Home | History | Annotate | Download | only in recovery
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "asn1_decoder.h"
     18 #include "common.h"
     19 #include "ui.h"
     20 #include "verifier.h"
     21 
     22 #include "mincrypt/dsa_sig.h"
     23 #include "mincrypt/p256.h"
     24 #include "mincrypt/p256_ecdsa.h"
     25 #include "mincrypt/rsa.h"
     26 #include "mincrypt/sha.h"
     27 #include "mincrypt/sha256.h"
     28 
     29 #include <errno.h>
     30 #include <malloc.h>
     31 #include <stdio.h>
     32 #include <string.h>
     33 
     34 extern RecoveryUI* ui;
     35 
     36 /*
     37  * Simple version of PKCS#7 SignedData extraction. This extracts the
     38  * signature OCTET STRING to be used for signature verification.
     39  *
     40  * For full details, see http://www.ietf.org/rfc/rfc3852.txt
     41  *
     42  * The PKCS#7 structure looks like:
     43  *
     44  *   SEQUENCE (ContentInfo)
     45  *     OID (ContentType)
     46  *     [0] (content)
     47  *       SEQUENCE (SignedData)
     48  *         INTEGER (version CMSVersion)
     49  *         SET (DigestAlgorithmIdentifiers)
     50  *         SEQUENCE (EncapsulatedContentInfo)
     51  *         [0] (CertificateSet OPTIONAL)
     52  *         [1] (RevocationInfoChoices OPTIONAL)
     53  *         SET (SignerInfos)
     54  *           SEQUENCE (SignerInfo)
     55  *             INTEGER (CMSVersion)
     56  *             SEQUENCE (SignerIdentifier)
     57  *             SEQUENCE (DigestAlgorithmIdentifier)
     58  *             SEQUENCE (SignatureAlgorithmIdentifier)
     59  *             OCTET STRING (SignatureValue)
     60  */
     61 static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der,
     62         size_t* sig_der_length) {
     63     asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len);
     64     if (ctx == NULL) {
     65         return false;
     66     }
     67 
     68     asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx);
     69     if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) {
     70         asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq);
     71         if (signed_data_app != NULL) {
     72             asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app);
     73             if (signed_data_seq != NULL
     74                     && asn1_sequence_next(signed_data_seq)
     75                     && asn1_sequence_next(signed_data_seq)
     76                     && asn1_sequence_next(signed_data_seq)
     77                     && asn1_constructed_skip_all(signed_data_seq)) {
     78                 asn1_context_t *sig_set = asn1_set_get(signed_data_seq);
     79                 if (sig_set != NULL) {
     80                     asn1_context_t* sig_seq = asn1_sequence_get(sig_set);
     81                     if (sig_seq != NULL
     82                             && asn1_sequence_next(sig_seq)
     83                             && asn1_sequence_next(sig_seq)
     84                             && asn1_sequence_next(sig_seq)
     85                             && asn1_sequence_next(sig_seq)) {
     86                         uint8_t* sig_der_ptr;
     87                         if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) {
     88                             *sig_der = (uint8_t*) malloc(*sig_der_length);
     89                             if (*sig_der != NULL) {
     90                                 memcpy(*sig_der, sig_der_ptr, *sig_der_length);
     91                             }
     92                         }
     93                         asn1_context_free(sig_seq);
     94                     }
     95                     asn1_context_free(sig_set);
     96                 }
     97                 asn1_context_free(signed_data_seq);
     98             }
     99             asn1_context_free(signed_data_app);
    100         }
    101         asn1_context_free(pkcs7_seq);
    102     }
    103     asn1_context_free(ctx);
    104 
    105     return *sig_der != NULL;
    106 }
    107 
    108 // Look for an RSA signature embedded in the .ZIP file comment given
    109 // the path to the zip.  Verify it matches one of the given public
    110 // keys.
    111 //
    112 // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered
    113 // or no key matches the signature).
    114 
    115 int verify_file(unsigned char* addr, size_t length,
    116                 const Certificate* pKeys, unsigned int numKeys) {
    117     ui->SetProgress(0.0);
    118 
    119     // An archive with a whole-file signature will end in six bytes:
    120     //
    121     //   (2-byte signature start) $ff $ff (2-byte comment size)
    122     //
    123     // (As far as the ZIP format is concerned, these are part of the
    124     // archive comment.)  We start by reading this footer, this tells
    125     // us how far back from the end we have to start reading to find
    126     // the whole comment.
