Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 #
      3 # ====================================================================
      4 # Written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL
      5 # project. The module is, however, dual licensed under OpenSSL and
      6 # CRYPTOGAMS licenses depending on where you obtain it. For further
      7 # details see http://www.openssl.org/~appro/cryptogams/.
      8 # ====================================================================
      9 #
     10 # March, June 2010
     11 #
     12 # The module implements "4-bit" GCM GHASH function and underlying
     13 # single multiplication operation in GF(2^128). "4-bit" means that
     14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
     15 # function features so called "528B" variant utilizing additional
     16 # 256+16 bytes of per-key storage [+512 bytes shared table].
     17 # Performance results are for this streamed GHASH subroutine and are
     18 # expressed in cycles per processed byte, less is better:
     19 #
     20 #		gcc 3.4.x(*)	assembler
     21 #
     22 # P4		28.6		14.0		+100%
     23 # Opteron	19.3		7.7		+150%
     24 # Core2		17.8		8.1(**)		+120%
     25 # Atom		31.6		16.8		+88%
     26 # VIA Nano	21.8		10.1		+115%
     27 #
     28 # (*)	comparison is not completely fair, because C results are
     29 #	for vanilla "256B" implementation, while assembler results
     30 #	are for "528B";-)
     31 # (**)	it's mystery [to me] why Core2 result is not same as for
     32 #	Opteron;
     33 
     34 # May 2010
     35 #
     36 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
     37 # See ghash-x86.pl for background information and details about coding
     38 # techniques.
     39 #
     40 # Special thanks to David Woodhouse <dwmw2 (at] infradead.org> for
     41 # providing access to a Westmere-based system on behalf of Intel
     42 # Open Source Technology Centre.
     43 
     44 # December 2012
     45 #
     46 # Overhaul: aggregate Karatsuba post-processing, improve ILP in
     47 # reduction_alg9, increase reduction aggregate factor to 4x. As for
     48 # the latter. ghash-x86.pl discusses that it makes lesser sense to
     49 # increase aggregate factor. Then why increase here? Critical path
     50 # consists of 3 independent pclmulqdq instructions, Karatsuba post-
     51 # processing and reduction. "On top" of this we lay down aggregated
     52 # multiplication operations, triplets of independent pclmulqdq's. As
     53 # issue rate for pclmulqdq is limited, it makes lesser sense to
     54 # aggregate more multiplications than it takes to perform remaining
     55 # non-multiplication operations. 2x is near-optimal coefficient for
     56 # contemporary Intel CPUs (therefore modest improvement coefficient),
     57 # but not for Bulldozer. Latter is because logical SIMD operations
     58 # are twice as slow in comparison to Intel, so that critical path is
     59 # longer. A CPU with higher pclmulqdq issue rate would also benefit
     60 # from higher aggregate factor...
     61 #
     62 # Westmere	1.78(+13%)
     63 # Sandy Bridge	1.80(+8%)
     64 # Ivy Bridge	1.80(+7%)
     65 # Haswell	0.55(+93%) (if system doesn't support AVX)
     66 # Broadwell	0.45(+110%)(if system doesn't support AVX)
     67 # Bulldozer	1.49(+27%)
     68 # Silvermont	2.88(+13%)
     69 
     70 # March 2013
     71 #
     72 # ... 8x aggregate factor AVX code path is using reduction algorithm
     73 # suggested by Shay Gueron[1]. Even though contemporary AVX-capable
     74 # CPUs such as Sandy and Ivy Bridge can execute it, the code performs
     75 # sub-optimally in comparison to above mentioned version. But thanks
     76 # to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
     77 # it performs in 0.41 cycles per byte on Haswell processor, and in
     78 # 0.29 on Broadwell.
     79 #
     80 # [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
     81 
     82 $flavour = shift;
     83 $output  = shift;
     84 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
     85 
     86 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
     87 
     88 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
     89 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
     90 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
     91 die "can't locate x86_64-xlate.pl";
     92 
     93 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
     94 		=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
     95 	$avx = ($1>=2.19) + ($1>=2.22);
     96 }
     97 
     98 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
     99 	    `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
    100 	$avx = ($1>=2.09) + ($1>=2.10);
    101 }
    102 
    103 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
    104 	    `ml64 2>&1` =~ /Version ([0-9]+)\./) {
    105 	$avx = ($1>=10) + ($1>=11);
    106 }
    107 
    108 if (!$avx && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/) {
    109 	$avx = ($2>=3.0) + ($2>3.0);
    110 }
    111 
    112 open OUT,"| \"$^X\" $xlate $flavour $output";
    113 *STDOUT=*OUT;
    114 
    115 $do4xaggr=1;
    116 
    117 # common register layout
    118 $nlo="%rax";
    119 $nhi="%rbx";
    120 $Zlo="%r8";
    121 $Zhi="%r9";
    122 $tmp="%r10";
    123 $rem_4bit = "%r11";
    124 
    125 $Xi="%rdi";
    126 $Htbl="%rsi";
    127 
    128 # per-function register layout
    129 $cnt="%rcx";
    130 $rem="%rdx";
    131 
    132 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/	or
    133 			$r =~ s/%[er]([sd]i)/%\1l/	or
    134 			$r =~ s/%[er](bp)/%\1l/		or
    135 			$r =~ s/%(r[0-9]+)[d]?/%\1b/;   $r; }
    136 
    137 sub AUTOLOAD()		# thunk [simplified] 32-bit style perlasm
    138 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
    139   my $arg = pop;
    140     $arg = "\$$arg" if ($arg*1 eq $arg);
    141     $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
    142 }
    143 
    145 { my $N;
    146   sub loop() {
    147   my $inp = shift;
    148 
    149 	$N++;
    150 $code.=<<___;
    151 	xor	$nlo,$nlo
    152 	xor	$nhi,$nhi
    153 	mov	`&LB("$Zlo")`,`&LB("$nlo")`
    154 	mov	`&LB("$Zlo")`,`&LB("$nhi")`
    155 	shl	\$4,`&LB("$nlo")`
    156 	mov	\$14,$cnt
    157 	mov	8($Htbl,$nlo),$Zlo
    158 	mov	($Htbl,$nlo),$Zhi
    159 	and	\$0xf0,`&LB("$nhi")`
    160 	mov	$Zlo,$rem
    161 	jmp	.Loop$N
    162 
    163 .align	16
    164 .Loop$N:
    165 	shr	\$4,$Zlo
    166 	and	\$0xf,$rem
    167 	mov	$Zhi,$tmp
    168 	mov	($inp,$cnt),`&LB("$nlo")`
    169 	shr	\$4,$Zhi
    170 	xor	8($Htbl,$nhi),$Zlo
    171 	shl	\$60,$tmp
    172 	xor	($Htbl,$nhi),$Zhi
    173 	mov	`&LB("$nlo")`,`&LB("$nhi")`
    174 	xor	($rem_4bit,$rem,8),$Zhi
    175 	mov	$Zlo,$rem
    176 	shl	\$4,`&LB("$nlo")`
    177 	xor	$tmp,$Zlo
    178 	dec	$cnt
    179 	js	.Lbreak$N
    180 
    181 	shr	\$4,$Zlo
    182 	and	\$0xf,$rem
    183 	mov	$Zhi,$tmp
    184 	shr	\$4,$Zhi
    185 	xor	8($Htbl,$nlo),$Zlo
    186 	shl	\$60,$tmp
    187 	xor	($Htbl,$nlo),$Zhi
    188 	and	\$0xf0,`&LB("$nhi")`
    189 	xor	($rem_4bit,$rem,8),$Zhi
    190 	mov	$Zlo,$rem
    191 	xor	$tmp,$Zlo
    192 	jmp	.Loop$N
    193 
    194 .align	16
    195 .Lbreak$N:
    196 	shr	\$4,$Zlo
    197 	and	\$0xf,$rem
    198 	mov	$Zhi,$tmp
    199 	shr	\$4,$Zhi
    200 	xor	8($Htbl,$nlo),$Zlo
    201 	shl	\$60,$tmp
    202 	xor	($Htbl,$nlo),$Zhi
    203 	and	\$0xf0,`&LB("$nhi")`
    204 	xor	($rem_4bit,$rem,8),$Zhi
    205 	mov	$Zlo,$rem
    206 	xor	$tmp,$Zlo
    207 
    208 	shr	\$4,$Zlo
    209 	and	\$0xf,$rem
    210 	mov	$Zhi,$tmp
    211 	shr	\$4,$Zhi
    212 	xor	8($Htbl,$nhi),$Zlo
    213 	shl	\$60,$tmp
    214 	xor	($Htbl,$nhi),$Zhi
    215 	xor	$tmp,$Zlo
    216 	xor	($rem_4bit,$rem,8),$Zhi
    217 
    218 	bswap	$Zlo
    219 	bswap	$Zhi
    220 ___
    221 }}
    222 
    223 $code=<<___;
    224 .text
    225 .extern	OPENSSL_ia32cap_P
    226 
    227 .globl	gcm_gmult_4bit
    228 .type	gcm_gmult_4bit,\@function,2
    229 .align	16
    230 gcm_gmult_4bit:
    231 	push	%rbx
    232 	push	%rbp		# %rbp and %r12 are pushed exclusively in
    233 	push	%r12		# order to reuse Win64 exception handler...
