Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define ATRACE_TAG ATRACE_TAG_DALVIK
     18 
     19 #include "thread.h"
     20 
     21 #include <cutils/trace.h>
     22 #include <pthread.h>
     23 #include <signal.h>
     24 #include <sys/resource.h>
     25 #include <sys/time.h>
     26 
     27 #include <algorithm>
     28 #include <bitset>
     29 #include <cerrno>
     30 #include <iostream>
     31 #include <list>
     32 #include <sstream>
     33 
     34 #include "arch/context.h"
     35 #include "art_field-inl.h"
     36 #include "art_method-inl.h"
     37 #include "base/bit_utils.h"
     38 #include "base/mutex.h"
     39 #include "base/timing_logger.h"
     40 #include "base/to_str.h"
     41 #include "class_linker-inl.h"
     42 #include "debugger.h"
     43 #include "dex_file-inl.h"
     44 #include "entrypoints/entrypoint_utils.h"
     45 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     46 #include "gc_map.h"
     47 #include "gc/accounting/card_table-inl.h"
     48 #include "gc/allocator/rosalloc.h"
     49 #include "gc/heap.h"
     50 #include "gc/space/space.h"
     51 #include "handle_scope-inl.h"
     52 #include "indirect_reference_table-inl.h"
     53 #include "jni_internal.h"
     54 #include "mirror/class_loader.h"
     55 #include "mirror/class-inl.h"
     56 #include "mirror/object_array-inl.h"
     57 #include "mirror/stack_trace_element.h"
     58 #include "monitor.h"
     59 #include "object_lock.h"
     60 #include "quick_exception_handler.h"
     61 #include "quick/quick_method_frame_info.h"
     62 #include "reflection.h"
     63 #include "runtime.h"
     64 #include "scoped_thread_state_change.h"
     65 #include "ScopedLocalRef.h"
     66 #include "ScopedUtfChars.h"
     67 #include "stack.h"
     68 #include "thread_list.h"
     69 #include "thread-inl.h"
     70 #include "utils.h"
     71 #include "verifier/dex_gc_map.h"
     72 #include "verifier/method_verifier.h"
     73 #include "verify_object-inl.h"
     74 #include "vmap_table.h"
     75 #include "well_known_classes.h"
     76 
     77 namespace art {
     78 
     79 bool Thread::is_started_ = false;
     80 pthread_key_t Thread::pthread_key_self_;
     81 ConditionVariable* Thread::resume_cond_ = nullptr;
     82 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
     83 
     84 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
     85 
     86 void Thread::InitCardTable() {
     87   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
     88 }
     89 
     90 static void UnimplementedEntryPoint() {
     91   UNIMPLEMENTED(FATAL);
     92 }
     93 
     94 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
     95                      QuickEntryPoints* qpoints);
     96 
     97 void Thread::InitTlsEntryPoints() {
     98   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
     99   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
    100   uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) +
    101       sizeof(tlsPtr_.quick_entrypoints));
    102   for (uintptr_t* it = begin; it != end; ++it) {
    103     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
    104   }
    105   InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
    106                   &tlsPtr_.quick_entrypoints);
    107 }
    108 
    109 void Thread::InitStringEntryPoints() {
    110   ScopedObjectAccess soa(this);
    111   QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints;
    112   qpoints->pNewEmptyString = reinterpret_cast<void(*)()>(
    113       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString));
    114   qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>(
    115       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B));
    116   qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>(
    117       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI));
    118   qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>(
    119       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII));
    120   qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>(
    121       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII));
    122   qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>(
    123       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString));
    124   qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>(
    125       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString));
    126   qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>(
    127       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset));
    128   qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>(
    129       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset));
    130   qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>(
    131       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C));
    132   qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>(
    133       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII));
    134   qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>(
    135       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC));
    136   qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>(
    137       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints));
    138   qpoints->pNewStringFromString = reinterpret_cast<void(*)()>(
    139       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString));
    140   qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>(
    141       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer));
    142   qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>(
    143       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder));
    144 }
    145 
    146 void Thread::ResetQuickAllocEntryPointsForThread() {
    147   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
    148 }
    149 
    150 class DeoptimizationReturnValueRecord {
    151  public:
    152   DeoptimizationReturnValueRecord(const JValue& ret_val,
    153                                   bool is_reference,
    154                                   DeoptimizationReturnValueRecord* link)
    155       : ret_val_(ret_val), is_reference_(is_reference), link_(link) {}
    156 
    157   JValue GetReturnValue() const { return ret_val_; }
    158   bool IsReference() const { return is_reference_; }
    159   DeoptimizationReturnValueRecord* GetLink() const { return link_; }
    160   mirror::Object** GetGCRoot() {
    161     DCHECK(is_reference_);
    162     return ret_val_.GetGCRoot();
    163   }
    164 
    165  private:
    166   JValue ret_val_;
    167   const bool is_reference_;
    168   DeoptimizationReturnValueRecord* const link_;
    169 
    170   DISALLOW_COPY_AND_ASSIGN(DeoptimizationReturnValueRecord);
    171 };
    172 
    173 class StackedShadowFrameRecord {
    174  public:
    175   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
    176                            StackedShadowFrameType type,
    177                            StackedShadowFrameRecord* link)
    178       : shadow_frame_(shadow_frame),
    179         type_(type),
    180         link_(link) {}
    181 
    182   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    183   StackedShadowFrameType GetType() const { return type_; }
    184   StackedShadowFrameRecord* GetLink() const { return link_; }
    185 
    186  private:
    187   ShadowFrame* const shadow_frame_;
    188   const StackedShadowFrameType type_;
    189   StackedShadowFrameRecord* const link_;
    190 
    191   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
    192 };
    193 
    194 void Thread::PushAndClearDeoptimizationReturnValue() {
    195   DeoptimizationReturnValueRecord* record = new DeoptimizationReturnValueRecord(
    196       tls64_.deoptimization_return_value,
    197       tls32_.deoptimization_return_value_is_reference,
    198       tlsPtr_.deoptimization_return_value_stack);
    199   tlsPtr_.deoptimization_return_value_stack = record;
    200   ClearDeoptimizationReturnValue();
    201 }
    202 
    203 JValue Thread::PopDeoptimizationReturnValue() {
    204   DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack;
    205   DCHECK(record != nullptr);
    206   tlsPtr_.deoptimization_return_value_stack = record->GetLink();
    207   JValue ret_val(record->GetReturnValue());
    208   delete record;
    209   return ret_val;
    210 }
    211 
    212 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
    213   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
    214       sf, type, tlsPtr_.stacked_shadow_frame_record);
    215   tlsPtr_.stacked_shadow_frame_record = record;
    216 }
    217 
    218 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type) {
    219   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
    220   DCHECK(record != nullptr);
    221   DCHECK_EQ(record->GetType(), type);
    222   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
    223   ShadowFrame* shadow_frame = record->GetShadowFrame();
    224   delete record;
    225   return shadow_frame;
    226 }
    227 
    228 void Thread::InitTid() {
    229   tls32_.tid = ::art::GetTid();
    230 }
    231 
    232 void Thread::InitAfterFork() {
    233   // One thread (us) survived the fork, but we have a new tid so we need to
    234   // update the value stashed in this Thread*.
    235   InitTid();
    236 }
    237 
    238 void* Thread::CreateCallback(void* arg) {
    239   Thread* self = reinterpret_cast<Thread*>(arg);
    240   Runtime* runtime = Runtime::Current();
    241   if (runtime == nullptr) {
    242     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
    243     return nullptr;
    244   }
    245   {
    246     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
    247     //       after self->Init().
    248     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    249     // Check that if we got here we cannot be shutting down (as shutdown should never have started
    250     // while threads are being born).
    251     CHECK(!runtime->IsShuttingDownLocked());
    252     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
    253     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
    254     //       the runtime in such a case. In case this ever changes, we need to make sure here to
    255     //       delete the tmp_jni_env, as we own it at this point.
    256     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
    257     self->tlsPtr_.tmp_jni_env = nullptr;
    258     Runtime::Current()->EndThreadBirth();
    259   }
    260   {
    261     ScopedObjectAccess soa(self);
    262     self->InitStringEntryPoints();
    263 
    264     // Copy peer into self, deleting global reference when done.
    265     CHECK(self->tlsPtr_.jpeer != nullptr);
    266     self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
    267     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
    268     self->tlsPtr_.jpeer = nullptr;
    269     self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
    270 
    271     ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
    272     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
    273     Dbg::PostThreadStart(self);
    274 
    275     // Invoke the 'run' method of our java.lang.Thread.
    276     mirror::Object* receiver = self->tlsPtr_.opeer;
    277     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
    278     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
    279     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
    280   }
    281   // Detach and delete self.
    282   Runtime::Current()->GetThreadList()->Unregister(self);
    283 
    284   return nullptr;
    285 }
    286 
    287 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    288                                   mirror::Object* thread_peer) {
    289   ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
    290   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
    291   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
    292   // to stop it from going away.
    293   if (kIsDebugBuild) {
    294     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
    295     if (result != nullptr && !result->IsSuspended()) {
    296       Locks::thread_list_lock_->AssertHeld(soa.Self());
    297     }
    298   }
    299   return result;
    300 }
    301 
    302 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    303                                   jobject java_thread) {
    304   return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
    305 }
    306 
    307 static size_t FixStackSize(size_t stack_size) {
    308   // A stack size of zero means "use the default".
    309   if (stack_size == 0) {
    310     stack_size = Runtime::Current()->GetDefaultStackSize();
    311   }
    312 
    313   // Dalvik used the bionic pthread default stack size for native threads,
    314   // so include that here to support apps that expect large native stacks.
    315   stack_size += 1 * MB;
    316 
    317   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
    318   if (stack_size < PTHREAD_STACK_MIN) {
    319     stack_size = PTHREAD_STACK_MIN;
    320   }
    321 
    322   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
    323     // It's likely that callers are trying to ensure they have at least a certain amount of
    324     // stack space, so we should add our reserved space on top of what they requested, rather
    325     // than implicitly take it away from them.
    326     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
    327   } else {
    328     // If we are going to use implicit stack checks, allocate space for the protected
    329     // region at the bottom of the stack.
    330     stack_size += Thread::kStackOverflowImplicitCheckSize +
    331         GetStackOverflowReservedBytes(kRuntimeISA);
    332   }
    333 
    334   // Some systems require the stack size to be a multiple of the system page size, so round up.
    335   stack_size = RoundUp(stack_size, kPageSize);
    336 
    337   return stack_size;
    338 }
    339 
    340 // Global variable to prevent the compiler optimizing away the page reads for the stack.
    341 uint8_t dont_optimize_this;
    342 
    343 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
    344 // overflow is detected.  It is located right below the stack_begin_.
