Home | History | Annotate | Download | only in AST
      1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Decl subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Decl.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTLambda.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/Attr.h"
     19 #include "clang/AST/DeclCXX.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/DeclTemplate.h"
     22 #include "clang/AST/Expr.h"
     23 #include "clang/AST/ExprCXX.h"
     24 #include "clang/AST/PrettyPrinter.h"
     25 #include "clang/AST/Stmt.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/Basic/Builtins.h"
     28 #include "clang/Basic/IdentifierTable.h"
     29 #include "clang/Basic/Module.h"
     30 #include "clang/Basic/Specifiers.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Frontend/FrontendDiagnostic.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include <algorithm>
     35 
     36 using namespace clang;
     37 
     38 Decl *clang::getPrimaryMergedDecl(Decl *D) {
     39   return D->getASTContext().getPrimaryMergedDecl(D);
     40 }
     41 
     42 // Defined here so that it can be inlined into its direct callers.
     43 bool Decl::isOutOfLine() const {
     44   return !getLexicalDeclContext()->Equals(getDeclContext());
     45 }
     46 
     47 //===----------------------------------------------------------------------===//
     48 // NamedDecl Implementation
     49 //===----------------------------------------------------------------------===//
     50 
     51 // Visibility rules aren't rigorously externally specified, but here
     52 // are the basic principles behind what we implement:
     53 //
     54 // 1. An explicit visibility attribute is generally a direct expression
     55 // of the user's intent and should be honored.  Only the innermost
     56 // visibility attribute applies.  If no visibility attribute applies,
     57 // global visibility settings are considered.
     58 //
     59 // 2. There is one caveat to the above: on or in a template pattern,
     60 // an explicit visibility attribute is just a default rule, and
     61 // visibility can be decreased by the visibility of template
     62 // arguments.  But this, too, has an exception: an attribute on an
     63 // explicit specialization or instantiation causes all the visibility
     64 // restrictions of the template arguments to be ignored.
     65 //
     66 // 3. A variable that does not otherwise have explicit visibility can
     67 // be restricted by the visibility of its type.
     68 //
     69 // 4. A visibility restriction is explicit if it comes from an
     70 // attribute (or something like it), not a global visibility setting.
     71 // When emitting a reference to an external symbol, visibility
     72 // restrictions are ignored unless they are explicit.
     73 //
     74 // 5. When computing the visibility of a non-type, including a
     75 // non-type member of a class, only non-type visibility restrictions
     76 // are considered: the 'visibility' attribute, global value-visibility
     77 // settings, and a few special cases like __private_extern.
     78 //
     79 // 6. When computing the visibility of a type, including a type member
     80 // of a class, only type visibility restrictions are considered:
     81 // the 'type_visibility' attribute and global type-visibility settings.
     82 // However, a 'visibility' attribute counts as a 'type_visibility'
     83 // attribute on any declaration that only has the former.
     84 //
     85 // The visibility of a "secondary" entity, like a template argument,
     86 // is computed using the kind of that entity, not the kind of the
     87 // primary entity for which we are computing visibility.  For example,
     88 // the visibility of a specialization of either of these templates:
     89 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
     90 //   template <class T, bool (&compare)(T, X)> class matcher;
     91 // is restricted according to the type visibility of the argument 'T',
     92 // the type visibility of 'bool(&)(T,X)', and the value visibility of
     93 // the argument function 'compare'.  That 'has_match' is a value
     94 // and 'matcher' is a type only matters when looking for attributes
     95 // and settings from the immediate context.
     96 
     97 const unsigned IgnoreExplicitVisibilityBit = 2;
     98 const unsigned IgnoreAllVisibilityBit = 4;
     99 
    100 /// Kinds of LV computation.  The linkage side of the computation is
    101 /// always the same, but different things can change how visibility is
    102 /// computed.
    103 enum LVComputationKind {
    104   /// Do an LV computation for, ultimately, a type.
    105   /// Visibility may be restricted by type visibility settings and
    106   /// the visibility of template arguments.
    107   LVForType = NamedDecl::VisibilityForType,
    108 
    109   /// Do an LV computation for, ultimately, a non-type declaration.
    110   /// Visibility may be restricted by value visibility settings and
    111   /// the visibility of template arguments.
    112   LVForValue = NamedDecl::VisibilityForValue,
    113 
    114   /// Do an LV computation for, ultimately, a type that already has
    115   /// some sort of explicit visibility.  Visibility may only be
    116   /// restricted by the visibility of template arguments.
    117   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
    118 
    119   /// Do an LV computation for, ultimately, a non-type declaration
    120   /// that already has some sort of explicit visibility.  Visibility
    121   /// may only be restricted by the visibility of template arguments.
    122   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
    123 
    124   /// Do an LV computation when we only care about the linkage.
    125   LVForLinkageOnly =
    126       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
    127 };
    128 
    129 /// Does this computation kind permit us to consider additional
    130 /// visibility settings from attributes and the like?
    131 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
    132   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
    133 }
    134 
    135 /// Given an LVComputationKind, return one of the same type/value sort
    136 /// that records that it already has explicit visibility.
    137 static LVComputationKind
    138 withExplicitVisibilityAlready(LVComputationKind oldKind) {
    139   LVComputationKind newKind =
    140     static_cast<LVComputationKind>(unsigned(oldKind) |
    141                                    IgnoreExplicitVisibilityBit);
    142   assert(oldKind != LVForType          || newKind == LVForExplicitType);
    143   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
    144   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
    145   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
    146   return newKind;
    147 }
    148 
    149 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
    150                                                   LVComputationKind kind) {
    151   assert(!hasExplicitVisibilityAlready(kind) &&
    152          "asking for explicit visibility when we shouldn't be");
    153   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
    154 }
    155 
    156 /// Is the given declaration a "type" or a "value" for the purposes of
    157 /// visibility computation?
    158 static bool usesTypeVisibility(const NamedDecl *D) {
    159   return isa<TypeDecl>(D) ||
    160          isa<ClassTemplateDecl>(D) ||
    161          isa<ObjCInterfaceDecl>(D);
    162 }
    163 
    164 /// Does the given declaration have member specialization information,
    165 /// and if so, is it an explicit specialization?
    166 template <class T> static typename
    167 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
    168 isExplicitMemberSpecialization(const T *D) {
    169   if (const MemberSpecializationInfo *member =
    170         D->getMemberSpecializationInfo()) {
    171     return member->isExplicitSpecialization();
    172   }
    173   return false;
    174 }
    175 
    176 /// For templates, this question is easier: a member template can't be
    177 /// explicitly instantiated, so there's a single bit indicating whether
    178 /// or not this is an explicit member specialization.
    179 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
    180   return D->isMemberSpecialization();
    181 }
    182 
    183 /// Given a visibility attribute, return the explicit visibility
    184 /// associated with it.
    185 template <class T>
    186 static Visibility getVisibilityFromAttr(const T *attr) {
    187   switch (attr->getVisibility()) {
    188   case T::Default:
    189     return DefaultVisibility;
    190   case T::Hidden:
    191     return HiddenVisibility;
    192   case T::Protected:
    193     return ProtectedVisibility;
    194   }
    195   llvm_unreachable("bad visibility kind");
    196 }
    197 
    198 /// Return the explicit visibility of the given declaration.
    199 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
    200                                     NamedDecl::ExplicitVisibilityKind kind) {
    201   // If we're ultimately computing the visibility of a type, look for
    202   // a 'type_visibility' attribute before looking for 'visibility'.
    203   if (kind == NamedDecl::VisibilityForType) {
    204     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
    205       return getVisibilityFromAttr(A);
    206     }
    207   }
    208 
    209   // If this declaration has an explicit visibility attribute, use it.
    210   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
    211     return getVisibilityFromAttr(A);
    212   }
    213 
    214   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
    215   // implies visibility(default).
    216   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
    217     for (const auto *A : D->specific_attrs<AvailabilityAttr>())
    218       if (A->getPlatform()->getName().equals("macosx"))
    219         return DefaultVisibility;
    220   }
    221 
    222   return None;
    223 }
    224 
    225 static LinkageInfo
    226 getLVForType(const Type &T, LVComputationKind computation) {
    227   if (computation == LVForLinkageOnly)
    228     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
    229   return T.getLinkageAndVisibility();
    230 }
    231 
    232 /// \brief Get the most restrictive linkage for the types in the given
    233 /// template parameter list.  For visibility purposes, template
    234 /// parameters are part of the signature of a template.
    235 static LinkageInfo
    236 getLVForTemplateParameterList(const TemplateParameterList *Params,
    237                               LVComputationKind computation) {
    238   LinkageInfo LV;
    239   for (const NamedDecl *P : *Params) {
    240     // Template type parameters are the most common and never
    241     // contribute to visibility, pack or not.
    242     if (isa<TemplateTypeParmDecl>(P))
    243       continue;
    244 
    245     // Non-type template parameters can be restricted by the value type, e.g.
    246     //   template <enum X> class A { ... };
    247     // We have to be careful here, though, because we can be dealing with
    248     // dependent types.
    249     if (const NonTypeTemplateParmDecl *NTTP =
    250             dyn_cast<NonTypeTemplateParmDecl>(P)) {
    251       // Handle the non-pack case first.
    252       if (!NTTP->isExpandedParameterPack()) {
    253         if (!NTTP->getType()->isDependentType()) {
    254           LV.merge(getLVForType(*NTTP->getType(), computation));
    255         }
    256         continue;
    257       }
    258 
    259       // Look at all the types in an expanded pack.
    260       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
    261         QualType type = NTTP->getExpansionType(i);
    262         if (!type->isDependentType())
    263           LV.merge(type->getLinkageAndVisibility());
    264       }
    265       continue;
    266     }
    267 
    268     // Template template parameters can be restricted by their
    269     // template parameters, recursively.
    270     const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
    271 
    272     // Handle the non-pack case first.
    273     if (!TTP->isExpandedParameterPack()) {
    274       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
    275                                              computation));
    276       continue;
    277     }
    278 
    279     // Look at all expansions in an expanded pack.
    280     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
    281            i != n; ++i) {
    282       LV.merge(getLVForTemplateParameterList(
    283           TTP->getExpansionTemplateParameters(i), computation));
    284     }
    285   }
    286 
    287   return LV;
    288 }
    289 
    290 /// getLVForDecl - Get the linkage and visibility for the given declaration.
    291 static LinkageInfo getLVForDecl(const NamedDecl *D,
    292                                 LVComputationKind computation);
    293 
    294 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
    295   const Decl *Ret = nullptr;
    296   const DeclContext *DC = D->getDeclContext();
    297   while (DC->getDeclKind() != Decl::TranslationUnit) {
    298     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
    299       Ret = cast<Decl>(DC);
    300     DC = DC->getParent();
    301   }
    302   return Ret;
    303 }
    304 
    305 /// \brief Get the most restrictive linkage for the types and
    306 /// declarations in the given template argument list.
    307 ///
    308 /// Note that we don't take an LVComputationKind because we always
    309 /// want to honor the visibility of template arguments in the same way.
    310 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
    311                                                 LVComputationKind computation) {
    312   LinkageInfo LV;
    313 
    314   for (const TemplateArgument &Arg : Args) {
    315     switch (Arg.getKind()) {
    316     case TemplateArgument::Null:
    317     case TemplateArgument::Integral:
    318     case TemplateArgument::Expression:
    319       continue;
    320 
    321     case TemplateArgument::Type:
    322       LV.merge(getLVForType(*Arg.getAsType(), computation));
    323       continue;
    324 
    325     case TemplateArgument::Declaration:
    326       if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
    327         assert(!usesTypeVisibility(ND));
    328         LV.merge(getLVForDecl(ND, computation));
    329       }
    330       continue;
    331 
    332     case TemplateArgument::NullPtr:
    333       LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
    334       continue;
    335 
    336     case TemplateArgument::Template:
    337     case TemplateArgument::TemplateExpansion:
    338       if (TemplateDecl *Template =
    339               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
    340         LV.merge(getLVForDecl(Template, computation));
    341       continue;
    342 
    343     case TemplateArgument::Pack:
    344       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
    345       continue;
    346     }
    347     llvm_unreachable("bad template argument kind");
    348   }
    349 
    350   return LV;
    351 }
    352 
    353 static LinkageInfo
    354 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
    355                              LVComputationKind computation) {
    356   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
    357 }
    358 
    359 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
    360                         const FunctionTemplateSpecializationInfo *specInfo) {
    361   // Include visibility from the template parameters and arguments
    362   // only if this is not an explicit instantiation or specialization
    363   // with direct explicit visibility.  (Implicit instantiations won't
    364   // have a direct attribute.)
    365   if (!specInfo->isExplicitInstantiationOrSpecialization())
    366     return true;
    367 
    368   return !fn->hasAttr<VisibilityAttr>();
    369 }
    370 
    371 /// Merge in template-related linkage and visibility for the given
    372 /// function template specialization.
    373 ///
    374 /// We don't need a computation kind here because we can assume
    375 /// LVForValue.
    376 ///
    377 /// \param[out] LV the computation to use for the parent
    378 static void
    379 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
    380                 const FunctionTemplateSpecializationInfo *specInfo,
    381                 LVComputationKind computation) {
    382   bool considerVisibility =
    383     shouldConsiderTemplateVisibility(fn, specInfo);
    384 
    385   // Merge information from the template parameters.
    386   FunctionTemplateDecl *temp = specInfo->getTemplate();
    387   LinkageInfo tempLV =
    388     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    389   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    390 
    391   // Merge information from the template arguments.
    392   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
    393   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
    394   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
    395 }
    396 
    397 /// Does the given declaration have a direct visibility attribute
    398 /// that would match the given rules?
    399 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
    400                                          LVComputationKind computation) {
    401   switch (computation) {
    402   case LVForType:
    403   case LVForExplicitType:
    404     if (D->hasAttr<TypeVisibilityAttr>())
    405       return true;
    406     // fallthrough
    407   case LVForValue:
    408   case LVForExplicitValue:
    409     if (D->hasAttr<VisibilityAttr>())
    410       return true;
    411     return false;
    412   case LVForLinkageOnly:
    413     return false;
    414   }
    415   llvm_unreachable("bad visibility computation kind");
    416 }
    417 
    418 /// Should we consider visibility associated with the template
    419 /// arguments and parameters of the given class template specialization?
    420 static bool shouldConsiderTemplateVisibility(
    421                                  const ClassTemplateSpecializationDecl *spec,
    422                                  LVComputationKind computation) {
    423   // Include visibility from the template parameters and arguments
    424   // only if this is not an explicit instantiation or specialization
    425   // with direct explicit visibility (and note that implicit
    426   // instantiations won't have a direct attribute).
    427   //
    428   // Furthermore, we want to ignore template parameters and arguments
    429   // for an explicit specialization when computing the visibility of a
    430   // member thereof with explicit visibility.
    431   //
    432   // This is a bit complex; let's unpack it.
    433   //
    434   // An explicit class specialization is an independent, top-level
    435   // declaration.  As such, if it or any of its members has an
    436   // explicit visibility attribute, that must directly express the
    437   // user's intent, and we should honor it.  The same logic applies to
    438   // an explicit instantiation of a member of such a thing.
    439 
    440   // Fast path: if this is not an explicit instantiation or
    441   // specialization, we always want to consider template-related
    442   // visibility restrictions.
    443   if (!spec->isExplicitInstantiationOrSpecialization())
    444     return true;
    445 
    446   // This is the 'member thereof' check.
    447   if (spec->isExplicitSpecialization() &&
    448       hasExplicitVisibilityAlready(computation))
    449     return false;
    450 
    451   return !hasDirectVisibilityAttribute(spec, computation);
    452 }
    453 
    454 /// Merge in template-related linkage and visibility for the given
    455 /// class template specialization.
    456 static void mergeTemplateLV(LinkageInfo &LV,
    457                             const ClassTemplateSpecializationDecl *spec,
    458                             LVComputationKind computation) {
    459   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
    460 
    461   // Merge information from the template parameters, but ignore
    462   // visibility if we're only considering template arguments.
    463 
    464   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
    465   LinkageInfo tempLV =
    466     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    467   LV.mergeMaybeWithVisibility(tempLV,
    468            considerVisibility && !hasExplicitVisibilityAlready(computation));
    469 
    470   // Merge information from the template arguments.  We ignore
    471   // template-argument visibility if we've got an explicit
    472   // instantiation with a visibility attribute.
    473   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
    474   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
    475   if (considerVisibility)
    476     LV.mergeVisibility(argsLV);
    477   LV.mergeExternalVisibility(argsLV);
    478 }
    479 
    480 /// Should we consider visibility associated with the template
    481 /// arguments and parameters of the given variable template
    482 /// specialization? As usual, follow class template specialization
    483 /// logic up to initialization.
    484 static bool shouldConsiderTemplateVisibility(
    485                                  const VarTemplateSpecializationDecl *spec,
    486                                  LVComputationKind computation) {
    487   // Include visibility from the template parameters and arguments
    488   // only if this is not an explicit instantiation or specialization
    489   // with direct explicit visibility (and note that implicit
    490   // instantiations won't have a direct attribute).
    491   if (!spec->isExplicitInstantiationOrSpecialization())
    492     return true;
    493 
    494   // An explicit variable specialization is an independent, top-level
    495   // declaration.  As such, if it has an explicit visibility attribute,
    496   // that must directly express the user's intent, and we should honor
    497   // it.
    498   if (spec->isExplicitSpecialization() &&
    499       hasExplicitVisibilityAlready(computation))
    500     return false;
    501 
    502   return !hasDirectVisibilityAttribute(spec, computation);
    503 }
    504 
    505 /// Merge in template-related linkage and visibility for the given
    506 /// variable template specialization. As usual, follow class template
    507 /// specialization logic up to initialization.
    508 static void mergeTemplateLV(LinkageInfo &LV,
    509                             const VarTemplateSpecializationDecl *spec,
    510                             LVComputationKind computation) {
    511   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
    512 
    513   // Merge information from the template parameters, but ignore
    514   // visibility if we're only considering template arguments.