    234 .Lgmult_prologue:
    235 
    236 	movzb	15($Xi),$Zlo
    237 	lea	.Lrem_4bit(%rip),$rem_4bit
    238 ___
    239 	&loop	($Xi);
    240 $code.=<<___;
    241 	mov	$Zlo,8($Xi)
    242 	mov	$Zhi,($Xi)
    243 
    244 	mov	16(%rsp),%rbx
    245 	lea	24(%rsp),%rsp
    246 .Lgmult_epilogue:
    247 	ret
    248 .size	gcm_gmult_4bit,.-gcm_gmult_4bit
    249 ___
    250 
    252 # per-function register layout
    253 $inp="%rdx";
    254 $len="%rcx";
    255 $rem_8bit=$rem_4bit;
    256 
    257 $code.=<<___;
    258 .globl	gcm_ghash_4bit
    259 .type	gcm_ghash_4bit,\@function,4
    260 .align	16
    261 gcm_ghash_4bit:
    262 	push	%rbx
    263 	push	%rbp
    264 	push	%r12
    265 	push	%r13
    266 	push	%r14
    267 	push	%r15
    268 	sub	\$280,%rsp
    269 .Lghash_prologue:
    270 	mov	$inp,%r14		# reassign couple of args
    271 	mov	$len,%r15
    272 ___
    273 { my $inp="%r14";
    274   my $dat="%edx";
    275   my $len="%r15";
    276   my @nhi=("%ebx","%ecx");
    277   my @rem=("%r12","%r13");
    278   my $Hshr4="%rbp";
    279 
    280 	&sub	($Htbl,-128);		# size optimization
    281 	&lea	($Hshr4,"16+128(%rsp)");
    282 	{ my @lo =($nlo,$nhi);
    283           my @hi =($Zlo,$Zhi);
    284 
    285 	  &xor	($dat,$dat);
    286 	  for ($i=0,$j=-2;$i<18;$i++,$j++) {
    287 	    &mov	("$j(%rsp)",&LB($dat))		if ($i>1);
    288 	    &or		($lo[0],$tmp)			if ($i>1);
    289 	    &mov	(&LB($dat),&LB($lo[1]))		if ($i>0 && $i<17);
    290 	    &shr	($lo[1],4)			if ($i>0 && $i<17);
    291 	    &mov	($tmp,$hi[1])			if ($i>0 && $i<17);
    292 	    &shr	($hi[1],4)			if ($i>0 && $i<17);
    293 	    &mov	("8*$j($Hshr4)",$hi[0])		if ($i>1);
    294 	    &mov	($hi[0],"16*$i+0-128($Htbl)")	if ($i<16);
    295 	    &shl	(&LB($dat),4)			if ($i>0 && $i<17);
    296 	    &mov	("8*$j-128($Hshr4)",$lo[0])	if ($i>1);
    297 	    &mov	($lo[0],"16*$i+8-128($Htbl)")	if ($i<16);
    298 	    &shl	($tmp,60)			if ($i>0 && $i<17);
    299 
    300 	    push	(@lo,shift(@lo));
    301 	    push	(@hi,shift(@hi));
    302 	  }
    303 	}
    304 	&add	($Htbl,-128);
    305 	&mov	($Zlo,"8($Xi)");
    306 	&mov	($Zhi,"0($Xi)");
    307 	&add	($len,$inp);		# pointer to the end of data
    308 	&lea	($rem_8bit,".Lrem_8bit(%rip)");
    309 	&jmp	(".Louter_loop");
    310 
    311 $code.=".align	16\n.Louter_loop:\n";
    312 	&xor	($Zhi,"($inp)");
    313 	&mov	("%rdx","8($inp)");
    314 	&lea	($inp,"16($inp)");
    315 	&xor	("%rdx",$Zlo);
    316 	&mov	("($Xi)",$Zhi);
    317 	&mov	("8($Xi)","%rdx");
    318 	&shr	("%rdx",32);
    319 
    320 	&xor	($nlo,$nlo);
    321 	&rol	($dat,8);
    322 	&mov	(&LB($nlo),&LB($dat));
    323 	&movz	($nhi[0],&LB($dat));
    324 	&shl	(&LB($nlo),4);
    325 	&shr	($nhi[0],4);
    326 
    327 	for ($j=11,$i=0;$i<15;$i++) {
    328 	    &rol	($dat,8);
    329 	    &xor	($Zlo,"8($Htbl,$nlo)")			if ($i>0);
    330 	    &xor	($Zhi,"($Htbl,$nlo)")			if ($i>0);
    331 	    &mov	($Zlo,"8($Htbl,$nlo)")			if ($i==0);
    332 	    &mov	($Zhi,"($Htbl,$nlo)")			if ($i==0);
    333 
    334 	    &mov	(&LB($nlo),&LB($dat));
    335 	    &xor	($Zlo,$tmp)				if ($i>0);
    336 	    &movzw	($rem[1],"($rem_8bit,$rem[1],2)")	if ($i>0);
    337 
    338 	    &movz	($nhi[1],&LB($dat));
    339 	    &shl	(&LB($nlo),4);
    340 	    &movzb	($rem[0],"(%rsp,$nhi[0])");
    341 
    342 	    &shr	($nhi[1],4)				if ($i<14);
    343 	    &and	($nhi[1],0xf0)				if ($i==14);
    344 	    &shl	($rem[1],48)				if ($i>0);
    345 	    &xor	($rem[0],$Zlo);
    346 
    347 	    &mov	($tmp,$Zhi);
    348 	    &xor	($Zhi,$rem[1])				if ($i>0);
    349 	    &shr	($Zlo,8);
    350 
    351 	    &movz	($rem[0],&LB($rem[0]));
    352 	    &mov	($dat,"$j($Xi)")			if (--$j%4==0);
    353 	    &shr	($Zhi,8);
    354 
    355 	    &xor	($Zlo,"-128($Hshr4,$nhi[0],8)");
    356 	    &shl	($tmp,56);
    357 	    &xor	($Zhi,"($Hshr4,$nhi[0],8)");
    358 
    359 	    unshift	(@nhi,pop(@nhi));		# "rotate" registers
    360 	    unshift	(@rem,pop(@rem));
    361 	}
    362 	&movzw	($rem[1],"($rem_8bit,$rem[1],2)");
    363 	&xor	($Zlo,"8($Htbl,$nlo)");
    364 	&xor	($Zhi,"($Htbl,$nlo)");
    365 
    366 	&shl	($rem[1],48);
    367 	&xor	($Zlo,$tmp);
    368 
    369 	&xor	($Zhi,$rem[1]);
    370 	&movz	($rem[0],&LB($Zlo));
    371 	&shr	($Zlo,4);
    372 
    373 	&mov	($tmp,$Zhi);
    374 	&shl	(&LB($rem[0]),4);
    375 	&shr	($Zhi,4);
    376 
    377 	&xor	($Zlo,"8($Htbl,$nhi[0])");
    378 	&movzw	($rem[0],"($rem_8bit,$rem[0],2)");
    379 	&shl	($tmp,60);
    380 
    381 	&xor	($Zhi,"($Htbl,$nhi[0])");
    382 	&xor	($Zlo,$tmp);
    383 	&shl	($rem[0],48);
    384 
    385 	&bswap	($Zlo);
    386 	&xor	($Zhi,$rem[0]);
    387 
    388 	&bswap	($Zhi);
    389 	&cmp	($inp,$len);
    390 	&jb	(".Louter_loop");
    391 }
    392 $code.=<<___;
    393 	mov	$Zlo,8($Xi)
    394 	mov	$Zhi,($Xi)
    395 
    396 	lea	280(%rsp),%rsi
    397 	mov	0(%rsi),%r15
    398 	mov	8(%rsi),%r14
    399 	mov	16(%rsi),%r13
    400 	mov	24(%rsi),%r12
    401 	mov	32(%rsi),%rbp
    402 	mov	40(%rsi),%rbx
    403 	lea	48(%rsi),%rsp
    404 .Lghash_epilogue:
    405 	ret
    406 .size	gcm_ghash_4bit,.-gcm_ghash_4bit
    407 ___
    408 
    410 ######################################################################
    411 # PCLMULQDQ version.
    412 
    413 @_4args=$win64?	("%rcx","%rdx","%r8", "%r9") :	# Win64 order
    414 		("%rdi","%rsi","%rdx","%rcx");	# Unix order
    415 
    416 ($Xi,$Xhi)=("%xmm0","%xmm1");	$Hkey="%xmm2";
    417 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
    418 
    419 sub clmul64x64_T2 {	# minimal register pressure
    420 my ($Xhi,$Xi,$Hkey,$HK)=@_;
    421 
    422 if (!defined($HK)) {	$HK = $T2;
    423 $code.=<<___;
    424 	movdqa		$Xi,$Xhi		#
    425 	pshufd		\$0b01001110,$Xi,$T1
    426 	pshufd		\$0b01001110,$Hkey,$T2
    427 	pxor		$Xi,$T1			#
    428 	pxor		$Hkey,$T2
    429 ___
    430 } else {
    431 $code.=<<___;
    432 	movdqa		$Xi,$Xhi		#
    433 	pshufd		\$0b01001110,$Xi,$T1
    434 	pxor		$Xi,$T1			#
    435 ___
    436 }
    437 $code.=<<___;
    438 	pclmulqdq	\$0x00,$Hkey,$Xi	#######
    439 	pclmulqdq	\$0x11,$Hkey,$Xhi	#######
    440 	pclmulqdq	\$0x00,$HK,$T1		#######
    441 	pxor		$Xi,$T1			#
    442 	pxor		$Xhi,$T1		#
    443 
    444 	movdqa		$T1,$T2			#
    445 	psrldq		\$8,$T1
    446 	pslldq		\$8,$T2			#
    447 	pxor		$T1,$Xhi
    448 	pxor		$T2,$Xi			#
    449 ___
    450 }
    451 
    452 sub reduction_alg9 {	# 17/11 times faster than Intel version
    453 my ($Xhi,$Xi) = @_;
    454 
    455 $code.=<<___;
    456 	# 1st phase
    457 	movdqa		$Xi,$T2			#
    458 	movdqa		$Xi,$T1
    459 	psllq		\$5,$Xi
    460 	pxor		$Xi,$T1			#
    461 	psllq		\$1,$Xi
    462 	pxor		$T1,$Xi			#
    463 	psllq		\$57,$Xi		#
    464 	movdqa		$Xi,$T1			#
    465 	pslldq		\$8,$Xi
    466 	psrldq		\$8,$T1			#	
    467 	pxor		$T2,$Xi
    468 	pxor		$T1,$Xhi		#
    469 
    470 	# 2nd phase
    471 	movdqa		$Xi,$T2
    472 	psrlq		\$1,$Xi
    473 	pxor		$T2,$Xhi		#
    474 	pxor		$Xi,$T2
    475 	psrlq		\$5,$Xi
    476 	pxor		$T2,$Xi			#
    477 	psrlq		\$1,$Xi			#
    478 	pxor		$Xhi,$Xi		#
    479 ___
    480 }
    481 
    483 { my ($Htbl,$Xip)=@_4args;
    484   my $HK="%xmm6";
    485 
    486 $code.=<<___;
    487 .globl	gcm_init_clmul
    488 .type	gcm_init_clmul,\@abi-omnipotent
    489 .align	16
    490 gcm_init_clmul:
    491 .L_init_clmul:
    492 ___
    493 $code.=<<___ if ($win64);
    494 .LSEH_begin_gcm_init_clmul:
    495 	# I can't trust assembler to use specific encoding:-(
    496 	.byte	0x48,0x83,0xec,0x18		#sub	$0x18,%rsp
    497 	.byte	0x0f,0x29,0x34,0x24		#movaps	%xmm6,(%rsp)
    498 ___
    499 $code.=<<___;
    500 	movdqu		($Xip),$Hkey
    501 	pshufd		\$0b01001110,$Hkey,$Hkey	# dword swap
    502 
    503 	# <<1 twist
    504 	pshufd		\$0b11111111,$Hkey,$T2	# broadcast uppermost dword
    505 	movdqa		$Hkey,$T1
    506 	psllq		\$1,$Hkey
    507 	pxor		$T3,$T3			#
    508 	psrlq		\$63,$T1
    509 	pcmpgtd		$T2,$T3			# broadcast carry bit
    510 	pslldq		\$8,$T1
    511 	por		$T1,$Hkey		# H<<=1
    512 
    513 	# magic reduction
    514 	pand		.L0x1c2_polynomial(%rip),$T3
    515 	pxor		$T3,$Hkey		# if(carry) H^=0x1c2_polynomial
    516 
    517 	# calculate H^2
    518 	pshufd		\$0b01001110,$Hkey,$HK
    519 	movdqa		$Hkey,$Xi
    520 	pxor		$Hkey,$HK
    521 ___
    522 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);
    523 	&reduction_alg9	($Xhi,$Xi);
    524 $code.=<<___;
    525 	pshufd		\$0b01001110,$Hkey,$T1
    526 	pshufd		\$0b01001110,$Xi,$T2
    527 	pxor		$Hkey,$T1		# Karatsuba pre-processing
    528 	movdqu		$Hkey,0x00($Htbl)	# save H
    529 	pxor		$Xi,$T2			# Karatsuba pre-processing
    530 	movdqu		$Xi,0x10($Htbl)		# save H^2
    531 	palignr		\$8,$T1,$T2		# low part is H.lo^H.hi...
