Home | History | Annotate | Download | only in AST
      1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr class and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/APValue.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/Attr.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/Mangle.h"
     24 #include "clang/AST/RecordLayout.h"
     25 #include "clang/AST/StmtVisitor.h"
     26 #include "clang/Basic/Builtins.h"
     27 #include "clang/Basic/CharInfo.h"
     28 #include "clang/Basic/SourceManager.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/Lex/Lexer.h"
     31 #include "clang/Lex/LiteralSupport.h"
     32 #include "clang/Sema/SemaDiagnostic.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include <algorithm>
     36 #include <cstring>
     37 using namespace clang;
     38 
     39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
     40   const Expr *E = ignoreParenBaseCasts();
     41 
     42   QualType DerivedType = E->getType();
     43   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
     44     DerivedType = PTy->getPointeeType();
     45 
     46   if (DerivedType->isDependentType())
     47     return nullptr;
     48 
     49   const RecordType *Ty = DerivedType->castAs<RecordType>();
     50   Decl *D = Ty->getDecl();
     51   return cast<CXXRecordDecl>(D);
     52 }
     53 
     54 const Expr *Expr::skipRValueSubobjectAdjustments(
     55     SmallVectorImpl<const Expr *> &CommaLHSs,
     56     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
     57   const Expr *E = this;
     58   while (true) {
     59     E = E->IgnoreParens();
     60 
     61     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
     62       if ((CE->getCastKind() == CK_DerivedToBase ||
     63            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
     64           E->getType()->isRecordType()) {
     65         E = CE->getSubExpr();
     66         CXXRecordDecl *Derived
     67           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
     68         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
     69         continue;
     70       }
     71 
     72       if (CE->getCastKind() == CK_NoOp) {
     73         E = CE->getSubExpr();
     74         continue;
     75       }
     76     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
     77       if (!ME->isArrow()) {
     78         assert(ME->getBase()->getType()->isRecordType());
     79         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
     80           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
     81             E = ME->getBase();
     82             Adjustments.push_back(SubobjectAdjustment(Field));
     83             continue;
     84           }
     85         }
     86       }
     87     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
     88       if (BO->isPtrMemOp()) {
     89         assert(BO->getRHS()->isRValue());
     90         E = BO->getLHS();
     91         const MemberPointerType *MPT =
     92           BO->getRHS()->getType()->getAs<MemberPointerType>();
     93         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
     94         continue;
     95       } else if (BO->getOpcode() == BO_Comma) {
     96         CommaLHSs.push_back(BO->getLHS());
     97         E = BO->getRHS();
     98         continue;
     99       }
    100     }
    101 
    102     // Nothing changed.
    103     break;
    104   }
    105   return E;
    106 }
    107 
    108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
    109 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
    110 /// but also int expressions which are produced by things like comparisons in
    111 /// C.
    112 bool Expr::isKnownToHaveBooleanValue() const {
    113   const Expr *E = IgnoreParens();
    114 
    115   // If this value has _Bool type, it is obvious 0/1.
    116   if (E->getType()->isBooleanType()) return true;
    117   // If this is a non-scalar-integer type, we don't care enough to try.
    118   if (!E->getType()->isIntegralOrEnumerationType()) return false;
    119 
    120   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    121     switch (UO->getOpcode()) {
    122     case UO_Plus:
    123       return UO->getSubExpr()->isKnownToHaveBooleanValue();
    124     case UO_LNot:
    125       return true;
    126     default:
    127       return false;
    128     }
    129   }
    130 
    131   // Only look through implicit casts.  If the user writes
    132   // '(int) (a && b)' treat it as an arbitrary int.
    133   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
    134     return CE->getSubExpr()->isKnownToHaveBooleanValue();
    135 
    136   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    137     switch (BO->getOpcode()) {
    138     default: return false;
    139     case BO_LT:   // Relational operators.
    140     case BO_GT:
    141     case BO_LE:
    142     case BO_GE:
    143     case BO_EQ:   // Equality operators.
    144     case BO_NE:
    145     case BO_LAnd: // AND operator.
    146     case BO_LOr:  // Logical OR operator.
    147       return true;
    148 
    149     case BO_And:  // Bitwise AND operator.
    150     case BO_Xor:  // Bitwise XOR operator.
    151     case BO_Or:   // Bitwise OR operator.
    152       // Handle things like (x==2)|(y==12).
    153       return BO->getLHS()->isKnownToHaveBooleanValue() &&
    154              BO->getRHS()->isKnownToHaveBooleanValue();
    155 
    156     case BO_Comma:
    157     case BO_Assign:
    158       return BO->getRHS()->isKnownToHaveBooleanValue();
    159     }
    160   }
    161 
    162   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
    163     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
    164            CO->getFalseExpr()->isKnownToHaveBooleanValue();
    165 
    166   return false;
    167 }
    168 
    169 // Amusing macro metaprogramming hack: check whether a class provides
    170 // a more specific implementation of getExprLoc().
    171 //
    172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
    173 namespace {
    174   /// This implementation is used when a class provides a custom
    175   /// implementation of getExprLoc.
    176   template <class E, class T>
    177   SourceLocation getExprLocImpl(const Expr *expr,
    178                                 SourceLocation (T::*v)() const) {
    179     return static_cast<const E*>(expr)->getExprLoc();
    180   }
    181 
    182   /// This implementation is used when a class doesn't provide
    183   /// a custom implementation of getExprLoc.  Overload resolution
    184   /// should pick it over the implementation above because it's
    185   /// more specialized according to function template partial ordering.
    186   template <class E>
    187   SourceLocation getExprLocImpl(const Expr *expr,
    188                                 SourceLocation (Expr::*v)() const) {
    189     return static_cast<const E*>(expr)->getLocStart();
    190   }
    191 }
    192 
    193 SourceLocation Expr::getExprLoc() const {
    194   switch (getStmtClass()) {
    195   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
    196 #define ABSTRACT_STMT(type)
    197 #define STMT(type, base) \
    198   case Stmt::type##Class: break;
    199 #define EXPR(type, base) \
    200   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
    201 #include "clang/AST/StmtNodes.inc"
    202   }
    203   llvm_unreachable("unknown expression kind");
    204 }
    205 
    206 //===----------------------------------------------------------------------===//
    207 // Primary Expressions.