    515 
    516   VarTemplateDecl *temp = spec->getSpecializedTemplate();
    517   LinkageInfo tempLV =
    518     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    519   LV.mergeMaybeWithVisibility(tempLV,
    520            considerVisibility && !hasExplicitVisibilityAlready(computation));
    521 
    522   // Merge information from the template arguments.  We ignore
    523   // template-argument visibility if we've got an explicit
    524   // instantiation with a visibility attribute.
    525   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
    526   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
    527   if (considerVisibility)
    528     LV.mergeVisibility(argsLV);
    529   LV.mergeExternalVisibility(argsLV);
    530 }
    531 
    532 static bool useInlineVisibilityHidden(const NamedDecl *D) {
    533   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
    534   const LangOptions &Opts = D->getASTContext().getLangOpts();
    535   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
    536     return false;
    537 
    538   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    539   if (!FD)
    540     return false;
    541 
    542   TemplateSpecializationKind TSK = TSK_Undeclared;
    543   if (FunctionTemplateSpecializationInfo *spec
    544       = FD->getTemplateSpecializationInfo()) {
    545     TSK = spec->getTemplateSpecializationKind();
    546   } else if (MemberSpecializationInfo *MSI =
    547              FD->getMemberSpecializationInfo()) {
    548     TSK = MSI->getTemplateSpecializationKind();
    549   }
    550 
    551   const FunctionDecl *Def = nullptr;
    552   // InlineVisibilityHidden only applies to definitions, and
    553   // isInlined() only gives meaningful answers on definitions
    554   // anyway.
    555   return TSK != TSK_ExplicitInstantiationDeclaration &&
    556     TSK != TSK_ExplicitInstantiationDefinition &&
    557     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
    558 }
    559 
    560 template <typename T> static bool isFirstInExternCContext(T *D) {
    561   const T *First = D->getFirstDecl();
    562   return First->isInExternCContext();
    563 }
    564 
    565 static bool isSingleLineLanguageLinkage(const Decl &D) {
    566   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
    567     if (!SD->hasBraces())
    568       return true;
    569   return false;
    570 }
    571 
    572 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
    573                                               LVComputationKind computation) {
    574   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
    575          "Not a name having namespace scope");
    576   ASTContext &Context = D->getASTContext();
    577 
    578   // C++ [basic.link]p3:
    579   //   A name having namespace scope (3.3.6) has internal linkage if it
    580   //   is the name of
    581   //     - an object, reference, function or function template that is
    582   //       explicitly declared static; or,
    583   // (This bullet corresponds to C99 6.2.2p3.)
    584   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    585     // Explicitly declared static.
    586     if (Var->getStorageClass() == SC_Static)
    587       return LinkageInfo::internal();
    588 
    589     // - a non-volatile object or reference that is explicitly declared const
    590     //   or constexpr and neither explicitly declared extern nor previously
    591     //   declared to have external linkage; or (there is no equivalent in C99)
    592     if (Context.getLangOpts().CPlusPlus &&
    593         Var->getType().isConstQualified() &&
    594         !Var->getType().isVolatileQualified()) {
    595       const VarDecl *PrevVar = Var->getPreviousDecl();
    596       if (PrevVar)
    597         return getLVForDecl(PrevVar, computation);
    598 
    599       if (Var->getStorageClass() != SC_Extern &&
    600           Var->getStorageClass() != SC_PrivateExtern &&
    601           !isSingleLineLanguageLinkage(*Var))
    602         return LinkageInfo::internal();
    603     }
    604 
    605     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
    606          PrevVar = PrevVar->getPreviousDecl()) {
    607       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
    608           Var->getStorageClass() == SC_None)
    609         return PrevVar->getLinkageAndVisibility();
    610       // Explicitly declared static.
    611       if (PrevVar->getStorageClass() == SC_Static)
    612         return LinkageInfo::internal();
    613     }
    614   } else if (const FunctionDecl *Function = D->getAsFunction()) {
    615     // C++ [temp]p4:
    616     //   A non-member function template can have internal linkage; any
    617     //   other template name shall have external linkage.
    618 
    619     // Explicitly declared static.
    620     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
    621       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
    622   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
    623     //   - a data member of an anonymous union.
    624     const VarDecl *VD = IFD->getVarDecl();
    625     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
    626     return getLVForNamespaceScopeDecl(VD, computation);
    627   }
    628   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
    629 
    630   if (D->isInAnonymousNamespace()) {
    631     const VarDecl *Var = dyn_cast<VarDecl>(D);
    632     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
    633     if ((!Var || !isFirstInExternCContext(Var)) &&
    634         (!Func || !isFirstInExternCContext(Func)))
    635       return LinkageInfo::uniqueExternal();
    636   }
    637 
    638   // Set up the defaults.
    639 
    640   // C99 6.2.2p5:
    641   //   If the declaration of an identifier for an object has file
    642   //   scope and no storage-class specifier, its linkage is
    643   //   external.
    644   LinkageInfo LV;
    645 
    646   if (!hasExplicitVisibilityAlready(computation)) {
    647     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
    648       LV.mergeVisibility(*Vis, true);
    649     } else {
    650       // If we're declared in a namespace with a visibility attribute,
    651       // use that namespace's visibility, and it still counts as explicit.
    652       for (const DeclContext *DC = D->getDeclContext();
    653            !isa<TranslationUnitDecl>(DC);
    654            DC = DC->getParent()) {
    655         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
    656         if (!ND) continue;
    657         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
    658           LV.mergeVisibility(*Vis, true);
    659           break;
    660         }
    661       }
    662     }
    663 
    664     // Add in global settings if the above didn't give us direct visibility.
    665     if (!LV.isVisibilityExplicit()) {
    666       // Use global type/value visibility as appropriate.
    667       Visibility globalVisibility;
    668       if (computation == LVForValue) {
    669         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
    670       } else {
    671         assert(computation == LVForType);
    672         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
    673       }
    674       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
    675 
    676       // If we're paying attention to global visibility, apply
    677       // -finline-visibility-hidden if this is an inline method.
    678       if (useInlineVisibilityHidden(D))
    679         LV.mergeVisibility(HiddenVisibility, true);
    680     }
    681   }
    682 
    683   // C++ [basic.link]p4:
    684 
    685   //   A name having namespace scope has external linkage if it is the
    686   //   name of
    687   //
    688   //     - an object or reference, unless it has internal linkage; or
    689   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    690     // GCC applies the following optimization to variables and static
    691     // data members, but not to functions:
    692     //
    693     // Modify the variable's LV by the LV of its type unless this is
    694     // C or extern "C".  This follows from [basic.link]p9:
    695     //   A type without linkage shall not be used as the type of a
    696     //   variable or function with external linkage unless
    697     //    - the entity has C language linkage, or
    698     //    - the entity is declared within an unnamed namespace, or
    699     //    - the entity is not used or is defined in the same
    700     //      translation unit.
    701     // and [basic.link]p10:
    702     //   ...the types specified by all declarations referring to a
    703     //   given variable or function shall be identical...
    704     // C does not have an equivalent rule.
    705     //
    706     // Ignore this if we've got an explicit attribute;  the user
    707     // probably knows what they're doing.
    708     //
    709     // Note that we don't want to make the variable non-external
    710     // because of this, but unique-external linkage suits us.
    711     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
    712       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
    713       if (TypeLV.getLinkage() != ExternalLinkage)
    714         return LinkageInfo::uniqueExternal();
    715       if (!LV.isVisibilityExplicit())
    716         LV.mergeVisibility(TypeLV);
    717     }
    718 
    719     if (Var->getStorageClass() == SC_PrivateExtern)
    720       LV.mergeVisibility(HiddenVisibility, true);
    721 
    722     // Note that Sema::MergeVarDecl already takes care of implementing
    723     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
    724     // to do it here.
    725 
    726     // As per function and class template specializations (below),
    727     // consider LV for the template and template arguments.  We're at file
    728     // scope, so we do not need to worry about nested specializations.
    729     if (const VarTemplateSpecializationDecl *spec
    730               = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
    731       mergeTemplateLV(LV, spec, computation);
    732     }
    733 
    734   //     - a function, unless it has internal linkage; or
    735   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
    736     // In theory, we can modify the function's LV by the LV of its
    737     // type unless it has C linkage (see comment above about variables
    738     // for justification).  In practice, GCC doesn't do this, so it's
    739     // just too painful to make work.
    740 
    741     if (Function->getStorageClass() == SC_PrivateExtern)
    742       LV.mergeVisibility(HiddenVisibility, true);
    743 
    744     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
    745     // merging storage classes and visibility attributes, so we don't have to
    746     // look at previous decls in here.
    747 
    748     // In C++, then if the type of the function uses a type with
    749     // unique-external linkage, it's not legally usable from outside
    750     // this translation unit.  However, we should use the C linkage
    751     // rules instead for extern "C" declarations.
    752     if (Context.getLangOpts().CPlusPlus &&
    753         !Function->isInExternCContext()) {
    754       // Only look at the type-as-written. If this function has an auto-deduced
    755       // return type, we can't compute the linkage of that type because it could
    756       // require looking at the linkage of this function, and we don't need this
    757       // for correctness because the type is not part of the function's
    758       // signature.
    759       // FIXME: This is a hack. We should be able to solve this circularity and
    760       // the one in getLVForClassMember for Functions some other way.
    761       QualType TypeAsWritten = Function->getType();
    762       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
    763         TypeAsWritten = TSI->getType();
    764       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
    765         return LinkageInfo::uniqueExternal();
    766     }
    767 
    768     // Consider LV from the template and the template arguments.
    769     // We're at file scope, so we do not need to worry about nested
    770     // specializations.
    771     if (FunctionTemplateSpecializationInfo *specInfo
    772                                = Function->getTemplateSpecializationInfo()) {
    773       mergeTemplateLV(LV, Function, specInfo, computation);
    774     }
    775 
    776   //     - a named class (Clause 9), or an unnamed class defined in a
    777   //       typedef declaration in which the class has the typedef name
    778   //       for linkage purposes (7.1.3); or
    779   //     - a named enumeration (7.2), or an unnamed enumeration
    780   //       defined in a typedef declaration in which the enumeration
    781   //       has the typedef name for linkage purposes (7.1.3); or
    782   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
    783     // Unnamed tags have no linkage.
    784     if (!Tag->hasNameForLinkage())
    785       return LinkageInfo::none();
    786 
    787     // If this is a class template specialization, consider the
    788     // linkage of the template and template arguments.  We're at file
    789     // scope, so we do not need to worry about nested specializations.
    790     if (const ClassTemplateSpecializationDecl *spec
    791           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
    792       mergeTemplateLV(LV, spec, computation);
    793     }
    794 
    795   //     - an enumerator belonging to an enumeration with external linkage;
    796   } else if (isa<EnumConstantDecl>(D)) {
    797     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
    798                                       computation);
    799     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
    800       return LinkageInfo::none();
    801     LV.merge(EnumLV);
    802 
    803   //     - a template, unless it is a function template that has
    804   //       internal linkage (Clause 14);
    805   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
    806     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
    807     LinkageInfo tempLV =
    808       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    809     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    810 
    811   //     - a namespace (7.3), unless it is declared within an unnamed
    812   //       namespace.
    813   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
    814     return LV;
    815 
    816   // By extension, we assign external linkage to Objective-C
    817   // interfaces.
    818   } else if (isa<ObjCInterfaceDecl>(D)) {
    819     // fallout
    820 
    821   // Everything not covered here has no linkage.
    822   } else {
    823     // FIXME: A typedef declaration has linkage if it gives a type a name for
    824     // linkage purposes.
    825     return LinkageInfo::none();
    826   }
    827 
    828   // If we ended up with non-external linkage, visibility should
    829   // always be default.
    830   if (LV.getLinkage() != ExternalLinkage)
    831     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
    832 
    833   return LV;
    834 }
    835 
    836 static LinkageInfo getLVForClassMember(const NamedDecl *D,
    837                                        LVComputationKind computation) {
    838   // Only certain class members have linkage.  Note that fields don't
    839   // really have linkage, but it's convenient to say they do for the
    840   // purposes of calculating linkage of pointer-to-data-member
    841   // template arguments.
    842   //
    843   // Templates also don't officially have linkage, but since we ignore
    844   // the C++ standard and look at template arguments when determining
    845   // linkage and visibility of a template specialization, we might hit
    846   // a template template argument that way. If we do, we need to
    847   // consider its linkage.
    848   if (!(isa<CXXMethodDecl>(D) ||
    849         isa<VarDecl>(D) ||
    850         isa<FieldDecl>(D) ||
    851         isa<IndirectFieldDecl>(D) ||
    852         isa<TagDecl>(D) ||
    853         isa<TemplateDecl>(D)))
    854     return LinkageInfo::none();
    855 
    856   LinkageInfo LV;
    857 
    858   // If we have an explicit visibility attribute, merge that in.
    859   if (!hasExplicitVisibilityAlready(computation)) {
    860     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
    861       LV.mergeVisibility(*Vis, true);
    862     // If we're paying attention to global visibility, apply
    863     // -finline-visibility-hidden if this is an inline method.
    864     //
    865     // Note that we do this before merging information about
    866     // the class visibility.
    867     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
    868       LV.mergeVisibility(HiddenVisibility, true);
    869   }
    870 
    871   // If this class member has an explicit visibility attribute, the only
    872   // thing that can change its visibility is the template arguments, so
    873   // only look for them when processing the class.
    874   LVComputationKind classComputation = computation;
    875   if (LV.isVisibilityExplicit())
    876     classComputation = withExplicitVisibilityAlready(computation);
    877 
    878   LinkageInfo classLV =
    879     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
    880   // If the class already has unique-external linkage, we can't improve.
    881   if (classLV.getLinkage() == UniqueExternalLinkage)
    882     return LinkageInfo::uniqueExternal();
    883 
    884   if (!isExternallyVisible(classLV.getLinkage()))
    885     return LinkageInfo::none();
    886 
    887 
    888   // Otherwise, don't merge in classLV yet, because in certain cases
    889   // we need to completely ignore the visibility from it.
    890 
    891   // Specifically, if this decl exists and has an explicit attribute.
    892   const NamedDecl *explicitSpecSuppressor = nullptr;
    893 
    894   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
    895     // If the type of the function uses a type with unique-external
    896     // linkage, it's not legally usable from outside this translation unit.
    897     // But only look at the type-as-written. If this function has an auto-deduced
    898     // return type, we can't compute the linkage of that type because it could
    899     // require looking at the linkage of this function, and we don't need this
    900     // for correctness because the type is not part of the function's
    901     // signature.
    902     // FIXME: This is a hack. We should be able to solve this circularity and the
    903     // one in getLVForNamespaceScopeDecl for Functions some other way.
    904     {
    905       QualType TypeAsWritten = MD->getType();
    906       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
    907         TypeAsWritten = TSI->getType();
    908       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
    909         return LinkageInfo::uniqueExternal();
    910     }
    911     // If this is a method template specialization, use the linkage for
    912     // the template parameters and arguments.
    913     if (FunctionTemplateSpecializationInfo *spec
    914            = MD->getTemplateSpecializationInfo()) {
    915       mergeTemplateLV(LV, MD, spec, computation);
    916       if (spec->isExplicitSpecialization()) {
    917         explicitSpecSuppressor = MD;
    918       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
    919         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
    920       }
    921     } else if (isExplicitMemberSpecialization(MD)) {
    922       explicitSpecSuppressor = MD;
    923     }
    924 
    925   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
    926     if (const ClassTemplateSpecializationDecl *spec
    927         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
    928       mergeTemplateLV(LV, spec, computation);
    929       if (spec->isExplicitSpecialization()) {
    930         explicitSpecSuppressor = spec;
    931       } else {
    932         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
    933         if (isExplicitMemberSpecialization(temp)) {
    934           explicitSpecSuppressor = temp->getTemplatedDecl();
    935         }
    936       }
    937     } else if (isExplicitMemberSpecialization(RD)) {
    938       explicitSpecSuppressor = RD;
    939     }
    940 
    941   // Static data members.
    942   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    943     if (const VarTemplateSpecializationDecl *spec
    944         = dyn_cast<VarTemplateSpecializationDecl>(VD))
    945       mergeTemplateLV(LV, spec, computation);
    946 
    947     // Modify the variable's linkage by its type, but ignore the
    948     // type's visibility unless it's a definition.
    949     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
    950     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
    951       LV.mergeVisibility(typeLV);
    952     LV.mergeExternalVisibility(typeLV);
    953 
    954     if (isExplicitMemberSpecialization(VD)) {
    955       explicitSpecSuppressor = VD;
    956     }
    957 
    958   // Template members.
    959   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
    960     bool considerVisibility =
    961       (!LV.isVisibilityExplicit() &&
    962        !classLV.isVisibilityExplicit() &&
    963        !hasExplicitVisibilityAlready(computation));
    964     LinkageInfo tempLV =
    965       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    966     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    967 
    968     if (const RedeclarableTemplateDecl *redeclTemp =
    969           dyn_cast<RedeclarableTemplateDecl>(temp)) {
    970       if (isExplicitMemberSpecialization(redeclTemp)) {
    971         explicitSpecSuppressor = temp->getTemplatedDecl();
    972       }
    973     }
    974   }
    975 
    976   // We should never be looking for an attribute directly on a template.
    977   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
    978 
    979   // If this member is an explicit member specialization, and it has
    980   // an explicit attribute, ignore visibility from the parent.
    981   bool considerClassVisibility = true;
    982   if (explicitSpecSuppressor &&
    983       // optimization: hasDVA() is true only with explicit visibility.
    984       LV.isVisibilityExplicit() &&
    985       classLV.getVisibility() != DefaultVisibility &&
    986       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
    987     considerClassVisibility = false;
    988   }
    989 
    990   // Finally, merge in information from the class.