    532 	movdqu		$T2,0x20($Htbl)		# save Karatsuba "salt"
    533 ___
    534 if ($do4xaggr) {
    535 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H^3
    536 	&reduction_alg9	($Xhi,$Xi);
    537 $code.=<<___;
    538 	movdqa		$Xi,$T3
    539 ___
    540 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H^4
    541 	&reduction_alg9	($Xhi,$Xi);
    542 $code.=<<___;
    543 	pshufd		\$0b01001110,$T3,$T1
    544 	pshufd		\$0b01001110,$Xi,$T2
    545 	pxor		$T3,$T1			# Karatsuba pre-processing
    546 	movdqu		$T3,0x30($Htbl)		# save H^3
    547 	pxor		$Xi,$T2			# Karatsuba pre-processing
    548 	movdqu		$Xi,0x40($Htbl)		# save H^4
    549 	palignr		\$8,$T1,$T2		# low part is H^3.lo^H^3.hi...
    550 	movdqu		$T2,0x50($Htbl)		# save Karatsuba "salt"
    551 ___
    552 }
    553 $code.=<<___ if ($win64);
    554 	movaps	(%rsp),%xmm6
    555 	lea	0x18(%rsp),%rsp
    556 .LSEH_end_gcm_init_clmul:
    557 ___
    558 $code.=<<___;
    559 	ret
    560 .size	gcm_init_clmul,.-gcm_init_clmul
    561 ___
    562 }
    563 
    564 { my ($Xip,$Htbl)=@_4args;
    565 
    566 $code.=<<___;
    567 .globl	gcm_gmult_clmul
    568 .type	gcm_gmult_clmul,\@abi-omnipotent
    569 .align	16
    570 gcm_gmult_clmul:
    571 .L_gmult_clmul:
    572 	movdqu		($Xip),$Xi
    573 	movdqa		.Lbswap_mask(%rip),$T3
    574 	movdqu		($Htbl),$Hkey
    575 	movdqu		0x20($Htbl),$T2
    576 	pshufb		$T3,$Xi
    577 ___
    578 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
    579 $code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
    580 	# experimental alternative. special thing about is that there
    581 	# no dependency between the two multiplications... 
    582 	mov		\$`0xE1<<1`,%eax
    583 	mov		\$0xA040608020C0E000,%r10	# ((7..0)0xE0)&0xff
    584 	mov		\$0x07,%r11d
    585 	movq		%rax,$T1
    586 	movq		%r10,$T2
    587 	movq		%r11,$T3		# borrow $T3
    588 	pand		$Xi,$T3
    589 	pshufb		$T3,$T2			# ($Xi&7)0xE0
    590 	movq		%rax,$T3
    591 	pclmulqdq	\$0x00,$Xi,$T1		# (0xE1<<1)
    592 	pxor		$Xi,$T2
    593 	pslldq		\$15,$T2
    594 	paddd		$T2,$T2			# <<(64+56+1)
    595 	pxor		$T2,$Xi
    596 	pclmulqdq	\$0x01,$T3,$Xi
    597 	movdqa		.Lbswap_mask(%rip),$T3	# reload $T3
    598 	psrldq		\$1,$T1
    599 	pxor		$T1,$Xhi
    600 	pslldq		\$7,$Xi
    601 	pxor		$Xhi,$Xi
    602 ___
    603 $code.=<<___;
    604 	pshufb		$T3,$Xi
    605 	movdqu		$Xi,($Xip)
    606 	ret
    607 .size	gcm_gmult_clmul,.-gcm_gmult_clmul
    608 ___
    609 }
    610 
    612 { my ($Xip,$Htbl,$inp,$len)=@_4args;
    613   my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
    614   my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
    615 
    616 $code.=<<___;
    617 .globl	gcm_ghash_clmul
    618 .type	gcm_ghash_clmul,\@abi-omnipotent
    619 .align	32
    620 gcm_ghash_clmul:
    621 .L_ghash_clmul:
    622 ___
    623 $code.=<<___ if ($win64);
    624 	lea	-0x88(%rsp),%rax
    625 .LSEH_begin_gcm_ghash_clmul:
    626 	# I can't trust assembler to use specific encoding:-(
    627 	.byte	0x48,0x8d,0x60,0xe0		#lea	-0x20(%rax),%rsp
    628 	.byte	0x0f,0x29,0x70,0xe0		#movaps	%xmm6,-0x20(%rax)
    629 	.byte	0x0f,0x29,0x78,0xf0		#movaps	%xmm7,-0x10(%rax)
    630 	.byte	0x44,0x0f,0x29,0x00		#movaps	%xmm8,0(%rax)
    631 	.byte	0x44,0x0f,0x29,0x48,0x10	#movaps	%xmm9,0x10(%rax)
    632 	.byte	0x44,0x0f,0x29,0x50,0x20	#movaps	%xmm10,0x20(%rax)
    633 	.byte	0x44,0x0f,0x29,0x58,0x30	#movaps	%xmm11,0x30(%rax)
    634 	.byte	0x44,0x0f,0x29,0x60,0x40	#movaps	%xmm12,0x40(%rax)
    635 	.byte	0x44,0x0f,0x29,0x68,0x50	#movaps	%xmm13,0x50(%rax)
    636 	.byte	0x44,0x0f,0x29,0x70,0x60	#movaps	%xmm14,0x60(%rax)
    637 	.byte	0x44,0x0f,0x29,0x78,0x70	#movaps	%xmm15,0x70(%rax)
    638 ___
    639 $code.=<<___;
    640 	movdqa		.Lbswap_mask(%rip),$T3
    641 
    642 	movdqu		($Xip),$Xi
    643 	movdqu		($Htbl),$Hkey
    644 	movdqu		0x20($Htbl),$HK
    645 	pshufb		$T3,$Xi
    646 
    647 	sub		\$0x10,$len
    648 	jz		.Lodd_tail
    649 
    650 	movdqu		0x10($Htbl),$Hkey2
    651 ___
    652 if ($do4xaggr) {
    653 my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
    654 
    655 $code.=<<___;
    656 	mov		OPENSSL_ia32cap_P+4(%rip),%eax
    657 	cmp		\$0x30,$len
    658 	jb		.Lskip4x
    659 
    660 	and		\$`1<<26|1<<22`,%eax	# isolate MOVBE+XSAVE
    661 	cmp		\$`1<<22`,%eax		# check for MOVBE without XSAVE
    662 	je		.Lskip4x
    663 
    664 	sub		\$0x30,$len
    665 	mov		\$0xA040608020C0E000,%rax	# ((7..0)0xE0)&0xff
    666 	movdqu		0x30($Htbl),$Hkey3
    667 	movdqu		0x40($Htbl),$Hkey4
    668 
    669 	#######
    670 	# Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
    671 	#
    672 	movdqu		0x30($inp),$Xln
    673 	 movdqu		0x20($inp),$Xl
    674 	pshufb		$T3,$Xln
    675 	 pshufb		$T3,$Xl
    676 	movdqa		$Xln,$Xhn
    677 	pshufd		\$0b01001110,$Xln,$Xmn
    678 	pxor		$Xln,$Xmn
    679 	pclmulqdq	\$0x00,$Hkey,$Xln
    680 	pclmulqdq	\$0x11,$Hkey,$Xhn
    681 	pclmulqdq	\$0x00,$HK,$Xmn
    682 
    683 	movdqa		$Xl,$Xh
    684 	pshufd		\$0b01001110,$Xl,$Xm
    685 	pxor		$Xl,$Xm
    686 	pclmulqdq	\$0x00,$Hkey2,$Xl
    687 	pclmulqdq	\$0x11,$Hkey2,$Xh
    688 	pclmulqdq	\$0x10,$HK,$Xm
    689 	xorps		$Xl,$Xln
    690 	xorps		$Xh,$Xhn
    691 	movups		0x50($Htbl),$HK
    692 	xorps		$Xm,$Xmn
    693 
    694 	movdqu		0x10($inp),$Xl
    695 	 movdqu		0($inp),$T1
    696 	pshufb		$T3,$Xl
    697 	 pshufb		$T3,$T1
    698 	movdqa		$Xl,$Xh
    699 	pshufd		\$0b01001110,$Xl,$Xm
    700 	 pxor		$T1,$Xi
    701 	pxor		$Xl,$Xm
    702 	pclmulqdq	\$0x00,$Hkey3,$Xl
    703 	 movdqa		$Xi,$Xhi
    704 	 pshufd		\$0b01001110,$Xi,$T1
    705 	 pxor		$Xi,$T1
    706 	pclmulqdq	\$0x11,$Hkey3,$Xh
    707 	pclmulqdq	\$0x00,$HK,$Xm
    708 	xorps		$Xl,$Xln
    709 	xorps		$Xh,$Xhn
    710 
    711 	lea	0x40($inp),$inp
    712 	sub	\$0x40,$len
    713 	jc	.Ltail4x
    714 
    715 	jmp	.Lmod4_loop
    716 .align	32
    717 .Lmod4_loop:
    718 	pclmulqdq	\$0x00,$Hkey4,$Xi
    719 	xorps		$Xm,$Xmn
    720 	 movdqu		0x30($inp),$Xl
    721 	 pshufb		$T3,$Xl
    722 	pclmulqdq	\$0x11,$Hkey4,$Xhi
    723 	xorps		$Xln,$Xi
    724 	 movdqu		0x20($inp),$Xln
    725 	 movdqa		$Xl,$Xh
    726 	pclmulqdq	\$0x10,$HK,$T1
    727 	 pshufd		\$0b01001110,$Xl,$Xm
    728 	xorps		$Xhn,$Xhi
    729 	 pxor		$Xl,$Xm
    730 	 pshufb		$T3,$Xln
    731 	movups		0x20($Htbl),$HK
    732 	xorps		$Xmn,$T1
    733 	 pclmulqdq	\$0x00,$Hkey,$Xl
    734 	 pshufd		\$0b01001110,$Xln,$Xmn
    735 
    736 	pxor		$Xi,$T1			# aggregated Karatsuba post-processing
    737 	 movdqa		$Xln,$Xhn
    738 	pxor		$Xhi,$T1		#
    739 	 pxor		$Xln,$Xmn
    740 	movdqa		$T1,$T2			#
    741 	 pclmulqdq	\$0x11,$Hkey,$Xh
    742 	pslldq		\$8,$T1
    743 	psrldq		\$8,$T2			#
    744 	pxor		$T1,$Xi
    745 	movdqa		.L7_mask(%rip),$T1
    746 	pxor		$T2,$Xhi		#
