Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 #
      3 # ====================================================================
      4 # Written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL
      5 # project. The module is, however, dual licensed under OpenSSL and
      6 # CRYPTOGAMS licenses depending on where you obtain it. For further
      7 # details see http://www.openssl.org/~appro/cryptogams/.
      8 # ====================================================================
      9 #
     10 # SHA256/512 for ARMv8.
     11 #
     12 # Performance in cycles per processed byte and improvement coefficient
     13 # over code generated with "default" compiler:
     14 #
     15 #		SHA256-hw	SHA256(*)	SHA512
     16 # Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
     17 # Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
     18 # Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
     19 # Denver	2.01		10.5 (+26%)	6.70 (+8%)
     20 # X-Gene			20.0 (+100%)	12.8 (+300%(***))
     21 # 
     22 # (*)	Software SHA256 results are of lesser relevance, presented
     23 #	mostly for informational purposes.
     24 # (**)	The result is a trade-off: it's possible to improve it by
     25 #	10% (or by 1 cycle per round), but at the cost of 20% loss
     26 #	on Cortex-A53 (or by 4 cycles per round).
     27 # (***)	Super-impressive coefficients over gcc-generated code are
     28 #	indication of some compiler "pathology", most notably code
     29 #	generated with -mgeneral-regs-only is significanty faster
     30 #	and the gap is only 40-90%.
     31 
     32 $flavour=shift;
     33 # Unlike most perlasm files, sha512-armv8.pl takes an additional argument to
     34 # determine which hash function to emit. This differs from upstream OpenSSL so
     35 # that the script may continue to output to stdout.
     36 $variant=shift;
     37 $output=shift;
     38 
     39 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
     40 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
     41 ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
     42 die "can't locate arm-xlate.pl";
     43 
     44 open OUT,"| \"$^X\" $xlate $flavour $output";
     45 *STDOUT=*OUT;
     46 
     47 if ($variant eq "sha512") {
     48 	$BITS=512;
     49 	$SZ=8;
     50 	@Sigma0=(28,34,39);
     51 	@Sigma1=(14,18,41);
     52 	@sigma0=(1,  8, 7);
     53 	@sigma1=(19,61, 6);
     54 	$rounds=80;
     55 	$reg_t="x";
     56 } elsif ($variant eq "sha256") {
     57 	$BITS=256;
     58 	$SZ=4;
     59 	@Sigma0=( 2,13,22);
     60 	@Sigma1=( 6,11,25);
     61 	@sigma0=( 7,18, 3);
     62 	@sigma1=(17,19,10);
     63 	$rounds=64;
     64 	$reg_t="w";
     65 } else {
     66   die "Unknown variant: $variant";
     67 }
     68 
     69 $func="sha${BITS}_block_data_order";
     70 
     71 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
     72 
     73 @X=map("$reg_t$_",(3..15,0..2));
     74 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
     75 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
     76 
     77 sub BODY_00_xx {
     78 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
     79 my $j=($i+1)&15;
     80 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
     81    $T0=@X[$i+3] if ($i<11);
     82 
     83 $code.=<<___	if ($i<16);
     84 #ifndef	__ARMEB__
     85 	rev	@X[$i],@X[$i]			// $i
     86 #endif
     87 ___
     88 $code.=<<___	if ($i<13 && ($i&1));
     89 	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
     90 ___
     91 $code.=<<___	if ($i==13);
     92 	ldp	@X[14],@X[15],[$inp]
     93 ___
     94 $code.=<<___	if ($i>=14);
     95 	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
     96 ___
     97 $code.=<<___	if ($i>0 && $i<16);
     98 	add	$a,$a,$t1			// h+=Sigma0(a)
     99 ___
    100 $code.=<<___	if ($i>=11);
    101 	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
    102 ___
    103 # While ARMv8 specifies merged rotate-n-logical operation such as
    104 # 'eor x,y,z,ror#n', it was found to negatively affect performance
    105 # on Apple A7. The reason seems to be that it requires even 'y' to
    106 # be available earlier. This means that such merged instruction is
    107 # not necessarily best choice on critical path... On the other hand
    108 # Cortex-A5x handles merged instructions much better than disjoint
    109 # rotate and logical... See (**) footnote above.