    991   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
    992   return LV;
    993 }
    994 
    995 void NamedDecl::anchor() { }
    996 
    997 static LinkageInfo computeLVForDecl(const NamedDecl *D,
    998                                     LVComputationKind computation);
    999 
   1000 bool NamedDecl::isLinkageValid() const {
   1001   if (!hasCachedLinkage())
   1002     return true;
   1003 
   1004   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
   1005          getCachedLinkage();
   1006 }
   1007 
   1008 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
   1009   StringRef name = getName();
   1010   if (name.empty()) return SFF_None;
   1011 
   1012   if (name.front() == 'C')
   1013     if (name == "CFStringCreateWithFormat" ||
   1014         name == "CFStringCreateWithFormatAndArguments" ||
   1015         name == "CFStringAppendFormat" ||
   1016         name == "CFStringAppendFormatAndArguments")
   1017       return SFF_CFString;
   1018   return SFF_None;
   1019 }
   1020 
   1021 Linkage NamedDecl::getLinkageInternal() const {
   1022   // We don't care about visibility here, so ask for the cheapest
   1023   // possible visibility analysis.
   1024   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
   1025 }
   1026 
   1027 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
   1028   LVComputationKind computation =
   1029     (usesTypeVisibility(this) ? LVForType : LVForValue);
   1030   return getLVForDecl(this, computation);
   1031 }
   1032 
   1033 static Optional<Visibility>
   1034 getExplicitVisibilityAux(const NamedDecl *ND,
   1035                          NamedDecl::ExplicitVisibilityKind kind,
   1036                          bool IsMostRecent) {
   1037   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
   1038 
   1039   // Check the declaration itself first.
   1040   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
   1041     return V;
   1042 
   1043   // If this is a member class of a specialization of a class template
   1044   // and the corresponding decl has explicit visibility, use that.
   1045   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
   1046     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
   1047     if (InstantiatedFrom)
   1048       return getVisibilityOf(InstantiatedFrom, kind);
   1049   }
   1050 
   1051   // If there wasn't explicit visibility there, and this is a
   1052   // specialization of a class template, check for visibility
   1053   // on the pattern.
   1054   if (const ClassTemplateSpecializationDecl *spec
   1055         = dyn_cast<ClassTemplateSpecializationDecl>(ND))
   1056     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
   1057                            kind);
   1058 
   1059   // Use the most recent declaration.
   1060   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
   1061     const NamedDecl *MostRecent = ND->getMostRecentDecl();
   1062     if (MostRecent != ND)
   1063       return getExplicitVisibilityAux(MostRecent, kind, true);
   1064   }
   1065 
   1066   if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
   1067     if (Var->isStaticDataMember()) {
   1068       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
   1069       if (InstantiatedFrom)
   1070         return getVisibilityOf(InstantiatedFrom, kind);
   1071     }
   1072 
   1073     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
   1074       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
   1075                              kind);
   1076 
   1077     return None;
   1078   }
   1079   // Also handle function template specializations.
   1080   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
   1081     // If the function is a specialization of a template with an
   1082     // explicit visibility attribute, use that.
   1083     if (FunctionTemplateSpecializationInfo *templateInfo
   1084           = fn->getTemplateSpecializationInfo())
   1085       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
   1086                              kind);
   1087 
   1088     // If the function is a member of a specialization of a class template
   1089     // and the corresponding decl has explicit visibility, use that.
   1090     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
   1091     if (InstantiatedFrom)
   1092       return getVisibilityOf(InstantiatedFrom, kind);
   1093 
   1094     return None;
   1095   }
   1096 
   1097   // The visibility of a template is stored in the templated decl.
   1098   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
   1099     return getVisibilityOf(TD->getTemplatedDecl(), kind);
   1100 
   1101   return None;
   1102 }
   1103 
   1104 Optional<Visibility>
   1105 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
   1106   return getExplicitVisibilityAux(this, kind, false);
   1107 }
   1108 
   1109 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
   1110                                    LVComputationKind computation) {
   1111   // This lambda has its linkage/visibility determined by its owner.
   1112   if (ContextDecl) {
   1113     if (isa<ParmVarDecl>(ContextDecl))
   1114       DC = ContextDecl->getDeclContext()->getRedeclContext();
   1115     else
   1116       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
   1117   }
   1118 
   1119   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
   1120     return getLVForDecl(ND, computation);
   1121 
   1122   return LinkageInfo::external();
   1123 }
   1124 
   1125 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
   1126                                      LVComputationKind computation) {
   1127   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
   1128     if (Function->isInAnonymousNamespace() &&
   1129         !Function->isInExternCContext())
   1130       return LinkageInfo::uniqueExternal();
   1131 
   1132     // This is a "void f();" which got merged with a file static.
   1133     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
   1134       return LinkageInfo::internal();
   1135 
   1136     LinkageInfo LV;
   1137     if (!hasExplicitVisibilityAlready(computation)) {
   1138       if (Optional<Visibility> Vis =
   1139               getExplicitVisibility(Function, computation))
   1140         LV.mergeVisibility(*Vis, true);
   1141     }
   1142 
   1143     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
   1144     // merging storage classes and visibility attributes, so we don't have to
   1145     // look at previous decls in here.
   1146 
   1147     return LV;
   1148   }
   1149 
   1150   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
   1151     if (Var->hasExternalStorage()) {
   1152       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
   1153         return LinkageInfo::uniqueExternal();
   1154 
   1155       LinkageInfo LV;
   1156       if (Var->getStorageClass() == SC_PrivateExtern)
   1157         LV.mergeVisibility(HiddenVisibility, true);
   1158       else if (!hasExplicitVisibilityAlready(computation)) {
   1159         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
   1160           LV.mergeVisibility(*Vis, true);
   1161       }
   1162 
   1163       if (const VarDecl *Prev = Var->getPreviousDecl()) {
   1164         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
   1165         if (PrevLV.getLinkage())
   1166           LV.setLinkage(PrevLV.getLinkage());
   1167         LV.mergeVisibility(PrevLV);
   1168       }
   1169 
   1170       return LV;
   1171     }
   1172 
   1173     if (!Var->isStaticLocal())
   1174       return LinkageInfo::none();
   1175   }
   1176 
   1177   ASTContext &Context = D->getASTContext();
   1178   if (!Context.getLangOpts().CPlusPlus)
   1179     return LinkageInfo::none();
   1180 
   1181   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
   1182   if (!OuterD)
   1183     return LinkageInfo::none();
   1184 
   1185   LinkageInfo LV;
   1186   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
   1187     if (!BD->getBlockManglingNumber())
   1188       return LinkageInfo::none();
   1189 
   1190     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
   1191                          BD->getBlockManglingContextDecl(), computation);
   1192   } else {
   1193     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
   1194     if (!FD->isInlined() &&
   1195         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
   1196       return LinkageInfo::none();
   1197 
   1198     LV = getLVForDecl(FD, computation);
   1199   }
   1200   if (!isExternallyVisible(LV.getLinkage()))
   1201     return LinkageInfo::none();
   1202   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
   1203                      LV.isVisibilityExplicit());
   1204 }
   1205 
   1206 static inline const CXXRecordDecl*
   1207 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
   1208   const CXXRecordDecl *Ret = Record;
   1209   while (Record && Record->isLambda()) {
   1210     Ret = Record;
   1211     if (!Record->getParent()) break;
   1212     // Get the Containing Class of this Lambda Class
   1213     Record = dyn_cast_or_null<CXXRecordDecl>(
   1214       Record->getParent()->getParent());
   1215   }
   1216   return Ret;
   1217 }
   1218 
   1219 static LinkageInfo computeLVForDecl(const NamedDecl *D,
   1220                                     LVComputationKind computation) {
   1221   // Objective-C: treat all Objective-C declarations as having external
   1222   // linkage.
   1223   switch (D->getKind()) {
   1224     default:
   1225       break;
   1226     case Decl::ParmVar:
   1227       return LinkageInfo::none();
   1228     case Decl::TemplateTemplateParm: // count these as external
   1229     case Decl::NonTypeTemplateParm:
   1230     case Decl::ObjCAtDefsField:
   1231     case Decl::ObjCCategory:
   1232     case Decl::ObjCCategoryImpl:
   1233     case Decl::ObjCCompatibleAlias:
   1234     case Decl::ObjCImplementation:
   1235     case Decl::ObjCMethod:
   1236     case Decl::ObjCProperty:
   1237     case Decl::ObjCPropertyImpl:
   1238     case Decl::ObjCProtocol:
   1239       return LinkageInfo::external();
   1240 
   1241     case Decl::CXXRecord: {
   1242       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
   1243       if (Record->isLambda()) {
   1244         if (!Record->getLambdaManglingNumber()) {
   1245           // This lambda has no mangling number, so it's internal.
   1246           return LinkageInfo::internal();
   1247         }
   1248 
   1249         // This lambda has its linkage/visibility determined:
   1250         //  - either by the outermost lambda if that lambda has no mangling
   1251         //    number.
   1252         //  - or by the parent of the outer most lambda
   1253         // This prevents infinite recursion in settings such as nested lambdas
   1254         // used in NSDMI's, for e.g.
   1255         //  struct L {
   1256         //    int t{};
   1257         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
   1258         //  };
   1259         const CXXRecordDecl *OuterMostLambda =
   1260             getOutermostEnclosingLambda(Record);
   1261         if (!OuterMostLambda->getLambdaManglingNumber())
   1262           return LinkageInfo::internal();
   1263 
   1264         return getLVForClosure(
   1265                   OuterMostLambda->getDeclContext()->getRedeclContext(),
   1266                   OuterMostLambda->getLambdaContextDecl(), computation);
   1267       }
   1268 
   1269       break;
   1270     }
   1271   }
   1272 
   1273   // Handle linkage for namespace-scope names.
   1274   if (D->getDeclContext()->getRedeclContext()->isFileContext())
   1275     return getLVForNamespaceScopeDecl(D, computation);
   1276 
   1277   // C++ [basic.link]p5:
   1278   //   In addition, a member function, static data member, a named
   1279   //   class or enumeration of class scope, or an unnamed class or
   1280   //   enumeration defined in a class-scope typedef declaration such
   1281   //   that the class or enumeration has the typedef name for linkage
   1282   //   purposes (7.1.3), has external linkage if the name of the class
   1283   //   has external linkage.
   1284   if (D->getDeclContext()->isRecord())
   1285     return getLVForClassMember(D, computation);
   1286 
   1287   // C++ [basic.link]p6:
   1288   //   The name of a function declared in block scope and the name of
   1289   //   an object declared by a block scope extern declaration have
   1290   //   linkage. If there is a visible declaration of an entity with
   1291   //   linkage having the same name and type, ignoring entities
   1292   //   declared outside the innermost enclosing namespace scope, the
   1293   //   block scope declaration declares that same entity and receives
   1294   //   the linkage of the previous declaration. If there is more than
   1295   //   one such matching entity, the program is ill-formed. Otherwise,
   1296   //   if no matching entity is found, the block scope entity receives
   1297   //   external linkage.
   1298   if (D->getDeclContext()->isFunctionOrMethod())
   1299     return getLVForLocalDecl(D, computation);
   1300 
   1301   // C++ [basic.link]p6:
   1302   //   Names not covered by these rules have no linkage.
   1303   return LinkageInfo::none();
   1304 }
   1305 
   1306 namespace clang {
   1307 class LinkageComputer {
   1308 public:
   1309   static LinkageInfo getLVForDecl(const NamedDecl *D,
   1310                                   LVComputationKind computation) {
   1311     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
   1312       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
   1313 
   1314     LinkageInfo LV = computeLVForDecl(D, computation);
   1315     if (D->hasCachedLinkage())
   1316       assert(D->getCachedLinkage() == LV.getLinkage());
   1317 
   1318     D->setCachedLinkage(LV.getLinkage());
   1319 
   1320 #ifndef NDEBUG
   1321     // In C (because of gnu inline) and in c++ with microsoft extensions an
   1322     // static can follow an extern, so we can have two decls with different
   1323     // linkages.
   1324     const LangOptions &Opts = D->getASTContext().getLangOpts();
   1325     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
   1326       return LV;
   1327 
   1328     // We have just computed the linkage for this decl. By induction we know
   1329     // that all other computed linkages match, check that the one we just
   1330     // computed also does.
   1331     NamedDecl *Old = nullptr;
   1332     for (auto I : D->redecls()) {
   1333       NamedDecl *T = cast<NamedDecl>(I);
   1334       if (T == D)
   1335         continue;
   1336       if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
   1337         Old = T;
   1338         break;
   1339       }
   1340     }
   1341     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
   1342 #endif
   1343 
   1344     return LV;
   1345   }
   1346 };
   1347 }
   1348 
   1349 static LinkageInfo getLVForDecl(const NamedDecl *D,
   1350                                 LVComputationKind computation) {
   1351   return clang::LinkageComputer::getLVForDecl(D, computation);
   1352 }
   1353 
   1354 std::string NamedDecl::getQualifiedNameAsString() const {
   1355   std::string QualName;
   1356   llvm::raw_string_ostream OS(QualName);
   1357   printQualifiedName(OS, getASTContext().getPrintingPolicy());
   1358   return OS.str();
   1359 }
   1360 
   1361 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
   1362   printQualifiedName(OS, getASTContext().getPrintingPolicy());
   1363 }
   1364 
   1365 void NamedDecl::printQualifiedName(raw_ostream &OS,
   1366                                    const PrintingPolicy &P) const {
   1367   const DeclContext *Ctx = getDeclContext();
   1368 
   1369   if (Ctx->isFunctionOrMethod()) {
   1370     printName(OS);
   1371     return;
   1372   }
   1373 
   1374   typedef SmallVector<const DeclContext *, 8> ContextsTy;
   1375   ContextsTy Contexts;
   1376 
   1377   // Collect contexts.
   1378   while (Ctx && isa<NamedDecl>(Ctx)) {
   1379     Contexts.push_back(Ctx);
   1380     Ctx = Ctx->getParent();
   1381   }
   1382 
   1383   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
   1384        I != E; ++I) {
   1385     if (const ClassTemplateSpecializationDecl *Spec
   1386           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
   1387       OS << Spec->getName();
   1388       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   1389       TemplateSpecializationType::PrintTemplateArgumentList(OS,
   1390                                                             TemplateArgs.data(),
   1391                                                             TemplateArgs.size(),
   1392                                                             P);
   1393     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
   1394       if (P.SuppressUnwrittenScope &&
   1395           (ND->isAnonymousNamespace() || ND->isInline()))
   1396         continue;
   1397       if (ND->isAnonymousNamespace())
   1398         OS << "(anonymous namespace)";
   1399       else
   1400         OS << *ND;
   1401     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
   1402       if (!RD->getIdentifier())
   1403         OS << "(anonymous " << RD->getKindName() << ')';
   1404       else
   1405         OS << *RD;
   1406     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
   1407       const FunctionProtoType *FT = nullptr;
   1408       if (FD->hasWrittenPrototype())
   1409         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
   1410 
   1411       OS << *FD << '(';
   1412       if (FT) {
   1413         unsigned NumParams = FD->getNumParams();
   1414         for (unsigned i = 0; i < NumParams; ++i) {
   1415           if (i)
   1416             OS << ", ";
   1417           OS << FD->getParamDecl(i)->getType().stream(P);
   1418         }
   1419 
   1420         if (FT->isVariadic()) {
   1421           if (NumParams > 0)
   1422             OS << ", ";
   1423           OS << "...";
   1424         }
   1425       }
   1426       OS << ')';
   1427     } else {
   1428       OS << *cast<NamedDecl>(*I);
   1429     }
   1430     OS << "::";
   1431   }
   1432 
   1433   if (getDeclName())
   1434     OS << *this;
   1435   else
   1436     OS << "(anonymous)";
   1437 }
   1438 
   1439 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
   1440                                      const PrintingPolicy &Policy,
   1441                                      bool Qualified) const {
   1442   if (Qualified)
   1443     printQualifiedName(OS, Policy);
   1444   else
   1445     printName(OS);
   1446 }
   1447 
   1448 static bool isKindReplaceableBy(Decl::Kind OldK, Decl::Kind NewK) {
   1449   // For method declarations, we never replace.
   1450   if (ObjCMethodDecl::classofKind(NewK))
   1451     return false;
   1452 
   1453   if (OldK == NewK)
   1454     return true;
   1455 
   1456   // A compatibility alias for a class can be replaced by an interface.
   1457   if (ObjCCompatibleAliasDecl::classofKind(OldK) &&
   1458       ObjCInterfaceDecl::classofKind(NewK))
   1459     return true;
   1460 
   1461   // A typedef-declaration, alias-declaration, or Objective-C class declaration
   1462   // can replace another declaration of the same type. Semantic analysis checks
   1463   // that we have matching types.
   1464   if ((TypedefNameDecl::classofKind(OldK) ||
   1465        ObjCInterfaceDecl::classofKind(OldK)) &&
   1466       (TypedefNameDecl::classofKind(NewK) ||
   1467        ObjCInterfaceDecl::classofKind(NewK)))
   1468     return true;
   1469 
   1470   // Otherwise, a kind mismatch implies that the declaration is not replaced.
   1471   return false;
   1472 }
   1473 
   1474 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
   1475   return true;
   1476 }
   1477 static bool isRedeclarableImpl(...) { return false; }
   1478 static bool isRedeclarable(Decl::Kind K) {
   1479   switch (K) {
   1480 #define DECL(Type, Base) \
   1481   case Decl::Type: \
   1482     return isRedeclarableImpl((Type##Decl *)nullptr);
   1483 #define ABSTRACT_DECL(DECL)
   1484 #include "clang/AST/DeclNodes.inc"
   1485   }
   1486   llvm_unreachable("unknown decl kind");
   1487 }
   1488 
   1489 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
   1490   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
   1491 
   1492   // Never replace one imported declaration with another; we need both results
   1493   // when re-exporting.
   1494   if (OldD->isFromASTFile() && isFromASTFile())
   1495     return false;
   1496 
   1497   if (!isKindReplaceableBy(OldD->getKind(), getKind()))
   1498     return false;
   1499 
   1500   // Inline namespaces can give us two declarations with the same
   1501   // name and kind in the same scope but different contexts; we should
   1502   // keep both declarations in this case.