    208 //===----------------------------------------------------------------------===//
    209 
    210 /// \brief Compute the type-, value-, and instantiation-dependence of a
    211 /// declaration reference
    212 /// based on the declaration being referenced.
    213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
    214                                      QualType T, bool &TypeDependent,
    215                                      bool &ValueDependent,
    216                                      bool &InstantiationDependent) {
    217   TypeDependent = false;
    218   ValueDependent = false;
    219   InstantiationDependent = false;
    220 
    221   // (TD) C++ [temp.dep.expr]p3:
    222   //   An id-expression is type-dependent if it contains:
    223   //
    224   // and
    225   //
    226   // (VD) C++ [temp.dep.constexpr]p2:
    227   //  An identifier is value-dependent if it is:
    228 
    229   //  (TD)  - an identifier that was declared with dependent type
    230   //  (VD)  - a name declared with a dependent type,
    231   if (T->isDependentType()) {
    232     TypeDependent = true;
    233     ValueDependent = true;
    234     InstantiationDependent = true;
    235     return;
    236   } else if (T->isInstantiationDependentType()) {
    237     InstantiationDependent = true;
    238   }
    239 
    240   //  (TD)  - a conversion-function-id that specifies a dependent type
    241   if (D->getDeclName().getNameKind()
    242                                 == DeclarationName::CXXConversionFunctionName) {
    243     QualType T = D->getDeclName().getCXXNameType();
    244     if (T->isDependentType()) {
    245       TypeDependent = true;
    246       ValueDependent = true;
    247       InstantiationDependent = true;
    248       return;
    249     }
    250 
    251     if (T->isInstantiationDependentType())
    252       InstantiationDependent = true;
    253   }
    254 
    255   //  (VD)  - the name of a non-type template parameter,
    256   if (isa<NonTypeTemplateParmDecl>(D)) {
    257     ValueDependent = true;
    258     InstantiationDependent = true;
    259     return;
    260   }
    261 
    262   //  (VD) - a constant with integral or enumeration type and is
    263   //         initialized with an expression that is value-dependent.
    264   //  (VD) - a constant with literal type and is initialized with an
    265   //         expression that is value-dependent [C++11].
    266   //  (VD) - FIXME: Missing from the standard:
    267   //       -  an entity with reference type and is initialized with an
    268   //          expression that is value-dependent [C++11]
    269   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    270     if ((Ctx.getLangOpts().CPlusPlus11 ?
    271            Var->getType()->isLiteralType(Ctx) :
    272            Var->getType()->isIntegralOrEnumerationType()) &&
    273         (Var->getType().isConstQualified() ||
    274          Var->getType()->isReferenceType())) {
    275       if (const Expr *Init = Var->getAnyInitializer())
    276         if (Init->isValueDependent()) {
    277           ValueDependent = true;
    278           InstantiationDependent = true;
    279         }
    280     }
    281 
    282     // (VD) - FIXME: Missing from the standard:
    283     //      -  a member function or a static data member of the current
    284     //         instantiation
    285     if (Var->isStaticDataMember() &&
    286         Var->getDeclContext()->isDependentContext()) {
    287       ValueDependent = true;
    288       InstantiationDependent = true;
    289       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
    290       if (TInfo->getType()->isIncompleteArrayType())
    291         TypeDependent = true;
    292     }
    293 
    294     return;
    295   }
    296 
    297   // (VD) - FIXME: Missing from the standard:
    298   //      -  a member function or a static data member of the current
    299   //         instantiation
    300   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
    301     ValueDependent = true;
    302     InstantiationDependent = true;
    303   }
    304 }
    305 
    306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
    307   bool TypeDependent = false;
    308   bool ValueDependent = false;
    309   bool InstantiationDependent = false;
    310   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
    311                            ValueDependent, InstantiationDependent);
    312 
    313   ExprBits.TypeDependent |= TypeDependent;
    314   ExprBits.ValueDependent |= ValueDependent;
    315   ExprBits.InstantiationDependent |= InstantiationDependent;
    316 
    317   // Is the declaration a parameter pack?
    318   if (getDecl()->isParameterPack())
    319     ExprBits.ContainsUnexpandedParameterPack = true;
    320 }
    321 
    322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
    323                          NestedNameSpecifierLoc QualifierLoc,
    324                          SourceLocation TemplateKWLoc,
    325                          ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
    326                          const DeclarationNameInfo &NameInfo,
    327                          NamedDecl *FoundD,
    328                          const TemplateArgumentListInfo *TemplateArgs,
    329                          QualType T, ExprValueKind VK)
    330   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
    331     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
    332   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
    333   if (QualifierLoc) {
    334     getInternalQualifierLoc() = QualifierLoc;
    335     auto *NNS = QualifierLoc.getNestedNameSpecifier();
    336     if (NNS->isInstantiationDependent())
    337       ExprBits.InstantiationDependent = true;
    338     if (NNS->containsUnexpandedParameterPack())
    339       ExprBits.ContainsUnexpandedParameterPack = true;
    340   }
    341   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
    342   if (FoundD)
    343     getInternalFoundDecl() = FoundD;
    344   DeclRefExprBits.HasTemplateKWAndArgsInfo
    345     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
    346   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
    347       RefersToEnclosingVariableOrCapture;
    348   if (TemplateArgs) {
    349     bool Dependent = false;
    350     bool InstantiationDependent = false;
    351     bool ContainsUnexpandedParameterPack = false;
    352     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
    353                                                Dependent,
    354                                                InstantiationDependent,
    355                                                ContainsUnexpandedParameterPack);
    356     assert(!Dependent && "built a DeclRefExpr with dependent template args");
    357     ExprBits.InstantiationDependent |= InstantiationDependent;
    358     ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
    359   } else if (TemplateKWLoc.isValid()) {
    360     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
    361   }
    362   DeclRefExprBits.HadMultipleCandidates = 0;
    363 
    364   computeDependence(Ctx);
    365 }
    366 
    367 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
    368                                  NestedNameSpecifierLoc QualifierLoc,
    369                                  SourceLocation TemplateKWLoc,
    370                                  ValueDecl *D,
    371                                  bool RefersToEnclosingVariableOrCapture,
    372                                  SourceLocation NameLoc,
    373                                  QualType T,
    374                                  ExprValueKind VK,
    375                                  NamedDecl *FoundD,
    376                                  const TemplateArgumentListInfo *TemplateArgs) {
    377   return Create(Context, QualifierLoc, TemplateKWLoc, D,
    378                 RefersToEnclosingVariableOrCapture,
    379                 DeclarationNameInfo(D->getDeclName(), NameLoc),
    380                 T, VK, FoundD, TemplateArgs);
    381 }
    382 
    383 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
    384                                  NestedNameSpecifierLoc QualifierLoc,
    385                                  SourceLocation TemplateKWLoc,
    386                                  ValueDecl *D,
    387                                  bool RefersToEnclosingVariableOrCapture,
    388                                  const DeclarationNameInfo &NameInfo,
    389                                  QualType T,
    390                                  ExprValueKind VK,
    391                                  NamedDecl *FoundD,
    392                                  const TemplateArgumentListInfo *TemplateArgs) {
    393   // Filter out cases where the found Decl is the same as the value refenenced.