    345 //
    346 // There is a little complexity here that deserves a special mention.  On some
    347 // architectures, the stack created using a VM_GROWSDOWN flag
    348 // to prevent memory being allocated when it's not needed.  This flag makes the
    349 // kernel only allocate memory for the stack by growing down in memory.  Because we
    350 // want to put an mprotected region far away from that at the stack top, we need
    351 // to make sure the pages for the stack are mapped in before we call mprotect.  We do
    352 // this by reading every page from the stack bottom (highest address) to the stack top.
    353 // We then madvise this away.
    354 void Thread::InstallImplicitProtection() {
    355   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
    356   uint8_t* stack_himem = tlsPtr_.stack_end;
    357   uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) &
    358       ~(kPageSize - 1));    // Page containing current top of stack.
    359 
    360   // First remove the protection on the protected region as will want to read and
    361   // write it.  This may fail (on the first attempt when the stack is not mapped)
    362   // but we ignore that.
    363   UnprotectStack();
    364 
    365   // Map in the stack.  This must be done by reading from the
    366   // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
    367   // in the kernel.  Any access more than a page below the current SP might cause
    368   // a segv.
    369 
    370   // Read every page from the high address to the low.
    371   for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
    372     dont_optimize_this = *p;
    373   }
    374 
    375   VLOG(threads) << "installing stack protected region at " << std::hex <<
    376       static_cast<void*>(pregion) << " to " <<
    377       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    378 
    379   // Protect the bottom of the stack to prevent read/write to it.
    380   ProtectStack();
    381 
    382   // Tell the kernel that we won't be needing these pages any more.
    383   // NB. madvise will probably write zeroes into the memory (on linux it does).
    384   uint32_t unwanted_size = stack_top - pregion - kPageSize;
    385   madvise(pregion, unwanted_size, MADV_DONTNEED);
    386 }
    387 
    388 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
    389   CHECK(java_peer != nullptr);
    390   Thread* self = static_cast<JNIEnvExt*>(env)->self;
    391   Runtime* runtime = Runtime::Current();
    392 
    393   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
    394   bool thread_start_during_shutdown = false;
    395   {
    396     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    397     if (runtime->IsShuttingDownLocked()) {
    398       thread_start_during_shutdown = true;
    399     } else {
    400       runtime->StartThreadBirth();
    401     }
    402   }
    403   if (thread_start_during_shutdown) {
    404     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
    405     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
    406     return;
    407   }
    408 
    409   Thread* child_thread = new Thread(is_daemon);
    410   // Use global JNI ref to hold peer live while child thread starts.
    411   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
    412   stack_size = FixStackSize(stack_size);
    413 
    414   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
    415   // assign it.
    416   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
    417                     reinterpret_cast<jlong>(child_thread));
    418 
    419   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
    420   // do not have a good way to report this on the child's side.
    421   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
    422       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM()));
    423 
    424   int pthread_create_result = 0;
    425   if (child_jni_env_ext.get() != nullptr) {
    426     pthread_t new_pthread;
    427     pthread_attr_t attr;
    428     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
    429     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
    430     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
    431                        "PTHREAD_CREATE_DETACHED");
    432     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
    433     pthread_create_result = pthread_create(&new_pthread,
    434                                            &attr,
    435                                            Thread::CreateCallback,
    436                                            child_thread);
    437     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
    438 
    439     if (pthread_create_result == 0) {
    440       // pthread_create started the new thread. The child is now responsible for managing the
    441       // JNIEnvExt we created.
    442       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
    443       //       between the threads.
    444       child_jni_env_ext.release();
    445       return;
    446     }
    447   }
    448 
    449   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
    450   {
    451     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    452     runtime->EndThreadBirth();
    453   }
    454   // Manually delete the global reference since Thread::Init will not have been run.
    455   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
    456   child_thread->tlsPtr_.jpeer = nullptr;
    457   delete child_thread;
    458   child_thread = nullptr;
    459   // TODO: remove from thread group?
    460   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
    461   {
    462     std::string msg(child_jni_env_ext.get() == nullptr ?
    463         "Could not allocate JNI Env" :
    464         StringPrintf("pthread_create (%s stack) failed: %s",
    465                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
    466     ScopedObjectAccess soa(env);
    467     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
    468   }
    469 }
    470 
    471 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
    472   // This function does all the initialization that must be run by the native thread it applies to.
    473   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
    474   // we can handshake with the corresponding native thread when it's ready.) Check this native
    475   // thread hasn't been through here already...
    476   CHECK(Thread::Current() == nullptr);
    477 
    478   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
    479   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
    480   tlsPtr_.pthread_self = pthread_self();
    481   CHECK(is_started_);
    482 
    483   SetUpAlternateSignalStack();
    484   if (!InitStackHwm()) {
    485     return false;
    486   }
    487   InitCpu();
    488   InitTlsEntryPoints();
    489   RemoveSuspendTrigger();
    490   InitCardTable();
    491   InitTid();
    492 
    493   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
    494   DCHECK_EQ(Thread::Current(), this);
    495 
    496   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
    497 
    498   if (jni_env_ext != nullptr) {
    499     DCHECK_EQ(jni_env_ext->vm, java_vm);
    500     DCHECK_EQ(jni_env_ext->self, this);
    501     tlsPtr_.jni_env = jni_env_ext;
    502   } else {
    503     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm);
    504     if (tlsPtr_.jni_env == nullptr) {
    505       return false;
    506     }
    507   }
    508 
    509   thread_list->Register(this);
    510   return true;
    511 }
    512 
    513 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
    514                        bool create_peer) {
    515   Runtime* runtime = Runtime::Current();
    516   if (runtime == nullptr) {
    517     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
    518     return nullptr;
    519   }
    520   Thread* self;
    521   {
    522     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    523     if (runtime->IsShuttingDownLocked()) {
    524       LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
    525       return nullptr;
    526     } else {
    527       Runtime::Current()->StartThreadBirth();
    528       self = new Thread(as_daemon);
    529       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    530       Runtime::Current()->EndThreadBirth();
    531       if (!init_success) {
    532         delete self;
    533         return nullptr;
    534       }
    535     }
    536   }
    537 
    538   self->InitStringEntryPoints();
    539 
    540   CHECK_NE(self->GetState(), kRunnable);
    541   self->SetState(kNative);
    542 
    543   // If we're the main thread, ClassLinker won't be created until after we're attached,
    544   // so that thread needs a two-stage attach. Regular threads don't need this hack.
    545   // In the compiler, all threads need this hack, because no-one's going to be getting
    546   // a native peer!
    547   if (create_peer) {
    548     self->CreatePeer(thread_name, as_daemon, thread_group);
    549   } else {
    550     // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
    551     if (thread_name != nullptr) {
    552       self->tlsPtr_.name->assign(thread_name);
    553       ::art::SetThreadName(thread_name);
    554     } else if (self->GetJniEnv()->check_jni) {
    555       LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
    556     }
    557   }
    558 
    559   {
    560     ScopedObjectAccess soa(self);
    561     Dbg::PostThreadStart(self);
    562   }
    563 
    564   return self;
    565 }
    566 
    567 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
    568   Runtime* runtime = Runtime::Current();
    569   CHECK(runtime->IsStarted());
    570   JNIEnv* env = tlsPtr_.jni_env;
    571 
    572   if (thread_group == nullptr) {
    573     thread_group = runtime->GetMainThreadGroup();
    574   }
    575   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    576   // Add missing null check in case of OOM b/18297817
    577   if (name != nullptr && thread_name.get() == nullptr) {
    578     CHECK(IsExceptionPending());
    579     return;
    580   }
    581   jint thread_priority = GetNativePriority();
    582   jboolean thread_is_daemon = as_daemon;
    583 
    584   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    585   if (peer.get() == nullptr) {
    586     CHECK(IsExceptionPending());
    587     return;
    588   }
    589   {
    590     ScopedObjectAccess soa(this);
    591     tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
    592   }
    593   env->CallNonvirtualVoidMethod(peer.get(),
    594                                 WellKnownClasses::java_lang_Thread,
    595                                 WellKnownClasses::java_lang_Thread_init,
    596                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
    597   AssertNoPendingException();
    598 
    599   Thread* self = this;
    600   DCHECK_EQ(self, Thread::Current());
    601   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
    602                     reinterpret_cast<jlong>(self));
    603 
    604   ScopedObjectAccess soa(self);
    605   StackHandleScope<1> hs(self);
    606   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
    607   if (peer_thread_name.Get() == nullptr) {
    608     // The Thread constructor should have set the Thread.name to a
    609     // non-null value. However, because we can run without code
    610     // available (in the compiler, in tests), we manually assign the
    611     // fields the constructor should have set.
    612     if (runtime->IsActiveTransaction()) {
    613       InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
    614     } else {
    615       InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
    616     }
    617     peer_thread_name.Assign(GetThreadName(soa));
    618   }
    619   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
    620   if (peer_thread_name.Get() != nullptr) {
    621     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
    622   }
    623 }
    624 
    625 template<bool kTransactionActive>
    626 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
    627                       jobject thread_name, jint thread_priority) {
    628   soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
    629       SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
    630   soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
    631       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
    632   soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
    633       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
    634   soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
    635       SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
    636 }
    637 
    638 void Thread::SetThreadName(const char* name) {
    639   tlsPtr_.name->assign(name);
    640   ::art::SetThreadName(name);
    641   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
    642 }
    643 
    644 bool Thread::InitStackHwm() {
    645   void* read_stack_base;
    646   size_t read_stack_size;
    647   size_t read_guard_size;
    648   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
    649 
    650   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
    651   tlsPtr_.stack_size = read_stack_size;
    652 
    653   // The minimum stack size we can cope with is the overflow reserved bytes (typically
    654   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
    655   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
    656   // between 8K and 12K.
    657   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
    658     + 4 * KB;
    659   if (read_stack_size <= min_stack) {
    660     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
    661     LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR,
    662                                 "Attempt to attach a thread with a too-small stack");
    663     return false;
    664   }
    665 
    666   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
    667   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
    668                                 read_stack_base,
    669                                 PrettySize(read_stack_size).c_str(),
    670                                 PrettySize(read_guard_size).c_str());
    671 
    672   // Set stack_end_ to the bottom of the stack saving space of stack overflows
    673 
    674   Runtime* runtime = Runtime::Current();
    675   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
    676   ResetDefaultStackEnd();
    677 
    678   // Install the protected region if we are doing implicit overflow checks.
    679   if (implicit_stack_check) {
    680     // The thread might have protected region at the bottom.  We need
    681     // to install our own region so we need to move the limits
    682     // of the stack to make room for it.
    683 
    684     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
    685     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
    686     tlsPtr_.stack_size -= read_guard_size;
    687 
    688     InstallImplicitProtection();
    689   }
    690 
    691   // Sanity check.
    692   int stack_variable;
    693   CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
    694 
    695   return true;
    696 }
    697 
    698 void Thread::ShortDump(std::ostream& os) const {
    699   os << "Thread[";
    700   if (GetThreadId() != 0) {
    701     // If we're in kStarting, we won't have a thin lock id or tid yet.