   1503   if (!this->getDeclContext()->getRedeclContext()->Equals(
   1504           OldD->getDeclContext()->getRedeclContext()))
   1505     return false;
   1506 
   1507   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
   1508     // For function declarations, we keep track of redeclarations.
   1509     // FIXME: This returns false for functions that should in fact be replaced.
   1510     // Instead, perform some kind of type check?
   1511     if (FD->getPreviousDecl() != OldD)
   1512       return false;
   1513 
   1514   // For function templates, the underlying function declarations are linked.
   1515   if (const FunctionTemplateDecl *FunctionTemplate =
   1516           dyn_cast<FunctionTemplateDecl>(this))
   1517     return FunctionTemplate->getTemplatedDecl()->declarationReplaces(
   1518         cast<FunctionTemplateDecl>(OldD)->getTemplatedDecl());
   1519 
   1520   // Using shadow declarations can be overloaded on their target declarations
   1521   // if they introduce functions.
   1522   // FIXME: If our target replaces the old target, can we replace the old
   1523   //        shadow declaration?
   1524   if (auto *USD = dyn_cast<UsingShadowDecl>(this))
   1525     if (USD->getTargetDecl() != cast<UsingShadowDecl>(OldD)->getTargetDecl())
   1526       return false;
   1527 
   1528   // Using declarations can be overloaded if they introduce functions.
   1529   if (auto *UD = dyn_cast<UsingDecl>(this)) {
   1530     ASTContext &Context = getASTContext();
   1531     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
   1532            Context.getCanonicalNestedNameSpecifier(
   1533                cast<UsingDecl>(OldD)->getQualifier());
   1534   }
   1535   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
   1536     ASTContext &Context = getASTContext();
   1537     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
   1538            Context.getCanonicalNestedNameSpecifier(
   1539                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
   1540   }
   1541 
   1542   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
   1543   // We want to keep it, unless it nominates same namespace.
   1544   if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
   1545     return UD->getNominatedNamespace()->getOriginalNamespace() ==
   1546            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
   1547                ->getOriginalNamespace();
   1548 
   1549   if (!IsKnownNewer && isRedeclarable(getKind())) {
   1550     // Check whether this is actually newer than OldD. We want to keep the
   1551     // newer declaration. This loop will usually only iterate once, because
   1552     // OldD is usually the previous declaration.
   1553     for (auto D : redecls()) {
   1554       if (D == OldD)
   1555         break;
   1556 
   1557       // If we reach the canonical declaration, then OldD is not actually older
   1558       // than this one.
   1559       //
   1560       // FIXME: In this case, we should not add this decl to the lookup table.
   1561       if (D->isCanonicalDecl())
   1562         return false;
   1563     }
   1564   }
   1565 
   1566   // It's a newer declaration of the same kind of declaration in the same scope,
   1567   // and not an overload: we want this decl instead of the existing one.
   1568   return true;
   1569 }
   1570 
   1571 bool NamedDecl::hasLinkage() const {
   1572   return getFormalLinkage() != NoLinkage;
   1573 }
   1574 
   1575 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
   1576   NamedDecl *ND = this;
   1577   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
   1578     ND = UD->getTargetDecl();
   1579 
   1580   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
   1581     return AD->getClassInterface();
   1582 
   1583   return ND;
   1584 }
   1585 
   1586 bool NamedDecl::isCXXInstanceMember() const {
   1587   if (!isCXXClassMember())
   1588     return false;
   1589 
   1590   const NamedDecl *D = this;
   1591   if (isa<UsingShadowDecl>(D))
   1592     D = cast<UsingShadowDecl>(D)->getTargetDecl();
   1593 
   1594   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
   1595     return true;
   1596   if (const CXXMethodDecl *MD =
   1597           dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
   1598     return MD->isInstance();
   1599   return false;
   1600 }
   1601 
   1602 //===----------------------------------------------------------------------===//
   1603 // DeclaratorDecl Implementation
   1604 //===----------------------------------------------------------------------===//
   1605 
   1606 template <typename DeclT>
   1607 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
   1608   if (decl->getNumTemplateParameterLists() > 0)
   1609     return decl->getTemplateParameterList(0)->getTemplateLoc();
   1610   else
   1611     return decl->getInnerLocStart();
   1612 }
   1613 
   1614 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
   1615   TypeSourceInfo *TSI = getTypeSourceInfo();
   1616   if (TSI) return TSI->getTypeLoc().getBeginLoc();
   1617   return SourceLocation();
   1618 }
   1619 
   1620 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
   1621   if (QualifierLoc) {
   1622     // Make sure the extended decl info is allocated.
   1623     if (!hasExtInfo()) {
   1624       // Save (non-extended) type source info pointer.
   1625       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
   1626       // Allocate external info struct.
   1627       DeclInfo = new (getASTContext()) ExtInfo;
   1628       // Restore savedTInfo into (extended) decl info.
   1629       getExtInfo()->TInfo = savedTInfo;
   1630     }
   1631     // Set qualifier info.
   1632     getExtInfo()->QualifierLoc = QualifierLoc;
   1633   } else {
   1634     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
   1635     if (hasExtInfo()) {
   1636       if (getExtInfo()->NumTemplParamLists == 0) {
   1637         // Save type source info pointer.
   1638         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
   1639         // Deallocate the extended decl info.
   1640         getASTContext().Deallocate(getExtInfo());
   1641         // Restore savedTInfo into (non-extended) decl info.
   1642         DeclInfo = savedTInfo;
   1643       }
   1644       else
   1645         getExtInfo()->QualifierLoc = QualifierLoc;
   1646     }
   1647   }
   1648 }
   1649 
   1650 void
   1651 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
   1652                                               unsigned NumTPLists,
   1653                                               TemplateParameterList **TPLists) {
   1654   assert(NumTPLists > 0);
   1655   // Make sure the extended decl info is allocated.
   1656   if (!hasExtInfo()) {
   1657     // Save (non-extended) type source info pointer.
   1658     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
   1659     // Allocate external info struct.
   1660     DeclInfo = new (getASTContext()) ExtInfo;
   1661     // Restore savedTInfo into (extended) decl info.
   1662     getExtInfo()->TInfo = savedTInfo;
   1663   }
   1664   // Set the template parameter lists info.
   1665   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
   1666 }
   1667 
   1668 SourceLocation DeclaratorDecl::getOuterLocStart() const {
   1669   return getTemplateOrInnerLocStart(this);
   1670 }
   1671 
   1672 namespace {
   1673 
   1674 // Helper function: returns true if QT is or contains a type
   1675 // having a postfix component.
   1676 bool typeIsPostfix(clang::QualType QT) {
   1677   while (true) {
   1678     const Type* T = QT.getTypePtr();
   1679     switch (T->getTypeClass()) {
   1680     default:
   1681       return false;
   1682     case Type::Pointer:
   1683       QT = cast<PointerType>(T)->getPointeeType();
   1684       break;
   1685     case Type::BlockPointer:
   1686       QT = cast<BlockPointerType>(T)->getPointeeType();
   1687       break;
   1688     case Type::MemberPointer:
   1689       QT = cast<MemberPointerType>(T)->getPointeeType();
   1690       break;
   1691     case Type::LValueReference:
   1692     case Type::RValueReference:
   1693       QT = cast<ReferenceType>(T)->getPointeeType();
   1694       break;
   1695     case Type::PackExpansion:
   1696       QT = cast<PackExpansionType>(T)->getPattern();
   1697       break;
   1698     case Type::Paren:
   1699     case Type::ConstantArray:
   1700     case Type::DependentSizedArray:
   1701     case Type::IncompleteArray:
   1702     case Type::VariableArray:
   1703     case Type::FunctionProto:
   1704     case Type::FunctionNoProto:
   1705       return true;
   1706     }
   1707   }
   1708 }
   1709 
   1710 } // namespace
   1711 
   1712 SourceRange DeclaratorDecl::getSourceRange() const {
   1713   SourceLocation RangeEnd = getLocation();
   1714   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
   1715     // If the declaration has no name or the type extends past the name take the
   1716     // end location of the type.
   1717     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
   1718       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   1719   }
   1720   return SourceRange(getOuterLocStart(), RangeEnd);
   1721 }
   1722 
   1723 void
   1724 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
   1725                                              unsigned NumTPLists,
   1726                                              TemplateParameterList **TPLists) {
   1727   assert((NumTPLists == 0 || TPLists != nullptr) &&
   1728          "Empty array of template parameters with positive size!");
   1729 
   1730   // Free previous template parameters (if any).
   1731   if (NumTemplParamLists > 0) {
   1732     Context.Deallocate(TemplParamLists);
   1733     TemplParamLists = nullptr;
   1734     NumTemplParamLists = 0;
   1735   }
   1736   // Set info on matched template parameter lists (if any).
   1737   if (NumTPLists > 0) {
   1738     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
   1739     NumTemplParamLists = NumTPLists;
   1740     std::copy(TPLists, TPLists + NumTPLists, TemplParamLists);
   1741   }
   1742 }
   1743 
   1744 //===----------------------------------------------------------------------===//
   1745 // VarDecl Implementation
   1746 //===----------------------------------------------------------------------===//
   1747 
   1748 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
   1749   switch (SC) {
   1750   case SC_None:                 break;
   1751   case SC_Auto:                 return "auto";
   1752   case SC_Extern:               return "extern";
   1753   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
   1754   case SC_PrivateExtern:        return "__private_extern__";
   1755   case SC_Register:             return "register";
   1756   case SC_Static:               return "static";
   1757   }
   1758 
   1759   llvm_unreachable("Invalid storage class");
   1760 }
   1761 
   1762 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
   1763                  SourceLocation StartLoc, SourceLocation IdLoc,
   1764                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
   1765                  StorageClass SC)
   1766     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
   1767       redeclarable_base(C), Init() {
   1768   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
   1769                 "VarDeclBitfields too large!");
   1770   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
   1771                 "ParmVarDeclBitfields too large!");
   1772   AllBits = 0;
   1773   VarDeclBits.SClass = SC;
   1774   // Everything else is implicitly initialized to false.
   1775 }
   1776 
   1777 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
   1778                          SourceLocation StartL, SourceLocation IdL,
   1779                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
   1780                          StorageClass S) {
   1781   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
   1782 }
   1783 
   1784 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1785   return new (C, ID)
   1786       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
   1787               QualType(), nullptr, SC_None);
   1788 }
   1789 
   1790 void VarDecl::setStorageClass(StorageClass SC) {
   1791   assert(isLegalForVariable(SC));
   1792   VarDeclBits.SClass = SC;
   1793 }
   1794 
   1795 VarDecl::TLSKind VarDecl::getTLSKind() const {
   1796   switch (VarDeclBits.TSCSpec) {
   1797   case TSCS_unspecified:
   1798     if (hasAttr<ThreadAttr>())
   1799       return TLS_Static;
   1800     return TLS_None;
   1801   case TSCS___thread: // Fall through.
   1802   case TSCS__Thread_local:
   1803       return TLS_Static;
   1804   case TSCS_thread_local:
   1805     return TLS_Dynamic;
   1806   }
   1807   llvm_unreachable("Unknown thread storage class specifier!");
   1808 }
   1809 
   1810 SourceRange VarDecl::getSourceRange() const {
   1811   if (const Expr *Init = getInit()) {
   1812     SourceLocation InitEnd = Init->getLocEnd();
   1813     // If Init is implicit, ignore its source range and fallback on
   1814     // DeclaratorDecl::getSourceRange() to handle postfix elements.
   1815     if (InitEnd.isValid() && InitEnd != getLocation())
   1816       return SourceRange(getOuterLocStart(), InitEnd);
   1817   }
   1818   return DeclaratorDecl::getSourceRange();
   1819 }
   1820 
   1821 template<typename T>
   1822 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
   1823   // C++ [dcl.link]p1: All function types, function names with external linkage,
   1824   // and variable names with external linkage have a language linkage.
   1825   if (!D.hasExternalFormalLinkage())
   1826     return NoLanguageLinkage;
   1827 
   1828   // Language linkage is a C++ concept, but saying that everything else in C has
   1829   // C language linkage fits the implementation nicely.
   1830   ASTContext &Context = D.getASTContext();
   1831   if (!Context.getLangOpts().CPlusPlus)
   1832     return CLanguageLinkage;
   1833 
   1834   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
   1835   // language linkage of the names of class members and the function type of
   1836   // class member functions.
   1837   const DeclContext *DC = D.getDeclContext();
   1838   if (DC->isRecord())
   1839     return CXXLanguageLinkage;
   1840 
   1841   // If the first decl is in an extern "C" context, any other redeclaration
   1842   // will have C language linkage. If the first one is not in an extern "C"
   1843   // context, we would have reported an error for any other decl being in one.
   1844   if (isFirstInExternCContext(&D))
   1845     return CLanguageLinkage;
   1846   return CXXLanguageLinkage;
   1847 }
   1848 
   1849 template<typename T>
   1850 static bool isDeclExternC(const T &D) {
   1851   // Since the context is ignored for class members, they can only have C++
   1852   // language linkage or no language linkage.
   1853   const DeclContext *DC = D.getDeclContext();
   1854   if (DC->isRecord()) {
   1855     assert(D.getASTContext().getLangOpts().CPlusPlus);
   1856     return false;
   1857   }
   1858 
   1859   return D.getLanguageLinkage() == CLanguageLinkage;
   1860 }
   1861 
   1862 LanguageLinkage VarDecl::getLanguageLinkage() const {
   1863   return getDeclLanguageLinkage(*this);
   1864 }
   1865 
   1866 bool VarDecl::isExternC() const {
   1867   return isDeclExternC(*this);
   1868 }
   1869 
   1870 bool VarDecl::isInExternCContext() const {
   1871   return getLexicalDeclContext()->isExternCContext();
   1872 }
   1873 
   1874 bool VarDecl::isInExternCXXContext() const {
   1875   return getLexicalDeclContext()->isExternCXXContext();
   1876 }
   1877 
   1878 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
   1879 
   1880 VarDecl::DefinitionKind
   1881 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
   1882   // C++ [basic.def]p2:
   1883   //   A declaration is a definition unless [...] it contains the 'extern'
   1884   //   specifier or a linkage-specification and neither an initializer [...],
   1885   //   it declares a static data member in a class declaration [...].
   1886   // C++1y [temp.expl.spec]p15:
   1887   //   An explicit specialization of a static data member or an explicit
   1888   //   specialization of a static data member template is a definition if the
   1889   //   declaration includes an initializer; otherwise, it is a declaration.
   1890   //
   1891   // FIXME: How do you declare (but not define) a partial specialization of
   1892   // a static data member template outside the containing class?
   1893   if (isStaticDataMember()) {
   1894     if (isOutOfLine() &&
   1895         (hasInit() ||
   1896          // If the first declaration is out-of-line, this may be an
   1897          // instantiation of an out-of-line partial specialization of a variable
   1898          // template for which we have not yet instantiated the initializer.
   1899          (getFirstDecl()->isOutOfLine()
   1900               ? getTemplateSpecializationKind() == TSK_Undeclared
   1901               : getTemplateSpecializationKind() !=
   1902                     TSK_ExplicitSpecialization) ||
   1903          isa<VarTemplatePartialSpecializationDecl>(this)))
   1904       return Definition;
   1905     else
   1906       return DeclarationOnly;
   1907   }
   1908   // C99 6.7p5:
   1909   //   A definition of an identifier is a declaration for that identifier that
   1910   //   [...] causes storage to be reserved for that object.
   1911   // Note: that applies for all non-file-scope objects.
   1912   // C99 6.9.2p1:
   1913   //   If the declaration of an identifier for an object has file scope and an
   1914   //   initializer, the declaration is an external definition for the identifier
   1915   if (hasInit())
   1916     return Definition;
   1917 
   1918   if (hasAttr<AliasAttr>() || hasAttr<SelectAnyAttr>())
   1919     return Definition;
   1920 
   1921   // A variable template specialization (other than a static data member
   1922   // template or an explicit specialization) is a declaration until we
   1923   // instantiate its initializer.
   1924   if (isa<VarTemplateSpecializationDecl>(this) &&
   1925       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
   1926     return DeclarationOnly;
   1927 
   1928   if (hasExternalStorage())
   1929     return DeclarationOnly;
   1930 
   1931   // [dcl.link] p7:
   1932   //   A declaration directly contained in a linkage-specification is treated
   1933   //   as if it contains the extern specifier for the purpose of determining
   1934   //   the linkage of the declared name and whether it is a definition.
   1935   if (isSingleLineLanguageLinkage(*this))
   1936     return DeclarationOnly;
   1937 
   1938   // C99 6.9.2p2:
   1939   //   A declaration of an object that has file scope without an initializer,
   1940   //   and without a storage class specifier or the scs 'static', constitutes
   1941   //   a tentative definition.
   1942   // No such thing in C++.
   1943   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
   1944     return TentativeDefinition;
   1945 
   1946   // What's left is (in C, block-scope) declarations without initializers or
   1947   // external storage. These are definitions.