    394   if (D == FoundD)
    395     FoundD = nullptr;
    396 
    397   std::size_t Size = sizeof(DeclRefExpr);
    398   if (QualifierLoc)
    399     Size += sizeof(NestedNameSpecifierLoc);
    400   if (FoundD)
    401     Size += sizeof(NamedDecl *);
    402   if (TemplateArgs)
    403     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
    404   else if (TemplateKWLoc.isValid())
    405     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
    406 
    407   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    408   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
    409                                RefersToEnclosingVariableOrCapture,
    410                                NameInfo, FoundD, TemplateArgs, T, VK);
    411 }
    412 
    413 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
    414                                       bool HasQualifier,
    415                                       bool HasFoundDecl,
    416                                       bool HasTemplateKWAndArgsInfo,
    417                                       unsigned NumTemplateArgs) {
    418   std::size_t Size = sizeof(DeclRefExpr);
    419   if (HasQualifier)
    420     Size += sizeof(NestedNameSpecifierLoc);
    421   if (HasFoundDecl)
    422     Size += sizeof(NamedDecl *);
    423   if (HasTemplateKWAndArgsInfo)
    424     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
    425 
    426   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    427   return new (Mem) DeclRefExpr(EmptyShell());
    428 }
    429 
    430 SourceLocation DeclRefExpr::getLocStart() const {
    431   if (hasQualifier())
    432     return getQualifierLoc().getBeginLoc();
    433   return getNameInfo().getLocStart();
    434 }
    435 SourceLocation DeclRefExpr::getLocEnd() const {
    436   if (hasExplicitTemplateArgs())
    437     return getRAngleLoc();
    438   return getNameInfo().getLocEnd();
    439 }
    440 
    441 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
    442                                StringLiteral *SL)
    443     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
    444            FNTy->isDependentType(), FNTy->isDependentType(),
    445            FNTy->isInstantiationDependentType(),
    446            /*ContainsUnexpandedParameterPack=*/false),
    447       Loc(L), Type(IT), FnName(SL) {}
    448 
    449 StringLiteral *PredefinedExpr::getFunctionName() {
    450   return cast_or_null<StringLiteral>(FnName);
    451 }
    452 
    453 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
    454   switch (IT) {
    455   case Func:
    456     return "__func__";
    457   case Function:
    458     return "__FUNCTION__";
    459   case FuncDName:
    460     return "__FUNCDNAME__";
    461   case LFunction:
    462     return "L__FUNCTION__";
    463   case PrettyFunction:
    464     return "__PRETTY_FUNCTION__";
    465   case FuncSig:
    466     return "__FUNCSIG__";
    467   case PrettyFunctionNoVirtual:
    468     break;
    469   }
    470   llvm_unreachable("Unknown ident type for PredefinedExpr");
    471 }
    472 
    473 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
    474 // expr" policy instead.
    475 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
    476   ASTContext &Context = CurrentDecl->getASTContext();
    477 
    478   if (IT == PredefinedExpr::FuncDName) {
    479     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
    480       std::unique_ptr<MangleContext> MC;
    481       MC.reset(Context.createMangleContext());
    482 
    483       if (MC->shouldMangleDeclName(ND)) {
    484         SmallString<256> Buffer;
    485         llvm::raw_svector_ostream Out(Buffer);
    486         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
    487           MC->mangleCXXCtor(CD, Ctor_Base, Out);
    488         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
    489           MC->mangleCXXDtor(DD, Dtor_Base, Out);
    490         else
    491           MC->mangleName(ND, Out);
    492 
    493         Out.flush();
    494         if (!Buffer.empty() && Buffer.front() == '\01')
    495           return Buffer.substr(1);
    496         return Buffer.str();
    497       } else
    498         return ND->getIdentifier()->getName();
    499     }
    500     return "";
    501   }
    502   if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
    503     std::unique_ptr<MangleContext> MC;
    504     MC.reset(Context.createMangleContext());
    505     SmallString<256> Buffer;
    506     llvm::raw_svector_ostream Out(Buffer);
    507     auto DC = CurrentDecl->getDeclContext();
    508     if (DC->isFileContext())
    509       MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
    510     else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
    511       MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
    512     else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
    513       MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
    514     else
    515       MC->mangleBlock(DC, BD, Out);
    516     return Out.str();
    517   }
    518   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    519     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
    520       return FD->getNameAsString();
    521 
    522     SmallString<256> Name;
    523     llvm::raw_svector_ostream Out(Name);
    524 
    525     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    526       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
    527         Out << "virtual ";
    528       if (MD->isStatic())
    529         Out << "static ";
    530     }
    531 
    532     PrintingPolicy Policy(Context.getLangOpts());
    533     std::string Proto;
    534     llvm::raw_string_ostream POut(Proto);
    535 
    536     const FunctionDecl *Decl = FD;
    537     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
    538       Decl = Pattern;
    539     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
    540     const FunctionProtoType *FT = nullptr;
    541     if (FD->hasWrittenPrototype())
    542       FT = dyn_cast<FunctionProtoType>(AFT);
    543 
    544     if (IT == FuncSig) {
    545       switch (FT->getCallConv()) {
    546       case CC_C: POut << "__cdecl "; break;
    547       case CC_X86StdCall: POut << "__stdcall "; break;
    548       case CC_X86FastCall: POut << "__fastcall "; break;
    549       case CC_X86ThisCall: POut << "__thiscall "; break;
    550       case CC_X86VectorCall: POut << "__vectorcall "; break;
    551       // Only bother printing the conventions that MSVC knows about.