    702     os << GetThreadId()
    703        << ",tid=" << GetTid() << ',';
    704   }
    705   os << GetState()
    706      << ",Thread*=" << this
    707      << ",peer=" << tlsPtr_.opeer
    708      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
    709      << "]";
    710 }
    711 
    712 void Thread::Dump(std::ostream& os) const {
    713   DumpState(os);
    714   DumpStack(os);
    715 }
    716 
    717 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
    718   ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
    719   return (tlsPtr_.opeer != nullptr) ?
    720       reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
    721 }
    722 
    723 void Thread::GetThreadName(std::string& name) const {
    724   name.assign(*tlsPtr_.name);
    725 }
    726 
    727 uint64_t Thread::GetCpuMicroTime() const {
    728 #if defined(__linux__)
    729   clockid_t cpu_clock_id;
    730   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
    731   timespec now;
    732   clock_gettime(cpu_clock_id, &now);
    733   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
    734 #else  // __APPLE__
    735   UNIMPLEMENTED(WARNING);
    736   return -1;
    737 #endif
    738 }
    739 
    740 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
    741 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
    742   LOG(ERROR) << *thread << " suspend count already zero.";
    743   Locks::thread_suspend_count_lock_->Unlock(self);
    744   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
    745     Locks::mutator_lock_->SharedTryLock(self);
    746     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
    747       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
    748     }
    749   }
    750   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
    751     Locks::thread_list_lock_->TryLock(self);
    752     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
    753       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
    754     }
    755   }
    756   std::ostringstream ss;
    757   Runtime::Current()->GetThreadList()->Dump(ss);
    758   LOG(FATAL) << ss.str();
    759 }
    760 
    761 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
    762   if (kIsDebugBuild) {
    763     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
    764           << delta << " " << tls32_.debug_suspend_count << " " << this;
    765     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
    766     Locks::thread_suspend_count_lock_->AssertHeld(self);
    767     if (this != self && !IsSuspended()) {
    768       Locks::thread_list_lock_->AssertHeld(self);
    769     }
    770   }
    771   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
    772     UnsafeLogFatalForSuspendCount(self, this);
    773     return;
    774   }
    775 
    776   tls32_.suspend_count += delta;
    777   if (for_debugger) {
    778     tls32_.debug_suspend_count += delta;
    779   }
    780 
    781   if (tls32_.suspend_count == 0) {
    782     AtomicClearFlag(kSuspendRequest);
    783   } else {
    784     AtomicSetFlag(kSuspendRequest);
    785     TriggerSuspend();
    786   }
    787 }
    788 
    789 void Thread::RunCheckpointFunction() {
    790   Closure *checkpoints[kMaxCheckpoints];
    791 
    792   // Grab the suspend_count lock and copy the current set of
    793   // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
    794   // function will also grab this lock so we prevent a race between setting
    795   // the kCheckpointRequest flag and clearing it.
    796   {
    797     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
    798     for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
    799       checkpoints[i] = tlsPtr_.checkpoint_functions[i];
    800       tlsPtr_.checkpoint_functions[i] = nullptr;
    801     }
    802     AtomicClearFlag(kCheckpointRequest);
    803   }
    804 
    805   // Outside the lock, run all the checkpoint functions that
    806   // we collected.
    807   bool found_checkpoint = false;
    808   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
    809     if (checkpoints[i] != nullptr) {
    810       ATRACE_BEGIN("Checkpoint function");
    811       checkpoints[i]->Run(this);
    812       ATRACE_END();
    813       found_checkpoint = true;
    814     }
    815   }
    816   CHECK(found_checkpoint);
    817 }
    818 
    819 bool Thread::RequestCheckpoint(Closure* function) {
    820   union StateAndFlags old_state_and_flags;
    821   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
    822   if (old_state_and_flags.as_struct.state != kRunnable) {
    823     return false;  // Fail, thread is suspended and so can't run a checkpoint.
    824   }
    825 
    826   uint32_t available_checkpoint = kMaxCheckpoints;
    827   for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
    828     if (tlsPtr_.checkpoint_functions[i] == nullptr) {
    829       available_checkpoint = i;
    830       break;
    831     }
    832   }
    833   if (available_checkpoint == kMaxCheckpoints) {
    834     // No checkpoint functions available, we can't run a checkpoint
    835     return false;
    836   }
    837   tlsPtr_.checkpoint_functions[available_checkpoint] = function;
    838 
    839   // Checkpoint function installed now install flag bit.
    840   // We must be runnable to request a checkpoint.
    841   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
    842   union StateAndFlags new_state_and_flags;
    843   new_state_and_flags.as_int = old_state_and_flags.as_int;
    844   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
    845   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
    846       old_state_and_flags.as_int, new_state_and_flags.as_int);
    847   if (UNLIKELY(!success)) {
    848     // The thread changed state before the checkpoint was installed.
    849     CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
    850     tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
    851   } else {
    852     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
    853     TriggerSuspend();
    854   }
    855   return success;
    856 }
    857 
    858 Closure* Thread::GetFlipFunction() {
    859   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
    860   Closure* func;
    861   do {
    862     func = atomic_func->LoadRelaxed();
    863     if (func == nullptr) {
    864       return nullptr;
    865     }
    866   } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
    867   DCHECK(func != nullptr);
    868   return func;
    869 }
    870 
    871 void Thread::SetFlipFunction(Closure* function) {
    872   CHECK(function != nullptr);
    873   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
    874   atomic_func->StoreSequentiallyConsistent(function);
    875 }
    876 
    877 void Thread::FullSuspendCheck() {
    878   VLOG(threads) << this << " self-suspending";
    879   ATRACE_BEGIN("Full suspend check");
    880   // Make thread appear suspended to other threads, release mutator_lock_.
    881   tls32_.suspended_at_suspend_check = true;
    882   TransitionFromRunnableToSuspended(kSuspended);
    883   // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
    884   TransitionFromSuspendedToRunnable();
    885   tls32_.suspended_at_suspend_check = false;
    886   ATRACE_END();
    887   VLOG(threads) << this << " self-reviving";
    888 }
    889 
    890 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
    891   std::string group_name;
    892   int priority;
    893   bool is_daemon = false;
    894   Thread* self = Thread::Current();
    895 
    896   // If flip_function is not null, it means we have run a checkpoint
    897   // before the thread wakes up to execute the flip function and the
    898   // thread roots haven't been forwarded.  So the following access to
    899   // the roots (opeer or methods in the frames) would be bad. Run it
    900   // here. TODO: clean up.
    901   if (thread != nullptr) {
    902     ScopedObjectAccessUnchecked soa(self);
    903     Thread* this_thread = const_cast<Thread*>(thread);
    904     Closure* flip_func = this_thread->GetFlipFunction();
    905     if (flip_func != nullptr) {
    906       flip_func->Run(this_thread);
    907     }
    908   }
    909 
    910   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
    911   // cause ScopedObjectAccessUnchecked to deadlock.
    912   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
    913     ScopedObjectAccessUnchecked soa(self);
    914     priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
    915         ->GetInt(thread->tlsPtr_.opeer);
    916     is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
    917         ->GetBoolean(thread->tlsPtr_.opeer);
    918 
    919     mirror::Object* thread_group =
    920         soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
    921 
    922     if (thread_group != nullptr) {
    923       ArtField* group_name_field =
    924           soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
    925       mirror::String* group_name_string =
    926           reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
    927       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
    928     }
    929   } else {
    930     priority = GetNativePriority();
    931   }
    932 
    933   std::string scheduler_group_name(GetSchedulerGroupName(tid));
    934   if (scheduler_group_name.empty()) {
    935     scheduler_group_name = "default";
    936   }
    937 
    938   if (thread != nullptr) {
    939     os << '"' << *thread->tlsPtr_.name << '"';
    940     if (is_daemon) {
    941       os << " daemon";
    942     }
    943     os << " prio=" << priority
    944        << " tid=" << thread->GetThreadId()
    945        << " " << thread->GetState();
    946     if (thread->IsStillStarting()) {
    947       os << " (still starting up)";
    948     }
    949     os << "\n";
    950   } else {
    951     os << '"' << ::art::GetThreadName(tid) << '"'
    952        << " prio=" << priority
    953        << " (not attached)\n";
    954   }
    955 
    956   if (thread != nullptr) {
    957     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
    958     os << "  | group=\"" << group_name << "\""
    959        << " sCount=" << thread->tls32_.suspend_count
    960        << " dsCount=" << thread->tls32_.debug_suspend_count
    961        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
    962        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
    963   }
    964 
    965   os << "  | sysTid=" << tid
    966      << " nice=" << getpriority(PRIO_PROCESS, tid)
    967      << " cgrp=" << scheduler_group_name;
    968   if (thread != nullptr) {
    969     int policy;
    970     sched_param sp;
    971     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
    972                        __FUNCTION__);
    973     os << " sched=" << policy << "/" << sp.sched_priority
    974        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
    975   }
    976   os << "\n";
    977 
    978   // Grab the scheduler stats for this thread.
    979   std::string scheduler_stats;
    980   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
    981     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
    982   } else {
    983     scheduler_stats = "0 0 0";
    984   }
    985 
    986   char native_thread_state = '?';
    987   int utime = 0;
    988   int stime = 0;
    989   int task_cpu = 0;
    990   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
    991 
    992   os << "  | state=" << native_thread_state
    993      << " schedstat=( " << scheduler_stats << " )"
    994      << " utm=" << utime
    995      << " stm=" << stime
    996      << " core=" << task_cpu
    997      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
    998   if (thread != nullptr) {
    999     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
   1000         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
   1001         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
   1002     // Dump the held mutexes.
