Home | History | Annotate | Download | only in src
      1 /*-
      2  * Copyright (c) 2005-2011 David Schultz <das (at) FreeBSD.ORG>
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     24  * SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __FBSDID("$FreeBSD$");
     29 
     30 #include <fenv.h>
     31 #include <float.h>
     32 #include <math.h>
     33 
     34 #include "math_private.h"
     35 
     36 /*
     37  * A struct dd represents a floating-point number with twice the precision
     38  * of a double.  We maintain the invariant that "hi" stores the 53 high-order
     39  * bits of the result.
     40  */
     41 struct dd {
     42 	double hi;
     43 	double lo;
     44 };
     45 
     46 /*
     47  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
     48  * that both a and b are finite, but make no assumptions about their relative
     49  * magnitudes.
     50  */
     51 static inline struct dd
     52 dd_add(double a, double b)
     53 {
     54 	struct dd ret;
     55 	double s;
     56 
     57 	ret.hi = a + b;
     58 	s = ret.hi - a;
     59 	ret.lo = (a - (ret.hi - s)) + (b - s);
     60 	return (ret);
     61 }
     62 
     63 /*
     64  * Compute a+b, with a small tweak:  The least significant bit of the
     65  * result is adjusted into a sticky bit summarizing all the bits that
     66  * were lost to rounding.  This adjustment negates the effects of double
     67  * rounding when the result is added to another number with a higher
     68  * exponent.  For an explanation of round and sticky bits, see any reference
     69  * on FPU design, e.g.,
     70  *
     71  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
     72  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
     73  */
     74 static inline double
     75 add_adjusted(double a, double b)
     76 {
     77 	struct dd sum;
     78 	uint64_t hibits, lobits;
     79 
     80 	sum = dd_add(a, b);
     81 	if (sum.lo != 0) {
     82 		EXTRACT_WORD64(hibits, sum.hi);
     83 		if ((hibits & 1) == 0) {
     84 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
     85 			EXTRACT_WORD64(lobits, sum.lo);
     86 			hibits += 1 - ((hibits ^ lobits) >> 62);
     87 			INSERT_WORD64(sum.hi, hibits);
     88 		}
     89 	}
     90 	return (sum.hi);
     91 }
     92 
     93 /*
     94  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
     95  * that the result will be subnormal, and care is taken to ensure that
     96  * double rounding does not occur.
     97  */
     98 static inline double
     99 add_and_denormalize(double a, double b, int scale)
    100 {
    101 	struct dd sum;
    102 	uint64_t hibits, lobits;
    103 	int bits_lost;
    104 
    105 	sum = dd_add(a, b);
    106 
    107 	/*
    108 	 * If we are losing at least two bits of accuracy to denormalization,
    109 	 * then the first lost bit becomes a round bit, and we adjust the
    110 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
    111 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
    112 	 * break any ties in the correct direction.
    113 	 *
    114 	 * If we are losing only one bit to denormalization, however, we must
    115 	 * break the ties manually.
    116 	 */
    117 	if (sum.lo != 0) {
    118 		EXTRACT_WORD64(hibits, sum.hi);
    119 		bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
    120 		if ((bits_lost != 1) ^ (int)(hibits & 1)) {
    121 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
    122 			EXTRACT_WORD64(lobits, sum.lo);
    123 			hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
    124 			INSERT_WORD64(sum.hi, hibits);
    125 		}
    126 	}
    127 	return (ldexp(sum.hi, scale));
    128 }
    129 
    130 /*
    131  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
    132  * that both a and b are normalized, so no underflow or overflow will occur.
    133  * The current rounding mode must be round-to-nearest.
    134  */
    135 static inline struct dd
    136 dd_mul(double a, double b)
    137 {
    138 	static const double split = 0x1p27 + 1.0;
    139 	struct dd ret;
    140 	double ha, hb, la, lb, p, q;
    141 
    142 	p = a * split;
    143 	ha = a - p;
    144 	ha += p;
    145 	la = a - ha;
    146 
    147 	p = b * split;
    148 	hb = b - p;
    149 	hb += p;
    150 	lb = b - hb;
    151 
    152 	p = ha * hb;
    153 	q = ha * lb + la * hb;
    154 
    155 	ret.hi = p + q;
    156 	ret.lo = p - ret.hi + q + la * lb;
    157 	return (ret);
    158 }
    159 
    160 /*
    161  * Fused multiply-add: Compute x * y + z with a single rounding error.