    552       default: break;
    553       }
    554     }
    555 
    556     FD->printQualifiedName(POut, Policy);
    557 
    558     POut << "(";
    559     if (FT) {
    560       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
    561         if (i) POut << ", ";
    562         POut << Decl->getParamDecl(i)->getType().stream(Policy);
    563       }
    564 
    565       if (FT->isVariadic()) {
    566         if (FD->getNumParams()) POut << ", ";
    567         POut << "...";
    568       }
    569     }
    570     POut << ")";
    571 
    572     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    573       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
    574       if (FT->isConst())
    575         POut << " const";
    576       if (FT->isVolatile())
    577         POut << " volatile";
    578       RefQualifierKind Ref = MD->getRefQualifier();
    579       if (Ref == RQ_LValue)
    580         POut << " &";
    581       else if (Ref == RQ_RValue)
    582         POut << " &&";
    583     }
    584 
    585     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
    586     SpecsTy Specs;
    587     const DeclContext *Ctx = FD->getDeclContext();
    588     while (Ctx && isa<NamedDecl>(Ctx)) {
    589       const ClassTemplateSpecializationDecl *Spec
    590                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
    591       if (Spec && !Spec->isExplicitSpecialization())
    592         Specs.push_back(Spec);
    593       Ctx = Ctx->getParent();
    594     }
    595 
    596     std::string TemplateParams;
    597     llvm::raw_string_ostream TOut(TemplateParams);
    598     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
    599          I != E; ++I) {
    600       const TemplateParameterList *Params
    601                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
    602       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
    603       assert(Params->size() == Args.size());
    604       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
    605         StringRef Param = Params->getParam(i)->getName();
    606         if (Param.empty()) continue;
    607         TOut << Param << " = ";
    608         Args.get(i).print(Policy, TOut);
    609         TOut << ", ";
    610       }
    611     }
    612 
    613     FunctionTemplateSpecializationInfo *FSI
    614                                           = FD->getTemplateSpecializationInfo();
    615     if (FSI && !FSI->isExplicitSpecialization()) {
    616       const TemplateParameterList* Params
    617                                   = FSI->getTemplate()->getTemplateParameters();
    618       const TemplateArgumentList* Args = FSI->TemplateArguments;
    619       assert(Params->size() == Args->size());
    620       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
    621         StringRef Param = Params->getParam(i)->getName();
    622         if (Param.empty()) continue;
    623         TOut << Param << " = ";
    624         Args->get(i).print(Policy, TOut);
    625         TOut << ", ";
    626       }
    627     }
    628 
    629     TOut.flush();
    630     if (!TemplateParams.empty()) {
    631       // remove the trailing comma and space
    632       TemplateParams.resize(TemplateParams.size() - 2);
    633       POut << " [" << TemplateParams << "]";
    634     }
    635 
    636     POut.flush();
    637 
    638     // Print "auto" for all deduced return types. This includes C++1y return
    639     // type deduction and lambdas. For trailing return types resolve the
    640     // decltype expression. Otherwise print the real type when this is
    641     // not a constructor or destructor.
    642     if (isa<CXXMethodDecl>(FD) &&
    643          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
    644       Proto = "auto " + Proto;
    645     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
    646       FT->getReturnType()
    647           ->getAs<DecltypeType>()
    648           ->getUnderlyingType()
    649           .getAsStringInternal(Proto, Policy);
    650     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
    651       AFT->getReturnType().getAsStringInternal(Proto, Policy);
    652 
    653     Out << Proto;
    654 
    655     Out.flush();
    656     return Name.str().str();
    657   }
    658   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
    659     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
    660       // Skip to its enclosing function or method, but not its enclosing
    661       // CapturedDecl.
    662       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
    663         const Decl *D = Decl::castFromDeclContext(DC);
    664         return ComputeName(IT, D);
    665       }
    666     llvm_unreachable("CapturedDecl not inside a function or method");
    667   }
    668   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    669     SmallString<256> Name;
    670     llvm::raw_svector_ostream Out(Name);
    671     Out << (MD->isInstanceMethod() ? '-' : '+');
    672     Out << '[';
    673 
    674     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
    675     // a null check to avoid a crash.