    110 $code.=<<___	if ($i<15);
    111 	ror	$t0,$e,#$Sigma1[0]
    112 	add	$h,$h,$t2			// h+=K[i]
    113 	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
    114 	and	$t1,$f,$e
    115 	bic	$t2,$g,$e
    116 	add	$h,$h,@X[$i&15]			// h+=X[i]
    117 	orr	$t1,$t1,$t2			// Ch(e,f,g)
    118 	eor	$t2,$a,$b			// a^b, b^c in next round
    119 	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
    120 	ror	$T0,$a,#$Sigma0[0]
    121 	add	$h,$h,$t1			// h+=Ch(e,f,g)
    122 	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
    123 	add	$h,$h,$t0			// h+=Sigma1(e)
    124 	and	$t3,$t3,$t2			// (b^c)&=(a^b)
    125 	add	$d,$d,$h			// d+=h
    126 	eor	$t3,$t3,$b			// Maj(a,b,c)
    127 	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
    128 	add	$h,$h,$t3			// h+=Maj(a,b,c)
    129 	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
    130 	//add	$h,$h,$t1			// h+=Sigma0(a)
    131 ___
    132 $code.=<<___	if ($i>=15);
    133 	ror	$t0,$e,#$Sigma1[0]
    134 	add	$h,$h,$t2			// h+=K[i]
    135 	ror	$T1,@X[($j+1)&15],#$sigma0[0]
    136 	and	$t1,$f,$e
    137 	ror	$T2,@X[($j+14)&15],#$sigma1[0]
    138 	bic	$t2,$g,$e
    139 	ror	$T0,$a,#$Sigma0[0]
    140 	add	$h,$h,@X[$i&15]			// h+=X[i]
    141 	eor	$t0,$t0,$e,ror#$Sigma1[1]
    142 	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
    143 	orr	$t1,$t1,$t2			// Ch(e,f,g)
    144 	eor	$t2,$a,$b			// a^b, b^c in next round
    145 	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
    146 	eor	$T0,$T0,$a,ror#$Sigma0[1]
    147 	add	$h,$h,$t1			// h+=Ch(e,f,g)
    148 	and	$t3,$t3,$t2			// (b^c)&=(a^b)
    149 	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
    150 	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
    151 	add	$h,$h,$t0			// h+=Sigma1(e)
    152 	eor	$t3,$t3,$b			// Maj(a,b,c)
    153 	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
    154 	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
    155 	add	@X[$j],@X[$j],@X[($j+9)&15]
    156 	add	$d,$d,$h			// d+=h
    157 	add	$h,$h,$t3			// h+=Maj(a,b,c)
    158 	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
    159 	add	@X[$j],@X[$j],$T1
    160 	add	$h,$h,$t1			// h+=Sigma0(a)
    161 	add	@X[$j],@X[$j],$T2
    162 ___
    163 	($t2,$t3)=($t3,$t2);
    164 }
    165 
    166 $code.=<<___;
    167 #include "arm_arch.h"
    168 
    169 .text
    170 
    171 .extern	OPENSSL_armcap_P
    172 .globl	$func
    173 .type	$func,%function
    174 .align	6
    175 $func:
    176 ___
    177 $code.=<<___	if ($SZ==4);
    178 	ldr	x16,.LOPENSSL_armcap_P
    179 	adr	x17,.LOPENSSL_armcap_P
    180 	add	x16,x16,x17
    181 	ldr	w16,[x16]
    182 	tst	w16,#ARMV8_SHA256
    183 	b.ne	.Lv8_entry
    184 ___
    185 $code.=<<___;
    186 	stp	x29,x30,[sp,#-128]!
