, otherwise 279 // we could get rid of phi equivalents, whose presence is a requirement for the 280 // type propagation phase. Note that this is to satisfy statement (a) of the 281 // SsaBuilder (see ssa_builder.h). 282 SsaRedundantPhiElimination redundant_phi(GetGraph()); 283 redundant_phi.Run(); 284 285 // 8) Fix the type for null constants which are part of an equality comparison. 286 // We need to do this after redundant phi elimination, to ensure the only cases 287 // that we can see are reference comparison against 0. The redundant phi 288 // elimination ensures we do not see a phi taking two 0 constants in a HEqual 289 // or HNotEqual. 290 FixNullConstantType(); 291 292 // 9) Make sure environments use the right phi "equivalent": a phi marked dead 293 // can have a phi equivalent that is not dead. We must therefore update 294 // all environment uses of the dead phi to use its equivalent. Note that there 295 // can be multiple phis for the same Dex register that are live (for example 296 // when merging constants), in which case it is OK for the environments 297 // to just reference one. 298 for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { 299 HBasicBlock* block = it.Current(); 300 for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) { 301 HPhi* phi = it_phis.Current()->AsPhi(); 302 // If the phi is not dead, or has no environment uses, there is nothing to do. 303 if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue; 304 HInstruction* next = phi->GetNext(); 305 if (!IsPhiEquivalentOf(next, phi)) continue; 306 if (next->AsPhi()->IsDead()) { 307 // If the phi equivalent is dead, check if there is another one. 308 next = next->GetNext(); 309 if (!IsPhiEquivalentOf(next, phi)) continue; 310 // There can be at most two phi equivalents. 311 DCHECK(!IsPhiEquivalentOf(next->GetNext(), phi)); 312 if (next->AsPhi()->IsDead()) continue; 313 } 314 // We found a live phi equivalent. Update the environment uses of `phi` with it. 315 phi->ReplaceWith(next); 316 } 317 } 318 319 // 10) Deal with phis to guarantee liveness of phis in case of a debuggable 320 // application. This is for satisfying statement (c) of the SsaBuilder 321 // (see ssa_builder.h). 322 if (GetGraph()->IsDebuggable()) { 323 DeadPhiHandling dead_phi_handler(GetGraph()); 324 dead_phi_handler.Run(); 325 } 326 327 // 11) Now that the right phis are used for the environments, and we 328 // have potentially revive dead phis in case of a debuggable application, 329 // we can eliminate phis we do not need. Regardless of the debuggable status, 330 // this phase is necessary for statement (b) of the SsaBuilder (see ssa_builder.h), 331 // as well as for the code generation, which does not deal with phis of conflicting 332 // input types. 333 dead_phis.EliminateDeadPhis(); 334 335 // 12) Clear locals. 336 for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions()); 337 !it.Done(); 338 it.Advance()) { 339 HInstruction* current = it.Current(); 340 if (current->IsLocal()) { 341 current->GetBlock()->RemoveInstruction(current); 342 } 343 } 344 } 345 346 HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) { 347 return GetLocalsFor(block)->Get(local); 348 } 349 350 void SsaBuilder::VisitBasicBlock(HBasicBlock* block) { 351 current_locals_ = GetLocalsFor(block); 352 353 if (block->IsLoopHeader()) { 354 // If the block is a loop header, we know we only have visited the pre header 355 // because we are visiting in reverse post order. We create phis for all initialized 356 // locals from the pre header. Their inputs will be populated at the end of 357 // the analysis. 358 for (size_t local = 0; local < current_locals_->Size(); local++) { 359 HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local); 360 if (incoming != nullptr) { 361 HPhi* phi = new (GetGraph()->GetArena()) HPhi( 362 GetGraph()->GetArena(), local, 0, Primitive::kPrimVoid); 363 block->AddPhi(phi); 364 current_locals_->Put(local, phi); 365 } 366 } 367 // Save the loop header so that the last phase of the analysis knows which 368 // blocks need to be updated. 369 loop_headers_.Add(block); 370 } else if (block->GetPredecessors().Size() > 0) { 371 // All predecessors have already been visited because we are visiting in reverse post order. 