    127 
    128 #define FOOTER_SIZE 6
    129 
    130     if (length < FOOTER_SIZE) {
    131         LOGE("not big enough to contain footer\n");
    132         return VERIFY_FAILURE;
    133     }
    134 
    135     unsigned char* footer = addr + length - FOOTER_SIZE;
    136 
    137     if (footer[2] != 0xff || footer[3] != 0xff) {
    138         LOGE("footer is wrong\n");
    139         return VERIFY_FAILURE;
    140     }
    141 
    142     size_t comment_size = footer[4] + (footer[5] << 8);
    143     size_t signature_start = footer[0] + (footer[1] << 8);
    144     LOGI("comment is %zu bytes; signature %zu bytes from end\n",
    145          comment_size, signature_start);
    146 
    147     if (signature_start <= FOOTER_SIZE) {
    148         LOGE("Signature start is in the footer");
    149         return VERIFY_FAILURE;
    150     }
    151 
    152 #define EOCD_HEADER_SIZE 22
    153 
    154     // The end-of-central-directory record is 22 bytes plus any
    155     // comment length.
    156     size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
    157 
    158     if (length < eocd_size) {
    159         LOGE("not big enough to contain EOCD\n");
    160         return VERIFY_FAILURE;
    161     }
    162 
    163     // Determine how much of the file is covered by the signature.
    164     // This is everything except the signature data and length, which
    165     // includes all of the EOCD except for the comment length field (2
    166     // bytes) and the comment data.
    167     size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
    168 
    169     unsigned char* eocd = addr + length - eocd_size;
    170 
    171     // If this is really is the EOCD record, it will begin with the
    172     // magic number $50 $4b $05 $06.
    173     if (eocd[0] != 0x50 || eocd[1] != 0x4b ||
    174         eocd[2] != 0x05 || eocd[3] != 0x06) {
    175         LOGE("signature length doesn't match EOCD marker\n");
    176         return VERIFY_FAILURE;
    177     }
    178 
    179     size_t i;
    180     for (i = 4; i < eocd_size-3; ++i) {
    181         if (eocd[i  ] == 0x50 && eocd[i+1] == 0x4b &&
    182             eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
    183             // if the sequence $50 $4b $05 $06 appears anywhere after
    184             // the real one, minzip will find the later (wrong) one,
    185             // which could be exploitable.  Fail verification if
    186             // this sequence occurs anywhere after the real one.
    187             LOGE("EOCD marker occurs after start of EOCD\n");
    188             return VERIFY_FAILURE;
    189         }
    190     }
    191 
    192 #define BUFFER_SIZE 4096
    193 
    194     bool need_sha1 = false;
    195     bool need_sha256 = false;
    196     for (i = 0; i < numKeys; ++i) {
    197         switch (pKeys[i].hash_len) {
    198             case SHA_DIGEST_SIZE: need_sha1 = true; break;
    199             case SHA256_DIGEST_SIZE: need_sha256 = true; break;
    200         }
    201     }
    202 
    203     SHA_CTX sha1_ctx;
    204     SHA256_CTX sha256_ctx;
    205     SHA_init(&sha1_ctx);
    206     SHA256_init(&sha256_ctx);
    207 
    208     double frac = -1.0;
    209     size_t so_far = 0;
    210     while (so_far < signed_len) {
    211         size_t size = signed_len - so_far;
    212         if (size > BUFFER_SIZE) size = BUFFER_SIZE;
    213 
    214         if (need_sha1) SHA_update(&sha1_ctx, addr + so_far, size);
    215         if (need_sha256) SHA256_update(&sha256_ctx, addr + so_far, size);
    216         so_far += size;
    217 
    218         double f = so_far / (double)signed_len;
    219         if (f > frac + 0.02 || size == so_far) {
    220             ui->SetProgress(f);
    221             frac = f;
    222         }
    223     }
    224 
    225     const uint8_t* sha1 = SHA_final(&sha1_ctx);
    226     const uint8_t* sha256 = SHA256_final(&sha256_ctx);
    227 
    228     uint8_t* sig_der = NULL;
    229     size_t sig_der_length = 0;
    230 
    231     size_t signature_size = signature_start - FOOTER_SIZE;
    232     if (!read_pkcs7(eocd + eocd_size - signature_start, signature_size, &sig_der,
    233             &sig_der_length)) {
    234         LOGE("Could not find signature DER block\n");
    235         return VERIFY_FAILURE;
    236     }
    237 
    238     /*
    239      * Check to make sure at least one of the keys matches the signature. Since
    240      * any key can match, we need to try each before determining a verification
    241      * failure has happened.