    187 	add	x29,sp,#0
    188 
    189 	stp	x19,x20,[sp,#16]
    190 	stp	x21,x22,[sp,#32]
    191 	stp	x23,x24,[sp,#48]
    192 	stp	x25,x26,[sp,#64]
    193 	stp	x27,x28,[sp,#80]
    194 	sub	sp,sp,#4*$SZ
    195 
    196 	ldp	$A,$B,[$ctx]				// load context
    197 	ldp	$C,$D,[$ctx,#2*$SZ]
    198 	ldp	$E,$F,[$ctx,#4*$SZ]
    199 	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
    200 	ldp	$G,$H,[$ctx,#6*$SZ]
    201 	adr	$Ktbl,.LK$BITS
    202 	stp	$ctx,$num,[x29,#96]
    203 
    204 .Loop:
    205 	ldp	@X[0],@X[1],[$inp],#2*$SZ
    206 	ldr	$t2,[$Ktbl],#$SZ			// *K++
    207 	eor	$t3,$B,$C				// magic seed
    208 	str	$inp,[x29,#112]
    209 ___
    210 for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
    211 $code.=".Loop_16_xx:\n";
    212 for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
    213 $code.=<<___;
    214 	cbnz	$t2,.Loop_16_xx
    215 
    216 	ldp	$ctx,$num,[x29,#96]
    217 	ldr	$inp,[x29,#112]
    218 	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
    219 
    220 	ldp	@X[0],@X[1],[$ctx]
    221 	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
    222 	add	$inp,$inp,#14*$SZ			// advance input pointer
    223 	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
    224 	add	$A,$A,@X[0]
    225 	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
    226 	add	$B,$B,@X[1]
    227 	add	$C,$C,@X[2]
    228 	add	$D,$D,@X[3]
    229 	stp	$A,$B,[$ctx]
    230 	add	$E,$E,@X[4]
    231 	add	$F,$F,@X[5]
    232 	stp	$C,$D,[$ctx,#2*$SZ]
    233 	add	$G,$G,@X[6]
    234 	add	$H,$H,@X[7]
    235 	cmp	$inp,$num
    236 	stp	$E,$F,[$ctx,#4*$SZ]
    237 	stp	$G,$H,[$ctx,#6*$SZ]
    238 	b.ne	.Loop
    239 
    240 	ldp	x19,x20,[x29,#16]
    241 	add	sp,sp,#4*$SZ
    242 	ldp	x21,x22,[x29,#32]
    243 	ldp	x23,x24,[x29,#48]
    244 	ldp	x25,x26,[x29,#64]
    245 	ldp	x27,x28,[x29,#80]
    246 	ldp	x29,x30,[sp],#128
    247 	ret
    248 .size	$func,.-$func
    249 
    250 .align	6
    251 .type	.LK$BITS,%object
    252 .LK$BITS:
    253 ___
    254 $code.=<<___ if ($SZ==8);
    255 	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
    256 	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
    257 	.quad	0x3956c25bf348b538,0x59f111f1b605d019
    258 	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
    259 	.quad	0xd807aa98a3030242,0x12835b0145706fbe
    260 	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
    261 	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
    262 	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
    263 	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
    264 	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
    265 	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
    266 	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
    267 	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
    268 	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
    269 	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
    270 	.quad	0x06ca6351e003826f,0x142929670a0e6e70
    271 	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
    272 	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
    273 	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
    274 	.quad	0x81c2c92e47edaee6,0x92722c851482353b
    275 	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
    276 	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
    277 	.quad	0xd192e819d6ef5218,0xd69906245565a910
    278 	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
    279 	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
    280 	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
    281 	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
    282 	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
    283 	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
    284 	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
    285 	.quad	0x90befffa23631e28,0xa4506cebde82bde9
    286 	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
    287 	.quad	0xca273eceea26619c,0xd186b8c721c0c207
    288 	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
    289 	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
    290 	.quad	0x113f9804bef90dae,0x1b710b35131c471b
    291 	.quad	0x28db77f523047d84,0x32caab7b40c72493
    292 	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
    293 	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
    294 	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
    295 	.quad	0	// terminator
    296 ___
    297 $code.=<<___ if ($SZ==4);
    298 	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
    299 	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
    300 	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
    301 	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
    302 	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
    303 	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
    304 	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
    305 	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
    306 	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
    307 	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
    308 	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
    309 	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
    310 	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
    311 	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
    312 	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
    313 	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
    314 	.long	0	//terminator
    315 ___
    316 $code.=<<___;
    317 .size	.LK$BITS,.-.LK$BITS
    318 .align	3
    319 .LOPENSSL_armcap_P:
    320 	.quad	OPENSSL_armcap_P-.