372 // We merge the values of all locals, creating phis if those values differ. 373 for (size_t local = 0; local < current_locals_->Size(); local++) { 374 bool one_predecessor_has_no_value = false; 375 bool is_different = false; 376 HInstruction* value = ValueOfLocal(block->GetPredecessors().Get(0), local); 377 378 for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) { 379 HInstruction* current = ValueOfLocal(block->GetPredecessors().Get(i), local); 380 if (current == nullptr) { 381 one_predecessor_has_no_value = true; 382 break; 383 } else if (current != value) { 384 is_different = true; 385 } 386 } 387 388 if (one_predecessor_has_no_value) { 389 // If one predecessor has no value for this local, we trust the verifier has 390 // successfully checked that there is a store dominating any read after this block. 391 continue; 392 } 393 394 if (is_different) { 395 HPhi* phi = new (GetGraph()->GetArena()) HPhi( 396 GetGraph()->GetArena(), local, block->GetPredecessors().Size(), Primitive::kPrimVoid); 397 for (size_t i = 0; i < block->GetPredecessors().Size(); i++) { 398 HInstruction* pred_value = ValueOfLocal(block->GetPredecessors().Get(i), local); 399 phi->SetRawInputAt(i, pred_value); 400 } 401 block->AddPhi(phi); 402 value = phi; 403 } 404 current_locals_->Put(local, value); 405 } 406 } 407 408 // Visit all instructions. The instructions of interest are: 409 // - HLoadLocal: replace them with the current value of the local. 410 // - HStoreLocal: update current value of the local and remove the instruction. 411 // - Instructions that require an environment: populate their environment 412 // with the current values of the locals. 413 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { 414 it.Current()->Accept(this); 415 } 416 } 417 418 /** 419 * Constants in the Dex format are not typed. So the builder types them as 420 * integers, but when doing the SSA form, we might realize the constant 421 * is used for floating point operations. We create a floating-point equivalent 422 * constant to make the operations correctly typed. 423 */ 424 HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) { 425 // We place the floating point constant next to this constant. 426 HFloatConstant* result = constant->GetNext()->AsFloatConstant(); 427 if (result == nullptr) { 428 HGraph* graph = constant->GetBlock()->GetGraph(); 429 ArenaAllocator* allocator = graph->GetArena(); 430 result = new (allocator) HFloatConstant(bit_cast<float, int32_t>(constant->GetValue())); 431 constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); 432 graph->CacheFloatConstant(result); 433 } else { 434 // If there is already a constant with the expected type, we know it is 435 // the floating point equivalent of this constant. 436 DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue()); 437 } 438 return result; 439 } 440 441 /** 442 * Wide constants in the Dex format are not typed. So the builder types them as 443 * longs, but when doing the SSA form, we might realize the constant 444 * is used for floating point operations. We create a floating-point equivalent 445 * constant to make the operations correctly typed. 446 */ 447 HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) { 448 // We place the floating point constant next to this constant. 449 HDoubleConstant* result = constant->GetNext()->AsDoubleConstant(); 450 if (result == nullptr) { 451 HGraph* graph = constant->GetBlock()->GetGraph(); 452 ArenaAllocator* allocator = graph->GetArena(); 453 result = new (allocator) HDoubleConstant(bit_cast<double, int64_t>(constant->GetValue())); 454 constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); 455 graph->CacheDoubleConstant(result); 456 } else { 457 // If there is already a constant with the expected type, we know it is 458 // the floating point equivalent of this constant. 459 DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue()); 460 } 461 return result; 462 } 463 464 /** 465 * Because of Dex format, we might end up having the same phi being 466 * used for non floating point operations and floating point / reference operations. 