    747 	movq		%rax,$T2
    748 
    749 	pand		$Xi,$T1			# 1st phase
    750 	pshufb		$T1,$T2			#
    751 	pxor		$Xi,$T2			#
    752 	 pclmulqdq	\$0x00,$HK,$Xm
    753 	psllq		\$57,$T2		#
    754 	movdqa		$T2,$T1			#
    755 	pslldq		\$8,$T2
    756 	 pclmulqdq	\$0x00,$Hkey2,$Xln
    757 	psrldq		\$8,$T1			#	
    758 	pxor		$T2,$Xi
    759 	pxor		$T1,$Xhi		#
    760 	movdqu		0($inp),$T1
    761 
    762 	movdqa		$Xi,$T2			# 2nd phase
    763 	psrlq		\$1,$Xi
    764 	 pclmulqdq	\$0x11,$Hkey2,$Xhn
    765 	 xorps		$Xl,$Xln
    766 	 movdqu		0x10($inp),$Xl
    767 	 pshufb		$T3,$Xl
    768 	 pclmulqdq	\$0x10,$HK,$Xmn
    769 	 xorps		$Xh,$Xhn
    770 	 movups		0x50($Htbl),$HK
    771 	pshufb		$T3,$T1
    772 	pxor		$T2,$Xhi		#
    773 	pxor		$Xi,$T2
    774 	psrlq		\$5,$Xi
    775 
    776 	 movdqa		$Xl,$Xh
    777 	 pxor		$Xm,$Xmn
    778 	 pshufd		\$0b01001110,$Xl,$Xm
    779 	pxor		$T2,$Xi			#
    780 	pxor		$T1,$Xhi
    781 	 pxor		$Xl,$Xm
    782 	 pclmulqdq	\$0x00,$Hkey3,$Xl
    783 	psrlq		\$1,$Xi			#
    784 	pxor		$Xhi,$Xi		#
    785 	movdqa		$Xi,$Xhi
    786 	 pclmulqdq	\$0x11,$Hkey3,$Xh
    787 	 xorps		$Xl,$Xln
    788 	pshufd		\$0b01001110,$Xi,$T1
    789 	pxor		$Xi,$T1
    790 
    791 	 pclmulqdq	\$0x00,$HK,$Xm
    792 	 xorps		$Xh,$Xhn
    793 
    794 	lea	0x40($inp),$inp
    795 	sub	\$0x40,$len
    796 	jnc	.Lmod4_loop
    797 
    798 .Ltail4x:
    799 	pclmulqdq	\$0x00,$Hkey4,$Xi
    800 	pclmulqdq	\$0x11,$Hkey4,$Xhi
    801 	pclmulqdq	\$0x10,$HK,$T1
    802 	xorps		$Xm,$Xmn
    803 	xorps		$Xln,$Xi
    804 	xorps		$Xhn,$Xhi
    805 	pxor		$Xi,$Xhi		# aggregated Karatsuba post-processing
    806 	pxor		$Xmn,$T1
    807 
    808 	pxor		$Xhi,$T1		#
    809 	pxor		$Xi,$Xhi
    810 
    811 	movdqa		$T1,$T2			#
    812 	psrldq		\$8,$T1
    813 	pslldq		\$8,$T2			#
    814 	pxor		$T1,$Xhi
    815 	pxor		$T2,$Xi			#
    816 ___
    817 	&reduction_alg9($Xhi,$Xi);
    818 $code.=<<___;
    819 	add	\$0x40,$len
    820 	jz	.Ldone
    821 	movdqu	0x20($Htbl),$HK
    822 	sub	\$0x10,$len
    823 	jz	.Lodd_tail
    824 .Lskip4x:
    825 ___
    826 }
    827 $code.=<<___;
    828 	#######
    829 	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
    830 	#	[(H*Ii+1) + (H*Xi+1)] mod P =
    831 	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
    832 	#
    833 	movdqu		($inp),$T1		# Ii
    834 	movdqu		16($inp),$Xln		# Ii+1
    835 	pshufb		$T3,$T1
    836 	pshufb		$T3,$Xln
    837 	pxor		$T1,$Xi			# Ii+Xi
    838 
    839 	movdqa		$Xln,$Xhn
    840 	pshufd		\$0b01001110,$Xln,$Xmn
    841 	pxor		$Xln,$Xmn
    842 	pclmulqdq	\$0x00,$Hkey,$Xln
    843 	pclmulqdq	\$0x11,$Hkey,$Xhn
    844 	pclmulqdq	\$0x00,$HK,$Xmn
    845 
    846 	lea		32($inp),$inp		# i+=2
    847 	nop
    848 	sub		\$0x20,$len
    849 	jbe		.Leven_tail
    850 	nop
    851 	jmp		.Lmod_loop
    852 
    853 .align	32
    854 .Lmod_loop:
    855 	movdqa		$Xi,$Xhi
    856 	movdqa		$Xmn,$T1
    857 	pshufd		\$0b01001110,$Xi,$Xmn	#
    858 	pxor		$Xi,$Xmn		#
    859 
    860 	pclmulqdq	\$0x00,$Hkey2,$Xi
    861 	pclmulqdq	\$0x11,$Hkey2,$Xhi
    862 	pclmulqdq	\$0x10,$HK,$Xmn
    863 
    864 	pxor		$Xln,$Xi		# (H*Ii+1) + H^2*(Ii+Xi)
    865 	pxor		$Xhn,$Xhi
    866 	  movdqu	($inp),$T2		# Ii
    867 	pxor		$Xi,$T1			# aggregated Karatsuba post-processing
    868 	  pshufb	$T3,$T2
    869 	  movdqu	16($inp),$Xln		# Ii+1
    870 
    871 	pxor		$Xhi,$T1
    872 	  pxor		$T2,$Xhi		# "Ii+Xi", consume early
    873 	pxor		$T1,$Xmn
    874 	 pshufb		$T3,$Xln
    875 	movdqa		$Xmn,$T1		#
    876 	psrldq		\$8,$T1
    877 	pslldq		\$8,$Xmn		#
    878 	pxor		$T1,$Xhi
    879 	pxor		$Xmn,$Xi		#
    880 
    881 	movdqa		$Xln,$Xhn		#
    882 
    883 	  movdqa	$Xi,$T2			# 1st phase
    884 	  movdqa	$Xi,$T1
    885 	  psllq		\$5,$Xi
    886 	  pxor		$Xi,$T1			#
    887 	pclmulqdq	\$0x00,$Hkey,$Xln	#######
    888 	  psllq		\$1,$Xi
    889 	  pxor		$T1,$Xi			#
    890 	  psllq		\$57,$Xi		#
    891 	  movdqa	$Xi,$T1			#
    892 	  pslldq	\$8,$Xi
    893 	  psrldq	\$8,$T1			#	
    894 	  pxor		$T2,$Xi
    895 	pshufd		\$0b01001110,$Xhn,$Xmn
    896 	  pxor		$T1,$Xhi		#
    897 	pxor		$Xhn,$Xmn		#
    898 
    899 	  movdqa	$Xi,$T2			# 2nd phase
    900 	  psrlq		\$1,$Xi
    901 	pclmulqdq	\$0x11,$Hkey,$Xhn	#######
    902 	  pxor		$T2,$Xhi		#
    903 	  pxor		$Xi,$T2
    904 	  psrlq		\$5,$Xi
    905 	  pxor		$T2,$Xi			#
    906 	lea		32($inp),$inp
    907 	  psrlq		\$1,$Xi			#
    908 	pclmulqdq	\$0x00,$HK,$Xmn		#######
    909 	  pxor		$Xhi,$Xi		#
    910 
    911 	sub		\$0x20,$len
    912 	ja		.Lmod_loop
    913 
    914 .Leven_tail:
    915 	 movdqa		$Xi,$Xhi
    916 	 movdqa		$Xmn,$T1
    917 	 pshufd		\$0b01001110,$Xi,$Xmn	#
    918 	 pxor		$Xi,$Xmn		#
    919 
    920 	pclmulqdq	\$0x00,$Hkey2,$Xi
    921 	pclmulqdq	\$0x11,$Hkey2,$Xhi
    922 	pclmulqdq	\$0x10,$HK,$Xmn
    923 
    924 	pxor		$Xln,$Xi		# (H*Ii+1) + H^2*(Ii+Xi)
    925 	pxor		$Xhn,$Xhi
    926 	pxor		$Xi,$T1
    927 	pxor		$Xhi,$T1
    928 	pxor		$T1,$Xmn
    929 	movdqa		$Xmn,$T1		#
    930 	psrldq		\$8,$T1
    931 	pslldq		\$8,$Xmn		#
    932 	pxor		$T1,$Xhi
    933 	pxor		$Xmn,$Xi		#
    934 ___
    935 	&reduction_alg9	($Xhi,$Xi);
    936 $code.=<<___;
    937 	test		$len,$len
    938 	jnz		.Ldone
    939 
    940 .Lodd_tail:
    941 	movdqu		($inp),$T1		# Ii
    942 	pshufb		$T3,$T1
    943 	pxor		$T1,$Xi			# Ii+Xi
    944 ___
    945 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H*(Ii+Xi)
    946 	&reduction_alg9	($Xhi,$Xi);
    947 $code.=<<___;
    948 .Ldone:
    949 	pshufb		$T3,$Xi
    950 	movdqu		$Xi,($Xip)
    951 ___
    952 $code.=<<___ if ($win64);
    953 	movaps	(%rsp),%xmm6
    954 	movaps	0x10(%rsp),%xmm7
    955 	movaps	0x20(%rsp),%xmm8
    956 	movaps	0x30(%rsp),%xmm9
    957 	movaps	0x40(%rsp),%xmm10
    958 	movaps	0x50(%rsp),%xmm11
    959 	movaps	0x60(%rsp),%xmm12
    960 	movaps	0x70(%rsp),%xmm13
    961 	movaps	0x80(%rsp),%xmm14
    962 	movaps	0x90(%rsp),%xmm15
    963 	lea	0xa8(%rsp),%rsp
    964 .LSEH_end_gcm_ghash_clmul:
    965 ___
    966 $code.=<<___;
    967 	ret
    968 .size	gcm_ghash_clmul,.-gcm_ghash_clmul
    969 ___
    970 }
    971 
    973 $code.=<<___;
    974 .globl	gcm_init_avx
    975 .type	gcm_init_avx,\@abi-omnipotent
    976 .align	32
    977 gcm_init_avx:
    978 ___
    979 if ($avx) {
    980 my ($Htbl,$Xip)=@_4args;
    981 my $HK="%xmm6";
    982 
    983 $code.=<<___ if ($win64);
    984 .LSEH_begin_gcm_init_avx:
    985 	# I can't trust assembler to use specific encoding:-(
    986 	.byte	0x48,0x83,0xec,0x18		#sub	$0x18,%rsp
    987 	.byte	0x0f,0x29,0x34,0x24		#movaps	%xmm6,(%rsp)
    988 ___
    989 $code.=<<___;
    990 	vzeroupper
    991 
    992 	vmovdqu		($Xip),$Hkey
    993 	vpshufd		\$0b01001110,$Hkey,$Hkey	# dword swap
    994 
    995 	# <<1 twist
    996 	vpshufd		\$0b11111111,$Hkey,$T2	# broadcast uppermost dword
