Home | History | Annotate | Download | only in scene0
      1 # Copyright 2014 The Android Open Source Project
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #      http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 
     15 import its.image
     16 import its.caps
     17 import its.device
     18 import its.objects
     19 import its.target
     20 import time
     21 import pylab
     22 import os.path
     23 import matplotlib
     24 import matplotlib.pyplot
     25 import numpy
     26 
     27 def main():
     28     """Test if the gyro has stable output when device is stationary.
     29     """
     30     NAME = os.path.basename(__file__).split(".")[0]
     31 
     32     # Number of samples averaged together, in the plot.
     33     N = 20
     34 
     35     # Pass/fail thresholds for gyro drift
     36     MEAN_THRESH = 0.01
     37     VAR_THRESH = 0.001
     38 
     39     with its.device.ItsSession() as cam:
     40         props = cam.get_camera_properties()
     41         # Only run test if the appropriate caps are claimed.
     42         its.caps.skip_unless(its.caps.sensor_fusion(props))
     43 
     44         print "Collecting gyro events"
     45         cam.start_sensor_events()
     46         time.sleep(5)
     47         gyro_events = cam.get_sensor_events()["gyro"]
     48 
     49     nevents = (len(gyro_events) / N) * N
     50     gyro_events = gyro_events[:nevents]
     51     times = numpy.array([(e["time"] - gyro_events[0]["time"])/1000000000.0
     52                          for e in gyro_events])
     53     xs = numpy.array([e["x"] for e in gyro_events])
     54     ys = numpy.array([e["y"] for e in gyro_events])
     55     zs = numpy.array([e["z"] for e in gyro_events])
     56 
     57     # Group samples into size-N groups and average each together, to get rid
     58     # of individual random spikes in the data.
     59     times = times[N/2::N]
     60     xs = xs.reshape(nevents/N, N).mean(1)
     61     ys = ys.reshape(nevents/N, N).mean(1)
     62     zs = zs.reshape(nevents/N, N).mean(1)
     63 
     64     pylab.plot(times, xs, 'r', label="x")
     65     pylab.plot(times, ys, 'g', label="y")
     66     pylab.plot(times, zs, 'b', label="z")
     67     pylab.xlabel("Time (seconds)")
     68     pylab.ylabel("Gyro readings (mean of %d samples)"%(N))
     69     pylab.legend()
     70     matplotlib.pyplot.savefig("%s_plot.png" % (NAME))
     71 
     72     for samples in [xs,ys,zs]:
     73         assert(samples.mean() < MEAN_THRESH)
     74         assert(numpy.var(samples) < VAR_THRESH)
     75 
     76 if __name__ == '__main__':
     77     main()
     78 
     79