467 * Because we want the graph to be correctly typed (and thereafter avoid moves between 468 * floating point registers and core registers), we need to create a copy of the 469 * phi with a floating point / reference type. 470 */ 471 HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) { 472 // We place the floating point /reference phi next to this phi. 473 HInstruction* next = phi->GetNext(); 474 if (next != nullptr 475 && next->AsPhi()->GetRegNumber() == phi->GetRegNumber() 476 && next->GetType() != type) { 477 // Move to the next phi to see if it is the one we are looking for. 478 next = next->GetNext(); 479 } 480 481 if (next == nullptr 482 || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber()) 483 || (next->GetType() != type)) { 484 ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena(); 485 HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type); 486 for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { 487 // Copy the inputs. Note that the graph may not be correctly typed by doing this copy, 488 // but the type propagation phase will fix it. 489 new_phi->SetRawInputAt(i, phi->InputAt(i)); 490 } 491 phi->GetBlock()->InsertPhiAfter(new_phi, phi); 492 return new_phi; 493 } else { 494 DCHECK_EQ(next->GetType(), type); 495 return next->AsPhi(); 496 } 497 } 498 499 HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user, 500 HInstruction* value, 501 Primitive::Type type) { 502 if (value->IsArrayGet()) { 503 // The verifier has checked that values in arrays cannot be used for both 504 // floating point and non-floating point operations. It is therefore safe to just 505 // change the type of the operation. 506 value->AsArrayGet()->SetType(type); 507 return value; 508 } else if (value->IsLongConstant()) { 509 return GetDoubleEquivalent(value->AsLongConstant()); 510 } else if (value->IsIntConstant()) { 511 return GetFloatEquivalent(value->AsIntConstant()); 512 } else if (value->IsPhi()) { 513 return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type); 514 } else { 515 // For other instructions, we assume the verifier has checked that the dex format is correctly 516 // typed and the value in a dex register will not be used for both floating point and 517 // non-floating point operations. So the only reason an instruction would want a floating 518 // point equivalent is for an unused phi that will be removed by the dead phi elimination phase. 519 DCHECK(user->IsPhi()); 520 return value; 521 } 522 } 523 524 HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) { 525 if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) { 526 return value->GetBlock()->GetGraph()->GetNullConstant(); 527 } else if (value->IsPhi()) { 528 return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot); 529 } else { 530 return nullptr; 531 } 532 } 533 534 void SsaBuilder::VisitLoadLocal(HLoadLocal* load) { 535 HInstruction* value = current_locals_->Get(load->GetLocal()->GetRegNumber()); 536 // If the operation requests a specific type, we make sure its input is of that type. 537 if (load->GetType() != value->GetType()) { 538 if (load->GetType() == Primitive::kPrimFloat || load->GetType() == Primitive::kPrimDouble) { 539 value = GetFloatOrDoubleEquivalent(load, value, load->GetType()); 540 } else if (load->GetType() == Primitive::kPrimNot) { 541 value = GetReferenceTypeEquivalent(value); 542 } 543 } 544 load->ReplaceWith(value); 545 load->GetBlock()->RemoveInstruction(load); 546 } 547 548 void SsaBuilder::VisitStoreLocal(HStoreLocal* store) { 549 current_locals_->Put(store->GetLocal()->GetRegNumber(), store->InputAt(1)); 550 store->GetBlock()->RemoveInstruction(store); 551 } 552 553 void SsaBuilder::VisitInstruction(HInstruction* instruction) { 554 if (!instruction->NeedsEnvironment()) { 555 return; 556 } 557 HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment( 558 GetGraph()->GetArena(), 559 current_locals_->Size(), 560 GetGraph()->GetDexFile(), 561 GetGraph()->GetMethodIdx(), 562 instruction->GetDexPc()); 563 environment->CopyFrom(*current_locals_); 564 instruction->SetRawEnvironment(environment); 565 } 566 567 void SsaBuilder::VisitTemporary(HTemporary* temp) { 568 // Temporaries are only used by the baseline register allocator. 569 temp->GetBlock()->RemoveInstruction(temp); 570 } 571 572 } // namespace art 573