Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // A simple C++ interface to the SuiteSparse and CHOLMOD libraries.
     32 
     33 #ifndef CERES_INTERNAL_SUITESPARSE_H_
     34 #define CERES_INTERNAL_SUITESPARSE_H_
     35 
     36 // This include must come before any #ifndef check on Ceres compile options.
     37 #include "ceres/internal/port.h"
     38 
     39 #ifndef CERES_NO_SUITESPARSE
     40 
     41 #include <cstring>
     42 #include <string>
     43 #include <vector>
     44 
     45 #include "ceres/internal/port.h"
     46 #include "ceres/linear_solver.h"
     47 #include "cholmod.h"
     48 #include "glog/logging.h"
     49 #include "SuiteSparseQR.hpp"
     50 
     51 // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
     52 // if SuiteSparse was compiled with Metis support. This makes
     53 // calling and linking into cholmod_camd problematic even though it
     54 // has nothing to do with Metis. This has been fixed reliably in
     55 // 4.2.0.
     56 //
     57 // The fix was actually committed in 4.1.0, but there is
     58 // some confusion about a silent update to the tar ball, so we are
     59 // being conservative and choosing the next minor version where
     60 // things are stable.
     61 #if (SUITESPARSE_VERSION < 4002)
     62 #define CERES_NO_CAMD
     63 #endif
     64 
     65 // UF_long is deprecated but SuiteSparse_long is only available in
     66 // newer versions of SuiteSparse. So for older versions of
     67 // SuiteSparse, we define SuiteSparse_long to be the same as UF_long,
     68 // which is what recent versions of SuiteSparse do anyways.
     69 #ifndef SuiteSparse_long
     70 #define SuiteSparse_long UF_long
     71 #endif
     72 
     73 namespace ceres {
     74 namespace internal {
     75 
     76 class CompressedRowSparseMatrix;
     77 class TripletSparseMatrix;
     78 
     79 // The raw CHOLMOD and SuiteSparseQR libraries have a slightly
     80 // cumbersome c like calling format. This object abstracts it away and
     81 // provides the user with a simpler interface. The methods here cannot
     82 // be static as a cholmod_common object serves as a global variable
     83 // for all cholmod function calls.
     84 class SuiteSparse {
     85  public:
     86   SuiteSparse();
     87   ~SuiteSparse();
     88 
     89   // Functions for building cholmod_sparse objects from sparse
     90   // matrices stored in triplet form. The matrix A is not
     91   // modifed. Called owns the result.
     92   cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A);
     93 
     94   // This function works like CreateSparseMatrix, except that the
     95   // return value corresponds to A' rather than A.
     96   cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A);
     97 
     98   // Create a cholmod_sparse wrapper around the contents of A. This is
     99   // a shallow object, which refers to the contents of A and does not
    100   // use the SuiteSparse machinery to allocate memory.
    101   cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
    102 
    103   // Given a vector x, build a cholmod_dense vector of size out_size
    104   // with the first in_size entries copied from x. If x is NULL, then
    105   // an all zeros vector is returned. Caller owns the result.
    106   cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size);
    107 
    108   // The matrix A is scaled using the matrix whose diagonal is the
    109   // vector scale. mode describes how scaling is applied. Possible
    110   // values are CHOLMOD_ROW for row scaling - diag(scale) * A,
    111   // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM
    112   // for symmetric scaling which scales both the rows and the columns
    113   // - diag(scale) * A * diag(scale).
    114   void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) {
    115      cholmod_scale(scale, mode, A, &cc_);
    116   }
    117 
    118   // Create and return a matrix m = A * A'. Caller owns the
    119   // result. The matrix A is not modified.
    120   cholmod_sparse* AATranspose(cholmod_sparse* A) {
    121     cholmod_sparse*m =  cholmod_aat(A, NULL, A->nrow, 1, &cc_);
    122     m->stype = 1;  // Pay attention to the upper triangular part.
    123     return m;
    124   }
    125 
    126   // y = alpha * A * x + beta * y. Only y is modified.
    127   void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta,
    128                            cholmod_dense* x, cholmod_dense* y) {
    129     double alpha_[2] = {alpha, 0};
    130     double beta_[2] = {beta, 0};
    131     cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_);
    132   }
    133 
    134   // Find an ordering of A or AA' (if A is unsymmetric) that minimizes
    135   // the fill-in in the Cholesky factorization of the corresponding
    136   // matrix. This is done by using the AMD algorithm.
    137   //
    138   // Using this ordering, the symbolic Cholesky factorization of A (or
    139   // AA') is computed and returned.
    140   //
    141   // A is not modified, only the pattern of non-zeros of A is used,
    142   // the actual numerical values in A are of no consequence.
    143   //
    144   // message contains an explanation of the failures if any.
    145   //
    146   // Caller owns the result.
    147   cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, string* message);
    148 
    149   cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A,
    150                                        const vector<int>& row_blocks,
    151                                        const vector<int>& col_blocks,
    152                                        string* message);
    153 
    154   // If A is symmetric, then compute the symbolic Cholesky
    155   // factorization of A(ordering, ordering). If A is unsymmetric, then
    156   // compute the symbolic factorization of
    157   // A(ordering,:) A(ordering,:)'.
    158   //
    159   // A is not modified, only the pattern of non-zeros of A is used,
    160   // the actual numerical values in A are of no consequence.
    161   //
    162   // message contains an explanation of the failures if any.
    163   //
    164   // Caller owns the result.