    676     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
    677       Out << *ID;
    678 
    679     if (const ObjCCategoryImplDecl *CID =
    680         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
    681       Out << '(' << *CID << ')';
    682 
    683     Out <<  ' ';
    684     MD->getSelector().print(Out);
    685     Out <<  ']';
    686 
    687     Out.flush();
    688     return Name.str().str();
    689   }
    690   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
    691     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    692     return "top level";
    693   }
    694   return "";
    695 }
    696 
    697 void APNumericStorage::setIntValue(const ASTContext &C,
    698                                    const llvm::APInt &Val) {
    699   if (hasAllocation())
    700     C.Deallocate(pVal);
    701 
    702   BitWidth = Val.getBitWidth();
    703   unsigned NumWords = Val.getNumWords();
    704   const uint64_t* Words = Val.getRawData();
    705   if (NumWords > 1) {
    706     pVal = new (C) uint64_t[NumWords];
    707     std::copy(Words, Words + NumWords, pVal);
    708   } else if (NumWords == 1)
    709     VAL = Words[0];
    710   else
    711     VAL = 0;
    712 }
    713 
    714 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
    715                                QualType type, SourceLocation l)
    716   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
    717          false, false),
    718     Loc(l) {
    719   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
    720   assert(V.getBitWidth() == C.getIntWidth(type) &&
    721          "Integer type is not the correct size for constant.");
    722   setValue(C, V);
    723 }
    724 
    725 IntegerLiteral *
    726 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
    727                        QualType type, SourceLocation l) {
    728   return new (C) IntegerLiteral(C, V, type, l);
    729 }
    730 
    731 IntegerLiteral *
    732 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
    733   return new (C) IntegerLiteral(Empty);
    734 }
    735 
    736 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
    737                                  bool isexact, QualType Type, SourceLocation L)
    738   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
    739          false, false), Loc(L) {
    740   setSemantics(V.getSemantics());
    741   FloatingLiteralBits.IsExact = isexact;
    742   setValue(C, V);
    743 }
    744 
    745 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
    746   : Expr(FloatingLiteralClass, Empty) {
    747   setRawSemantics(IEEEhalf);
    748   FloatingLiteralBits.IsExact = false;
    749 }
    750 
    751 FloatingLiteral *
    752 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
    753                         bool isexact, QualType Type, SourceLocation L) {
    754   return new (C) FloatingLiteral(C, V, isexact, Type, L);
    755 }
    756 
    757 FloatingLiteral *
    758 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
    759   return new (C) FloatingLiteral(C, Empty);
    760 }
    761 
    762 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
    763   switch(FloatingLiteralBits.Semantics) {
    764   case IEEEhalf:
    765     return llvm::APFloat::IEEEhalf;
    766   case IEEEsingle:
    767     return llvm::APFloat::IEEEsingle;
    768   case IEEEdouble:
    769     return llvm::APFloat::IEEEdouble;
    770   case x87DoubleExtended:
    771     return llvm::APFloat::x87DoubleExtended;
    772   case IEEEquad:
    773     return llvm::APFloat::IEEEquad;
    774   case PPCDoubleDouble:
    775     return llvm::APFloat::PPCDoubleDouble;
    776   }
    777   llvm_unreachable("Unrecognised floating semantics");
    778 }
    779 
    780 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
    781   if (&Sem == &llvm::APFloat::IEEEhalf)
    782     FloatingLiteralBits.Semantics = IEEEhalf;
    783   else if (&Sem == &llvm::APFloat::IEEEsingle)
    784     FloatingLiteralBits.Semantics = IEEEsingle;
    785   else if (&Sem == &llvm::APFloat::IEEEdouble)
    786     FloatingLiteralBits.Semantics = IEEEdouble;
    787   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
    788     FloatingLiteralBits.Semantics = x87DoubleExtended;
    789   else if (&Sem == &llvm::APFloat::IEEEquad)
    790     FloatingLiteralBits.Semantics = IEEEquad;
    791   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
    792     FloatingLiteralBits.Semantics = PPCDoubleDouble;
    793   else
    794     llvm_unreachable("Unknown floating semantics");
    795 }
    796 
    797 /// getValueAsApproximateDouble - This returns the value as an inaccurate
    798 /// double.  Note that this may cause loss of precision, but is useful for
    799 /// debugging dumps, etc.
    800 double FloatingLiteral::getValueAsApproximateDouble() const {
    801   llvm::APFloat V = getValue();
    802   bool ignored;
    803   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
    804             &ignored);
    805   return V.convertToDouble();
    806 }
    807 
    808 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
    809   int CharByteWidth = 0;
    810   switch(k) {
    811     case Ascii:
    812     case UTF8:
    813       CharByteWidth = target.getCharWidth();
    814       break;
    815     case Wide:
    816       CharByteWidth = target.getWCharWidth();
    817       break;
    818     case UTF16:
    819       CharByteWidth = target.getChar16Width();
    820       break;
    821     case UTF32:
    822       CharByteWidth = target.getChar32Width();
    823       break;
    824   }
    825   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
    826   CharByteWidth /= 8;
    827   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
    828          && "character byte widths supported are 1, 2, and 4 only");
    829   return CharByteWidth;
    830 }
    831 
    832 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
    833                                      StringKind Kind, bool Pascal, QualType Ty,
    834                                      const SourceLocation *Loc,
    835                                      unsigned NumStrs) {
    836   assert(C.getAsConstantArrayType(Ty) &&
    837          "StringLiteral must be of constant array type!");
    838 
    839   // Allocate enough space for the StringLiteral plus an array of locations for
    840   // any concatenated string tokens.
    841   void *Mem = C.Allocate(sizeof(StringLiteral)+
    842                          sizeof(SourceLocation)*(NumStrs-1),
    843                          llvm::alignOf<StringLiteral>());
    844   StringLiteral *SL = new (Mem) StringLiteral(Ty);
    845 
    846   // OPTIMIZE: could allocate this appended to the StringLiteral.
    847   SL->setString(C,Str,Kind,Pascal);
    848 
    849   SL->TokLocs[0] = Loc[0];
    850   SL->NumConcatenated = NumStrs;
    851 
    852   if (NumStrs != 1)
    853     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
    854   return SL;
    855 }
    856 
    857 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
    858                                           unsigned NumStrs) {
    859   void *Mem = C.Allocate(sizeof(StringLiteral)+
    860                          sizeof(SourceLocation)*(NumStrs-1),
    861                          llvm::alignOf<StringLiteral>());
    862   StringLiteral *SL = new (Mem) StringLiteral(QualType());
    863   SL->CharByteWidth = 0;
    864   SL->Length = 0;
    865   SL->NumConcatenated = NumStrs;
    866   return SL;
    867 }
    868 
    869 void StringLiteral::outputString(raw_ostream &OS) const {
    870   switch (getKind()) {
    871   case Ascii: break; // no prefix.
    872   case Wide:  OS << 'L'; break;
    873   case UTF8:  OS << "u8"; break;
    874   case UTF16: OS << 'u'; break;
    875   case UTF32: OS << 'U'; break;
    876   }
    877   OS << '"';
    878   static const char Hex[] = "0123456789ABCDEF";
    879 
    880   unsigned LastSlashX = getLength();
    881   for (unsigned I = 0, N = getLength(); I != N; ++I) {
    882     switch (uint32_t Char = getCodeUnit(I)) {
    883     default:
    884       // FIXME: Convert UTF-8 back to codepoints before rendering.
    885 
    886       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
    887       // Leave invalid surrogates alone; we'll use \x for those.