   1003     os << "  | held mutexes=";
   1004     for (size_t i = 0; i < kLockLevelCount; ++i) {
   1005       if (i != kMonitorLock) {
   1006         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
   1007         if (mutex != nullptr) {
   1008           os << " \"" << mutex->GetName() << "\"";
   1009           if (mutex->IsReaderWriterMutex()) {
   1010             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
   1011             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
   1012               os << "(exclusive held)";
   1013             } else {
   1014               os << "(shared held)";
   1015             }
   1016           }
   1017         }
   1018       }
   1019     }
   1020     os << "\n";
   1021   }
   1022 }
   1023 
   1024 void Thread::DumpState(std::ostream& os) const {
   1025   Thread::DumpState(os, this, GetTid());
   1026 }
   1027 
   1028 struct StackDumpVisitor : public StackVisitor {
   1029   StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in)
   1030       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1031       : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   1032         os(os_in),
   1033         thread(thread_in),
   1034         can_allocate(can_allocate_in),
   1035         last_method(nullptr),
   1036         last_line_number(0),
   1037         repetition_count(0),
   1038         frame_count(0) {}
   1039 
   1040   virtual ~StackDumpVisitor() {
   1041     if (frame_count == 0) {
   1042       os << "  (no managed stack frames)\n";
   1043     }
   1044   }
   1045 
   1046   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1047     ArtMethod* m = GetMethod();
   1048     if (m->IsRuntimeMethod()) {
   1049       return true;
   1050     }
   1051     m = m->GetInterfaceMethodIfProxy(sizeof(void*));
   1052     const int kMaxRepetition = 3;
   1053     mirror::Class* c = m->GetDeclaringClass();
   1054     mirror::DexCache* dex_cache = c->GetDexCache();
   1055     int line_number = -1;
   1056     if (dex_cache != nullptr) {  // be tolerant of bad input
   1057       const DexFile& dex_file = *dex_cache->GetDexFile();
   1058       line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
   1059     }
   1060     if (line_number == last_line_number && last_method == m) {
   1061       ++repetition_count;
   1062     } else {
   1063       if (repetition_count >= kMaxRepetition) {
   1064         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
   1065       }
   1066       repetition_count = 0;
   1067       last_line_number = line_number;
   1068       last_method = m;
   1069     }
   1070     if (repetition_count < kMaxRepetition) {
   1071       os << "  at " << PrettyMethod(m, false);
   1072       if (m->IsNative()) {
   1073         os << "(Native method)";
   1074       } else {
   1075         const char* source_file(m->GetDeclaringClassSourceFile());
   1076         os << "(" << (source_file != nullptr ? source_file : "unavailable")
   1077            << ":" << line_number << ")";
   1078       }
   1079       os << "\n";
   1080       if (frame_count == 0) {
   1081         Monitor::DescribeWait(os, thread);
   1082       }
   1083       if (can_allocate) {
   1084         // Visit locks, but do not abort on errors. This would trigger a nested abort.
   1085         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
   1086       }
   1087     }
   1088 
   1089     ++frame_count;
   1090     return true;
   1091   }
   1092 
   1093   static void DumpLockedObject(mirror::Object* o, void* context)
   1094       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1095     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
   1096     os << "  - locked ";
   1097     if (o == nullptr) {
   1098       os << "an unknown object";
   1099     } else {
   1100       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
   1101           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
   1102         // Getting the identity hashcode here would result in lock inflation and suspension of the
   1103         // current thread, which isn't safe if this is the only runnable thread.
   1104         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
   1105                            PrettyTypeOf(o).c_str());
   1106       } else {
   1107         // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
   1108         // we get the pretty type beofre we call IdentityHashCode.
   1109         const std::string pretty_type(PrettyTypeOf(o));
   1110         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
   1111       }
   1112     }
   1113     os << "\n";
   1114   }
   1115 
   1116   std::ostream& os;
   1117   const Thread* thread;
   1118   const bool can_allocate;
   1119   ArtMethod* last_method;
   1120   int last_line_number;
   1121   int repetition_count;
   1122   int frame_count;
   1123 };
   1124 
   1125 static bool ShouldShowNativeStack(const Thread* thread)
   1126     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1127   ThreadState state = thread->GetState();
   1128 
   1129   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
   1130   if (state > kWaiting && state < kStarting) {
   1131     return true;
   1132   }
   1133 
   1134   // In an Object.wait variant or Thread.sleep? That's not interesting.
   1135   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
   1136     return false;
   1137   }
   1138 
   1139   // Threads with no managed stack frames should be shown.
   1140   const ManagedStack* managed_stack = thread->GetManagedStack();
   1141   if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
   1142       managed_stack->GetTopShadowFrame() == nullptr)) {
   1143     return true;
   1144   }
   1145 
   1146   // In some other native method? That's interesting.
   1147   // We don't just check kNative because native methods will be in state kSuspended if they're
   1148   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
   1149   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
   1150   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
   1151   return current_method != nullptr && current_method->IsNative();
   1152 }
   1153 
   1154 void Thread::DumpJavaStack(std::ostream& os) const {
   1155   // If flip_function is not null, it means we have run a checkpoint
   1156   // before the thread wakes up to execute the flip function and the
   1157   // thread roots haven't been forwarded.  So the following access to
   1158   // the roots (locks or methods in the frames) would be bad. Run it
   1159   // here. TODO: clean up.
   1160   {
   1161     Thread* this_thread = const_cast<Thread*>(this);
   1162     Closure* flip_func = this_thread->GetFlipFunction();
   1163     if (flip_func != nullptr) {
   1164       flip_func->Run(this_thread);
   1165     }
   1166   }
   1167 
   1168   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
   1169   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
   1170   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
   1171   // thread.
   1172   StackHandleScope<1> scope(Thread::Current());
   1173   Handle<mirror::Throwable> exc;
   1174   bool have_exception = false;
   1175   if (IsExceptionPending()) {
   1176     exc = scope.NewHandle(GetException());
   1177     const_cast<Thread*>(this)->ClearException();
   1178     have_exception = true;
   1179   }
   1180 
   1181   std::unique_ptr<Context> context(Context::Create());
   1182   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
   1183                           !tls32_.throwing_OutOfMemoryError);
   1184   dumper.WalkStack();
   1185 
   1186   if (have_exception) {
   1187     const_cast<Thread*>(this)->SetException(exc.Get());
   1188   }
   1189 }
   1190 
   1191 void Thread::DumpStack(std::ostream& os) const {
   1192   // TODO: we call this code when dying but may not have suspended the thread ourself. The
   1193   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
   1194   //       the race with the thread_suspend_count_lock_).
   1195   bool dump_for_abort = (gAborting > 0);
   1196   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
   1197   if (!kIsDebugBuild) {
   1198     // We always want to dump the stack for an abort, however, there is no point dumping another
   1199     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
   1200     safe_to_dump = (safe_to_dump || dump_for_abort);
   1201   }
   1202   if (safe_to_dump) {
   1203     // If we're currently in native code, dump that stack before dumping the managed stack.
   1204     if (dump_for_abort || ShouldShowNativeStack(this)) {
   1205       DumpKernelStack(os, GetTid(), "  kernel: ", false);
   1206       DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr, !dump_for_abort));
   1207     }
   1208     DumpJavaStack(os);
   1209   } else {
   1210     os << "Not able to dump stack of thread that isn't suspended";
   1211   }
   1212 }
   1213 
   1214 void Thread::ThreadExitCallback(void* arg) {
   1215   Thread* self = reinterpret_cast<Thread*>(arg);
   1216   if (self->tls32_.thread_exit_check_count == 0) {
   1217     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
   1218         "going to use a pthread_key_create destructor?): " << *self;
   1219     CHECK(is_started_);
   1220     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
   1221     self->tls32_.thread_exit_check_count = 1;
   1222   } else {
   1223     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
   1224   }
   1225 }
   1226 
   1227 void Thread::Startup() {
   1228   CHECK(!is_started_);
   1229   is_started_ = true;
   1230   {
   1231     // MutexLock to keep annotalysis happy.
   1232     //
   1233     // Note we use null for the thread because Thread::Current can
   1234     // return garbage since (is_started_ == true) and
   1235     // Thread::pthread_key_self_ is not yet initialized.
   1236     // This was seen on glibc.
   1237     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
   1238     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
   1239                                          *Locks::thread_suspend_count_lock_);
   1240   }
   1241 
   1242   // Allocate a TLS slot.
   1243   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
   1244                      "self key");
   1245 
   1246   // Double-check the TLS slot allocation.
   1247   if (pthread_getspecific(pthread_key_self_) != nullptr) {
   1248     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
   1249   }
   1250 }
   1251 
   1252 void Thread::FinishStartup() {
   1253   Runtime* runtime = Runtime::Current();
   1254   CHECK(runtime->IsStarted());
   1255 
   1256   // Finish attaching the main thread.
   1257   ScopedObjectAccess soa(Thread::Current());
   1258   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
   1259 
   1260   Runtime::Current()->GetClassLinker()->RunRootClinits();
   1261 }
   1262 
   1263 void Thread::Shutdown() {
   1264   CHECK(is_started_);
   1265   is_started_ = false;
   1266   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
   1267   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   1268   if (resume_cond_ != nullptr) {
   1269     delete resume_cond_;
   1270     resume_cond_ = nullptr;
   1271   }
   1272 }
   1273 
   1274 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
   1275   wait_mutex_ = new Mutex("a thread wait mutex");
   1276   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
   1277   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
   1278   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
   1279   tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
   1280 
   1281   CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
   1282   tls32_.state_and_flags.as_struct.flags = 0;
   1283   tls32_.state_and_flags.as_struct.state = kNative;
   1284   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
   1285   std::fill(tlsPtr_.rosalloc_runs,
   1286             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
   1287             gc::allocator::RosAlloc::GetDedicatedFullRun());
   1288   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
   1289     tlsPtr_.checkpoint_functions[i] = nullptr;
   1290   }
   1291   tlsPtr_.flip_function = nullptr;
   1292   tls32_.suspended_at_suspend_check = false;
   1293 }
   1294 
   1295 bool Thread::IsStillStarting() const {
   1296   // You might think you can check whether the state is kStarting, but for much of thread startup,
   1297   // the thread is in kNative; it might also be in kVmWait.
   1298   // You might think you can check whether the peer is null, but the peer is actually created and
   1299   // assigned fairly early on, and needs to be.
   1300   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
   1301   // this thread _ever_ entered kRunnable".
   1302   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
   1303       (*tlsPtr_.name == kThreadNameDuringStartup);
   1304 }
   1305 
   1306 void Thread::AssertPendingException() const {
   1307   CHECK(IsExceptionPending()) << "Pending exception expected.";
   1308 }
   1309 
   1310 void Thread::AssertPendingOOMException() const {
   1311   AssertPendingException();
   1312   auto* e = GetException();
   1313   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
   1314       << e->Dump();
   1315 }
   1316 
   1317 void Thread::AssertNoPendingException() const {
   1318   if (UNLIKELY(IsExceptionPending())) {
   1319     ScopedObjectAccess soa(Thread::Current());
   1320     mirror::Throwable* exception = GetException();
   1321     LOG(FATAL) << "No pending exception expected: " << exception->Dump();
   1322   }
   1323 }
   1324 
   1325 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
   1326   if (UNLIKELY(IsExceptionPending())) {
   1327     ScopedObjectAccess soa(Thread::Current());
   1328     mirror::Throwable* exception = GetException();
   1329     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
   1330         << exception->Dump();
   1331   }
   1332 }
   1333 
   1334 class MonitorExitVisitor : public SingleRootVisitor {
   1335  public:
   1336   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
   1337 
   1338   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
   1339   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
   1340       OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   1341     if (self_->HoldsLock(entered_monitor)) {
   1342       LOG(WARNING) << "Calling MonitorExit on object "
   1343                    << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")"
   1344                    << " left locked by native thread "
   1345                    << *Thread::Current() << " which is detaching";
   1346       entered_monitor->MonitorExit(self_);
   1347     }
   1348   }
   1349 
   1350  private:
   1351   Thread* const self_;
   1352 };
   1353 
   1354 void Thread::Destroy() {
   1355   Thread* self = this;
   1356   DCHECK_EQ(self, Thread::Current());
   1357 
   1358   if (tlsPtr_.jni_env != nullptr) {
   1359     {
   1360       ScopedObjectAccess soa(self);
   1361       MonitorExitVisitor visitor(self);
   1362       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
   1363       tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
   1364     }
   1365     // Release locally held global references which releasing may require the mutator lock.