   1948   return Definition;
   1949 }
   1950 
   1951 VarDecl *VarDecl::getActingDefinition() {
   1952   DefinitionKind Kind = isThisDeclarationADefinition();
   1953   if (Kind != TentativeDefinition)
   1954     return nullptr;
   1955 
   1956   VarDecl *LastTentative = nullptr;
   1957   VarDecl *First = getFirstDecl();
   1958   for (auto I : First->redecls()) {
   1959     Kind = I->isThisDeclarationADefinition();
   1960     if (Kind == Definition)
   1961       return nullptr;
   1962     else if (Kind == TentativeDefinition)
   1963       LastTentative = I;
   1964   }
   1965   return LastTentative;
   1966 }
   1967 
   1968 VarDecl *VarDecl::getDefinition(ASTContext &C) {
   1969   VarDecl *First = getFirstDecl();
   1970   for (auto I : First->redecls()) {
   1971     if (I->isThisDeclarationADefinition(C) == Definition)
   1972       return I;
   1973   }
   1974   return nullptr;
   1975 }
   1976 
   1977 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
   1978   DefinitionKind Kind = DeclarationOnly;
   1979 
   1980   const VarDecl *First = getFirstDecl();
   1981   for (auto I : First->redecls()) {
   1982     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
   1983     if (Kind == Definition)
   1984       break;
   1985   }
   1986 
   1987   return Kind;
   1988 }
   1989 
   1990 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
   1991   for (auto I : redecls()) {
   1992     if (auto Expr = I->getInit()) {
   1993       D = I;
   1994       return Expr;
   1995     }
   1996   }
   1997   return nullptr;
   1998 }
   1999 
   2000 bool VarDecl::isOutOfLine() const {
   2001   if (Decl::isOutOfLine())
   2002     return true;
   2003 
   2004   if (!isStaticDataMember())
   2005     return false;
   2006 
   2007   // If this static data member was instantiated from a static data member of
   2008   // a class template, check whether that static data member was defined
   2009   // out-of-line.
   2010   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
   2011     return VD->isOutOfLine();
   2012 
   2013   return false;
   2014 }
   2015 
   2016 VarDecl *VarDecl::getOutOfLineDefinition() {
   2017   if (!isStaticDataMember())
   2018     return nullptr;
   2019 
   2020   for (auto RD : redecls()) {
   2021     if (RD->getLexicalDeclContext()->isFileContext())
   2022       return RD;
   2023   }
   2024 
   2025   return nullptr;
   2026 }
   2027 
   2028 void VarDecl::setInit(Expr *I) {
   2029   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
   2030     Eval->~EvaluatedStmt();
   2031     getASTContext().Deallocate(Eval);
   2032   }
   2033 
   2034   Init = I;
   2035 }
   2036 
   2037 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
   2038   const LangOptions &Lang = C.getLangOpts();
   2039 
   2040   if (!Lang.CPlusPlus)
   2041     return false;
   2042 
   2043   // In C++11, any variable of reference type can be used in a constant
   2044   // expression if it is initialized by a constant expression.
   2045   if (Lang.CPlusPlus11 && getType()->isReferenceType())
   2046     return true;
   2047 
   2048   // Only const objects can be used in constant expressions in C++. C++98 does
   2049   // not require the variable to be non-volatile, but we consider this to be a
   2050   // defect.
   2051   if (!getType().isConstQualified() || getType().isVolatileQualified())
   2052     return false;
   2053 
   2054   // In C++, const, non-volatile variables of integral or enumeration types
   2055   // can be used in constant expressions.
   2056   if (getType()->isIntegralOrEnumerationType())
   2057     return true;
   2058 
   2059   // Additionally, in C++11, non-volatile constexpr variables can be used in
   2060   // constant expressions.
   2061   return Lang.CPlusPlus11 && isConstexpr();
   2062 }
   2063 
   2064 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
   2065 /// form, which contains extra information on the evaluated value of the
   2066 /// initializer.
   2067 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
   2068   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
   2069   if (!Eval) {
   2070     Stmt *S = Init.get<Stmt *>();
   2071     // Note: EvaluatedStmt contains an APValue, which usually holds
   2072     // resources not allocated from the ASTContext.  We need to do some
   2073     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
   2074     // where we can detect whether there's anything to clean up or not.
   2075     Eval = new (getASTContext()) EvaluatedStmt;
   2076     Eval->Value = S;
   2077     Init = Eval;
   2078   }
   2079   return Eval;
   2080 }
   2081 
   2082 APValue *VarDecl::evaluateValue() const {
   2083   SmallVector<PartialDiagnosticAt, 8> Notes;
   2084   return evaluateValue(Notes);
   2085 }
   2086 
   2087 namespace {
   2088 // Destroy an APValue that was allocated in an ASTContext.
   2089 void DestroyAPValue(void* UntypedValue) {
   2090   static_cast<APValue*>(UntypedValue)->~APValue();
   2091 }
   2092 } // namespace
   2093 
   2094 APValue *VarDecl::evaluateValue(
   2095     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
   2096   EvaluatedStmt *Eval = ensureEvaluatedStmt();
   2097 
   2098   // We only produce notes indicating why an initializer is non-constant the
   2099   // first time it is evaluated. FIXME: The notes won't always be emitted the
   2100   // first time we try evaluation, so might not be produced at all.
   2101   if (Eval->WasEvaluated)
   2102     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
   2103 
   2104   const Expr *Init = cast<Expr>(Eval->Value);
   2105   assert(!Init->isValueDependent());
   2106 
   2107   if (Eval->IsEvaluating) {
   2108     // FIXME: Produce a diagnostic for self-initialization.
   2109     Eval->CheckedICE = true;
   2110     Eval->IsICE = false;
   2111     return nullptr;
   2112   }
   2113 
   2114   Eval->IsEvaluating = true;
   2115 
   2116   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
   2117                                             this, Notes);
   2118 
   2119   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
   2120   // or that it's empty (so that there's nothing to clean up) if evaluation
   2121   // failed.
   2122   if (!Result)
   2123     Eval->Evaluated = APValue();
   2124   else if (Eval->Evaluated.needsCleanup())
   2125     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
   2126 
   2127   Eval->IsEvaluating = false;
   2128   Eval->WasEvaluated = true;
   2129 
   2130   // In C++11, we have determined whether the initializer was a constant
   2131   // expression as a side-effect.
   2132   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
   2133     Eval->CheckedICE = true;
   2134     Eval->IsICE = Result && Notes.empty();
   2135   }
   2136 
   2137   return Result ? &Eval->Evaluated : nullptr;
   2138 }
   2139 
   2140 bool VarDecl::checkInitIsICE() const {
   2141   // Initializers of weak variables are never ICEs.
   2142   if (isWeak())
   2143     return false;
   2144 
   2145   EvaluatedStmt *Eval = ensureEvaluatedStmt();
   2146   if (Eval->CheckedICE)
   2147     // We have already checked whether this subexpression is an
   2148     // integral constant expression.
   2149     return Eval->IsICE;
   2150 
   2151   const Expr *Init = cast<Expr>(Eval->Value);
   2152   assert(!Init->isValueDependent());
   2153 
   2154   // In C++11, evaluate the initializer to check whether it's a constant
   2155   // expression.
   2156   if (getASTContext().getLangOpts().CPlusPlus11) {
   2157     SmallVector<PartialDiagnosticAt, 8> Notes;
   2158     evaluateValue(Notes);
   2159     return Eval->IsICE;
   2160   }
   2161 
   2162   // It's an ICE whether or not the definition we found is
   2163   // out-of-line.  See DR 721 and the discussion in Clang PR
   2164   // 6206 for details.
   2165 
   2166   if (Eval->CheckingICE)
   2167     return false;
   2168   Eval->CheckingICE = true;
   2169 
   2170   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
   2171   Eval->CheckingICE = false;
   2172   Eval->CheckedICE = true;
   2173   return Eval->IsICE;
   2174 }
   2175 
   2176 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
   2177   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   2178     return cast<VarDecl>(MSI->getInstantiatedFrom());
   2179 
   2180   return nullptr;
   2181 }
   2182 
   2183 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
   2184   if (const VarTemplateSpecializationDecl *Spec =
   2185           dyn_cast<VarTemplateSpecializationDecl>(this))
   2186     return Spec->getSpecializationKind();
   2187 
   2188   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   2189     return MSI->getTemplateSpecializationKind();
   2190 
   2191   return TSK_Undeclared;
   2192 }
   2193 
   2194 SourceLocation VarDecl::getPointOfInstantiation() const {
   2195   if (const VarTemplateSpecializationDecl *Spec =
   2196           dyn_cast<VarTemplateSpecializationDecl>(this))
   2197     return Spec->getPointOfInstantiation();
   2198 
   2199   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   2200     return MSI->getPointOfInstantiation();
   2201 
   2202   return SourceLocation();
   2203 }
   2204 
   2205 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
   2206   return getASTContext().getTemplateOrSpecializationInfo(this)
   2207       .dyn_cast<VarTemplateDecl *>();
   2208 }
   2209 
   2210 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
   2211   getASTContext().setTemplateOrSpecializationInfo(this, Template);
   2212 }
   2213 
   2214 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
   2215   if (isStaticDataMember())
   2216     // FIXME: Remove ?
   2217     // return getASTContext().getInstantiatedFromStaticDataMember(this);
   2218     return getASTContext().getTemplateOrSpecializationInfo(this)
   2219         .dyn_cast<MemberSpecializationInfo *>();
   2220   return nullptr;
   2221 }
   2222 
   2223 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   2224                                          SourceLocation PointOfInstantiation) {
   2225   assert((isa<VarTemplateSpecializationDecl>(this) ||
   2226           getMemberSpecializationInfo()) &&
   2227          "not a variable or static data member template specialization");
   2228 
   2229   if (VarTemplateSpecializationDecl *Spec =
   2230           dyn_cast<VarTemplateSpecializationDecl>(this)) {
   2231     Spec->setSpecializationKind(TSK);
   2232     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
   2233         Spec->getPointOfInstantiation().isInvalid())
   2234       Spec->setPointOfInstantiation(PointOfInstantiation);
   2235   }
   2236 
   2237   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
   2238     MSI->setTemplateSpecializationKind(TSK);
   2239     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
   2240         MSI->getPointOfInstantiation().isInvalid())
   2241       MSI->setPointOfInstantiation(PointOfInstantiation);
   2242   }
   2243 }
   2244 
   2245 void
   2246 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
   2247                                             TemplateSpecializationKind TSK) {
   2248   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
   2249          "Previous template or instantiation?");
   2250   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
   2251 }
   2252 
   2253 //===----------------------------------------------------------------------===//
   2254 // ParmVarDecl Implementation
   2255 //===----------------------------------------------------------------------===//
   2256 
   2257 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
   2258                                  SourceLocation StartLoc,
   2259                                  SourceLocation IdLoc, IdentifierInfo *Id,
   2260                                  QualType T, TypeSourceInfo *TInfo,
   2261                                  StorageClass S, Expr *DefArg) {
   2262   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
   2263                                  S, DefArg);
   2264 }
   2265 
   2266 QualType ParmVarDecl::getOriginalType() const {
   2267   TypeSourceInfo *TSI = getTypeSourceInfo();
   2268   QualType T = TSI ? TSI->getType() : getType();
   2269   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
   2270     return DT->getOriginalType();
   2271   return T;
   2272 }
   2273 
   2274 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2275   return new (C, ID)
   2276       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
   2277                   nullptr, QualType(), nullptr, SC_None, nullptr);
   2278 }
   2279 
   2280 SourceRange ParmVarDecl::getSourceRange() const {
   2281   if (!hasInheritedDefaultArg()) {
   2282     SourceRange ArgRange = getDefaultArgRange();
   2283     if (ArgRange.isValid())
   2284       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
   2285   }
   2286 
   2287   // DeclaratorDecl considers the range of postfix types as overlapping with the
   2288   // declaration name, but this is not the case with parameters in ObjC methods.
   2289   if (isa<ObjCMethodDecl>(getDeclContext()))
   2290     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
   2291 
   2292   return DeclaratorDecl::getSourceRange();
   2293 }
   2294 
   2295 Expr *ParmVarDecl::getDefaultArg() {
   2296   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
   2297   assert(!hasUninstantiatedDefaultArg() &&
   2298          "Default argument is not yet instantiated!");
   2299 
   2300   Expr *Arg = getInit();
   2301   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
   2302     return E->getSubExpr();
   2303 
   2304   return Arg;
   2305 }
   2306 
   2307 SourceRange ParmVarDecl::getDefaultArgRange() const {
   2308   if (const Expr *E = getInit())
   2309     return E->getSourceRange();
   2310 
   2311   if (hasUninstantiatedDefaultArg())
   2312     return getUninstantiatedDefaultArg()->getSourceRange();
   2313 
   2314   return SourceRange();
   2315 }
   2316 
   2317 bool ParmVarDecl::isParameterPack() const {
   2318   return isa<PackExpansionType>(getType());
   2319 }
   2320 
   2321 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
   2322   getASTContext().setParameterIndex(this, parameterIndex);
   2323   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
   2324 }
   2325 
   2326 unsigned ParmVarDecl::getParameterIndexLarge() const {
   2327   return getASTContext().getParameterIndex(this);
   2328 }
   2329 
   2330 //===----------------------------------------------------------------------===//
   2331 // FunctionDecl Implementation
   2332 //===----------------------------------------------------------------------===//
   2333 
   2334 void FunctionDecl::getNameForDiagnostic(
   2335     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
   2336   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
   2337   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
   2338   if (TemplateArgs)
   2339     TemplateSpecializationType::PrintTemplateArgumentList(
   2340         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
   2341 }
   2342 
   2343 bool FunctionDecl::isVariadic() const {
   2344   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
   2345     return FT->isVariadic();
   2346   return false;
   2347 }
   2348 
   2349 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
   2350   for (auto I : redecls()) {
   2351     if (I->Body || I->IsLateTemplateParsed) {
   2352       Definition = I;
   2353       return true;
   2354     }
   2355   }
   2356 
   2357   return false;
   2358 }
   2359 
   2360 bool FunctionDecl::hasTrivialBody() const
   2361 {
   2362   Stmt *S = getBody();
   2363   if (!S) {
   2364     // Since we don't have a body for this function, we don't know if it's
   2365     // trivial or not.
   2366     return false;
   2367   }
   2368 
   2369   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
   2370     return true;
   2371   return false;
   2372 }
   2373 
   2374 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
   2375   for (auto I : redecls()) {
   2376     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
   2377         I->hasAttr<AliasAttr>()) {
   2378       Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
   2379       return true;
   2380     }
   2381   }
   2382 
   2383   return false;
   2384 }
   2385 
   2386 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
   2387   if (!hasBody(Definition))
   2388     return nullptr;
   2389 
   2390   if (Definition->Body)
   2391     return Definition->Body.get(getASTContext().getExternalSource());
   2392 
   2393   return nullptr;
   2394 }
   2395 
   2396 void FunctionDecl::setBody(Stmt *B) {
   2397   Body = B;
   2398   if (B)
   2399     EndRangeLoc = B->getLocEnd();
   2400 }
   2401 
   2402 void FunctionDecl::setPure(bool P) {
   2403   IsPure = P;
   2404   if (P)
   2405     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
   2406       Parent->markedVirtualFunctionPure();
   2407 }
   2408 
   2409 template<std::size_t Len>
   2410 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
   2411   IdentifierInfo *II = ND->getIdentifier();
   2412   return II && II->isStr(Str);
   2413 }
   2414 
   2415 bool FunctionDecl::isMain() const {
   2416   const TranslationUnitDecl *tunit =
   2417     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
   2418   return tunit &&
   2419          !tunit->getASTContext().getLangOpts().Freestanding &&
   2420          isNamed(this, "main");
   2421 }
   2422 
   2423 bool FunctionDecl::isMSVCRTEntryPoint() const {
   2424   const TranslationUnitDecl *TUnit =
   2425       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
   2426   if (!TUnit)
   2427     return false;
   2428 
   2429   // Even though we aren't really targeting MSVCRT if we are freestanding,
   2430   // semantic analysis for these functions remains the same.
   2431 
   2432   // MSVCRT entry points only exist on MSVCRT targets.
   2433   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
   2434     return false;
   2435 
   2436   // Nameless functions like constructors cannot be entry points.
   2437   if (!getIdentifier())
   2438     return false;
   2439 
   2440   return llvm::StringSwitch<bool>(getName())
   2441       .Cases("main",     // an ANSI console app
   2442              "wmain",    // a Unicode console App
   2443              "WinMain",  // an ANSI GUI app
   2444              "wWinMain", // a Unicode GUI app
   2445              "DllMain",  // a DLL
   2446              true)
   2447       .Default(false);
   2448 }
   2449 
   2450 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
   2451   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
   2452   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
   2453          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
   2454          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
   2455          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
   2456 
   2457   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
   2458     return false;
   2459 
   2460   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
   2461   if (proto->getNumParams() != 2 || proto->isVariadic())
   2462     return false;
   2463 
   2464   ASTContext &Context =
   2465     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
   2466       ->getASTContext();
   2467 
   2468   // The result type and first argument type are constant across all
   2469   // these operators.  The second argument must be exactly void*.
   2470   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
   2471 }
   2472 
   2473 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
   2474   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
   2475     return false;
   2476   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
   2477       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
   2478       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
   2479       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
   2480     return false;
   2481 
   2482   if (isa<CXXRecordDecl>(getDeclContext()))
   2483     return false;
   2484 
   2485   // This can only fail for an invalid 'operator new' declaration.
   2486   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
   2487     return false;
   2488 
   2489   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
   2490   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
   2491     return false;
   2492 
   2493   // If this is a single-parameter function, it must be a replaceable global
   2494   // allocation or deallocation function.