    162  *
    163  * We use scaling to avoid overflow/underflow, along with the
    164  * canonical precision-doubling technique adapted from:
    165  *
    166  *	Dekker, T.  A Floating-Point Technique for Extending the
    167  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
    168  *
    169  * This algorithm is sensitive to the rounding precision.  FPUs such
    170  * as the i387 must be set in double-precision mode if variables are
    171  * to be stored in FP registers in order to avoid incorrect results.
    172  * This is the default on FreeBSD, but not on many other systems.
    173  *
    174  * Hardware instructions should be used on architectures that support it,
    175  * since this implementation will likely be several times slower.
    176  */
    177 double
    178 fma(double x, double y, double z)
    179 {
    180 	double xs, ys, zs, adj;
    181 	struct dd xy, r;
    182 	int oround;
    183 	int ex, ey, ez;
    184 	int spread;
    185 
    186 	/*
    187 	 * Handle special cases. The order of operations and the particular
    188 	 * return values here are crucial in handling special cases involving
    189 	 * infinities, NaNs, overflows, and signed zeroes correctly.
    190 	 */
    191 	if (x == 0.0 || y == 0.0)
    192 		return (x * y + z);
    193 	if (z == 0.0)
    194 		return (x * y);
    195 	if (!isfinite(x) || !isfinite(y))
    196 		return (x * y + z);
    197 	if (!isfinite(z))
    198 		return (z);
    199 
    200 	xs = frexp(x, &ex);
    201 	ys = frexp(y, &ey);
    202 	zs = frexp(z, &ez);
    203 	oround = fegetround();
    204 	spread = ex + ey - ez;
    205 
    206 	/*
    207 	 * If x * y and z are many orders of magnitude apart, the scaling
    208 	 * will overflow, so we handle these cases specially.  Rounding
    209 	 * modes other than FE_TONEAREST are painful.
    210 	 */
    211 	if (spread < -DBL_MANT_DIG) {
    212 		feraiseexcept(FE_INEXACT);
    213 		if (!isnormal(z))
    214 			feraiseexcept(FE_UNDERFLOW);
    215 		switch (oround) {
    216 		case FE_TONEAREST:
    217 			return (z);
    218 		case FE_TOWARDZERO:
    219 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
    220 				return (z);
    221 			else
    222 				return (nextafter(z, 0));
    223 		case FE_DOWNWARD:
    224 			if (x > 0.0 ^ y < 0.0)
    225 				return (z);
    226 			else
    227 				return (nextafter(z, -INFINITY));
    228 		default:	/* FE_UPWARD */
    229 			if (x > 0.0 ^ y < 0.0)
    230 				return (nextafter(z, INFINITY));
    231 			else
    232 				return (z);
    233 		}
    234 	}
    235 	if (spread <= DBL_MANT_DIG * 2)
    236 		zs = ldexp(zs, -spread);
    237 	else
    238 		zs = copysign(DBL_MIN, zs);
    239 
    240 	fesetround(FE_TONEAREST);
    241 	/* work around clang bug 8100 */
    242 	volatile double vxs = xs;
    243 
    244 	/*
    245 	 * Basic approach for round-to-nearest:
    246 	 *
    247 	 *     (xy.hi, xy.lo) = x * y		(exact)
    248 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
    249 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
    250 	 *     result = r.hi + adj		(correctly rounded)
    251 	 */
    252 	xy = dd_mul(vxs, ys);
    253 	r = dd_add(xy.hi, zs);
    254 
    255 	spread = ex + ey;
    256 
    257 	if (r.hi == 0.0) {
    258 		/*
    259 		 * When the addends cancel to 0, ensure that the result has
    260 		 * the correct sign.
    261 		 */
    262 		fesetround(oround);
    263 		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
    264 		return (xy.hi + vzs + ldexp(xy.lo, spread));
    265 	}
    266 
    267 	if (oround != FE_TONEAREST) {
    268 		/*
    269 		 * There is no need to worry about double rounding in directed
    270 		 * rounding modes.
    271 		 */
    272 		fesetround(oround);
    273 		/* work around clang bug 8100 */
    274 		volatile double vrlo = r.lo;
    275 		adj = vrlo + xy.lo;
    276 		return (ldexp(r.hi + adj, spread));
    277 	}
    278 
    279 	adj = add_adjusted(r.lo, xy.lo);
    280 	if (spread + ilogb(r.hi) > -1023)
    281 		return (ldexp(r.hi + adj, spread));
    282 	else
    283 		return (add_and_denormalize(r.hi, adj, spread));
    284 }
    285 
    286 #if (LDBL_MANT_DIG == 53)
    287 __weak_reference(fma, fmal);
    288 #endif
    289