    997 	vpsrlq		\$63,$Hkey,$T1
    998 	vpsllq		\$1,$Hkey,$Hkey
    999 	vpxor		$T3,$T3,$T3		#
   1000 	vpcmpgtd	$T2,$T3,$T3		# broadcast carry bit
   1001 	vpslldq		\$8,$T1,$T1
   1002 	vpor		$T1,$Hkey,$Hkey		# H<<=1
   1003 
   1004 	# magic reduction
   1005 	vpand		.L0x1c2_polynomial(%rip),$T3,$T3
   1006 	vpxor		$T3,$Hkey,$Hkey		# if(carry) H^=0x1c2_polynomial
   1007 
   1008 	vpunpckhqdq	$Hkey,$Hkey,$HK
   1009 	vmovdqa		$Hkey,$Xi
   1010 	vpxor		$Hkey,$HK,$HK
   1011 	mov		\$4,%r10		# up to H^8
   1012 	jmp		.Linit_start_avx
   1013 ___
   1014 
   1015 sub clmul64x64_avx {
   1016 my ($Xhi,$Xi,$Hkey,$HK)=@_;
   1017 
   1018 if (!defined($HK)) {	$HK = $T2;
   1019 $code.=<<___;
   1020 	vpunpckhqdq	$Xi,$Xi,$T1
   1021 	vpunpckhqdq	$Hkey,$Hkey,$T2
   1022 	vpxor		$Xi,$T1,$T1		#
   1023 	vpxor		$Hkey,$T2,$T2
   1024 ___
   1025 } else {
   1026 $code.=<<___;
   1027 	vpunpckhqdq	$Xi,$Xi,$T1
   1028 	vpxor		$Xi,$T1,$T1		#
   1029 ___
   1030 }
   1031 $code.=<<___;
   1032 	vpclmulqdq	\$0x11,$Hkey,$Xi,$Xhi	#######
   1033 	vpclmulqdq	\$0x00,$Hkey,$Xi,$Xi	#######
   1034 	vpclmulqdq	\$0x00,$HK,$T1,$T1	#######
   1035 	vpxor		$Xi,$Xhi,$T2		#
   1036 	vpxor		$T2,$T1,$T1		#
   1037 
   1038 	vpslldq		\$8,$T1,$T2		#
   1039 	vpsrldq		\$8,$T1,$T1
   1040 	vpxor		$T2,$Xi,$Xi		#
   1041 	vpxor		$T1,$Xhi,$Xhi
   1042 ___
   1043 }
   1044 
   1045 sub reduction_avx {
   1046 my ($Xhi,$Xi) = @_;
   1047 
   1048 $code.=<<___;
   1049 	vpsllq		\$57,$Xi,$T1		# 1st phase
   1050 	vpsllq		\$62,$Xi,$T2
   1051 	vpxor		$T1,$T2,$T2		#
   1052 	vpsllq		\$63,$Xi,$T1
   1053 	vpxor		$T1,$T2,$T2		#
   1054 	vpslldq		\$8,$T2,$T1		#
   1055 	vpsrldq		\$8,$T2,$T2
   1056 	vpxor		$T1,$Xi,$Xi		#
   1057 	vpxor		$T2,$Xhi,$Xhi
   1058 
   1059 	vpsrlq		\$1,$Xi,$T2		# 2nd phase
   1060 	vpxor		$Xi,$Xhi,$Xhi
   1061 	vpxor		$T2,$Xi,$Xi		#
   1062 	vpsrlq		\$5,$T2,$T2
   1063 	vpxor		$T2,$Xi,$Xi		#
   1064 	vpsrlq		\$1,$Xi,$Xi		#
   1065 	vpxor		$Xhi,$Xi,$Xi		#
   1066 ___
   1067 }
   1068 
   1069 $code.=<<___;
   1070 .align	32
   1071 .Linit_loop_avx:
   1072 	vpalignr	\$8,$T1,$T2,$T3		# low part is H.lo^H.hi...
   1073 	vmovdqu		$T3,-0x10($Htbl)	# save Karatsuba "salt"
   1074 ___
   1075 	&clmul64x64_avx	($Xhi,$Xi,$Hkey,$HK);	# calculate H^3,5,7
   1076 	&reduction_avx	($Xhi,$Xi);
   1077 $code.=<<___;
   1078 .Linit_start_avx:
   1079 	vmovdqa		$Xi,$T3
   1080 ___
   1081 	&clmul64x64_avx	($Xhi,$Xi,$Hkey,$HK);	# calculate H^2,4,6,8
   1082 	&reduction_avx	($Xhi,$Xi);
   1083 $code.=<<___;
   1084 	vpshufd		\$0b01001110,$T3,$T1
   1085 	vpshufd		\$0b01001110,$Xi,$T2
   1086 	vpxor		$T3,$T1,$T1		# Karatsuba pre-processing
   1087 	vmovdqu		$T3,0x00($Htbl)		# save H^1,3,5,7
   1088 	vpxor		$Xi,$T2,$T2		# Karatsuba pre-processing
   1089 	vmovdqu		$Xi,0x10($Htbl)		# save H^2,4,6,8
   1090 	lea		0x30($Htbl),$Htbl
   1091 	sub		\$1,%r10
   1092 	jnz		.Linit_loop_avx
   1093 
   1094 	vpalignr	\$8,$T2,$T1,$T3		# last "salt" is flipped
   1095 	vmovdqu		$T3,-0x10($Htbl)
   1096 
   1097 	vzeroupper
   1098 ___
   1099 $code.=<<___ if ($win64);
   1100 	movaps	(%rsp),%xmm6
   1101 	lea	0x18(%rsp),%rsp
   1102 .LSEH_end_gcm_init_avx:
   1103 ___
   1104 $code.=<<___;
   1105 	ret
   1106 .size	gcm_init_avx,.-gcm_init_avx
   1107 ___
   1108 } else {
   1109 $code.=<<___;
   1110 	jmp	.L_init_clmul
   1111 .size	gcm_init_avx,.-gcm_init_avx
   1112 ___
   1113 }
   1114 
   1115 $code.=<<___;
   1116 .globl	gcm_gmult_avx
   1117 .type	gcm_gmult_avx,\@abi-omnipotent
   1118 .align	32
   1119 gcm_gmult_avx:
   1120 	jmp	.L_gmult_clmul
   1121 .size	gcm_gmult_avx,.-gcm_gmult_avx
   1122 ___
   1123 
   1125 $code.=<<___;
   1126 .globl	gcm_ghash_avx
   1127 .type	gcm_ghash_avx,\@abi-omnipotent
   1128 .align	32
   1129 gcm_ghash_avx:
   1130 ___
   1131 if ($avx) {
   1132 my ($Xip,$Htbl,$inp,$len)=@_4args;
   1133 my ($Xlo,$Xhi,$Xmi,
   1134     $Zlo,$Zhi,$Zmi,
   1135     $Hkey,$HK,$T1,$T2,
   1136     $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
   1137 
   1138 $code.=<<___ if ($win64);
   1139 	lea	-0x88(%rsp),%rax
   1140 .LSEH_begin_gcm_ghash_avx:
   1141 	# I can't trust assembler to use specific encoding:-(
   1142 	.byte	0x48,0x8d,0x60,0xe0		#lea	-0x20(%rax),%rsp
   1143 	.byte	0x0f,0x29,0x70,0xe0		#movaps	%xmm6,-0x20(%rax)
   1144 	.byte	0x0f,0x29,0x78,0xf0		#movaps	%xmm7,-0x10(%rax)
   1145 	.byte	0x44,0x0f,0x29,0x00		#movaps	%xmm8,0(%rax)
   1146 	.byte	0x44,0x0f,0x29,0x48,0x10	#movaps	%xmm9,0x10(%rax)
   1147 	.byte	0x44,0x0f,0x29,0x50,0x20	#movaps	%xmm10,0x20(%rax)
   1148 	.byte	0x44,0x0f,0x29,0x58,0x30	#movaps	%xmm11,0x30(%rax)
   1149 	.byte	0x44,0x0f,0x29,0x60,0x40	#movaps	%xmm12,0x40(%rax)
   1150 	.byte	0x44,0x0f,0x29,0x68,0x50	#movaps	%xmm13,0x50(%rax)
   1151 	.byte	0x44,0x0f,0x29,0x70,0x60	#movaps	%xmm14,0x60(%rax)
   1152 	.byte	0x44,0x0f,0x29,0x78,0x70	#movaps	%xmm15,0x70(%rax)
   1153 ___
   1154 $code.=<<___;
   1155 	vzeroupper
   1156 
   1157 	vmovdqu		($Xip),$Xi		# load $Xi
   1158 	lea		.L0x1c2_polynomial(%rip),%r10
   1159 	lea		0x40($Htbl),$Htbl	# size optimization
   1160 	vmovdqu		.Lbswap_mask(%rip),$bswap
   1161 	vpshufb		$bswap,$Xi,$Xi
   1162 	cmp		\$0x80,$len
   1163 	jb		.Lshort_avx
   1164 	sub		\$0x80,$len
   1165 
   1166 	vmovdqu		0x70($inp),$Ii		# I[7]
   1167 	vmovdqu		0x00-0x40($Htbl),$Hkey	# $Hkey^1
   1168 	vpshufb		$bswap,$Ii,$Ii
   1169 	vmovdqu		0x20-0x40($Htbl),$HK
   1170 
   1171 	vpunpckhqdq	$Ii,$Ii,$T2
   1172 	 vmovdqu	0x60($inp),$Ij		# I[6]
   1173 	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1174 	vpxor		$Ii,$T2,$T2
   1175 	 vpshufb	$bswap,$Ij,$Ij
   1176 	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1177 	 vmovdqu	0x10-0x40($Htbl),$Hkey	# $Hkey^2
   1178 	 vpunpckhqdq	$Ij,$Ij,$T1
   1179 	 vmovdqu	0x50($inp),$Ii		# I[5]
   1180 	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
   1181 	 vpxor		$Ij,$T1,$T1
   1182 
   1183 	 vpshufb	$bswap,$Ii,$Ii
   1184 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1185 	 vpunpckhqdq	$Ii,$Ii,$T2
   1186 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1187 	 vmovdqu	0x30-0x40($Htbl),$Hkey	# $Hkey^3
   1188 	 vpxor		$Ii,$T2,$T2
   1189 	 vmovdqu	0x40($inp),$Ij		# I[4]
   1190 	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
   1191 	 vmovdqu	0x50-0x40($Htbl),$HK
   1192 
   1193 	 vpshufb	$bswap,$Ij,$Ij
   1194 	vpxor		$Xlo,$Zlo,$Zlo
   1195 	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1196 	vpxor		$Xhi,$Zhi,$Zhi
   1197 	 vpunpckhqdq	$Ij,$Ij,$T1
   1198 	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1199 	 vmovdqu	0x40-0x40($Htbl),$Hkey	# $Hkey^4
   1200 	vpxor		$Xmi,$Zmi,$Zmi
   1201 	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
   1202 	 vpxor		$Ij,$T1,$T1
   1203 
   1204 	 vmovdqu	0x30($inp),$Ii		# I[3]
   1205 	vpxor		$Zlo,$Xlo,$Xlo