   2495   if (FPT->getNumParams() == 1)
   2496     return true;
   2497 
   2498   // Otherwise, we're looking for a second parameter whose type is
   2499   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
   2500   QualType Ty = FPT->getParamType(1);
   2501   ASTContext &Ctx = getASTContext();
   2502   if (Ctx.getLangOpts().SizedDeallocation &&
   2503       Ctx.hasSameType(Ty, Ctx.getSizeType()))
   2504     return true;
   2505   if (!Ty->isReferenceType())
   2506     return false;
   2507   Ty = Ty->getPointeeType();
   2508   if (Ty.getCVRQualifiers() != Qualifiers::Const)
   2509     return false;
   2510   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
   2511   return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
   2512 }
   2513 
   2514 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
   2515   return getDeclLanguageLinkage(*this);
   2516 }
   2517 
   2518 bool FunctionDecl::isExternC() const {
   2519   return isDeclExternC(*this);
   2520 }
   2521 
   2522 bool FunctionDecl::isInExternCContext() const {
   2523   return getLexicalDeclContext()->isExternCContext();
   2524 }
   2525 
   2526 bool FunctionDecl::isInExternCXXContext() const {
   2527   return getLexicalDeclContext()->isExternCXXContext();
   2528 }
   2529 
   2530 bool FunctionDecl::isGlobal() const {
   2531   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
   2532     return Method->isStatic();
   2533 
   2534   if (getCanonicalDecl()->getStorageClass() == SC_Static)
   2535     return false;
   2536 
   2537   for (const DeclContext *DC = getDeclContext();
   2538        DC->isNamespace();
   2539        DC = DC->getParent()) {
   2540     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
   2541       if (!Namespace->getDeclName())
   2542         return false;
   2543       break;
   2544     }
   2545   }
   2546 
   2547   return true;
   2548 }
   2549 
   2550 bool FunctionDecl::isNoReturn() const {
   2551   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
   2552          hasAttr<C11NoReturnAttr>() ||
   2553          getType()->getAs<FunctionType>()->getNoReturnAttr();
   2554 }
   2555 
   2556 void
   2557 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
   2558   redeclarable_base::setPreviousDecl(PrevDecl);
   2559 
   2560   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
   2561     FunctionTemplateDecl *PrevFunTmpl
   2562       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
   2563     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
   2564     FunTmpl->setPreviousDecl(PrevFunTmpl);
   2565   }
   2566 
   2567   if (PrevDecl && PrevDecl->IsInline)
   2568     IsInline = true;
   2569 }
   2570 
   2571 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
   2572   return getFirstDecl();
   2573 }
   2574 
   2575 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
   2576 
   2577 /// \brief Returns a value indicating whether this function
   2578 /// corresponds to a builtin function.
   2579 ///
   2580 /// The function corresponds to a built-in function if it is
   2581 /// declared at translation scope or within an extern "C" block and
   2582 /// its name matches with the name of a builtin. The returned value
   2583 /// will be 0 for functions that do not correspond to a builtin, a
   2584 /// value of type \c Builtin::ID if in the target-independent range
   2585 /// \c [1,Builtin::First), or a target-specific builtin value.
   2586 unsigned FunctionDecl::getBuiltinID() const {
   2587   if (!getIdentifier())
   2588     return 0;
   2589 
   2590   unsigned BuiltinID = getIdentifier()->getBuiltinID();
   2591   if (!BuiltinID)
   2592     return 0;
   2593 
   2594   ASTContext &Context = getASTContext();
   2595   if (Context.getLangOpts().CPlusPlus) {
   2596     const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
   2597         getFirstDecl()->getDeclContext());
   2598     // In C++, the first declaration of a builtin is always inside an implicit
   2599     // extern "C".
   2600     // FIXME: A recognised library function may not be directly in an extern "C"
   2601     // declaration, for instance "extern "C" { namespace std { decl } }".
   2602     if (!LinkageDecl) {
   2603       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
   2604           Context.getTargetInfo().getCXXABI().isMicrosoft() &&
   2605           isInStdNamespace())
   2606         return Builtin::BI__GetExceptionInfo;
   2607       return 0;
   2608     }
   2609     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
   2610       return 0;
   2611   }
   2612 
   2613   // If the function is marked "overloadable", it has a different mangled name
   2614   // and is not the C library function.
   2615   if (hasAttr<OverloadableAttr>())
   2616     return 0;
   2617 
   2618   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
   2619     return BuiltinID;
   2620 
   2621   // This function has the name of a known C library
   2622   // function. Determine whether it actually refers to the C library
   2623   // function or whether it just has the same name.
   2624 
   2625   // If this is a static function, it's not a builtin.
   2626   if (getStorageClass() == SC_Static)
   2627     return 0;
   2628 
   2629   return BuiltinID;
   2630 }
   2631 
   2632 
   2633 /// getNumParams - Return the number of parameters this function must have
   2634 /// based on its FunctionType.  This is the length of the ParamInfo array
   2635 /// after it has been created.
   2636 unsigned FunctionDecl::getNumParams() const {
   2637   const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
   2638   return FPT ? FPT->getNumParams() : 0;
   2639 }
   2640 
   2641 void FunctionDecl::setParams(ASTContext &C,
   2642                              ArrayRef<ParmVarDecl *> NewParamInfo) {
   2643   assert(!ParamInfo && "Already has param info!");
   2644   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
   2645 
   2646   // Zero params -> null pointer.
   2647   if (!NewParamInfo.empty()) {
   2648     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
   2649     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
   2650   }
   2651 }
   2652 
   2653 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
   2654   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
   2655 
   2656   if (!NewDecls.empty()) {
   2657     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
   2658     std::copy(NewDecls.begin(), NewDecls.end(), A);
   2659     DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
   2660     // Move declarations introduced in prototype to the function context.
   2661     for (auto I : NewDecls) {
   2662       DeclContext *DC = I->getDeclContext();
   2663       // Forward-declared reference to an enumeration is not added to
   2664       // declaration scope, so skip declaration that is absent from its
   2665       // declaration contexts.
   2666       if (DC->containsDecl(I)) {
   2667           DC->removeDecl(I);
   2668           I->setDeclContext(this);
   2669           addDecl(I);
   2670       }
   2671     }
   2672   }
   2673 }
   2674 
   2675 /// getMinRequiredArguments - Returns the minimum number of arguments
   2676 /// needed to call this function. This may be fewer than the number of
   2677 /// function parameters, if some of the parameters have default
   2678 /// arguments (in C++) or are parameter packs (C++11).
   2679 unsigned FunctionDecl::getMinRequiredArguments() const {
   2680   if (!getASTContext().getLangOpts().CPlusPlus)
   2681     return getNumParams();
   2682 
   2683   unsigned NumRequiredArgs = 0;
   2684   for (auto *Param : params())
   2685     if (!Param->isParameterPack() && !Param->hasDefaultArg())
   2686       ++NumRequiredArgs;
   2687   return NumRequiredArgs;
   2688 }
   2689 
   2690 /// \brief The combination of the extern and inline keywords under MSVC forces
   2691 /// the function to be required.
   2692 ///
   2693 /// Note: This function assumes that we will only get called when isInlined()
   2694 /// would return true for this FunctionDecl.
   2695 bool FunctionDecl::isMSExternInline() const {
   2696   assert(isInlined() && "expected to get called on an inlined function!");
   2697 
   2698   const ASTContext &Context = getASTContext();
   2699   if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
   2700     return false;
   2701 
   2702   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
   2703        FD = FD->getPreviousDecl())
   2704     if (FD->getStorageClass() == SC_Extern)
   2705       return true;
   2706 
   2707   return false;
   2708 }
   2709 
   2710 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
   2711   if (Redecl->getStorageClass() != SC_Extern)
   2712     return false;
   2713 
   2714   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
   2715        FD = FD->getPreviousDecl())
   2716     if (FD->getStorageClass() == SC_Extern)
   2717       return false;
   2718 
   2719   return true;
   2720 }
   2721 
   2722 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
   2723   // Only consider file-scope declarations in this test.
   2724   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
   2725     return false;
   2726 
   2727   // Only consider explicit declarations; the presence of a builtin for a
   2728   // libcall shouldn't affect whether a definition is externally visible.
   2729   if (Redecl->isImplicit())
   2730     return false;
   2731 
   2732   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
   2733     return true; // Not an inline definition
   2734 
   2735   return false;
   2736 }
   2737 
   2738 /// \brief For a function declaration in C or C++, determine whether this
   2739 /// declaration causes the definition to be externally visible.
   2740 ///
   2741 /// For instance, this determines if adding the current declaration to the set
   2742 /// of redeclarations of the given functions causes
   2743 /// isInlineDefinitionExternallyVisible to change from false to true.
   2744 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
   2745   assert(!doesThisDeclarationHaveABody() &&
   2746          "Must have a declaration without a body.");
   2747 
   2748   ASTContext &Context = getASTContext();
   2749 
   2750   if (Context.getLangOpts().MSVCCompat) {
   2751     const FunctionDecl *Definition;
   2752     if (hasBody(Definition) && Definition->isInlined() &&
   2753         redeclForcesDefMSVC(this))
   2754       return true;
   2755   }
   2756 
   2757   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
   2758     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
   2759     // an externally visible definition.
   2760     //
   2761     // FIXME: What happens if gnu_inline gets added on after the first
   2762     // declaration?
   2763     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
   2764       return false;
   2765 
   2766     const FunctionDecl *Prev = this;
   2767     bool FoundBody = false;
   2768     while ((Prev = Prev->getPreviousDecl())) {
   2769       FoundBody |= Prev->Body.isValid();
   2770 
   2771       if (Prev->Body) {
   2772         // If it's not the case that both 'inline' and 'extern' are
   2773         // specified on the definition, then it is always externally visible.
   2774         if (!Prev->isInlineSpecified() ||
   2775             Prev->getStorageClass() != SC_Extern)
   2776           return false;
   2777       } else if (Prev->isInlineSpecified() &&
   2778                  Prev->getStorageClass() != SC_Extern) {
   2779         return false;
   2780       }
   2781     }
   2782     return FoundBody;
   2783   }
   2784 
   2785   if (Context.getLangOpts().CPlusPlus)
   2786     return false;
   2787 
   2788   // C99 6.7.4p6:
   2789   //   [...] If all of the file scope declarations for a function in a
   2790   //   translation unit include the inline function specifier without extern,
   2791   //   then the definition in that translation unit is an inline definition.
   2792   if (isInlineSpecified() && getStorageClass() != SC_Extern)
   2793     return false;
   2794   const FunctionDecl *Prev = this;
   2795   bool FoundBody = false;
   2796   while ((Prev = Prev->getPreviousDecl())) {
   2797     FoundBody |= Prev->Body.isValid();
   2798     if (RedeclForcesDefC99(Prev))
   2799       return false;
   2800   }
   2801   return FoundBody;
   2802 }
   2803 
   2804 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
   2805   const TypeSourceInfo *TSI = getTypeSourceInfo();
   2806   if (!TSI)
   2807     return SourceRange();
   2808   FunctionTypeLoc FTL =
   2809       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
   2810   if (!FTL)
   2811     return SourceRange();
   2812 
   2813   // Skip self-referential return types.
   2814   const SourceManager &SM = getASTContext().getSourceManager();
   2815   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
   2816   SourceLocation Boundary = getNameInfo().getLocStart();
   2817   if (RTRange.isInvalid() || Boundary.isInvalid() ||
   2818       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
   2819     return SourceRange();
   2820 
   2821   return RTRange;
   2822 }
   2823 
   2824 bool FunctionDecl::hasUnusedResultAttr() const {
   2825   QualType RetType = getReturnType();
   2826   if (RetType->isRecordType()) {
   2827     const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
   2828     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(this);
   2829     if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() &&
   2830         !(MD && MD->getCorrespondingMethodInClass(Ret, true)))
   2831       return true;
   2832   }
   2833   return hasAttr<WarnUnusedResultAttr>();
   2834 }
   2835 
   2836 /// \brief For an inline function definition in C, or for a gnu_inline function
   2837 /// in C++, determine whether the definition will be externally visible.
   2838 ///
   2839 /// Inline function definitions are always available for inlining optimizations.
   2840 /// However, depending on the language dialect, declaration specifiers, and
   2841 /// attributes, the definition of an inline function may or may not be
   2842 /// "externally" visible to other translation units in the program.
   2843 ///
   2844 /// In C99, inline definitions are not externally visible by default. However,
   2845 /// if even one of the global-scope declarations is marked "extern inline", the
   2846 /// inline definition becomes externally visible (C99 6.7.4p6).
   2847 ///
   2848 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
   2849 /// definition, we use the GNU semantics for inline, which are nearly the
   2850 /// opposite of C99 semantics. In particular, "inline" by itself will create
   2851 /// an externally visible symbol, but "extern inline" will not create an
   2852 /// externally visible symbol.
   2853 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
   2854   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
   2855   assert(isInlined() && "Function must be inline");
   2856   ASTContext &Context = getASTContext();
   2857 
   2858   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
   2859     // Note: If you change the logic here, please change
   2860     // doesDeclarationForceExternallyVisibleDefinition as well.
   2861     //
   2862     // If it's not the case that both 'inline' and 'extern' are
   2863     // specified on the definition, then this inline definition is
   2864     // externally visible.
   2865     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
   2866       return true;
   2867 
   2868     // If any declaration is 'inline' but not 'extern', then this definition
   2869     // is externally visible.
   2870     for (auto Redecl : redecls()) {
   2871       if (Redecl->isInlineSpecified() &&
   2872           Redecl->getStorageClass() != SC_Extern)
   2873         return true;
   2874     }
   2875 
   2876     return false;
   2877   }
   2878 
   2879   // The rest of this function is C-only.
   2880   assert(!Context.getLangOpts().CPlusPlus &&
   2881          "should not use C inline rules in C++");
   2882 
   2883   // C99 6.7.4p6:
   2884   //   [...] If all of the file scope declarations for a function in a
   2885   //   translation unit include the inline function specifier without extern,
   2886   //   then the definition in that translation unit is an inline definition.
   2887   for (auto Redecl : redecls()) {
   2888     if (RedeclForcesDefC99(Redecl))
   2889       return true;
   2890   }
   2891 
   2892   // C99 6.7.4p6:
   2893   //   An inline definition does not provide an external definition for the
   2894   //   function, and does not forbid an external definition in another
   2895   //   translation unit.
   2896   return false;
   2897 }
   2898 
   2899 /// getOverloadedOperator - Which C++ overloaded operator this
   2900 /// function represents, if any.
   2901 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
   2902   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
   2903     return getDeclName().getCXXOverloadedOperator();
   2904   else
   2905     return OO_None;
   2906 }
   2907 
   2908 /// getLiteralIdentifier - The literal suffix identifier this function
   2909 /// represents, if any.
   2910 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
   2911   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
   2912     return getDeclName().getCXXLiteralIdentifier();
   2913   else
   2914     return nullptr;
   2915 }
   2916 
   2917 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
   2918   if (TemplateOrSpecialization.isNull())
   2919     return TK_NonTemplate;
   2920   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
   2921     return TK_FunctionTemplate;
   2922   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
   2923     return TK_MemberSpecialization;
   2924   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
   2925     return TK_FunctionTemplateSpecialization;
   2926   if (TemplateOrSpecialization.is
   2927                                <DependentFunctionTemplateSpecializationInfo*>())
   2928     return TK_DependentFunctionTemplateSpecialization;
   2929 
   2930   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
   2931 }
   2932 
   2933 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
   2934   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
   2935     return cast<FunctionDecl>(Info->getInstantiatedFrom());
   2936 
   2937   return nullptr;
   2938 }
   2939 
   2940 void
   2941 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
   2942                                                FunctionDecl *FD,
   2943                                                TemplateSpecializationKind TSK) {
   2944   assert(TemplateOrSpecialization.isNull() &&
   2945          "Member function is already a specialization");
   2946   MemberSpecializationInfo *Info
   2947     = new (C) MemberSpecializationInfo(FD, TSK);
   2948   TemplateOrSpecialization = Info;
   2949 }
   2950 
   2951 bool FunctionDecl::isImplicitlyInstantiable() const {
   2952   // If the function is invalid, it can't be implicitly instantiated.
   2953   if (isInvalidDecl())
   2954     return false;
   2955 
   2956   switch (getTemplateSpecializationKind()) {
   2957   case TSK_Undeclared:
   2958   case TSK_ExplicitInstantiationDefinition:
   2959     return false;
   2960 
   2961   case TSK_ImplicitInstantiation:
   2962     return true;
   2963 
   2964   // It is possible to instantiate TSK_ExplicitSpecialization kind
   2965   // if the FunctionDecl has a class scope specialization pattern.
   2966   case TSK_ExplicitSpecialization:
   2967     return getClassScopeSpecializationPattern() != nullptr;
   2968 
   2969   case TSK_ExplicitInstantiationDeclaration:
   2970     // Handled below.
   2971     break;
   2972   }
   2973 
   2974   // Find the actual template from which we will instantiate.
   2975   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
   2976   bool HasPattern = false;
   2977   if (PatternDecl)
   2978     HasPattern = PatternDecl->hasBody(PatternDecl);
   2979 
   2980   // C++0x [temp.explicit]p9:
   2981   //   Except for inline functions, other explicit instantiation declarations
   2982   //   have the effect of suppressing the implicit instantiation of the entity
   2983   //   to which they refer.
   2984   if (!HasPattern || !PatternDecl)
   2985     return true;
   2986 
   2987   return PatternDecl->isInlined();
   2988 }
   2989 
   2990 bool FunctionDecl::isTemplateInstantiation() const {
   2991   switch (getTemplateSpecializationKind()) {
   2992     case TSK_Undeclared:
   2993     case TSK_ExplicitSpecialization:
   2994       return false;
   2995     case TSK_ImplicitInstantiation:
   2996     case TSK_ExplicitInstantiationDeclaration:
   2997     case TSK_ExplicitInstantiationDefinition:
   2998       return true;
   2999   }
   3000   llvm_unreachable("All TSK values handled.");
   3001 }
   3002 
   3003 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
   3004   // Handle class scope explicit specialization special case.
   3005   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
   3006     return getClassScopeSpecializationPattern();
   3007 
   3008   // If this is a generic lambda call operator specialization, its
   3009   // instantiation pattern is always its primary template's pattern
   3010   // even if its primary template was instantiated from another
   3011   // member template (which happens with nested generic lambdas).
   3012   // Since a lambda's call operator's body is transformed eagerly,
   3013   // we don't have to go hunting for a prototype definition template
   3014   // (i.e. instantiated-from-member-template) to use as an instantiation
   3015   // pattern.
   3016 
   3017   if (isGenericLambdaCallOperatorSpecialization(
   3018           dyn_cast<CXXMethodDecl>(this))) {
   3019     assert(getPrimaryTemplate() && "A generic lambda specialization must be "
   3020                                    "generated from a primary call operator "
   3021                                    "template");
   3022     assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
   3023            "A generic lambda call operator template must always have a body - "
   3024            "even if instantiated from a prototype (i.e. as written) member "
   3025            "template");
   3026     return getPrimaryTemplate()->getTemplatedDecl();
   3027   }
   3028 
   3029   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
   3030     while (Primary->getInstantiatedFromMemberTemplate()) {
   3031       // If we have hit a point where the user provided a specialization of
   3032       // this template, we're done looking.