    888       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
    889           Char <= 0xdbff) {
    890         uint32_t Trail = getCodeUnit(I + 1);
    891         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
    892           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
    893           ++I;
    894         }
    895       }
    896 
    897       if (Char > 0xff) {
    898         // If this is a wide string, output characters over 0xff using \x
    899         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
    900         // codepoint: use \x escapes for invalid codepoints.
    901         if (getKind() == Wide ||
    902             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
    903           // FIXME: Is this the best way to print wchar_t?
    904           OS << "\\x";
    905           int Shift = 28;
    906           while ((Char >> Shift) == 0)
    907             Shift -= 4;
    908           for (/**/; Shift >= 0; Shift -= 4)
    909             OS << Hex[(Char >> Shift) & 15];
    910           LastSlashX = I;
    911           break;
    912         }
    913 
    914         if (Char > 0xffff)
    915           OS << "\\U00"
    916              << Hex[(Char >> 20) & 15]
    917              << Hex[(Char >> 16) & 15];
    918         else
    919           OS << "\\u";
    920         OS << Hex[(Char >> 12) & 15]
    921            << Hex[(Char >>  8) & 15]
    922            << Hex[(Char >>  4) & 15]
    923            << Hex[(Char >>  0) & 15];
    924         break;
    925       }
    926 
    927       // If we used \x... for the previous character, and this character is a
    928       // hexadecimal digit, prevent it being slurped as part of the \x.
    929       if (LastSlashX + 1 == I) {
    930         switch (Char) {
    931           case '0': case '1': case '2': case '3': case '4':
    932           case '5': case '6': case '7': case '8': case '9':
    933           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
    934           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
    935             OS << "\"\"";
    936         }
    937       }
    938 
    939       assert(Char <= 0xff &&
    940              "Characters above 0xff should already have been handled.");
    941 
    942       if (isPrintable(Char))
    943         OS << (char)Char;
    944       else  // Output anything hard as an octal escape.
    945         OS << '\\'
    946            << (char)('0' + ((Char >> 6) & 7))
    947            << (char)('0' + ((Char >> 3) & 7))
    948            << (char)('0' + ((Char >> 0) & 7));
    949       break;
    950     // Handle some common non-printable cases to make dumps prettier.
    951     case '\\': OS << "\\\\"; break;
    952     case '"': OS << "\\\""; break;
    953     case '\n': OS << "\\n"; break;
    954     case '\t': OS << "\\t"; break;
    955     case '\a': OS << "\\a"; break;
    956     case '\b': OS << "\\b"; break;
    957     }
    958   }
    959   OS << '"';
    960 }
    961 
    962 void StringLiteral::setString(const ASTContext &C, StringRef Str,
    963                               StringKind Kind, bool IsPascal) {
    964   //FIXME: we assume that the string data comes from a target that uses the same
    965   // code unit size and endianess for the type of string.
    966   this->Kind = Kind;
    967   this->IsPascal = IsPascal;
    968 
    969   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
    970   assert((Str.size()%CharByteWidth == 0)
    971          && "size of data must be multiple of CharByteWidth");
    972   Length = Str.size()/CharByteWidth;
    973 
    974   switch(CharByteWidth) {
    975     case 1: {
    976       char *AStrData = new (C) char[Length];
    977       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    978       StrData.asChar = AStrData;
    979       break;
    980     }
    981     case 2: {
    982       uint16_t *AStrData = new (C) uint16_t[Length];
    983       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    984       StrData.asUInt16 = AStrData;
    985       break;
    986     }
    987     case 4: {
    988       uint32_t *AStrData = new (C) uint32_t[Length];
    989       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    990       StrData.asUInt32 = AStrData;
    991       break;
    992     }
    993     default:
    994       assert(false && "unsupported CharByteWidth");
    995   }
    996 }
    997 
    998 /// getLocationOfByte - Return a source location that points to the specified
    999 /// byte of this string literal.
   1000 ///
   1001 /// Strings are amazingly complex.  They can be formed from multiple tokens and
   1002 /// can have escape sequences in them in addition to the usual trigraph and
   1003 /// escaped newline business.  This routine handles this complexity.
   1004 ///
   1005 SourceLocation StringLiteral::
   1006 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
   1007                   const LangOptions &Features, const TargetInfo &Target) const {
   1008   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
   1009          "Only narrow string literals are currently supported");
   1010 
   1011   // Loop over all of the tokens in this string until we find the one that
   1012   // contains the byte we're looking for.
   1013   unsigned TokNo = 0;
   1014   while (1) {
   1015     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
   1016     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
   1017 
   1018     // Get the spelling of the string so that we can get the data that makes up
   1019     // the string literal, not the identifier for the macro it is potentially
   1020     // expanded through.
   1021     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
   1022 
   1023     // Re-lex the token to get its length and original spelling.
   1024     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
   1025     bool Invalid = false;
   1026     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
   1027     if (Invalid)
   1028       return StrTokSpellingLoc;
   1029 
   1030     const char *StrData = Buffer.data()+LocInfo.second;
   1031 
   1032     // Create a lexer starting at the beginning of this token.
   1033     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
   1034                    Buffer.begin(), StrData, Buffer.end());
   1035     Token TheTok;
   1036     TheLexer.LexFromRawLexer(TheTok);
   1037 
   1038     // Use the StringLiteralParser to compute the length of the string in bytes.
   1039     StringLiteralParser SLP(TheTok, SM, Features, Target);
   1040     unsigned TokNumBytes = SLP.GetStringLength();
   1041 
   1042     // If the byte is in this token, return the location of the byte.
   1043     if (ByteNo < TokNumBytes ||
   1044         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
   1045       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
   1046 
   1047       // Now that we know the offset of the token in the spelling, use the
   1048       // preprocessor to get the offset in the original source.
   1049       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
   1050     }
   1051 
   1052     // Move to the next string token.
   1053     ++TokNo;
   1054     ByteNo -= TokNumBytes;
   1055   }
   1056 }
   1057 
   1058 
   1059 
   1060 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1061 /// corresponds to, e.g. "sizeof" or "[pre]++".