   1206 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1207 	vpxor		$Zhi,$Xhi,$Xhi
   1208 	 vpshufb	$bswap,$Ii,$Ii
   1209 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1210 	 vmovdqu	0x60-0x40($Htbl),$Hkey	# $Hkey^5
   1211 	vpxor		$Zmi,$Xmi,$Xmi
   1212 	 vpunpckhqdq	$Ii,$Ii,$T2
   1213 	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
   1214 	 vmovdqu	0x80-0x40($Htbl),$HK
   1215 	 vpxor		$Ii,$T2,$T2
   1216 
   1217 	 vmovdqu	0x20($inp),$Ij		# I[2]
   1218 	vpxor		$Xlo,$Zlo,$Zlo
   1219 	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1220 	vpxor		$Xhi,$Zhi,$Zhi
   1221 	 vpshufb	$bswap,$Ij,$Ij
   1222 	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1223 	 vmovdqu	0x70-0x40($Htbl),$Hkey	# $Hkey^6
   1224 	vpxor		$Xmi,$Zmi,$Zmi
   1225 	 vpunpckhqdq	$Ij,$Ij,$T1
   1226 	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
   1227 	 vpxor		$Ij,$T1,$T1
   1228 
   1229 	 vmovdqu	0x10($inp),$Ii		# I[1]
   1230 	vpxor		$Zlo,$Xlo,$Xlo
   1231 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1232 	vpxor		$Zhi,$Xhi,$Xhi
   1233 	 vpshufb	$bswap,$Ii,$Ii
   1234 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1235 	 vmovdqu	0x90-0x40($Htbl),$Hkey	# $Hkey^7
   1236 	vpxor		$Zmi,$Xmi,$Xmi
   1237 	 vpunpckhqdq	$Ii,$Ii,$T2
   1238 	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
   1239 	 vmovdqu	0xb0-0x40($Htbl),$HK
   1240 	 vpxor		$Ii,$T2,$T2
   1241 
   1242 	 vmovdqu	($inp),$Ij		# I[0]
   1243 	vpxor		$Xlo,$Zlo,$Zlo
   1244 	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1245 	vpxor		$Xhi,$Zhi,$Zhi
   1246 	 vpshufb	$bswap,$Ij,$Ij
   1247 	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1248 	 vmovdqu	0xa0-0x40($Htbl),$Hkey	# $Hkey^8
   1249 	vpxor		$Xmi,$Zmi,$Zmi
   1250 	vpclmulqdq	\$0x10,$HK,$T2,$Xmi
   1251 
   1252 	lea		0x80($inp),$inp
   1253 	cmp		\$0x80,$len
   1254 	jb		.Ltail_avx
   1255 
   1256 	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
   1257 	sub		\$0x80,$len
   1258 	jmp		.Loop8x_avx
   1259 
   1260 .align	32
   1261 .Loop8x_avx:
   1262 	vpunpckhqdq	$Ij,$Ij,$T1
   1263 	 vmovdqu	0x70($inp),$Ii		# I[7]
   1264 	vpxor		$Xlo,$Zlo,$Zlo
   1265 	vpxor		$Ij,$T1,$T1
   1266 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xi
   1267 	 vpshufb	$bswap,$Ii,$Ii
   1268 	vpxor		$Xhi,$Zhi,$Zhi
   1269 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xo
   1270 	 vmovdqu	0x00-0x40($Htbl),$Hkey	# $Hkey^1
   1271 	 vpunpckhqdq	$Ii,$Ii,$T2
   1272 	vpxor		$Xmi,$Zmi,$Zmi
   1273 	vpclmulqdq	\$0x00,$HK,$T1,$Tred
   1274 	 vmovdqu	0x20-0x40($Htbl),$HK
   1275 	 vpxor		$Ii,$T2,$T2
   1276 
   1277 	  vmovdqu	0x60($inp),$Ij		# I[6]
   1278 	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1279 	vpxor		$Zlo,$Xi,$Xi		# collect result
   1280 	  vpshufb	$bswap,$Ij,$Ij
   1281 	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1282 	vxorps		$Zhi,$Xo,$Xo
   1283 	  vmovdqu	0x10-0x40($Htbl),$Hkey	# $Hkey^2
   1284 	 vpunpckhqdq	$Ij,$Ij,$T1
   1285 	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
   1286 	vpxor		$Zmi,$Tred,$Tred
   1287 	 vxorps		$Ij,$T1,$T1
   1288 
   1289 	  vmovdqu	0x50($inp),$Ii		# I[5]
   1290 	vpxor		$Xi,$Tred,$Tred		# aggregated Karatsuba post-processing
   1291 	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1292 	vpxor		$Xo,$Tred,$Tred
   1293 	vpslldq		\$8,$Tred,$T2
   1294 	 vpxor		$Xlo,$Zlo,$Zlo
   1295 	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1296 	vpsrldq		\$8,$Tred,$Tred
   1297 	vpxor		$T2, $Xi, $Xi
   1298 	  vmovdqu	0x30-0x40($Htbl),$Hkey	# $Hkey^3
   1299 	  vpshufb	$bswap,$Ii,$Ii
   1300 	vxorps		$Tred,$Xo, $Xo
   1301 	 vpxor		$Xhi,$Zhi,$Zhi
   1302 	 vpunpckhqdq	$Ii,$Ii,$T2
   1303 	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
   1304 	  vmovdqu	0x50-0x40($Htbl),$HK
   1305 	 vpxor		$Ii,$T2,$T2
   1306 	 vpxor		$Xmi,$Zmi,$Zmi
   1307 
   1308 	  vmovdqu	0x40($inp),$Ij		# I[4]
   1309 	vpalignr	\$8,$Xi,$Xi,$Tred	# 1st phase
   1310 	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1311 	  vpshufb	$bswap,$Ij,$Ij
   1312 	 vpxor		$Zlo,$Xlo,$Xlo
   1313 	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1314 	  vmovdqu	0x40-0x40($Htbl),$Hkey	# $Hkey^4
   1315 	 vpunpckhqdq	$Ij,$Ij,$T1
   1316 	 vpxor		$Zhi,$Xhi,$Xhi
   1317 	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
   1318 	 vxorps		$Ij,$T1,$T1
   1319 	 vpxor		$Zmi,$Xmi,$Xmi
   1320 
   1321 	  vmovdqu	0x30($inp),$Ii		# I[3]
   1322 	vpclmulqdq	\$0x10,(%r10),$Xi,$Xi
   1323 	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1324 	  vpshufb	$bswap,$Ii,$Ii
   1325 	 vpxor		$Xlo,$Zlo,$Zlo
   1326 	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1327 	  vmovdqu	0x60-0x40($Htbl),$Hkey	# $Hkey^5
   1328 	 vpunpckhqdq	$Ii,$Ii,$T2
   1329 	 vpxor		$Xhi,$Zhi,$Zhi
   1330 	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
   1331 	  vmovdqu	0x80-0x40($Htbl),$HK
   1332 	 vpxor		$Ii,$T2,$T2
   1333 	 vpxor		$Xmi,$Zmi,$Zmi
   1334 
   1335 	  vmovdqu	0x20($inp),$Ij		# I[2]
   1336 	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1337 	  vpshufb	$bswap,$Ij,$Ij
   1338 	 vpxor		$Zlo,$Xlo,$Xlo
   1339 	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1340 	  vmovdqu	0x70-0x40($Htbl),$Hkey	# $Hkey^6
   1341 	 vpunpckhqdq	$Ij,$Ij,$T1
   1342 	 vpxor		$Zhi,$Xhi,$Xhi
   1343 	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
   1344 	 vpxor		$Ij,$T1,$T1
   1345 	 vpxor		$Zmi,$Xmi,$Xmi
   1346 	vxorps		$Tred,$Xi,$Xi
   1347 
   1348 	  vmovdqu	0x10($inp),$Ii		# I[1]
   1349 	vpalignr	\$8,$Xi,$Xi,$Tred	# 2nd phase
   1350 	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1351 	  vpshufb	$bswap,$Ii,$Ii
   1352 	 vpxor		$Xlo,$Zlo,$Zlo
   1353 	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1354 	  vmovdqu	0x90-0x40($Htbl),$Hkey	# $Hkey^7
   1355 	vpclmulqdq	\$0x10,(%r10),$Xi,$Xi
   1356 	vxorps		$Xo,$Tred,$Tred
   1357 	 vpunpckhqdq	$Ii,$Ii,$T2
   1358 	 vpxor		$Xhi,$Zhi,$Zhi
   1359 	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
   1360 	  vmovdqu	0xb0-0x40($Htbl),$HK
   1361 	 vpxor		$Ii,$T2,$T2
   1362 	 vpxor		$Xmi,$Zmi,$Zmi
   1363 
   1364 	  vmovdqu	($inp),$Ij		# I[0]
   1365 	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1366 	  vpshufb	$bswap,$Ij,$Ij
   1367 	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1368 	  vmovdqu	0xa0-0x40($Htbl),$Hkey	# $Hkey^8
   1369 	vpxor		$Tred,$Ij,$Ij
   1370 	 vpclmulqdq	\$0x10,$HK,  $T2,$Xmi
   1371 	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
   1372 
   1373 	lea		0x80($inp),$inp
   1374 	sub		\$0x80,$len
   1375 	jnc		.Loop8x_avx
   1376 
   1377 	add		\$0x80,$len
   1378 	jmp		.Ltail_no_xor_avx
   1379 
   1380 .align	32
   1381 .Lshort_avx:
   1382 	vmovdqu		-0x10($inp,$len),$Ii	# very last word
   1383 	lea		($inp,$len),$inp
   1384 	vmovdqu		0x00-0x40($Htbl),$Hkey	# $Hkey^1
   1385 	vmovdqu		0x20-0x40($Htbl),$HK