    165   cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A,
    166                                                   const vector<int>& ordering,
    167                                                   string* message);
    168 
    169   // Perform a symbolic factorization of A without re-ordering A. No
    170   // postordering of the elimination tree is performed. This ensures
    171   // that the symbolic factor does not introduce an extra permutation
    172   // on the matrix. See the documentation for CHOLMOD for more details.
    173   //
    174   // message contains an explanation of the failures if any.
    175   cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A,
    176                                                      string* message);
    177 
    178   // Use the symbolic factorization in L, to find the numerical
    179   // factorization for the matrix A or AA^T. Return true if
    180   // successful, false otherwise. L contains the numeric factorization
    181   // on return.
    182   //
    183   // message contains an explanation of the failures if any.
    184   LinearSolverTerminationType Cholesky(cholmod_sparse* A,
    185                                        cholmod_factor* L,
    186                                        string* message);
    187 
    188   // Given a Cholesky factorization of a matrix A = LL^T, solve the
    189   // linear system Ax = b, and return the result. If the Solve fails
    190   // NULL is returned. Caller owns the result.
    191   //
    192   // message contains an explanation of the failures if any.
    193   cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, string* message);
    194 
    195   // By virtue of the modeling layer in Ceres being block oriented,
    196   // all the matrices used by Ceres are also block oriented. When
    197   // doing sparse direct factorization of these matrices the
    198   // fill-reducing ordering algorithms (in particular AMD) can either
    199   // be run on the block or the scalar form of these matrices. The two
    200   // SuiteSparse::AnalyzeCholesky methods allows the the client to
    201   // compute the symbolic factorization of a matrix by either using
    202   // AMD on the matrix or a user provided ordering of the rows.
    203   //
    204   // But since the underlying matrices are block oriented, it is worth
    205   // running AMD on just the block structre of these matrices and then
    206   // lifting these block orderings to a full scalar ordering. This
    207   // preserves the block structure of the permuted matrix, and exposes
    208   // more of the super-nodal structure of the matrix to the numerical
    209   // factorization routines.
    210   //
    211   // Find the block oriented AMD ordering of a matrix A, whose row and
    212   // column blocks are given by row_blocks, and col_blocks
    213   // respectively. The matrix may or may not be symmetric. The entries
    214   // of col_blocks do not need to sum to the number of columns in
    215   // A. If this is the case, only the first sum(col_blocks) are used
    216   // to compute the ordering.
    217   bool BlockAMDOrdering(const cholmod_sparse* A,
    218                         const vector<int>& row_blocks,
    219                         const vector<int>& col_blocks,
    220                         vector<int>* ordering);
    221 
    222   // Find a fill reducing approximate minimum degree
    223   // ordering. ordering is expected to be large enough to hold the
    224   // ordering.
    225   bool ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering);
    226 
    227 
    228   // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
    229   // if SuiteSparse was compiled with Metis support. This makes
    230   // calling and linking into cholmod_camd problematic even though it
    231   // has nothing to do with Metis. This has been fixed reliably in
    232   // 4.2.0.
    233   //
    234   // The fix was actually committed in 4.1.0, but there is
    235   // some confusion about a silent update to the tar ball, so we are
    236   // being conservative and choosing the next minor version where
    237   // things are stable.
    238   static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
    239     return (SUITESPARSE_VERSION>4001);
    240   }
    241 
    242   // Find a fill reducing approximate minimum degree
    243   // ordering. constraints is an array which associates with each
    244   // column of the matrix an elimination group. i.e., all columns in
    245   // group 0 are eliminated first, all columns in group 1 are
    246   // eliminated next etc. This function finds a fill reducing ordering
    247   // that obeys these constraints.
    248   //
    249   // Calling ApproximateMinimumDegreeOrdering is equivalent to calling
    250   // ConstrainedApproximateMinimumDegreeOrdering with a constraint
    251   // array that puts all columns in the same elimination group.
    252   //
    253   // If CERES_NO_CAMD is defined then calling this function will
    254   // result in a crash.
    255   bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
    256                                                    int* constraints,
    257                                                    int* ordering);
    258 
    259   void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); }
    260   void Free(cholmod_dense* m)  { cholmod_free_dense(&m, &cc_);  }
    261   void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); }
    262 
    263   void Print(cholmod_sparse* m, const string& name) {
    264     cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_);
    265   }
    266 
    267   void Print(cholmod_dense* m, const string& name) {
    268     cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_);
    269   }
    270 
    271   void Print(cholmod_triplet* m, const string& name) {
    272     cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_);
    273   }
    274 
    275   cholmod_common* mutable_cc() { return &cc_; }
    276 
    277  private:
    278   cholmod_common cc_;
    279 };
    280 
    281 }  // namespace internal
    282 }  // namespace ceres
    283 
    284 #else  // CERES_NO_SUITESPARSE
    285 
    286 typedef void cholmod_factor;
    287 
    288 class SuiteSparse {
    289  public:
    290   // Defining this static function even when SuiteSparse is not
    291   // available, allows client code to check for the presence of CAMD
    292   // without checking for the absence of the CERES_NO_CAMD symbol.
    293   //
    294   // This is safer because the symbol maybe missing due to a user
    295   // accidently not including suitesparse.h in their code when
    296   // checking for the symbol.
    297   static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
    298     return false;
    299   }
    300 
    301   void Free(void*) {};
    302 };
    303 
    304 #endif  // CERES_NO_SUITESPARSE
    305 
    306 #endif  // CERES_INTERNAL_SUITESPARSE_H_
    307