   1366     if (tlsPtr_.jpeer != nullptr) {
   1367       // If pthread_create fails we don't have a jni env here.
   1368       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
   1369       tlsPtr_.jpeer = nullptr;
   1370     }
   1371     if (tlsPtr_.class_loader_override != nullptr) {
   1372       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
   1373       tlsPtr_.class_loader_override = nullptr;
   1374     }
   1375   }
   1376 
   1377   if (tlsPtr_.opeer != nullptr) {
   1378     ScopedObjectAccess soa(self);
   1379     // We may need to call user-supplied managed code, do this before final clean-up.
   1380     HandleUncaughtExceptions(soa);
   1381     RemoveFromThreadGroup(soa);
   1382 
   1383     // this.nativePeer = 0;
   1384     if (Runtime::Current()->IsActiveTransaction()) {
   1385       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
   1386           ->SetLong<true>(tlsPtr_.opeer, 0);
   1387     } else {
   1388       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
   1389           ->SetLong<false>(tlsPtr_.opeer, 0);
   1390     }
   1391     Dbg::PostThreadDeath(self);
   1392 
   1393     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
   1394     // who is waiting.
   1395     mirror::Object* lock =
   1396         soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
   1397     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
   1398     if (lock != nullptr) {
   1399       StackHandleScope<1> hs(self);
   1400       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
   1401       ObjectLock<mirror::Object> locker(self, h_obj);
   1402       locker.NotifyAll();
   1403     }
   1404     tlsPtr_.opeer = nullptr;
   1405   }
   1406 
   1407   {
   1408     ScopedObjectAccess soa(self);
   1409     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
   1410   }
   1411 }
   1412 
   1413 Thread::~Thread() {
   1414   CHECK(tlsPtr_.class_loader_override == nullptr);
   1415   CHECK(tlsPtr_.jpeer == nullptr);
   1416   CHECK(tlsPtr_.opeer == nullptr);
   1417   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
   1418   if (initialized) {
   1419     delete tlsPtr_.jni_env;
   1420     tlsPtr_.jni_env = nullptr;
   1421   }
   1422   CHECK_NE(GetState(), kRunnable);
   1423   CHECK_NE(ReadFlag(kCheckpointRequest), true);
   1424   CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
   1425   CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
   1426   CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
   1427   CHECK(tlsPtr_.flip_function == nullptr);
   1428   CHECK_EQ(tls32_.suspended_at_suspend_check, false);
   1429 
   1430   // We may be deleting a still born thread.
   1431   SetStateUnsafe(kTerminated);
   1432 
   1433   delete wait_cond_;
   1434   delete wait_mutex_;
   1435 
   1436   if (tlsPtr_.long_jump_context != nullptr) {
   1437     delete tlsPtr_.long_jump_context;
   1438   }
   1439 
   1440   if (initialized) {
   1441     CleanupCpu();
   1442   }
   1443 
   1444   if (tlsPtr_.single_step_control != nullptr) {
   1445     delete tlsPtr_.single_step_control;
   1446   }
   1447   delete tlsPtr_.instrumentation_stack;
   1448   delete tlsPtr_.name;
   1449   delete tlsPtr_.stack_trace_sample;
   1450   free(tlsPtr_.nested_signal_state);
   1451 
   1452   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
   1453 
   1454   TearDownAlternateSignalStack();
   1455 }
   1456 
   1457 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
   1458   if (!IsExceptionPending()) {
   1459     return;
   1460   }
   1461   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   1462   ScopedThreadStateChange tsc(this, kNative);
   1463 
   1464   // Get and clear the exception.
   1465   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
   1466   tlsPtr_.jni_env->ExceptionClear();
   1467 
   1468   // If the thread has its own handler, use that.
   1469   ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
   1470                                   tlsPtr_.jni_env->GetObjectField(peer.get(),
   1471                                       WellKnownClasses::java_lang_Thread_uncaughtHandler));
   1472   if (handler.get() == nullptr) {
   1473     // Otherwise use the thread group's default handler.
   1474     handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
   1475                                                   WellKnownClasses::java_lang_Thread_group));
   1476   }
   1477 
   1478   // Call the handler.
   1479   tlsPtr_.jni_env->CallVoidMethod(handler.get(),
   1480       WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException,
   1481       peer.get(), exception.get());
   1482 
   1483   // If the handler threw, clear that exception too.
   1484   tlsPtr_.jni_env->ExceptionClear();
   1485 }
   1486 
   1487 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
   1488   // this.group.removeThread(this);
   1489   // group can be null if we're in the compiler or a test.
   1490   mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
   1491       ->GetObject(tlsPtr_.opeer);
   1492   if (ogroup != nullptr) {
   1493     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
   1494     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   1495     ScopedThreadStateChange tsc(soa.Self(), kNative);
   1496     tlsPtr_.jni_env->CallVoidMethod(group.get(),
   1497                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
   1498                                     peer.get());
   1499   }
   1500 }
   1501 
   1502 size_t Thread::NumHandleReferences() {
   1503   size_t count = 0;
   1504   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) {
   1505     count += cur->NumberOfReferences();
   1506   }
   1507   return count;
   1508 }
   1509 
   1510 bool Thread::HandleScopeContains(jobject obj) const {
   1511   StackReference<mirror::Object>* hs_entry =
   1512       reinterpret_cast<StackReference<mirror::Object>*>(obj);
   1513   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
   1514     if (cur->Contains(hs_entry)) {
   1515       return true;
   1516     }
   1517   }
   1518   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
   1519   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
   1520 }
   1521 
   1522 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
   1523   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
   1524       visitor, RootInfo(kRootNativeStack, thread_id));
   1525   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   1526     for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) {
   1527       // GetReference returns a pointer to the stack reference within the handle scope. If this
   1528       // needs to be updated, it will be done by the root visitor.
   1529       buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference());
   1530     }
   1531   }
   1532 }
   1533 
   1534 mirror::Object* Thread::DecodeJObject(jobject obj) const {
   1535   if (obj == nullptr) {
   1536     return nullptr;
   1537   }
   1538   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   1539   IndirectRefKind kind = GetIndirectRefKind(ref);
   1540   mirror::Object* result;
   1541   bool expect_null = false;
   1542   // The "kinds" below are sorted by the frequency we expect to encounter them.
   1543   if (kind == kLocal) {
   1544     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
   1545     // Local references do not need a read barrier.
   1546     result = locals.Get<kWithoutReadBarrier>(ref);
   1547   } else if (kind == kHandleScopeOrInvalid) {
   1548     // TODO: make stack indirect reference table lookup more efficient.
   1549     // Check if this is a local reference in the handle scope.
   1550     if (LIKELY(HandleScopeContains(obj))) {
   1551       // Read from handle scope.
   1552       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
   1553       VerifyObject(result);
   1554     } else {
   1555       tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
   1556       expect_null = true;
   1557       result = nullptr;
   1558     }
   1559   } else if (kind == kGlobal) {
   1560     result = tlsPtr_.jni_env->vm->DecodeGlobal(const_cast<Thread*>(this), ref);
   1561   } else {
   1562     DCHECK_EQ(kind, kWeakGlobal);
   1563     result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
   1564     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
   1565       // This is a special case where it's okay to return null.
   1566       expect_null = true;
   1567       result = nullptr;
   1568     }
   1569   }
   1570 
   1571   if (UNLIKELY(!expect_null && result == nullptr)) {
   1572     tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
   1573                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
   1574   }
   1575   return result;
   1576 }
   1577 
   1578 // Implements java.lang.Thread.interrupted.
   1579 bool Thread::Interrupted() {
   1580   MutexLock mu(Thread::Current(), *wait_mutex_);
   1581   bool interrupted = IsInterruptedLocked();
   1582   SetInterruptedLocked(false);
   1583   return interrupted;
   1584 }
   1585 
   1586 // Implements java.lang.Thread.isInterrupted.
   1587 bool Thread::IsInterrupted() {
   1588   MutexLock mu(Thread::Current(), *wait_mutex_);
   1589   return IsInterruptedLocked();
   1590 }
   1591 
   1592 void Thread::Interrupt(Thread* self) {
   1593   MutexLock mu(self, *wait_mutex_);
   1594   if (interrupted_) {
   1595     return;
   1596   }
   1597   interrupted_ = true;
   1598   NotifyLocked(self);
   1599 }
   1600 
   1601 void Thread::Notify() {
   1602   Thread* self = Thread::Current();
   1603   MutexLock mu(self, *wait_mutex_);
   1604   NotifyLocked(self);
   1605 }
   1606 
   1607 void Thread::NotifyLocked(Thread* self) {
   1608   if (wait_monitor_ != nullptr) {
   1609     wait_cond_->Signal(self);
   1610   }
   1611 }
   1612 
   1613 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
   1614   if (tlsPtr_.class_loader_override != nullptr) {
   1615     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
   1616   }
   1617   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
   1618 }
   1619 
   1620 class CountStackDepthVisitor : public StackVisitor {
   1621  public:
   1622   explicit CountStackDepthVisitor(Thread* thread)
   1623       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1624       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   1625         depth_(0), skip_depth_(0), skipping_(true) {}
   1626 
   1627   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1628     // We want to skip frames up to and including the exception's constructor.
   1629     // Note we also skip the frame if it doesn't have a method (namely the callee
   1630     // save frame)
   1631     ArtMethod* m = GetMethod();
   1632     if (skipping_ && !m->IsRuntimeMethod() &&
   1633         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
   1634       skipping_ = false;
   1635     }
   1636     if (!skipping_) {
   1637       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
   1638         ++depth_;
   1639       }
   1640     } else {
   1641       ++skip_depth_;
   1642     }
   1643     return true;
   1644   }
   1645 
   1646   int GetDepth() const {
   1647     return depth_;
   1648   }
   1649 
   1650   int GetSkipDepth() const {
   1651     return skip_depth_;
   1652   }
   1653 
   1654  private:
   1655   uint32_t depth_;
   1656   uint32_t skip_depth_;
   1657   bool skipping_;
   1658 };
   1659 
   1660 template<bool kTransactionActive>
   1661 class BuildInternalStackTraceVisitor : public StackVisitor {
   1662  public:
   1663   explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
   1664       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   1665         self_(self),
   1666         skip_depth_(skip_depth),
   1667         count_(0),
   1668         trace_(nullptr),
   1669         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
   1670 
   1671   bool Init(int depth)
   1672       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1673     // Allocate method trace with format [method pointers][pcs].