    242      */
    243     for (i = 0; i < numKeys; ++i) {
    244         const uint8_t* hash;
    245         switch (pKeys[i].hash_len) {
    246             case SHA_DIGEST_SIZE: hash = sha1; break;
    247             case SHA256_DIGEST_SIZE: hash = sha256; break;
    248             default: continue;
    249         }
    250 
    251         // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that
    252         // the signing tool appends after the signature itself.
    253         if (pKeys[i].key_type == Certificate::RSA) {
    254             if (sig_der_length < RSANUMBYTES) {
    255                 // "signature" block isn't big enough to contain an RSA block.
    256                 LOGI("signature is too short for RSA key %zu\n", i);
    257                 continue;
    258             }
    259 
    260             if (!RSA_verify(pKeys[i].rsa, sig_der, RSANUMBYTES,
    261                             hash, pKeys[i].hash_len)) {
    262                 LOGI("failed to verify against RSA key %zu\n", i);
    263                 continue;
    264             }
    265 
    266             LOGI("whole-file signature verified against RSA key %zu\n", i);
    267             free(sig_der);
    268             return VERIFY_SUCCESS;
    269         } else if (pKeys[i].key_type == Certificate::EC
    270                 && pKeys[i].hash_len == SHA256_DIGEST_SIZE) {
    271             p256_int r, s;
    272             if (!dsa_sig_unpack(sig_der, sig_der_length, &r, &s)) {
    273                 LOGI("Not a DSA signature block for EC key %zu\n", i);
    274                 continue;
    275             }
    276 
    277             p256_int p256_hash;
    278             p256_from_bin(hash, &p256_hash);
    279             if (!p256_ecdsa_verify(&(pKeys[i].ec->x), &(pKeys[i].ec->y),
    280                                    &p256_hash, &r, &s)) {
    281                 LOGI("failed to verify against EC key %zu\n", i);
    282                 continue;
    283             }
    284 
    285             LOGI("whole-file signature verified against EC key %zu\n", i);
    286             free(sig_der);
    287             return VERIFY_SUCCESS;
    288         } else {
    289             LOGI("Unknown key type %d\n", pKeys[i].key_type);
    290         }
    291     }
    292     free(sig_der);
    293     LOGE("failed to verify whole-file signature\n");
    294     return VERIFY_FAILURE;
    295 }
    296 
    297 // Reads a file containing one or more public keys as produced by
    298 // DumpPublicKey:  this is an RSAPublicKey struct as it would appear
    299 // as a C source literal, eg:
    300 //
    301 //  "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
    302 //
    303 // For key versions newer than the original 2048-bit e=3 keys
    304 // supported by Android, the string is preceded by a version
    305 // identifier, eg:
    306 //
    307 //  "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
    308 //
    309 // (Note that the braces and commas in this example are actual
    310 // characters the parser expects to find in the file; the ellipses
    311 // indicate more numbers omitted from this example.)
    312 //
    313 // The file may contain multiple keys in this format, separated by
    314 // commas.  The last key must not be followed by a comma.
    315 //
    316 // A Certificate is a pair of an RSAPublicKey and a particular hash
    317 // (we support SHA-1 and SHA-256; we store the hash length to signify
    318 // which is being used).  The hash used is implied by the version number.
    319 //
    320 //       1: 2048-bit RSA key with e=3 and SHA-1 hash
    321 //       2: 2048-bit RSA key with e=65537 and SHA-1 hash
    322 //       3: 2048-bit RSA key with e=3 and SHA-256 hash
    323 //       4: 2048-bit RSA key with e=65537 and SHA-256 hash
    324 //       5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
    325 //
    326 // Returns NULL if the file failed to parse, or if it contain zero keys.
    327 Certificate*
    328 load_keys(const char* filename, int* numKeys) {
    329     Certificate* out = NULL;
    330     *numKeys = 0;
    331 
    332     FILE* f = fopen(filename, "r");
    333     if (f == NULL) {
    334         LOGE("opening %s: %s\n", filename, strerror(errno));
    335         goto exit;
    336     }
    337 
    338     {
    339         int i;
    340         bool done = false;
    341         while (!done) {
    342             ++*numKeys;
    343             out = (Certificate*)realloc(out, *numKeys * sizeof(Certificate));
    344             Certificate* cert = out + (*numKeys - 1);
    345             memset(cert, '\0', sizeof(Certificate));
    346 
    347             char start_char;
    348             if (fscanf(f, " %c", &start_char) != 1) goto exit;
    349             if (start_char == '{') {
    350                 // a version 1 key has no version specifier.