   3033       if (Primary->isMemberSpecialization())
   3034         break;
   3035       Primary = Primary->getInstantiatedFromMemberTemplate();
   3036     }
   3037 
   3038     return Primary->getTemplatedDecl();
   3039   }
   3040 
   3041   return getInstantiatedFromMemberFunction();
   3042 }
   3043 
   3044 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
   3045   if (FunctionTemplateSpecializationInfo *Info
   3046         = TemplateOrSpecialization
   3047             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   3048     return Info->Template.getPointer();
   3049   }
   3050   return nullptr;
   3051 }
   3052 
   3053 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
   3054     return getASTContext().getClassScopeSpecializationPattern(this);
   3055 }
   3056 
   3057 const TemplateArgumentList *
   3058 FunctionDecl::getTemplateSpecializationArgs() const {
   3059   if (FunctionTemplateSpecializationInfo *Info
   3060         = TemplateOrSpecialization
   3061             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   3062     return Info->TemplateArguments;
   3063   }
   3064   return nullptr;
   3065 }
   3066 
   3067 const ASTTemplateArgumentListInfo *
   3068 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
   3069   if (FunctionTemplateSpecializationInfo *Info
   3070         = TemplateOrSpecialization
   3071             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   3072     return Info->TemplateArgumentsAsWritten;
   3073   }
   3074   return nullptr;
   3075 }
   3076 
   3077 void
   3078 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
   3079                                                 FunctionTemplateDecl *Template,
   3080                                      const TemplateArgumentList *TemplateArgs,
   3081                                                 void *InsertPos,
   3082                                                 TemplateSpecializationKind TSK,
   3083                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
   3084                                           SourceLocation PointOfInstantiation) {
   3085   assert(TSK != TSK_Undeclared &&
   3086          "Must specify the type of function template specialization");
   3087   FunctionTemplateSpecializationInfo *Info
   3088     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
   3089   if (!Info)
   3090     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
   3091                                                       TemplateArgs,
   3092                                                       TemplateArgsAsWritten,
   3093                                                       PointOfInstantiation);
   3094   TemplateOrSpecialization = Info;
   3095   Template->addSpecialization(Info, InsertPos);
   3096 }
   3097 
   3098 void
   3099 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
   3100                                     const UnresolvedSetImpl &Templates,
   3101                              const TemplateArgumentListInfo &TemplateArgs) {
   3102   assert(TemplateOrSpecialization.isNull());
   3103   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
   3104   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
   3105   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
   3106   void *Buffer = Context.Allocate(Size);
   3107   DependentFunctionTemplateSpecializationInfo *Info =
   3108     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
   3109                                                              TemplateArgs);
   3110   TemplateOrSpecialization = Info;
   3111 }
   3112 
   3113 DependentFunctionTemplateSpecializationInfo::
   3114 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
   3115                                       const TemplateArgumentListInfo &TArgs)
   3116   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
   3117   static_assert(sizeof(*this) % llvm::AlignOf<void *>::Alignment == 0,
   3118                 "Trailing data is unaligned!");
   3119 
   3120   d.NumTemplates = Ts.size();
   3121   d.NumArgs = TArgs.size();
   3122 
   3123   FunctionTemplateDecl **TsArray =
   3124     const_cast<FunctionTemplateDecl**>(getTemplates());
   3125   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
   3126     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
   3127 
   3128   TemplateArgumentLoc *ArgsArray =
   3129     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
   3130   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
   3131     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
   3132 }
   3133 
   3134 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
   3135   // For a function template specialization, query the specialization
   3136   // information object.
   3137   FunctionTemplateSpecializationInfo *FTSInfo
   3138     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
   3139   if (FTSInfo)
   3140     return FTSInfo->getTemplateSpecializationKind();
   3141 
   3142   MemberSpecializationInfo *MSInfo
   3143     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
   3144   if (MSInfo)
   3145     return MSInfo->getTemplateSpecializationKind();
   3146 
   3147   return TSK_Undeclared;
   3148 }
   3149 
   3150 void
   3151 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   3152                                           SourceLocation PointOfInstantiation) {
   3153   if (FunctionTemplateSpecializationInfo *FTSInfo
   3154         = TemplateOrSpecialization.dyn_cast<
   3155                                     FunctionTemplateSpecializationInfo*>()) {
   3156     FTSInfo->setTemplateSpecializationKind(TSK);
   3157     if (TSK != TSK_ExplicitSpecialization &&
   3158         PointOfInstantiation.isValid() &&
   3159         FTSInfo->getPointOfInstantiation().isInvalid())
   3160       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
   3161   } else if (MemberSpecializationInfo *MSInfo
   3162              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
   3163     MSInfo->setTemplateSpecializationKind(TSK);
   3164     if (TSK != TSK_ExplicitSpecialization &&
   3165         PointOfInstantiation.isValid() &&
   3166         MSInfo->getPointOfInstantiation().isInvalid())
   3167       MSInfo->setPointOfInstantiation(PointOfInstantiation);
   3168   } else
   3169     llvm_unreachable("Function cannot have a template specialization kind");
   3170 }
   3171 
   3172 SourceLocation FunctionDecl::getPointOfInstantiation() const {
   3173   if (FunctionTemplateSpecializationInfo *FTSInfo
   3174         = TemplateOrSpecialization.dyn_cast<
   3175                                         FunctionTemplateSpecializationInfo*>())
   3176     return FTSInfo->getPointOfInstantiation();
   3177   else if (MemberSpecializationInfo *MSInfo
   3178              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
   3179     return MSInfo->getPointOfInstantiation();
   3180 
   3181   return SourceLocation();
   3182 }
   3183 
   3184 bool FunctionDecl::isOutOfLine() const {
   3185   if (Decl::isOutOfLine())
   3186     return true;
   3187 
   3188   // If this function was instantiated from a member function of a
   3189   // class template, check whether that member function was defined out-of-line.
   3190   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
   3191     const FunctionDecl *Definition;
   3192     if (FD->hasBody(Definition))
   3193       return Definition->isOutOfLine();
   3194   }
   3195 
   3196   // If this function was instantiated from a function template,
   3197   // check whether that function template was defined out-of-line.
   3198   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
   3199     const FunctionDecl *Definition;
   3200     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
   3201       return Definition->isOutOfLine();
   3202   }
   3203 
   3204   return false;
   3205 }
   3206 
   3207 SourceRange FunctionDecl::getSourceRange() const {
   3208   return SourceRange(getOuterLocStart(), EndRangeLoc);
   3209 }
   3210 
   3211 unsigned FunctionDecl::getMemoryFunctionKind() const {
   3212   IdentifierInfo *FnInfo = getIdentifier();
   3213 
   3214   if (!FnInfo)
   3215     return 0;
   3216 
   3217   // Builtin handling.
   3218   switch (getBuiltinID()) {
   3219   case Builtin::BI__builtin_memset:
   3220   case Builtin::BI__builtin___memset_chk:
   3221   case Builtin::BImemset:
   3222     return Builtin::BImemset;
   3223 
   3224   case Builtin::BI__builtin_memcpy:
   3225   case Builtin::BI__builtin___memcpy_chk:
   3226   case Builtin::BImemcpy:
   3227     return Builtin::BImemcpy;
   3228 
   3229   case Builtin::BI__builtin_memmove:
   3230   case Builtin::BI__builtin___memmove_chk:
   3231   case Builtin::BImemmove:
   3232     return Builtin::BImemmove;
   3233 
   3234   case Builtin::BIstrlcpy:
   3235   case Builtin::BI__builtin___strlcpy_chk:
   3236     return Builtin::BIstrlcpy;
   3237 
   3238   case Builtin::BIstrlcat:
   3239   case Builtin::BI__builtin___strlcat_chk:
   3240     return Builtin::BIstrlcat;
   3241 
   3242   case Builtin::BI__builtin_memcmp:
   3243   case Builtin::BImemcmp:
   3244     return Builtin::BImemcmp;
   3245 
   3246   case Builtin::BI__builtin_strncpy:
   3247   case Builtin::BI__builtin___strncpy_chk:
   3248   case Builtin::BIstrncpy:
   3249     return Builtin::BIstrncpy;
   3250 
   3251   case Builtin::BI__builtin_strncmp:
   3252   case Builtin::BIstrncmp:
   3253     return Builtin::BIstrncmp;
   3254 
   3255   case Builtin::BI__builtin_strncasecmp:
   3256   case Builtin::BIstrncasecmp:
   3257     return Builtin::BIstrncasecmp;
   3258 
   3259   case Builtin::BI__builtin_strncat:
   3260   case Builtin::BI__builtin___strncat_chk:
   3261   case Builtin::BIstrncat:
   3262     return Builtin::BIstrncat;
   3263 
   3264   case Builtin::BI__builtin_strndup:
   3265   case Builtin::BIstrndup:
   3266     return Builtin::BIstrndup;
   3267 
   3268   case Builtin::BI__builtin_strlen:
   3269   case Builtin::BIstrlen:
   3270     return Builtin::BIstrlen;
   3271 
   3272   default:
   3273     if (isExternC()) {
   3274       if (FnInfo->isStr("memset"))
   3275         return Builtin::BImemset;
   3276       else if (FnInfo->isStr("memcpy"))
   3277         return Builtin::BImemcpy;
   3278       else if (FnInfo->isStr("memmove"))
   3279         return Builtin::BImemmove;
   3280       else if (FnInfo->isStr("memcmp"))
   3281         return Builtin::BImemcmp;
   3282       else if (FnInfo->isStr("strncpy"))
   3283         return Builtin::BIstrncpy;
   3284       else if (FnInfo->isStr("strncmp"))
   3285         return Builtin::BIstrncmp;
   3286       else if (FnInfo->isStr("strncasecmp"))
   3287         return Builtin::BIstrncasecmp;
   3288       else if (FnInfo->isStr("strncat"))
   3289         return Builtin::BIstrncat;
   3290       else if (FnInfo->isStr("strndup"))
   3291         return Builtin::BIstrndup;
   3292       else if (FnInfo->isStr("strlen"))
   3293         return Builtin::BIstrlen;
   3294     }
   3295     break;
   3296   }
   3297   return 0;
   3298 }
   3299 
   3300 //===----------------------------------------------------------------------===//
   3301 // FieldDecl Implementation
   3302 //===----------------------------------------------------------------------===//
   3303 
   3304 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
   3305                              SourceLocation StartLoc, SourceLocation IdLoc,
   3306                              IdentifierInfo *Id, QualType T,
   3307                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
   3308                              InClassInitStyle InitStyle) {
   3309   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
   3310                                BW, Mutable, InitStyle);
   3311 }
   3312 
   3313 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3314   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
   3315                                SourceLocation(), nullptr, QualType(), nullptr,
   3316                                nullptr, false, ICIS_NoInit);
   3317 }
   3318 
   3319 bool FieldDecl::isAnonymousStructOrUnion() const {
   3320   if (!isImplicit() || getDeclName())
   3321     return false;
   3322 
   3323   if (const RecordType *Record = getType()->getAs<RecordType>())
   3324     return Record->getDecl()->isAnonymousStructOrUnion();
   3325 
   3326   return false;
   3327 }
   3328 
   3329 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
   3330   assert(isBitField() && "not a bitfield");
   3331   Expr *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
   3332   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
   3333 }
   3334 
   3335 unsigned FieldDecl::getFieldIndex() const {
   3336   const FieldDecl *Canonical = getCanonicalDecl();
   3337   if (Canonical != this)
   3338     return Canonical->getFieldIndex();
   3339 
   3340   if (CachedFieldIndex) return CachedFieldIndex - 1;
   3341 
   3342   unsigned Index = 0;
   3343   const RecordDecl *RD = getParent();
   3344 
   3345   for (auto *Field : RD->fields()) {
   3346     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
   3347     ++Index;
   3348   }
   3349 
   3350   assert(CachedFieldIndex && "failed to find field in parent");
   3351   return CachedFieldIndex - 1;
   3352 }
   3353 
   3354 SourceRange FieldDecl::getSourceRange() const {
   3355   switch (InitStorage.getInt()) {
   3356   // All three of these cases store an optional Expr*.
   3357   case ISK_BitWidthOrNothing:
   3358   case ISK_InClassCopyInit:
   3359   case ISK_InClassListInit:
   3360     if (const Expr *E = static_cast<const Expr *>(InitStorage.getPointer()))
   3361       return SourceRange(getInnerLocStart(), E->getLocEnd());
   3362     // FALLTHROUGH
   3363 
   3364   case ISK_CapturedVLAType:
   3365     return DeclaratorDecl::getSourceRange();
   3366   }
   3367   llvm_unreachable("bad init storage kind");
   3368 }
   3369 
   3370 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
   3371   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
   3372          "capturing type in non-lambda or captured record.");
   3373   assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
   3374          InitStorage.getPointer() == nullptr &&
   3375          "bit width, initializer or captured type already set");
   3376   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
   3377                                ISK_CapturedVLAType);
   3378 }
   3379 
   3380 //===----------------------------------------------------------------------===//
   3381 // TagDecl Implementation
   3382 //===----------------------------------------------------------------------===//
   3383 
   3384 SourceLocation TagDecl::getOuterLocStart() const {
   3385   return getTemplateOrInnerLocStart(this);
   3386 }
   3387 
   3388 SourceRange TagDecl::getSourceRange() const {
   3389   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
   3390   return SourceRange(getOuterLocStart(), E);
   3391 }
   3392 
   3393 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
   3394 
   3395 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
   3396   NamedDeclOrQualifier = TDD;
   3397   if (const Type *T = getTypeForDecl()) {
   3398     (void)T;
   3399     assert(T->isLinkageValid());
   3400   }
   3401   assert(isLinkageValid());
   3402 }
   3403 
   3404 void TagDecl::startDefinition() {
   3405   IsBeingDefined = true;
   3406 
   3407   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
   3408     struct CXXRecordDecl::DefinitionData *Data =
   3409       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
   3410     for (auto I : redecls())
   3411       cast<CXXRecordDecl>(I)->DefinitionData = Data;
   3412   }
   3413 }
   3414 
   3415 void TagDecl::completeDefinition() {
   3416   assert((!isa<CXXRecordDecl>(this) ||
   3417           cast<CXXRecordDecl>(this)->hasDefinition()) &&
   3418          "definition completed but not started");
   3419 
   3420   IsCompleteDefinition = true;
   3421   IsBeingDefined = false;
   3422 
   3423   if (ASTMutationListener *L = getASTMutationListener())
   3424     L->CompletedTagDefinition(this);
   3425 }
   3426 
   3427 TagDecl *TagDecl::getDefinition() const {
   3428   if (isCompleteDefinition())
   3429     return const_cast<TagDecl *>(this);
   3430 
   3431   // If it's possible for us to have an out-of-date definition, check now.
   3432   if (MayHaveOutOfDateDef) {
   3433     if (IdentifierInfo *II = getIdentifier()) {
   3434       if (II->isOutOfDate()) {
   3435         updateOutOfDate(*II);
   3436       }
   3437     }
   3438   }
   3439 
   3440   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
   3441     return CXXRD->getDefinition();
   3442 
   3443   for (auto R : redecls())
   3444     if (R->isCompleteDefinition())
   3445       return R;
   3446 
   3447   return nullptr;
   3448 }
   3449 
   3450 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
   3451   if (QualifierLoc) {
   3452     // Make sure the extended qualifier info is allocated.
   3453     if (!hasExtInfo())
   3454       NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
   3455     // Set qualifier info.
   3456     getExtInfo()->QualifierLoc = QualifierLoc;
   3457   } else {
   3458     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
   3459     if (hasExtInfo()) {
   3460       if (getExtInfo()->NumTemplParamLists == 0) {
   3461         getASTContext().Deallocate(getExtInfo());
   3462         NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
   3463       }
   3464       else
   3465         getExtInfo()->QualifierLoc = QualifierLoc;
   3466     }
   3467   }
   3468 }
   3469 
   3470 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
   3471                                             unsigned NumTPLists,
   3472                                             TemplateParameterList **TPLists) {
   3473   assert(NumTPLists > 0);
   3474   // Make sure the extended decl info is allocated.
   3475   if (!hasExtInfo())
   3476     // Allocate external info struct.
   3477     NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
   3478   // Set the template parameter lists info.