   1674     auto* cl = Runtime::Current()->GetClassLinker();
   1675     trace_ = cl->AllocPointerArray(self_, depth * 2);
   1676     if (trace_ == nullptr) {
   1677       self_->AssertPendingOOMException();
   1678       return false;
   1679     }
   1680     // If We are called from native, use non-transactional mode.
   1681     const char* last_no_suspend_cause =
   1682         self_->StartAssertNoThreadSuspension("Building internal stack trace");
   1683     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
   1684     return true;
   1685   }
   1686 
   1687   virtual ~BuildInternalStackTraceVisitor() {
   1688     if (trace_ != nullptr) {
   1689       self_->EndAssertNoThreadSuspension(nullptr);
   1690     }
   1691   }
   1692 
   1693   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1694     if (trace_ == nullptr) {
   1695       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
   1696     }
   1697     if (skip_depth_ > 0) {
   1698       skip_depth_--;
   1699       return true;
   1700     }
   1701     ArtMethod* m = GetMethod();
   1702     if (m->IsRuntimeMethod()) {
   1703       return true;  // Ignore runtime frames (in particular callee save).
   1704     }
   1705     trace_->SetElementPtrSize<kTransactionActive>(
   1706         count_, m, pointer_size_);
   1707     trace_->SetElementPtrSize<kTransactionActive>(
   1708         trace_->GetLength() / 2 + count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(),
   1709             pointer_size_);
   1710     ++count_;
   1711     return true;
   1712   }
   1713 
   1714   mirror::PointerArray* GetInternalStackTrace() const {
   1715     return trace_;
   1716   }
   1717 
   1718  private:
   1719   Thread* const self_;
   1720   // How many more frames to skip.
   1721   int32_t skip_depth_;
   1722   // Current position down stack trace.
   1723   uint32_t count_;
   1724   // An array of the methods on the stack, the last entries are the dex PCs.
   1725   mirror::PointerArray* trace_;
   1726   // For cross compilation.
   1727   size_t pointer_size_;
   1728 };
   1729 
   1730 template<bool kTransactionActive>
   1731 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   1732   // Compute depth of stack
   1733   CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
   1734   count_visitor.WalkStack();
   1735   int32_t depth = count_visitor.GetDepth();
   1736   int32_t skip_depth = count_visitor.GetSkipDepth();
   1737 
   1738   // Build internal stack trace.
   1739   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
   1740                                                                          const_cast<Thread*>(this),
   1741                                                                          skip_depth);
   1742   if (!build_trace_visitor.Init(depth)) {
   1743     return nullptr;  // Allocation failed.
   1744   }
   1745   build_trace_visitor.WalkStack();
   1746   mirror::PointerArray* trace = build_trace_visitor.GetInternalStackTrace();
   1747   if (kIsDebugBuild) {
   1748     // Second half is dex PCs.
   1749     for (uint32_t i = 0; i < static_cast<uint32_t>(trace->GetLength() / 2); ++i) {
   1750       auto* method = trace->GetElementPtrSize<ArtMethod*>(
   1751           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
   1752       CHECK(method != nullptr);
   1753     }
   1754   }
   1755   return soa.AddLocalReference<jobject>(trace);
   1756 }
   1757 template jobject Thread::CreateInternalStackTrace<false>(
   1758     const ScopedObjectAccessAlreadyRunnable& soa) const;
   1759 template jobject Thread::CreateInternalStackTrace<true>(
   1760     const ScopedObjectAccessAlreadyRunnable& soa) const;
   1761 
   1762 bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const {
   1763   CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
   1764   count_visitor.WalkStack();
   1765   return count_visitor.GetDepth() == exception->GetStackDepth();
   1766 }
   1767 
   1768 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
   1769     const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
   1770     int* stack_depth) {
   1771   // Decode the internal stack trace into the depth, method trace and PC trace
   1772   int32_t depth = soa.Decode<mirror::PointerArray*>(internal)->GetLength() / 2;
   1773 
   1774   auto* cl = Runtime::Current()->GetClassLinker();
   1775 
   1776   jobjectArray result;
   1777 
   1778   if (output_array != nullptr) {
   1779     // Reuse the array we were given.
   1780     result = output_array;
   1781     // ...adjusting the number of frames we'll write to not exceed the array length.
   1782     const int32_t traces_length =
   1783         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
   1784     depth = std::min(depth, traces_length);
   1785   } else {
   1786     // Create java_trace array and place in local reference table
   1787     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
   1788         cl->AllocStackTraceElementArray(soa.Self(), depth);
   1789     if (java_traces == nullptr) {
   1790       return nullptr;
   1791     }
   1792     result = soa.AddLocalReference<jobjectArray>(java_traces);
   1793   }
   1794 
   1795   if (stack_depth != nullptr) {
   1796     *stack_depth = depth;
   1797   }
   1798 
   1799   for (int32_t i = 0; i < depth; ++i) {
   1800     auto* method_trace = soa.Decode<mirror::PointerArray*>(internal);
   1801     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
   1802     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, sizeof(void*));
   1803     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
   1804         i + method_trace->GetLength() / 2, sizeof(void*));
   1805     int32_t line_number;
   1806     StackHandleScope<3> hs(soa.Self());
   1807     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
   1808     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
   1809     if (method->IsProxyMethod()) {
   1810       line_number = -1;
   1811       class_name_object.Assign(method->GetDeclaringClass()->GetName());
   1812       // source_name_object intentionally left null for proxy methods
   1813     } else {
   1814       line_number = method->GetLineNumFromDexPC(dex_pc);
   1815       // Allocate element, potentially triggering GC
   1816       // TODO: reuse class_name_object via Class::name_?
   1817       const char* descriptor = method->GetDeclaringClassDescriptor();
   1818       CHECK(descriptor != nullptr);
   1819       std::string class_name(PrettyDescriptor(descriptor));
   1820       class_name_object.Assign(
   1821           mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
   1822       if (class_name_object.Get() == nullptr) {
   1823         soa.Self()->AssertPendingOOMException();
   1824         return nullptr;
   1825       }
   1826       const char* source_file = method->GetDeclaringClassSourceFile();
   1827       if (source_file != nullptr) {
   1828         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
   1829         if (source_name_object.Get() == nullptr) {
   1830           soa.Self()->AssertPendingOOMException();
   1831           return nullptr;
   1832         }
   1833       }
   1834     }
   1835     const char* method_name = method->GetInterfaceMethodIfProxy(sizeof(void*))->GetName();
   1836     CHECK(method_name != nullptr);
   1837     Handle<mirror::String> method_name_object(
   1838         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
   1839     if (method_name_object.Get() == nullptr) {
   1840       return nullptr;
   1841     }
   1842     mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
   1843         soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
   1844     if (obj == nullptr) {
   1845       return nullptr;
   1846     }
   1847     // We are called from native: use non-transactional mode.
   1848     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
   1849   }
   1850   return result;
   1851 }
   1852 
   1853 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
   1854   va_list args;
   1855   va_start(args, fmt);
   1856   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
   1857   va_end(args);
   1858 }
   1859 
   1860 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
   1861                                 const char* fmt, va_list ap) {
   1862   std::string msg;
   1863   StringAppendV(&msg, fmt, ap);
   1864   ThrowNewException(exception_class_descriptor, msg.c_str());
   1865 }
   1866 
   1867 void Thread::ThrowNewException(const char* exception_class_descriptor,
   1868                                const char* msg) {
   1869   // Callers should either clear or call ThrowNewWrappedException.
   1870   AssertNoPendingExceptionForNewException(msg);
   1871   ThrowNewWrappedException(exception_class_descriptor, msg);
   1872 }
   1873 
   1874 static mirror::ClassLoader* GetCurrentClassLoader(Thread* self)
   1875     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1876   ArtMethod* method = self->GetCurrentMethod(nullptr);
   1877   return method != nullptr
   1878       ? method->GetDeclaringClass()->GetClassLoader()
   1879       : nullptr;
   1880 }
   1881 
   1882 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
   1883                                       const char* msg) {
   1884   DCHECK_EQ(this, Thread::Current());
   1885   ScopedObjectAccessUnchecked soa(this);
   1886   StackHandleScope<3> hs(soa.Self());
   1887   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
   1888   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
   1889   ClearException();
   1890   Runtime* runtime = Runtime::Current();
   1891   auto* cl = runtime->GetClassLinker();
   1892   Handle<mirror::Class> exception_class(
   1893       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
   1894   if (UNLIKELY(exception_class.Get() == nullptr)) {
   1895     CHECK(IsExceptionPending());
   1896     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
   1897     return;
   1898   }
   1899 
   1900   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
   1901                                                              true))) {
   1902     DCHECK(IsExceptionPending());
   1903     return;
   1904   }
   1905   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
   1906   Handle<mirror::Throwable> exception(
   1907       hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
   1908 
   1909   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
   1910   if (exception.Get() == nullptr) {
   1911     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   1912     return;
   1913   }
   1914 
   1915   // Choose an appropriate constructor and set up the arguments.
   1916   const char* signature;
   1917   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
   1918   if (msg != nullptr) {
   1919     // Ensure we remember this and the method over the String allocation.
   1920     msg_string.reset(
   1921         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
   1922     if (UNLIKELY(msg_string.get() == nullptr)) {
   1923       CHECK(IsExceptionPending());  // OOME.
   1924       return;
   1925     }
   1926     if (cause.get() == nullptr) {
   1927       signature = "(Ljava/lang/String;)V";
   1928     } else {
   1929       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
   1930     }
   1931   } else {
   1932     if (cause.get() == nullptr) {
   1933       signature = "()V";
   1934     } else {
   1935       signature = "(Ljava/lang/Throwable;)V";
   1936     }
   1937   }
   1938   ArtMethod* exception_init_method =
   1939       exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
   1940 
   1941   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
   1942       << PrettyDescriptor(exception_class_descriptor);
   1943 
   1944   if (UNLIKELY(!runtime->IsStarted())) {
   1945     // Something is trying to throw an exception without a started runtime, which is the common
   1946     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
   1947     // the exception fields directly.