    321 .asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
    322 .align	2
    323 ___
    324 
    325 if ($SZ==4) {
    326 my $Ktbl="x3";
    327 
    328 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
    329 my @MSG=map("v$_.16b",(4..7));
    330 my ($W0,$W1)=("v16.4s","v17.4s");
    331 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
    332 
    333 $code.=<<___;
    334 .type	sha256_block_armv8,%function
    335 .align	6
    336 sha256_block_armv8:
    337 .Lv8_entry:
    338 	stp		x29,x30,[sp,#-16]!
    339 	add		x29,sp,#0
    340 
    341 	ld1.32		{$ABCD,$EFGH},[$ctx]
    342 	adr		$Ktbl,.LK256
    343 
    344 .Loop_hw:
    345 	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
    346 	sub		$num,$num,#1
    347 	ld1.32		{$W0},[$Ktbl],#16
    348 	rev32		@MSG[0],@MSG[0]
    349 	rev32		@MSG[1],@MSG[1]
    350 	rev32		@MSG[2],@MSG[2]
    351 	rev32		@MSG[3],@MSG[3]
    352 	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
    353 	orr		$EFGH_SAVE,$EFGH,$EFGH
    354 ___
    355 for($i=0;$i<12;$i++) {
    356 $code.=<<___;
    357 	ld1.32		{$W1},[$Ktbl],#16
    358 	add.i32		$W0,$W0,@MSG[0]
    359 	sha256su0	@MSG[0],@MSG[1]
    360 	orr		$abcd,$ABCD,$ABCD
    361 	sha256h		$ABCD,$EFGH,$W0
    362 	sha256h2	$EFGH,$abcd,$W0
    363 	sha256su1	@MSG[0],@MSG[2],@MSG[3]
    364 ___
    365 	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
    366 }
    367 $code.=<<___;
    368 	ld1.32		{$W1},[$Ktbl],#16
    369 	add.i32		$W0,$W0,@MSG[0]
    370 	orr		$abcd,$ABCD,$ABCD
    371 	sha256h		$ABCD,$EFGH,$W0
    372 	sha256h2	$EFGH,$abcd,$W0
    373 
    374 	ld1.32		{$W0},[$Ktbl],#16
    375 	add.i32		$W1,$W1,@MSG[1]
    376 	orr		$abcd,$ABCD,$ABCD
    377 	sha256h		$ABCD,$EFGH,$W1
    378 	sha256h2	$EFGH,$abcd,$W1
    379 
    380 	ld1.32		{$W1},[$Ktbl]
    381 	add.i32		$W0,$W0,@MSG[2]
    382 	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
    383 	orr		$abcd,$ABCD,$ABCD
    384 	sha256h		$ABCD,$EFGH,$W0
    385 	sha256h2	$EFGH,$abcd,$W0
    386 
    387 	add.i32		$W1,$W1,@MSG[3]
    388 	orr		$abcd,$ABCD,$ABCD
    389 	sha256h		$ABCD,$EFGH,$W1
    390 	sha256h2	$EFGH,$abcd,$W1
    391 
    392 	add.i32		$ABCD,$ABCD,$ABCD_SAVE
    393 	add.i32		$EFGH,$EFGH,$EFGH_SAVE
    394 
    395 	cbnz		$num,.Loop_hw
    396 
    397 	st1.32		{$ABCD,$EFGH},[$ctx]
    398 
    399 	ldr		x29,[sp],#16
    400 	ret
    401 .size	sha256_block_armv8,.-sha256_block_armv8
    402 ___
    403 }
    404 
    405 $code.=<<___;
    406 .comm	OPENSSL_armcap_P,4,4
    407 ___
    408 
    409 {   my  %opcode = (
    410 	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
    411 	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
    412 
    413     sub unsha256 {
    414 	my ($mnemonic,$arg)=@_;
    415 
    416 	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
    417 	&&
    418 	sprintf ".inst\t0x%08x\t//%s %s",
    419 			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
    420 			$mnemonic,$arg;
    421     }
    422 }
    423 
    424 foreach(split("\n",$code)) {
    425 
    426 	s/\`([^\`]*)\`/eval($1)/geo;
    427 
    428 	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo;
    429 
    430 	s/\.\w?32\b//o		and s/\.16b/\.4s/go;
    431 	m/(ld|st)1[^\[]+\[0\]/o	and s/\.4s/\.s/go;
    432 
    433 	print $_,"\n";
    434 }
    435 
    436 close STDOUT;
    437