   1386 	vpshufb		$bswap,$Ii,$Ij
   1387 
   1388 	vmovdqa		$Xlo,$Zlo		# subtle way to zero $Zlo,
   1389 	vmovdqa		$Xhi,$Zhi		# $Zhi and
   1390 	vmovdqa		$Xmi,$Zmi		# $Zmi
   1391 	sub		\$0x10,$len
   1392 	jz		.Ltail_avx
   1393 
   1394 	vpunpckhqdq	$Ij,$Ij,$T1
   1395 	vpxor		$Xlo,$Zlo,$Zlo
   1396 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1397 	vpxor		$Ij,$T1,$T1
   1398 	 vmovdqu	-0x20($inp),$Ii
   1399 	vpxor		$Xhi,$Zhi,$Zhi
   1400 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1401 	vmovdqu		0x10-0x40($Htbl),$Hkey	# $Hkey^2
   1402 	 vpshufb	$bswap,$Ii,$Ij
   1403 	vpxor		$Xmi,$Zmi,$Zmi
   1404 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1405 	vpsrldq		\$8,$HK,$HK
   1406 	sub		\$0x10,$len
   1407 	jz		.Ltail_avx
   1408 
   1409 	vpunpckhqdq	$Ij,$Ij,$T1
   1410 	vpxor		$Xlo,$Zlo,$Zlo
   1411 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1412 	vpxor		$Ij,$T1,$T1
   1413 	 vmovdqu	-0x30($inp),$Ii
   1414 	vpxor		$Xhi,$Zhi,$Zhi
   1415 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1416 	vmovdqu		0x30-0x40($Htbl),$Hkey	# $Hkey^3
   1417 	 vpshufb	$bswap,$Ii,$Ij
   1418 	vpxor		$Xmi,$Zmi,$Zmi
   1419 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1420 	vmovdqu		0x50-0x40($Htbl),$HK
   1421 	sub		\$0x10,$len
   1422 	jz		.Ltail_avx
   1423 
   1424 	vpunpckhqdq	$Ij,$Ij,$T1
   1425 	vpxor		$Xlo,$Zlo,$Zlo
   1426 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1427 	vpxor		$Ij,$T1,$T1
   1428 	 vmovdqu	-0x40($inp),$Ii
   1429 	vpxor		$Xhi,$Zhi,$Zhi
   1430 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1431 	vmovdqu		0x40-0x40($Htbl),$Hkey	# $Hkey^4
   1432 	 vpshufb	$bswap,$Ii,$Ij
   1433 	vpxor		$Xmi,$Zmi,$Zmi
   1434 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1435 	vpsrldq		\$8,$HK,$HK
   1436 	sub		\$0x10,$len
   1437 	jz		.Ltail_avx
   1438 
   1439 	vpunpckhqdq	$Ij,$Ij,$T1
   1440 	vpxor		$Xlo,$Zlo,$Zlo
   1441 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1442 	vpxor		$Ij,$T1,$T1
   1443 	 vmovdqu	-0x50($inp),$Ii
   1444 	vpxor		$Xhi,$Zhi,$Zhi
   1445 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1446 	vmovdqu		0x60-0x40($Htbl),$Hkey	# $Hkey^5
   1447 	 vpshufb	$bswap,$Ii,$Ij
   1448 	vpxor		$Xmi,$Zmi,$Zmi
   1449 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1450 	vmovdqu		0x80-0x40($Htbl),$HK
   1451 	sub		\$0x10,$len
   1452 	jz		.Ltail_avx
   1453 
   1454 	vpunpckhqdq	$Ij,$Ij,$T1
   1455 	vpxor		$Xlo,$Zlo,$Zlo
   1456 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1457 	vpxor		$Ij,$T1,$T1
   1458 	 vmovdqu	-0x60($inp),$Ii
   1459 	vpxor		$Xhi,$Zhi,$Zhi
   1460 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1461 	vmovdqu		0x70-0x40($Htbl),$Hkey	# $Hkey^6
   1462 	 vpshufb	$bswap,$Ii,$Ij
   1463 	vpxor		$Xmi,$Zmi,$Zmi
   1464 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1465 	vpsrldq		\$8,$HK,$HK
   1466 	sub		\$0x10,$len
   1467 	jz		.Ltail_avx
   1468 
   1469 	vpunpckhqdq	$Ij,$Ij,$T1
   1470 	vpxor		$Xlo,$Zlo,$Zlo
   1471 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1472 	vpxor		$Ij,$T1,$T1
   1473 	 vmovdqu	-0x70($inp),$Ii
   1474 	vpxor		$Xhi,$Zhi,$Zhi
   1475 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1476 	vmovdqu		0x90-0x40($Htbl),$Hkey	# $Hkey^7
   1477 	 vpshufb	$bswap,$Ii,$Ij
   1478 	vpxor		$Xmi,$Zmi,$Zmi
   1479 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1480 	vmovq		0xb8-0x40($Htbl),$HK
   1481 	sub		\$0x10,$len
   1482 	jmp		.Ltail_avx
   1483 
   1484 .align	32
   1485 .Ltail_avx:
   1486 	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
   1487 .Ltail_no_xor_avx:
   1488 	vpunpckhqdq	$Ij,$Ij,$T1
   1489 	vpxor		$Xlo,$Zlo,$Zlo
   1490 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1491 	vpxor		$Ij,$T1,$T1
   1492 	vpxor		$Xhi,$Zhi,$Zhi
   1493 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1494 	vpxor		$Xmi,$Zmi,$Zmi
   1495 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1496 
   1497 	vmovdqu		(%r10),$Tred
   1498 
   1499 	vpxor		$Xlo,$Zlo,$Xi
   1500 	vpxor		$Xhi,$Zhi,$Xo
   1501 	vpxor		$Xmi,$Zmi,$Zmi
   1502 
   1503 	vpxor		$Xi, $Zmi,$Zmi		# aggregated Karatsuba post-processing
   1504 	vpxor		$Xo, $Zmi,$Zmi
   1505 	vpslldq		\$8, $Zmi,$T2
   1506 	vpsrldq		\$8, $Zmi,$Zmi
   1507 	vpxor		$T2, $Xi, $Xi
   1508 	vpxor		$Zmi,$Xo, $Xo
   1509 
   1510 	vpclmulqdq	\$0x10,$Tred,$Xi,$T2	# 1st phase
   1511 	vpalignr	\$8,$Xi,$Xi,$Xi
   1512 	vpxor		$T2,$Xi,$Xi
   1513 
   1514 	vpclmulqdq	\$0x10,$Tred,$Xi,$T2	# 2nd phase
   1515 	vpalignr	\$8,$Xi,$Xi,$Xi
   1516 	vpxor		$Xo,$Xi,$Xi
   1517 	vpxor		$T2,$Xi,$Xi
   1518 
   1519 	cmp		\$0,$len
   1520 	jne		.Lshort_avx
   1521 
   1522 	vpshufb		$bswap,$Xi,$Xi
   1523 	vmovdqu		$Xi,($Xip)
   1524 	vzeroupper
   1525 ___
   1526 $code.=<<___ if ($win64);
   1527 	movaps	(%rsp),%xmm6
   1528 	movaps	0x10(%rsp),%xmm7
   1529 	movaps	0x20(%rsp),%xmm8
   1530 	movaps	0x30(%rsp),%xmm9
   1531 	movaps	0x40(%rsp),%xmm10
   1532 	movaps	0x50(%rsp),%xmm11
   1533 	movaps	0x60(%rsp),%xmm12
   1534 	movaps	0x70(%rsp),%xmm13
   1535 	movaps	0x80(%rsp),%xmm14
   1536 	movaps	0x90(%rsp),%xmm15
   1537 	lea	0xa8(%rsp),%rsp
   1538 .LSEH_end_gcm_ghash_avx:
   1539 ___
   1540 $code.=<<___;
   1541 	ret
   1542 .size	gcm_ghash_avx,.-gcm_ghash_avx
   1543 ___
   1544 } else {
   1545 $code.=<<___;
   1546 	jmp	.L_ghash_clmul
   1547 .size	gcm_ghash_avx,.-gcm_ghash_avx
   1548 ___
   1549 }
   1550 
   1552 $code.=<<___;
   1553 .align	64
   1554 .Lbswap_mask:
   1555 	.byte	15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
   1556 .L0x1c2_polynomial:
   1557 	.byte	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
   1558 .L7_mask:
   1559 	.long	7,0,7,0
   1560 .L7_mask_poly:
   1561 	.long	7,0,`0xE1<<1`,0
   1562 .align	64
   1563 .type	.Lrem_4bit,\@object
   1564 .Lrem_4bit:
   1565 	.long	0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
   1566 	.long	0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
   1567 	.long	0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
   1568 	.long	0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
   1569 .type	.Lrem_8bit,\@object
   1570 .Lrem_8bit:
   1571 	.value	0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
   1572 	.value	0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
   1573 	.value	0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
   1574 	.value	0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
   1575 	.value	0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
   1576 	.value	0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
   1577 	.value	0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
   1578 	.value	0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
   1579 	.value	0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
   1580 	.value	0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