   1948     if (msg != nullptr) {
   1949       exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
   1950     }
   1951     if (cause.get() != nullptr) {
   1952       exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
   1953     }
   1954     ScopedLocalRef<jobject> trace(GetJniEnv(),
   1955                                   Runtime::Current()->IsActiveTransaction()
   1956                                       ? CreateInternalStackTrace<true>(soa)
   1957                                       : CreateInternalStackTrace<false>(soa));
   1958     if (trace.get() != nullptr) {
   1959       exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
   1960     }
   1961     SetException(exception.Get());
   1962   } else {
   1963     jvalue jv_args[2];
   1964     size_t i = 0;
   1965 
   1966     if (msg != nullptr) {
   1967       jv_args[i].l = msg_string.get();
   1968       ++i;
   1969     }
   1970     if (cause.get() != nullptr) {
   1971       jv_args[i].l = cause.get();
   1972       ++i;
   1973     }
   1974     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
   1975     InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args);
   1976     if (LIKELY(!IsExceptionPending())) {
   1977       SetException(exception.Get());
   1978     }
   1979   }
   1980 }
   1981 
   1982 void Thread::ThrowOutOfMemoryError(const char* msg) {
   1983   LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
   1984       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
   1985   if (!tls32_.throwing_OutOfMemoryError) {
   1986     tls32_.throwing_OutOfMemoryError = true;
   1987     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
   1988     tls32_.throwing_OutOfMemoryError = false;
   1989   } else {
   1990     Dump(LOG(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
   1991     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   1992   }
   1993 }
   1994 
   1995 Thread* Thread::CurrentFromGdb() {
   1996   return Thread::Current();
   1997 }
   1998 
   1999 void Thread::DumpFromGdb() const {
   2000   std::ostringstream ss;
   2001   Dump(ss);
   2002   std::string str(ss.str());
   2003   // log to stderr for debugging command line processes
   2004   std::cerr << str;
   2005 #ifdef HAVE_ANDROID_OS
   2006   // log to logcat for debugging frameworks processes
   2007   LOG(INFO) << str;
   2008 #endif
   2009 }
   2010 
   2011 // Explicitly instantiate 32 and 64bit thread offset dumping support.
   2012 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
   2013 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
   2014 
   2015 template<size_t ptr_size>
   2016 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
   2017 #define DO_THREAD_OFFSET(x, y) \
   2018     if (offset == x.Uint32Value()) { \
   2019       os << y; \
   2020       return; \
   2021     }
   2022   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
   2023   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
   2024   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
   2025   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
   2026   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
   2027   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
   2028   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
   2029   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
   2030   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
   2031   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
   2032   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
   2033   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
   2034 #undef DO_THREAD_OFFSET
   2035 
   2036 #define INTERPRETER_ENTRY_POINT_INFO(x) \
   2037     if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   2038       os << #x; \
   2039       return; \
   2040     }
   2041   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
   2042   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
   2043 #undef INTERPRETER_ENTRY_POINT_INFO
   2044 
   2045 #define JNI_ENTRY_POINT_INFO(x) \
   2046     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   2047       os << #x; \
   2048       return; \
   2049     }
   2050   JNI_ENTRY_POINT_INFO(pDlsymLookup)
   2051 #undef JNI_ENTRY_POINT_INFO
   2052 
   2053 #define QUICK_ENTRY_POINT_INFO(x) \
   2054     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   2055       os << #x; \
   2056       return; \
   2057     }
   2058   QUICK_ENTRY_POINT_INFO(pAllocArray)
   2059   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
   2060   QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
   2061   QUICK_ENTRY_POINT_INFO(pAllocObject)
   2062   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
   2063   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
   2064   QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
   2065   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
   2066   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
   2067   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
   2068   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
   2069   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
   2070   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
   2071   QUICK_ENTRY_POINT_INFO(pCheckCast)
   2072   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
   2073   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
   2074   QUICK_ENTRY_POINT_INFO(pInitializeType)
   2075   QUICK_ENTRY_POINT_INFO(pResolveString)
   2076   QUICK_ENTRY_POINT_INFO(pSet8Instance)
   2077   QUICK_ENTRY_POINT_INFO(pSet8Static)
   2078   QUICK_ENTRY_POINT_INFO(pSet16Instance)
   2079   QUICK_ENTRY_POINT_INFO(pSet16Static)
   2080   QUICK_ENTRY_POINT_INFO(pSet32Instance)
   2081   QUICK_ENTRY_POINT_INFO(pSet32Static)
   2082   QUICK_ENTRY_POINT_INFO(pSet64Instance)
   2083   QUICK_ENTRY_POINT_INFO(pSet64Static)
   2084   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
   2085   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
   2086   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
   2087   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
   2088   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
   2089   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
   2090   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
   2091   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
   2092   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
   2093   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
   2094   QUICK_ENTRY_POINT_INFO(pGet32Instance)
   2095   QUICK_ENTRY_POINT_INFO(pGet32Static)
   2096   QUICK_ENTRY_POINT_INFO(pGet64Instance)
   2097   QUICK_ENTRY_POINT_INFO(pGet64Static)
   2098   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
   2099   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
   2100   QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
   2101   QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
   2102   QUICK_ENTRY_POINT_INFO(pAputObject)
   2103   QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
   2104   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
   2105   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
   2106   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
   2107   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
   2108   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
   2109   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
   2110   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
   2111   QUICK_ENTRY_POINT_INFO(pLockObject)
   2112   QUICK_ENTRY_POINT_INFO(pUnlockObject)
   2113   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
   2114   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
   2115   QUICK_ENTRY_POINT_INFO(pCmplDouble)
   2116   QUICK_ENTRY_POINT_INFO(pCmplFloat)
   2117   QUICK_ENTRY_POINT_INFO(pFmod)
   2118   QUICK_ENTRY_POINT_INFO(pL2d)
   2119   QUICK_ENTRY_POINT_INFO(pFmodf)
   2120   QUICK_ENTRY_POINT_INFO(pL2f)
   2121   QUICK_ENTRY_POINT_INFO(pD2iz)
   2122   QUICK_ENTRY_POINT_INFO(pF2iz)
   2123   QUICK_ENTRY_POINT_INFO(pIdivmod)
   2124   QUICK_ENTRY_POINT_INFO(pD2l)
   2125   QUICK_ENTRY_POINT_INFO(pF2l)
   2126   QUICK_ENTRY_POINT_INFO(pLdiv)
   2127   QUICK_ENTRY_POINT_INFO(pLmod)
   2128   QUICK_ENTRY_POINT_INFO(pLmul)
   2129   QUICK_ENTRY_POINT_INFO(pShlLong)
   2130   QUICK_ENTRY_POINT_INFO(pShrLong)
   2131   QUICK_ENTRY_POINT_INFO(pUshrLong)
   2132   QUICK_ENTRY_POINT_INFO(pIndexOf)
   2133   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
   2134   QUICK_ENTRY_POINT_INFO(pMemcpy)
   2135   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
   2136   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
   2137   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
   2138   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
   2139   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
   2140   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
   2141   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
   2142   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
   2143   QUICK_ENTRY_POINT_INFO(pTestSuspend)
   2144   QUICK_ENTRY_POINT_INFO(pDeliverException)
   2145   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
   2146   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
   2147   QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
   2148   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
   2149   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
   2150   QUICK_ENTRY_POINT_INFO(pDeoptimize)
   2151   QUICK_ENTRY_POINT_INFO(pA64Load)
   2152   QUICK_ENTRY_POINT_INFO(pA64Store)
   2153   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
   2154   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
   2155   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
   2156   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
   2157   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
   2158   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
   2159   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
   2160   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
   2161   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
   2162   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
   2163   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
   2164   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
   2165   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
   2166   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
   2167   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
   2168   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
   2169   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
   2170 #undef QUICK_ENTRY_POINT_INFO
   2171 
   2172   os << offset;
   2173 }
   2174 
   2175 void Thread::QuickDeliverException() {
   2176   // Get exception from thread.
   2177   mirror::Throwable* exception = GetException();
   2178   CHECK(exception != nullptr);
   2179   // Don't leave exception visible while we try to find the handler, which may cause class
   2180   // resolution.
   2181   ClearException();
   2182   bool is_deoptimization = (exception == GetDeoptimizationException());
   2183   QuickExceptionHandler exception_handler(this, is_deoptimization);
   2184   if (is_deoptimization) {
   2185     exception_handler.DeoptimizeStack();
   2186   } else {
   2187     exception_handler.FindCatch(exception);
   2188   }
   2189   exception_handler.UpdateInstrumentationStack();
   2190   exception_handler.DoLongJump();
   2191 }
   2192 
   2193 Context* Thread::GetLongJumpContext() {
   2194   Context* result = tlsPtr_.long_jump_context;
   2195   if (result == nullptr) {
   2196     result = Context::Create();
   2197   } else {
   2198     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
   2199     result->Reset();
   2200   }
   2201   return result;
   2202 }
   2203 
   2204 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
   2205 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
   2206 struct CurrentMethodVisitor FINAL : public StackVisitor {
   2207   CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
   2208       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   2209       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2210         this_object_(nullptr),
   2211         method_(nullptr),
   2212         dex_pc_(0),
   2213         abort_on_error_(abort_on_error) {}
   2214   bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2215     ArtMethod* m = GetMethod();
   2216     if (m->IsRuntimeMethod()) {
   2217       // Continue if this is a runtime method.
   2218       return true;
   2219     }
   2220     if (context_ != nullptr) {
   2221       this_object_ = GetThisObject();
   2222     }
   2223     method_ = m;
   2224     dex_pc_ = GetDexPc(abort_on_error_);
   2225     return false;
   2226   }
   2227   mirror::Object* this_object_;
   2228   ArtMethod* method_;
   2229   uint32_t dex_pc_;
   2230   const bool abort_on_error_;
   2231 };
   2232 
   2233 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
   2234   CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
   2235   visitor.WalkStack(false);
   2236   if (dex_pc != nullptr) {
   2237     *dex_pc = visitor.dex_pc_;
   2238   }
   2239   return visitor.method_;
   2240 }
   2241 
   2242 bool Thread::HoldsLock(mirror::Object* object) const {
   2243   if (object == nullptr) {
   2244     return false;
   2245   }
   2246   return object->GetLockOwnerThreadId() == GetThreadId();
   2247 }
   2248 
   2249 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
   2250 template <typename RootVisitor>
   2251 class ReferenceMapVisitor : public StackVisitor {
   2252  public:
   2253   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
   2254       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   2255         // We are visiting the references in compiled frames, so we do not need
   2256         // to know the inlined frames.
   2257       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
   2258         visitor_(visitor) {}
   2259 
   2260   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2261     if (false) {
   2262       LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
   2263                 << StringPrintf("@ PC:%04x", GetDexPc());
   2264     }
   2265     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
   2266     if (shadow_frame != nullptr) {
   2267       VisitShadowFrame(shadow_frame);
   2268     } else {
   2269       VisitQuickFrame();
   2270     }
   2271     return true;
   2272   }
   2273 
   2274   void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2275     ArtMethod* m = shadow_frame->GetMethod();
   2276     DCHECK(m != nullptr);
   2277     size_t num_regs = shadow_frame->NumberOfVRegs();
   2278     if (m->IsNative() || shadow_frame->HasReferenceArray()) {
   2279       // handle scope for JNI or References for interpreter.