   3479   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
   3480 }
   3481 
   3482 //===----------------------------------------------------------------------===//
   3483 // EnumDecl Implementation
   3484 //===----------------------------------------------------------------------===//
   3485 
   3486 void EnumDecl::anchor() { }
   3487 
   3488 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
   3489                            SourceLocation StartLoc, SourceLocation IdLoc,
   3490                            IdentifierInfo *Id,
   3491                            EnumDecl *PrevDecl, bool IsScoped,
   3492                            bool IsScopedUsingClassTag, bool IsFixed) {
   3493   EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
   3494                                         IsScoped, IsScopedUsingClassTag,
   3495                                         IsFixed);
   3496   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3497   C.getTypeDeclType(Enum, PrevDecl);
   3498   return Enum;
   3499 }
   3500 
   3501 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3502   EnumDecl *Enum =
   3503       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
   3504                            nullptr, nullptr, false, false, false);
   3505   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3506   return Enum;
   3507 }
   3508 
   3509 SourceRange EnumDecl::getIntegerTypeRange() const {
   3510   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
   3511     return TI->getTypeLoc().getSourceRange();
   3512   return SourceRange();
   3513 }
   3514 
   3515 void EnumDecl::completeDefinition(QualType NewType,
   3516                                   QualType NewPromotionType,
   3517                                   unsigned NumPositiveBits,
   3518                                   unsigned NumNegativeBits) {
   3519   assert(!isCompleteDefinition() && "Cannot redefine enums!");
   3520   if (!IntegerType)
   3521     IntegerType = NewType.getTypePtr();
   3522   PromotionType = NewPromotionType;
   3523   setNumPositiveBits(NumPositiveBits);
   3524   setNumNegativeBits(NumNegativeBits);
   3525   TagDecl::completeDefinition();
   3526 }
   3527 
   3528 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
   3529   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   3530     return MSI->getTemplateSpecializationKind();
   3531 
   3532   return TSK_Undeclared;
   3533 }
   3534 
   3535 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   3536                                          SourceLocation PointOfInstantiation) {
   3537   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
   3538   assert(MSI && "Not an instantiated member enumeration?");
   3539   MSI->setTemplateSpecializationKind(TSK);
   3540   if (TSK != TSK_ExplicitSpecialization &&
   3541       PointOfInstantiation.isValid() &&
   3542       MSI->getPointOfInstantiation().isInvalid())
   3543     MSI->setPointOfInstantiation(PointOfInstantiation);
   3544 }
   3545 
   3546 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
   3547   if (SpecializationInfo)
   3548     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
   3549 
   3550   return nullptr;
   3551 }
   3552 
   3553 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
   3554                                             TemplateSpecializationKind TSK) {
   3555   assert(!SpecializationInfo && "Member enum is already a specialization");
   3556   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
   3557 }
   3558 
   3559 //===----------------------------------------------------------------------===//
   3560 // RecordDecl Implementation
   3561 //===----------------------------------------------------------------------===//
   3562 
   3563 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
   3564                        DeclContext *DC, SourceLocation StartLoc,
   3565                        SourceLocation IdLoc, IdentifierInfo *Id,
   3566                        RecordDecl *PrevDecl)
   3567     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
   3568   HasFlexibleArrayMember = false;
   3569   AnonymousStructOrUnion = false;
   3570   HasObjectMember = false;
   3571   HasVolatileMember = false;
   3572   LoadedFieldsFromExternalStorage = false;
   3573   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
   3574 }
   3575 
   3576 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
   3577                                SourceLocation StartLoc, SourceLocation IdLoc,
   3578                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
   3579   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
   3580                                          StartLoc, IdLoc, Id, PrevDecl);
   3581   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3582 
   3583   C.getTypeDeclType(R, PrevDecl);
   3584   return R;
   3585 }
   3586 
   3587 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
   3588   RecordDecl *R =
   3589       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
   3590                              SourceLocation(), nullptr, nullptr);
   3591   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3592   return R;
   3593 }
   3594 
   3595 bool RecordDecl::isInjectedClassName() const {
   3596   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
   3597     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
   3598 }
   3599 
   3600 bool RecordDecl::isLambda() const {
   3601   if (auto RD = dyn_cast<CXXRecordDecl>(this))
   3602     return RD->isLambda();
   3603   return false;
   3604 }
   3605 
   3606 bool RecordDecl::isCapturedRecord() const {
   3607   return hasAttr<CapturedRecordAttr>();
   3608 }
   3609 
   3610 void RecordDecl::setCapturedRecord() {
   3611   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
   3612 }
   3613 
   3614 RecordDecl::field_iterator RecordDecl::field_begin() const {
   3615   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
   3616     LoadFieldsFromExternalStorage();
   3617 
   3618   return field_iterator(decl_iterator(FirstDecl));
   3619 }
   3620 
   3621 /// completeDefinition - Notes that the definition of this type is now
   3622 /// complete.
   3623 void RecordDecl::completeDefinition() {
   3624   assert(!isCompleteDefinition() && "Cannot redefine record!");
   3625   TagDecl::completeDefinition();
   3626 }
   3627 
   3628 /// isMsStruct - Get whether or not this record uses ms_struct layout.
   3629 /// This which can be turned on with an attribute, pragma, or the
   3630 /// -mms-bitfields command-line option.
   3631 bool RecordDecl::isMsStruct(const ASTContext &C) const {
   3632   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
   3633 }
   3634 
   3635 static bool isFieldOrIndirectField(Decl::Kind K) {
   3636   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
   3637 }
   3638 
   3639 void RecordDecl::LoadFieldsFromExternalStorage() const {
   3640   ExternalASTSource *Source = getASTContext().getExternalSource();
   3641   assert(hasExternalLexicalStorage() && Source && "No external storage?");
   3642 
   3643   // Notify that we have a RecordDecl doing some initialization.
   3644   ExternalASTSource::Deserializing TheFields(Source);
   3645 
   3646   SmallVector<Decl*, 64> Decls;
   3647   LoadedFieldsFromExternalStorage = true;
   3648   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
   3649                                            Decls)) {
   3650   case ELR_Success:
   3651     break;
   3652 
   3653   case ELR_AlreadyLoaded:
   3654   case ELR_Failure:
   3655     return;
   3656   }
   3657 
   3658 #ifndef NDEBUG
   3659   // Check that all decls we got were FieldDecls.
   3660   for (unsigned i=0, e=Decls.size(); i != e; ++i)
   3661     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
   3662 #endif
   3663 
   3664   if (Decls.empty())
   3665     return;
   3666 
   3667   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
   3668                                                  /*FieldsAlreadyLoaded=*/false);
   3669 }
   3670 
   3671 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
   3672   ASTContext &Context = getASTContext();
   3673   if (!Context.getLangOpts().Sanitize.has(SanitizerKind::Address) ||
   3674       !Context.getLangOpts().SanitizeAddressFieldPadding)
   3675     return false;
   3676   const auto &Blacklist = Context.getSanitizerBlacklist();
   3677   const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this);
   3678   // We may be able to relax some of these requirements.
   3679   int ReasonToReject = -1;
   3680   if (!CXXRD || CXXRD->isExternCContext())
   3681     ReasonToReject = 0;  // is not C++.
   3682   else if (CXXRD->hasAttr<PackedAttr>())
   3683     ReasonToReject = 1;  // is packed.
   3684   else if (CXXRD->isUnion())
   3685     ReasonToReject = 2;  // is a union.
   3686   else if (CXXRD->isTriviallyCopyable())
   3687     ReasonToReject = 3;  // is trivially copyable.
   3688   else if (CXXRD->hasTrivialDestructor())
   3689     ReasonToReject = 4;  // has trivial destructor.
   3690   else if (CXXRD->isStandardLayout())
   3691     ReasonToReject = 5;  // is standard layout.
   3692   else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
   3693     ReasonToReject = 6;  // is in a blacklisted file.
   3694   else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
   3695                                        "field-padding"))
   3696     ReasonToReject = 7;  // is blacklisted.
   3697 
   3698   if (EmitRemark) {
   3699     if (ReasonToReject >= 0)
   3700       Context.getDiagnostics().Report(
   3701           getLocation(),
   3702           diag::remark_sanitize_address_insert_extra_padding_rejected)
   3703           << getQualifiedNameAsString() << ReasonToReject;
   3704     else
   3705       Context.getDiagnostics().Report(
   3706           getLocation(),
   3707           diag::remark_sanitize_address_insert_extra_padding_accepted)
   3708           << getQualifiedNameAsString();
   3709   }
   3710   return ReasonToReject < 0;
   3711 }
   3712 
   3713 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
   3714   for (const auto *I : fields()) {
   3715     if (I->getIdentifier())
   3716       return I;
   3717 
   3718     if (const RecordType *RT = I->getType()->getAs<RecordType>())
   3719       if (const FieldDecl *NamedDataMember =
   3720           RT->getDecl()->findFirstNamedDataMember())
   3721         return NamedDataMember;
   3722   }
   3723 
   3724   // We didn't find a named data member.
   3725   return nullptr;
   3726 }
   3727 
   3728 
   3729 //===----------------------------------------------------------------------===//
   3730 // BlockDecl Implementation
   3731 //===----------------------------------------------------------------------===//
   3732 
   3733 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
   3734   assert(!ParamInfo && "Already has param info!");
   3735 
   3736   // Zero params -> null pointer.
   3737   if (!NewParamInfo.empty()) {
   3738     NumParams = NewParamInfo.size();
   3739     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
   3740     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
   3741   }
   3742 }
   3743 
   3744 void BlockDecl::setCaptures(ASTContext &Context,
   3745                             const Capture *begin,
   3746                             const Capture *end,
   3747                             bool capturesCXXThis) {
   3748   CapturesCXXThis = capturesCXXThis;
   3749 
   3750   if (begin == end) {
   3751     NumCaptures = 0;
   3752     Captures = nullptr;
   3753     return;
   3754   }
   3755 
   3756   NumCaptures = end - begin;
   3757 
   3758   // Avoid new Capture[] because we don't want to provide a default
   3759   // constructor.
   3760   size_t allocationSize = NumCaptures * sizeof(Capture);
   3761   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
   3762   memcpy(buffer, begin, allocationSize);
   3763   Captures = static_cast<Capture*>(buffer);
   3764 }
   3765 
   3766 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
   3767   for (const auto &I : captures())
   3768     // Only auto vars can be captured, so no redeclaration worries.
   3769     if (I.getVariable() == variable)
   3770       return true;
   3771 
   3772   return false;
   3773 }
   3774 
   3775 SourceRange BlockDecl::getSourceRange() const {
   3776   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
   3777 }
   3778 
   3779 //===----------------------------------------------------------------------===//
   3780 // Other Decl Allocation/Deallocation Method Implementations
   3781 //===----------------------------------------------------------------------===//
   3782 
   3783 void TranslationUnitDecl::anchor() { }
   3784 
   3785 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
   3786   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
   3787 }
   3788 
   3789 void ExternCContextDecl::anchor() { }
   3790 
   3791 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
   3792                                                TranslationUnitDecl *DC) {
   3793   return new (C, DC) ExternCContextDecl(DC);
   3794 }
   3795 
   3796 void LabelDecl::anchor() { }
   3797 
   3798 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
   3799                              SourceLocation IdentL, IdentifierInfo *II) {
   3800   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
   3801 }
   3802 
   3803 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
   3804                              SourceLocation IdentL, IdentifierInfo *II,
   3805                              SourceLocation GnuLabelL) {
   3806   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
   3807   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
   3808 }
   3809 
   3810 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3811   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
   3812                                SourceLocation());
   3813 }
   3814 
   3815 void LabelDecl::setMSAsmLabel(StringRef Name) {
   3816   char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
   3817   memcpy(Buffer, Name.data(), Name.size());
   3818   Buffer[Name.size()] = '\0';
   3819   MSAsmName = Buffer;
   3820 }
   3821 
   3822 void ValueDecl::anchor() { }
   3823 
   3824 bool ValueDecl::isWeak() const {
   3825   for (const auto *I : attrs())
   3826     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
   3827       return true;
   3828 
   3829   return isWeakImported();
   3830 }
   3831 
   3832 void ImplicitParamDecl::anchor() { }
   3833 
   3834 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
   3835                                              SourceLocation IdLoc,
   3836                                              IdentifierInfo *Id,
   3837                                              QualType Type) {
   3838   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
   3839 }
   3840 
   3841 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
   3842                                                          unsigned ID) {
   3843   return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
   3844                                        QualType());
   3845 }
   3846 
   3847 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
   3848                                    SourceLocation StartLoc,
   3849                                    const DeclarationNameInfo &NameInfo,
   3850                                    QualType T, TypeSourceInfo *TInfo,
   3851                                    StorageClass SC,
   3852                                    bool isInlineSpecified,
   3853                                    bool hasWrittenPrototype,
   3854                                    bool isConstexprSpecified) {
   3855   FunctionDecl *New =
   3856       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
   3857                                SC, isInlineSpecified, isConstexprSpecified);
   3858   New->HasWrittenPrototype = hasWrittenPrototype;
   3859   return New;
   3860 }
   3861 
   3862 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3863   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
   3864                                   DeclarationNameInfo(), QualType(), nullptr,
   3865                                   SC_None, false, false);
   3866 }
   3867 
   3868 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
   3869   return new (C, DC) BlockDecl(DC, L);
   3870 }
   3871 
   3872 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3873   return new (C, ID) BlockDecl(nullptr, SourceLocation());
   3874 }
   3875 
   3876 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
   3877                                    unsigned NumParams) {
   3878   return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
   3879       CapturedDecl(DC, NumParams);
   3880 }
   3881 
   3882 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
   3883                                                unsigned NumParams) {
   3884   return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
   3885       CapturedDecl(nullptr, NumParams);
   3886 }
   3887 
   3888 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
   3889                                            SourceLocation L,
   3890                                            IdentifierInfo *Id, QualType T,
   3891                                            Expr *E, const llvm::APSInt &V) {
   3892   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
   3893 }
   3894 
   3895 EnumConstantDecl *
   3896 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3897   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
   3898                                       QualType(), nullptr, llvm::APSInt());
   3899 }
   3900 
   3901 void IndirectFieldDecl::anchor() { }
   3902 
   3903 IndirectFieldDecl *
   3904 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
   3905                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
   3906                           unsigned CHS) {
   3907   return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
   3908 }
   3909 
   3910 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
   3911                                                          unsigned ID) {
   3912   return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
   3913                                        DeclarationName(), QualType(), nullptr,
   3914                                        0);
   3915 }
   3916 
   3917 SourceRange EnumConstantDecl::getSourceRange() const {
   3918   SourceLocation End = getLocation();
   3919   if (Init)
   3920     End = Init->getLocEnd();
   3921   return SourceRange(getLocation(), End);
   3922 }
   3923 
   3924 void TypeDecl::anchor() { }
   3925 
   3926 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
   3927                                  SourceLocation StartLoc, SourceLocation IdLoc,
   3928                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
   3929   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
   3930 }
   3931 
   3932 void TypedefNameDecl::anchor() { }
   3933 
   3934 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName() const {
   3935   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>())
   3936     if (TT->getDecl()->getTypedefNameForAnonDecl() == this)
   3937       return TT->getDecl();
   3938 
   3939   return nullptr;
   3940 }
   3941 
   3942 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3943   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
   3944                                  nullptr, nullptr);
   3945 }
   3946 
   3947 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
   3948                                      SourceLocation StartLoc,
   3949                                      SourceLocation IdLoc, IdentifierInfo *Id,
   3950                                      TypeSourceInfo *TInfo) {
   3951   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
   3952 }
   3953 
   3954 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3955   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
   3956                                    SourceLocation(), nullptr, nullptr);
   3957 }
   3958 
   3959 SourceRange TypedefDecl::getSourceRange() const {
   3960   SourceLocation RangeEnd = getLocation();
   3961   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
   3962     if (typeIsPostfix(TInfo->getType()))
   3963       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   3964   }
   3965   return SourceRange(getLocStart(), RangeEnd);
   3966 }
   3967 
   3968 SourceRange TypeAliasDecl::getSourceRange() const {
   3969   SourceLocation RangeEnd = getLocStart();
   3970   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
   3971     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   3972   return SourceRange(getLocStart(), RangeEnd);
   3973 }
   3974 
   3975 void FileScopeAsmDecl::anchor() { }
   3976 
   3977 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
   3978                                            StringLiteral *Str,
   3979                                            SourceLocation AsmLoc,
   3980                                            SourceLocation RParenLoc) {
   3981   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
   3982 }
   3983 
   3984 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
   3985                                                        unsigned ID) {
   3986   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
   3987                                       SourceLocation());
   3988 }
   3989 
   3990 void EmptyDecl::anchor() {}
   3991 
   3992 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
   3993   return new (C, DC) EmptyDecl(DC, L);
   3994 }
   3995 
   3996 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3997   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
   3998 }
   3999 
   4000 //===----------------------------------------------------------------------===//
   4001 // ImportDecl Implementation
   4002 //===----------------------------------------------------------------------===//
   4003 
   4004 /// \brief Retrieve the number of module identifiers needed to name the given
   4005 /// module.
   4006 static unsigned getNumModuleIdentifiers(Module *Mod) {
   4007   unsigned Result = 1;
   4008   while (Mod->Parent) {
   4009     Mod = Mod->Parent;
   4010     ++Result;
   4011   }
   4012   return Result;
   4013 }
   4014 
   4015 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
   4016                        Module *Imported,
   4017                        ArrayRef<SourceLocation> IdentifierLocs)
   4018   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
   4019     NextLocalImport()
   4020 {
   4021   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
   4022   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
   4023   memcpy(StoredLocs, IdentifierLocs.data(),
   4024          IdentifierLocs.size() * sizeof(SourceLocation));
   4025 }
   4026 
   4027 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
   4028                        Module *Imported, SourceLocation EndLoc)
   4029   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
   4030     NextLocalImport()
   4031 {
   4032   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
   4033 }
   4034 
   4035 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
   4036                                SourceLocation StartLoc, Module *Imported,
   4037                                ArrayRef<SourceLocation> IdentifierLocs) {
   4038   return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
   4039       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
   4040 }
   4041 
   4042 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
   4043                                        SourceLocation StartLoc,
   4044                                        Module *Imported,
   4045                                        SourceLocation EndLoc) {
   4046   ImportDecl *Import =
   4047       new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
   4048                                                      Imported, EndLoc);
   4049   Import->setImplicit();
   4050   return Import;
   4051 }
   4052 
   4053 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
   4054                                            unsigned NumLocations) {
   4055   return new (C, ID, NumLocations * sizeof(SourceLocation))
   4056       ImportDecl(EmptyShell());
   4057 }
   4058 
   4059 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
   4060   if (!ImportedAndComplete.getInt())
   4061     return None;
   4062 
   4063   const SourceLocation *StoredLocs
   4064     = reinterpret_cast<const SourceLocation *>(this + 1);
   4065   return llvm::makeArrayRef(StoredLocs,
   4066                             getNumModuleIdentifiers(getImportedModule()));
   4067 }
   4068 
   4069 SourceRange ImportDecl::getSourceRange() const {
   4070   if (!ImportedAndComplete.getInt())
   4071     return SourceRange(getLocation(),
   4072                        *reinterpret_cast<const SourceLocation *>(this + 1));
   4073 
   4074   return SourceRange(getLocation(), getIdentifierLocs().back());
   4075 }
   4076