   1581 	.value	0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
   1582 	.value	0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
   1583 	.value	0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
   1584 	.value	0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
   1585 	.value	0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
   1586 	.value	0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
   1587 	.value	0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
   1588 	.value	0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
   1589 	.value	0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
   1590 	.value	0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
   1591 	.value	0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
   1592 	.value	0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
   1593 	.value	0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
   1594 	.value	0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
   1595 	.value	0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
   1596 	.value	0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
   1597 	.value	0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
   1598 	.value	0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
   1599 	.value	0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
   1600 	.value	0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
   1601 	.value	0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
   1602 	.value	0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
   1603 
   1604 .asciz	"GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
   1605 .align	64
   1606 ___
   1607 
   1609 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
   1610 #		CONTEXT *context,DISPATCHER_CONTEXT *disp)
   1611 if ($win64) {
   1612 $rec="%rcx";
   1613 $frame="%rdx";
   1614 $context="%r8";
   1615 $disp="%r9";
   1616 
   1617 $code.=<<___;
   1618 .extern	__imp_RtlVirtualUnwind
   1619 .type	se_handler,\@abi-omnipotent
   1620 .align	16
   1621 se_handler:
   1622 	push	%rsi
   1623 	push	%rdi
   1624 	push	%rbx
   1625 	push	%rbp
   1626 	push	%r12
   1627 	push	%r13
   1628 	push	%r14
   1629 	push	%r15
   1630 	pushfq
   1631 	sub	\$64,%rsp
   1632 
   1633 	mov	120($context),%rax	# pull context->Rax
   1634 	mov	248($context),%rbx	# pull context->Rip
   1635 
   1636 	mov	8($disp),%rsi		# disp->ImageBase
   1637 	mov	56($disp),%r11		# disp->HandlerData
   1638 
   1639 	mov	0(%r11),%r10d		# HandlerData[0]
   1640 	lea	(%rsi,%r10),%r10	# prologue label
   1641 	cmp	%r10,%rbx		# context->Rip<prologue label
   1642 	jb	.Lin_prologue
   1643 
   1644 	mov	152($context),%rax	# pull context->Rsp
   1645 
   1646 	mov	4(%r11),%r10d		# HandlerData[1]
   1647 	lea	(%rsi,%r10),%r10	# epilogue label
   1648 	cmp	%r10,%rbx		# context->Rip>=epilogue label
   1649 	jae	.Lin_prologue
   1650 
   1651 	lea	24(%rax),%rax		# adjust "rsp"
   1652 
   1653 	mov	-8(%rax),%rbx
   1654 	mov	-16(%rax),%rbp
   1655 	mov	-24(%rax),%r12
   1656 	mov	%rbx,144($context)	# restore context->Rbx
   1657 	mov	%rbp,160($context)	# restore context->Rbp
   1658 	mov	%r12,216($context)	# restore context->R12
   1659 
   1660 .Lin_prologue:
   1661 	mov	8(%rax),%rdi
   1662 	mov	16(%rax),%rsi
   1663 	mov	%rax,152($context)	# restore context->Rsp
   1664 	mov	%rsi,168($context)	# restore context->Rsi
   1665 	mov	%rdi,176($context)	# restore context->Rdi
   1666 
   1667 	mov	40($disp),%rdi		# disp->ContextRecord
   1668 	mov	$context,%rsi		# context
   1669 	mov	\$`1232/8`,%ecx		# sizeof(CONTEXT)
   1670 	.long	0xa548f3fc		# cld; rep movsq
   1671 
   1672 	mov	$disp,%rsi
   1673 	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
   1674 	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
   1675 	mov	0(%rsi),%r8		# arg3, disp->ControlPc
   1676 	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
   1677 	mov	40(%rsi),%r10		# disp->ContextRecord
   1678 	lea	56(%rsi),%r11		# &disp->HandlerData
   1679 	lea	24(%rsi),%r12		# &disp->EstablisherFrame
   1680 	mov	%r10,32(%rsp)		# arg5
   1681 	mov	%r11,40(%rsp)		# arg6
   1682 	mov	%r12,48(%rsp)		# arg7
   1683 	mov	%rcx,56(%rsp)		# arg8, (NULL)
   1684 	call	*__imp_RtlVirtualUnwind(%rip)
   1685 
   1686 	mov	\$1,%eax		# ExceptionContinueSearch
   1687 	add	\$64,%rsp
   1688 	popfq
   1689 	pop	%r15
   1690 	pop	%r14
   1691 	pop	%r13
   1692 	pop	%r12
   1693 	pop	%rbp
   1694 	pop	%rbx
   1695 	pop	%rdi
   1696 	pop	%rsi
   1697 	ret
   1698 .size	se_handler,.-se_handler
   1699 
   1700 .section	.pdata
   1701 .align	4
   1702 	.rva	.LSEH_begin_gcm_gmult_4bit
   1703 	.rva	.LSEH_end_gcm_gmult_4bit
   1704 	.rva	.LSEH_info_gcm_gmult_4bit
   1705 
   1706 	.rva	.LSEH_begin_gcm_ghash_4bit
   1707 	.rva	.LSEH_end_gcm_ghash_4bit
   1708 	.rva	.LSEH_info_gcm_ghash_4bit
   1709 
   1710 	.rva	.LSEH_begin_gcm_init_clmul
   1711 	.rva	.LSEH_end_gcm_init_clmul
   1712 	.rva	.LSEH_info_gcm_init_clmul
   1713 
   1714 	.rva	.LSEH_begin_gcm_ghash_clmul
   1715 	.rva	.LSEH_end_gcm_ghash_clmul
   1716 	.rva	.LSEH_info_gcm_ghash_clmul
   1717 ___
   1718 $code.=<<___	if ($avx);
   1719 	.rva	.LSEH_begin_gcm_init_avx
   1720 	.rva	.LSEH_end_gcm_init_avx
   1721 	.rva	.LSEH_info_gcm_init_clmul
   1722 
   1723 	.rva	.LSEH_begin_gcm_ghash_avx
   1724 	.rva	.LSEH_end_gcm_ghash_avx
   1725 	.rva	.LSEH_info_gcm_ghash_clmul
   1726 ___
   1727 $code.=<<___;
   1728 .section	.xdata
   1729 .align	8
   1730 .LSEH_info_gcm_gmult_4bit:
   1731 	.byte	9,0,0,0
   1732 	.rva	se_handler
   1733 	.rva	.Lgmult_prologue,.Lgmult_epilogue	# HandlerData
   1734 .LSEH_info_gcm_ghash_4bit:
   1735 	.byte	9,0,0,0
   1736 	.rva	se_handler
   1737 	.rva	.Lghash_prologue,.Lghash_epilogue	# HandlerData
   1738 .LSEH_info_gcm_init_clmul:
   1739 	.byte	0x01,0x08,0x03,0x00
   1740 	.byte	0x08,0x68,0x00,0x00	#movaps	0x00(rsp),xmm6
   1741 	.byte	0x04,0x22,0x00,0x00	#sub	rsp,0x18
   1742 .LSEH_info_gcm_ghash_clmul:
   1743 	.byte	0x01,0x33,0x16,0x00
   1744 	.byte	0x33,0xf8,0x09,0x00	#movaps 0x90(rsp),xmm15
   1745 	.byte	0x2e,0xe8,0x08,0x00	#movaps 0x80(rsp),xmm14
   1746 	.byte	0x29,0xd8,0x07,0x00	#movaps 0x70(rsp),xmm13
   1747 	.byte	0x24,0xc8,0x06,0x00	#movaps 0x60(rsp),xmm12
   1748 	.byte	0x1f,0xb8,0x05,0x00	#movaps 0x50(rsp),xmm11
   1749 	.byte	0x1a,0xa8,0x04,0x00	#movaps 0x40(rsp),xmm10
   1750 	.byte	0x15,0x98,0x03,0x00	#movaps 0x30(rsp),xmm9
   1751 	.byte	0x10,0x88,0x02,0x00	#movaps 0x20(rsp),xmm8
   1752 	.byte	0x0c,0x78,0x01,0x00	#movaps 0x10(rsp),xmm7
   1753 	.byte	0x08,0x68,0x00,0x00	#movaps 0x00(rsp),xmm6
   1754 	.byte	0x04,0x01,0x15,0x00	#sub	rsp,0xa8
   1755 ___
   1756 }
   1757 
   1759 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
   1760 
   1761 print $code;
   1762 
   1763 close STDOUT;
   1764