   2280       for (size_t reg = 0; reg < num_regs; ++reg) {
   2281         mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   2282         if (ref != nullptr) {
   2283           mirror::Object* new_ref = ref;
   2284           visitor_(&new_ref, reg, this);
   2285           if (new_ref != ref) {
   2286             shadow_frame->SetVRegReference(reg, new_ref);
   2287           }
   2288         }
   2289       }
   2290     } else {
   2291       // Java method.
   2292       // Portable path use DexGcMap and store in Method.native_gc_map_.
   2293       const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*));
   2294       CHECK(gc_map != nullptr) << PrettyMethod(m);
   2295       verifier::DexPcToReferenceMap dex_gc_map(gc_map);
   2296       uint32_t dex_pc = shadow_frame->GetDexPC();
   2297       const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
   2298       DCHECK(reg_bitmap != nullptr);
   2299       num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
   2300       for (size_t reg = 0; reg < num_regs; ++reg) {
   2301         if (TestBitmap(reg, reg_bitmap)) {
   2302           mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   2303           if (ref != nullptr) {
   2304             mirror::Object* new_ref = ref;
   2305             visitor_(&new_ref, reg, this);
   2306             if (new_ref != ref) {
   2307               shadow_frame->SetVRegReference(reg, new_ref);
   2308             }
   2309           }
   2310         }
   2311       }
   2312     }
   2313   }
   2314 
   2315  private:
   2316   void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2317     auto* cur_quick_frame = GetCurrentQuickFrame();
   2318     DCHECK(cur_quick_frame != nullptr);
   2319     auto* m = *cur_quick_frame;
   2320 
   2321     // Process register map (which native and runtime methods don't have)
   2322     if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
   2323       if (m->IsOptimized(sizeof(void*))) {
   2324         auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
   2325             reinterpret_cast<uintptr_t>(cur_quick_frame));
   2326         Runtime* runtime = Runtime::Current();
   2327         const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
   2328         uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point);
   2329         CodeInfo code_info = m->GetOptimizedCodeInfo();
   2330         StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
   2331         MemoryRegion mask = map.GetStackMask(code_info);
   2332         // Visit stack entries that hold pointers.
   2333         for (size_t i = 0; i < mask.size_in_bits(); ++i) {
   2334           if (mask.LoadBit(i)) {
   2335             auto* ref_addr = vreg_base + i;
   2336             mirror::Object* ref = ref_addr->AsMirrorPtr();
   2337             if (ref != nullptr) {
   2338               mirror::Object* new_ref = ref;
   2339               visitor_(&new_ref, -1, this);
   2340               if (ref != new_ref) {
   2341                 ref_addr->Assign(new_ref);
   2342               }
   2343             }
   2344           }
   2345         }
   2346         // Visit callee-save registers that hold pointers.
   2347         uint32_t register_mask = map.GetRegisterMask(code_info);
   2348         for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
   2349           if (register_mask & (1 << i)) {
   2350             mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
   2351             if (*ref_addr != nullptr) {
   2352               visitor_(ref_addr, -1, this);
   2353             }
   2354           }
   2355         }
   2356       } else {
   2357         const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*));
   2358         CHECK(native_gc_map != nullptr) << PrettyMethod(m);
   2359         const DexFile::CodeItem* code_item = m->GetCodeItem();
   2360         // Can't be null or how would we compile its instructions?
   2361         DCHECK(code_item != nullptr) << PrettyMethod(m);
   2362         NativePcOffsetToReferenceMap map(native_gc_map);
   2363         size_t num_regs = std::min(map.RegWidth() * 8,
   2364                                    static_cast<size_t>(code_item->registers_size_));
   2365         if (num_regs > 0) {
   2366           Runtime* runtime = Runtime::Current();
   2367           const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
   2368           uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point);
   2369           const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
   2370           DCHECK(reg_bitmap != nullptr);
   2371           const void* code_pointer = ArtMethod::EntryPointToCodePointer(entry_point);
   2372           const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*)));
   2373           QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
   2374           // For all dex registers in the bitmap
   2375           DCHECK(cur_quick_frame != nullptr);
   2376           for (size_t reg = 0; reg < num_regs; ++reg) {
   2377             // Does this register hold a reference?
   2378             if (TestBitmap(reg, reg_bitmap)) {
   2379               uint32_t vmap_offset;
   2380               if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
   2381                 int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
   2382                                                           kReferenceVReg);
   2383                 // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
   2384                 mirror::Object** ref_addr =
   2385                     reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
   2386                 if (*ref_addr != nullptr) {
   2387                   visitor_(ref_addr, reg, this);
   2388                 }
   2389               } else {
   2390                 StackReference<mirror::Object>* ref_addr =
   2391                     reinterpret_cast<StackReference<mirror::Object>*>(GetVRegAddrFromQuickCode(
   2392                         cur_quick_frame, code_item, frame_info.CoreSpillMask(),
   2393                         frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
   2394                 mirror::Object* ref = ref_addr->AsMirrorPtr();
   2395                 if (ref != nullptr) {
   2396                   mirror::Object* new_ref = ref;
   2397                   visitor_(&new_ref, reg, this);
   2398                   if (ref != new_ref) {
   2399                     ref_addr->Assign(new_ref);
   2400                   }
   2401                 }
   2402               }
   2403             }
   2404           }
   2405         }
   2406       }
   2407     }
   2408   }
   2409 
   2410   // Visitor for when we visit a root.
   2411   RootVisitor& visitor_;
   2412 };
   2413 
   2414 class RootCallbackVisitor {
   2415  public:
   2416   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
   2417 
   2418   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
   2419       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2420     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
   2421   }
   2422 
   2423  private:
   2424   RootVisitor* const visitor_;
   2425   const uint32_t tid_;
   2426 };
   2427 
   2428 void Thread::VisitRoots(RootVisitor* visitor) {
   2429   const uint32_t thread_id = GetThreadId();
   2430   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
   2431   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
   2432     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
   2433                    RootInfo(kRootNativeStack, thread_id));
   2434   }
   2435   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
   2436   tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
   2437   tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
   2438   HandleScopeVisitRoots(visitor, thread_id);
   2439   if (tlsPtr_.debug_invoke_req != nullptr) {
   2440     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
   2441   }
   2442   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
   2443     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   2444     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
   2445     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
   2446          record != nullptr;
   2447          record = record->GetLink()) {
   2448       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
   2449            shadow_frame != nullptr;
   2450            shadow_frame = shadow_frame->GetLink()) {
   2451         mapper.VisitShadowFrame(shadow_frame);
   2452       }
   2453     }
   2454   }
   2455   if (tlsPtr_.deoptimization_return_value_stack != nullptr) {
   2456     for (DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack;
   2457          record != nullptr;
   2458          record = record->GetLink()) {
   2459       if (record->IsReference()) {
   2460         visitor->VisitRootIfNonNull(record->GetGCRoot(),
   2461             RootInfo(kRootThreadObject, thread_id));
   2462       }
   2463     }
   2464   }
   2465   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
   2466     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
   2467   }
   2468   // Visit roots on this thread's stack
   2469   Context* context = GetLongJumpContext();
   2470   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   2471   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
   2472   mapper.WalkStack();
   2473   ReleaseLongJumpContext(context);
   2474   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
   2475     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
   2476   }
   2477 }
   2478 
   2479 class VerifyRootVisitor : public SingleRootVisitor {
   2480  public:
   2481   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
   2482       OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2483     VerifyObject(root);
   2484   }
   2485 };
   2486 
   2487 void Thread::VerifyStackImpl() {
   2488   VerifyRootVisitor visitor;
   2489   std::unique_ptr<Context> context(Context::Create());
   2490   RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
   2491   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
   2492   mapper.WalkStack();
   2493 }
   2494 
   2495 // Set the stack end to that to be used during a stack overflow
   2496 void Thread::SetStackEndForStackOverflow() {
   2497   // During stack overflow we allow use of the full stack.
   2498   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
   2499     // However, we seem to have already extended to use the full stack.
   2500     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
   2501                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
   2502     DumpStack(LOG(ERROR));
   2503     LOG(FATAL) << "Recursive stack overflow.";
   2504   }
   2505 
   2506   tlsPtr_.stack_end = tlsPtr_.stack_begin;
   2507 
   2508   // Remove the stack overflow protection if is it set up.
   2509   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
   2510   if (implicit_stack_check) {
   2511     if (!UnprotectStack()) {
   2512       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
   2513     }
   2514   }
   2515 }
   2516 
   2517 void Thread::SetTlab(uint8_t* start, uint8_t* end) {
   2518   DCHECK_LE(start, end);
   2519   tlsPtr_.thread_local_start = start;
   2520   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
   2521   tlsPtr_.thread_local_end = end;
   2522   tlsPtr_.thread_local_objects = 0;
   2523 }
   2524 
   2525 bool Thread::HasTlab() const {
   2526   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
   2527   if (has_tlab) {
   2528     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
   2529   } else {
   2530     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
   2531   }
   2532   return has_tlab;
   2533 }
   2534 
   2535 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
   2536   thread.ShortDump(os);
   2537   return os;
   2538 }
   2539 
   2540 void Thread::ProtectStack() {
   2541   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   2542   VLOG(threads) << "Protecting stack at " << pregion;
   2543   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
   2544     LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
   2545         "Reason: "
   2546         << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
   2547   }
   2548 }
   2549 
   2550 bool Thread::UnprotectStack() {
   2551   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   2552   VLOG(threads) << "Unprotecting stack at " << pregion;
   2553   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
   2554 }
   2555 
   2556 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
   2557   CHECK(Dbg::IsDebuggerActive());
   2558   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
   2559   CHECK(ssc != nullptr);
   2560   tlsPtr_.single_step_control = ssc;
   2561 }
   2562 
   2563 void Thread::DeactivateSingleStepControl() {
   2564   CHECK(Dbg::IsDebuggerActive());
   2565   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
   2566   SingleStepControl* ssc = GetSingleStepControl();
   2567   tlsPtr_.single_step_control = nullptr;
   2568   delete ssc;
   2569 }
   2570 
   2571 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
   2572   CHECK(Dbg::IsDebuggerActive());
   2573   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
   2574   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
   2575   CHECK(req != nullptr);
   2576   tlsPtr_.debug_invoke_req = req;
   2577 }
   2578 
   2579 void Thread::ClearDebugInvokeReq() {
   2580   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
   2581   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
   2582   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
   2583   tlsPtr_.debug_invoke_req = nullptr;
   2584   delete req;
   2585 }
   2586 
   2587 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
   2588   verifier->link_ = tlsPtr_.method_verifier;
   2589   tlsPtr_.method_verifier = verifier;
   2590 }
   2591 
   2592 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
   2593   CHECK_EQ(tlsPtr_.method_verifier, verifier);
   2594   tlsPtr_.method_verifier = verifier->link_;
   2595 }
   2596 
   2597 }  // namespace art
   2598