   1062 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
   1063   switch (Op) {
   1064   case UO_PostInc: return "++";
   1065   case UO_PostDec: return "--";
   1066   case UO_PreInc:  return "++";
   1067   case UO_PreDec:  return "--";
   1068   case UO_AddrOf:  return "&";
   1069   case UO_Deref:   return "*";
   1070   case UO_Plus:    return "+";
   1071   case UO_Minus:   return "-";
   1072   case UO_Not:     return "~";
   1073   case UO_LNot:    return "!";
   1074   case UO_Real:    return "__real";
   1075   case UO_Imag:    return "__imag";
   1076   case UO_Extension: return "__extension__";
   1077   }
   1078   llvm_unreachable("Unknown unary operator");
   1079 }
   1080 
   1081 UnaryOperatorKind
   1082 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
   1083   switch (OO) {
   1084   default: llvm_unreachable("No unary operator for overloaded function");
   1085   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
   1086   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
   1087   case OO_Amp:        return UO_AddrOf;
   1088   case OO_Star:       return UO_Deref;
   1089   case OO_Plus:       return UO_Plus;
   1090   case OO_Minus:      return UO_Minus;
   1091   case OO_Tilde:      return UO_Not;
   1092   case OO_Exclaim:    return UO_LNot;
   1093   }
   1094 }
   1095 
   1096 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
   1097   switch (Opc) {
   1098   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
   1099   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
   1100   case UO_AddrOf: return OO_Amp;
   1101   case UO_Deref: return OO_Star;
   1102   case UO_Plus: return OO_Plus;
   1103   case UO_Minus: return OO_Minus;
   1104   case UO_Not: return OO_Tilde;
   1105   case UO_LNot: return OO_Exclaim;
   1106   default: return OO_None;
   1107   }
   1108 }
   1109 
   1110 
   1111 //===----------------------------------------------------------------------===//
   1112 // Postfix Operators.
   1113 //===----------------------------------------------------------------------===//
   1114 
   1115 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
   1116                    unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
   1117                    ExprValueKind VK, SourceLocation rparenloc)
   1118   : Expr(SC, t, VK, OK_Ordinary,
   1119          fn->isTypeDependent(),
   1120          fn->isValueDependent(),
   1121          fn->isInstantiationDependent(),
   1122          fn->containsUnexpandedParameterPack()),
   1123     NumArgs(args.size()) {
   1124 
   1125   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
   1126   SubExprs[FN] = fn;
   1127   for (unsigned i = 0; i != args.size(); ++i) {
   1128     if (args[i]->isTypeDependent())
   1129       ExprBits.TypeDependent = true;
   1130     if (args[i]->isValueDependent())
   1131       ExprBits.ValueDependent = true;
   1132     if (args[i]->isInstantiationDependent())
   1133       ExprBits.InstantiationDependent = true;
   1134     if (args[i]->containsUnexpandedParameterPack())
   1135       ExprBits.ContainsUnexpandedParameterPack = true;
   1136 
   1137     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
   1138   }
   1139 
   1140   CallExprBits.NumPreArgs = NumPreArgs;
   1141   RParenLoc = rparenloc;
   1142 }
   1143 
   1144 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
   1145                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
   1146     : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) {
   1147 }
   1148 
   1149 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
   1150     : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
   1151 
   1152 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
   1153                    EmptyShell Empty)
   1154   : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
   1155   // FIXME: Why do we allocate this?
   1156   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
   1157   CallExprBits.NumPreArgs = NumPreArgs;
   1158 }
   1159 
   1160 Decl *CallExpr::getCalleeDecl() {
   1161   Expr *CEE = getCallee()->IgnoreParenImpCasts();
   1162 
   1163   while (SubstNonTypeTemplateParmExpr *NTTP
   1164                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
   1165     CEE = NTTP->getReplacement()->IgnoreParenCasts();
   1166   }
   1167 
   1168   // If we're calling a dereference, look at the pointer instead.
   1169   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
   1170     if (BO->isPtrMemOp())
   1171       CEE = BO->getRHS()->IgnoreParenCasts();
   1172   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
   1173     if (UO->getOpcode() == UO_Deref)
   1174       CEE = UO->getSubExpr()->IgnoreParenCasts();
   1175   }
   1176   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
   1177     return DRE->getDecl();
   1178   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
   1179     return ME->getMemberDecl();
   1180 
   1181   return nullptr;
   1182 }
   1183 
   1184 FunctionDecl *CallExpr::getDirectCallee() {
   1185   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
   1186 }
   1187 
   1188 /// setNumArgs - This changes the number of arguments present in this call.
   1189 /// Any orphaned expressions are deleted by this, and any new operands are set
   1190 /// to null.
   1191 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
   1192   // No change, just return.
   1193   if (NumArgs == getNumArgs()) return;
   1194 
   1195   // If shrinking # arguments, just delete the extras and forgot them.
   1196   if (NumArgs < getNumArgs()) {
   1197     this->NumArgs = NumArgs;
   1198     return;
   1199   }
   1200 
   1201   // Otherwise, we are growing the # arguments.  New an bigger argument array.
   1202   unsigned NumPreArgs = getNumPreArgs();
   1203   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
   1204   // Copy over args.
   1205   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
   1206     NewSubExprs[i] = SubExprs[i];
   1207   // Null out new args.
   1208   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
   1209        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
   1210     NewSubExprs[i] = nullptr;
   1211 
   1212   if (SubExprs) C.Deallocate(SubExprs);
   1213   SubExprs = NewSubExprs;
   1214   this->NumArgs = NumArgs;
   1215 }
   1216 
   1217 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
   1218 /// not, return 0.
   1219 unsigned CallExpr::getBuiltinCallee() const {
   1220   // All simple function calls (e.g. func()) are implicitly cast to pointer to
   1221   // function. As a result, we try and obtain the DeclRefExpr from the
   1222   // ImplicitCastExpr.
   1223   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
   1224   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
   1225     return 0;
   1226 
   1227   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
   1228   if (!DRE)
   1229     return 0;
   1230 
   1231   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
   1232   if (!FDecl)
   1233     return 0;
   1234 
   1235   if (!FDecl->getIdentifier())
   1236     return 0;
   1237 
   1238   return FDecl->getBuiltinID();
   1239 }
   1240 
   1241 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
   1242   if (unsigned BI = getBuiltinCallee())
   1243     return Ctx.BuiltinInfo.isUnevaluated(BI);
   1244   return false;
   1245 }
   1246 
   1247 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
   1248   const Expr *Callee = getCallee();
   1249   QualType CalleeType = Callee->getType();
   1250   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
   1251     CalleeType = FnTypePtr->getPointeeType();
   1252   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
   1253     CalleeType = BPT->getPointeeType();
   1254   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
   1255     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
   1256       return Ctx.VoidTy;
   1257 
   1258     // This should never be overloaded and so should never return null.