    351                 cert->key_type = Certificate::RSA;
    352                 cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
    353                 cert->rsa->exponent = 3;
    354                 cert->hash_len = SHA_DIGEST_SIZE;
    355             } else if (start_char == 'v') {
    356                 int version;
    357                 if (fscanf(f, "%d {", &version) != 1) goto exit;
    358                 switch (version) {
    359                     case 2:
    360                         cert->key_type = Certificate::RSA;
    361                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
    362                         cert->rsa->exponent = 65537;
    363                         cert->hash_len = SHA_DIGEST_SIZE;
    364                         break;
    365                     case 3:
    366                         cert->key_type = Certificate::RSA;
    367                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
    368                         cert->rsa->exponent = 3;
    369                         cert->hash_len = SHA256_DIGEST_SIZE;
    370                         break;
    371                     case 4:
    372                         cert->key_type = Certificate::RSA;
    373                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
    374                         cert->rsa->exponent = 65537;
    375                         cert->hash_len = SHA256_DIGEST_SIZE;
    376                         break;
    377                     case 5:
    378                         cert->key_type = Certificate::EC;
    379                         cert->ec = (ECPublicKey*)calloc(1, sizeof(ECPublicKey));
    380                         cert->hash_len = SHA256_DIGEST_SIZE;
    381                         break;
    382                     default:
    383                         goto exit;
    384                 }
    385             }
    386 
    387             if (cert->key_type == Certificate::RSA) {
    388                 RSAPublicKey* key = cert->rsa;
    389                 if (fscanf(f, " %i , 0x%x , { %u",
    390                            &(key->len), &(key->n0inv), &(key->n[0])) != 3) {
    391                     goto exit;
    392                 }
    393                 if (key->len != RSANUMWORDS) {
    394                     LOGE("key length (%d) does not match expected size\n", key->len);
    395                     goto exit;
    396                 }
    397                 for (i = 1; i < key->len; ++i) {
    398                     if (fscanf(f, " , %u", &(key->n[i])) != 1) goto exit;
    399                 }
    400                 if (fscanf(f, " } , { %u", &(key->rr[0])) != 1) goto exit;
    401                 for (i = 1; i < key->len; ++i) {
    402                     if (fscanf(f, " , %u", &(key->rr[i])) != 1) goto exit;
    403                 }
    404                 fscanf(f, " } } ");
    405 
    406                 LOGI("read key e=%d hash=%d\n", key->exponent, cert->hash_len);
    407             } else if (cert->key_type == Certificate::EC) {
    408                 ECPublicKey* key = cert->ec;
    409                 int key_len;
    410                 unsigned int byte;
    411                 uint8_t x_bytes[P256_NBYTES];
    412                 uint8_t y_bytes[P256_NBYTES];
    413                 if (fscanf(f, " %i , { %u", &key_len, &byte) != 2) goto exit;
    414                 if (key_len != P256_NBYTES) {
    415                     LOGE("Key length (%d) does not match expected size %d\n", key_len, P256_NBYTES);
    416                     goto exit;
    417                 }
    418                 x_bytes[P256_NBYTES - 1] = byte;
    419                 for (i = P256_NBYTES - 2; i >= 0; --i) {
    420                     if (fscanf(f, " , %u", &byte) != 1) goto exit;
    421                     x_bytes[i] = byte;
    422                 }
    423                 if (fscanf(f, " } , { %u", &byte) != 1) goto exit;
    424                 y_bytes[P256_NBYTES - 1] = byte;
    425                 for (i = P256_NBYTES - 2; i >= 0; --i) {
    426                     if (fscanf(f, " , %u", &byte) != 1) goto exit;
    427                     y_bytes[i] = byte;
    428                 }
    429                 fscanf(f, " } } ");
    430                 p256_from_bin(x_bytes, &key->x);
    431                 p256_from_bin(y_bytes, &key->y);
    432             } else {
    433                 LOGE("Unknown key type %d\n", cert->key_type);
    434                 goto exit;
    435             }
    436 
    437             // if the line ends in a comma, this file has more keys.
    438             switch (fgetc(f)) {
    439             case ',':
    440                 // more keys to come.
    441                 break;
    442 
    443             case EOF:
    444                 done = true;
    445                 break;
    446 
    447             default:
    448                 LOGE("unexpected character between keys\n");
    449                 goto exit;
    450             }
    451         }
    452     }
    453 
    454     fclose(f);
    455     return out;
    456 
    457 exit:
    458     if (f) fclose(f);
    459     free(out);
    460     *numKeys = 0;
    461     return NULL;
    462 }
    463