   1259     CalleeType = Expr::findBoundMemberType(Callee);
   1260   }
   1261 
   1262   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   1263   return FnType->getReturnType();
   1264 }
   1265 
   1266 SourceLocation CallExpr::getLocStart() const {
   1267   if (isa<CXXOperatorCallExpr>(this))
   1268     return cast<CXXOperatorCallExpr>(this)->getLocStart();
   1269 
   1270   SourceLocation begin = getCallee()->getLocStart();
   1271   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
   1272     begin = getArg(0)->getLocStart();
   1273   return begin;
   1274 }
   1275 SourceLocation CallExpr::getLocEnd() const {
   1276   if (isa<CXXOperatorCallExpr>(this))
   1277     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
   1278 
   1279   SourceLocation end = getRParenLoc();
   1280   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
   1281     end = getArg(getNumArgs() - 1)->getLocEnd();
   1282   return end;
   1283 }
   1284 
   1285 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
   1286                                    SourceLocation OperatorLoc,
   1287                                    TypeSourceInfo *tsi,
   1288                                    ArrayRef<OffsetOfNode> comps,
   1289                                    ArrayRef<Expr*> exprs,
   1290                                    SourceLocation RParenLoc) {
   1291   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
   1292                          sizeof(OffsetOfNode) * comps.size() +
   1293                          sizeof(Expr*) * exprs.size());
   1294 
   1295   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
   1296                                 RParenLoc);
   1297 }
   1298 
   1299 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
   1300                                         unsigned numComps, unsigned numExprs) {
   1301   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
   1302                          sizeof(OffsetOfNode) * numComps +
   1303                          sizeof(Expr*) * numExprs);
   1304   return new (Mem) OffsetOfExpr(numComps, numExprs);
   1305 }
   1306 
   1307 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
   1308                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
   1309                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
   1310                            SourceLocation RParenLoc)
   1311   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
   1312          /*TypeDependent=*/false,
   1313          /*ValueDependent=*/tsi->getType()->isDependentType(),
   1314          tsi->getType()->isInstantiationDependentType(),
   1315          tsi->getType()->containsUnexpandedParameterPack()),
   1316     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
   1317     NumComps(comps.size()), NumExprs(exprs.size())
   1318 {
   1319   for (unsigned i = 0; i != comps.size(); ++i) {
   1320     setComponent(i, comps[i]);
   1321   }
   1322 
   1323   for (unsigned i = 0; i != exprs.size(); ++i) {
   1324     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
   1325       ExprBits.ValueDependent = true;
   1326     if (exprs[i]->containsUnexpandedParameterPack())
   1327       ExprBits.ContainsUnexpandedParameterPack = true;
   1328 
   1329     setIndexExpr(i, exprs[i]);
   1330   }
   1331 }
   1332 
   1333 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
   1334   assert(getKind() == Field || getKind() == Identifier);
   1335   if (getKind() == Field)
   1336     return getField()->getIdentifier();
   1337 
   1338   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
   1339 }
   1340 
   1341 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
   1342     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
   1343     SourceLocation op, SourceLocation rp)
   1344     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
   1345            false, // Never type-dependent (C++ [temp.dep.expr]p3).
   1346            // Value-dependent if the argument is type-dependent.
   1347            E->isTypeDependent(), E->isInstantiationDependent(),
   1348            E->containsUnexpandedParameterPack()),
   1349       OpLoc(op), RParenLoc(rp) {
   1350   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
   1351   UnaryExprOrTypeTraitExprBits.IsType = false;
   1352   Argument.Ex = E;
   1353 
   1354   // Check to see if we are in the situation where alignof(decl) should be
   1355   // dependent because decl's alignment is dependent.
   1356   if (ExprKind == UETT_AlignOf) {
   1357     if (!isValueDependent() || !isInstantiationDependent()) {
   1358       E = E->IgnoreParens();
   1359 
   1360       const ValueDecl *D = nullptr;
   1361       if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
   1362         D = DRE->getDecl();
   1363       else if (const auto *ME = dyn_cast<MemberExpr>(E))
   1364         D = ME->getMemberDecl();
   1365 
   1366       if (D) {
   1367         for (const auto *I : D->specific_attrs<AlignedAttr>()) {
   1368           if (I->isAlignmentDependent()) {
   1369             setValueDependent(true);
   1370             setInstantiationDependent(true);
   1371             break;
   1372           }
   1373         }
   1374       }
   1375     }
   1376   }
   1377 }
   1378 
   1379 MemberExpr *MemberExpr::Create(
   1380     const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
   1381     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
   1382     ValueDecl *memberdecl, DeclAccessPair founddecl,
   1383     DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
   1384     QualType ty, ExprValueKind vk, ExprObjectKind ok) {
   1385   std::size_t Size = sizeof(MemberExpr);
   1386 
   1387   bool hasQualOrFound = (QualifierLoc ||
   1388                          founddecl.getDecl() != memberdecl ||
   1389                          founddecl.getAccess() != memberdecl->getAccess());
   1390   if (hasQualOrFound)
   1391     Size += sizeof(MemberNameQualifier);
   1392 
   1393   if (targs)
   1394     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
   1395   else if (TemplateKWLoc.isValid())
   1396     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
   1397 
   1398   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
   1399   MemberExpr *E = new (Mem)
   1400       MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
   1401 
   1402   if (hasQualOrFound) {
   1403     // FIXME: Wrong. We should be looking at the member declaration we found.
   1404     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
   1405       E->setValueDependent(true);
   1406       E->setTypeDependent(true);
   1407       E->setInstantiationDependent(true);
   1408     }
   1409     else if (QualifierLoc &&
   1410              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
   1411       E->setInstantiationDependent(true);
   1412 
   1413     E->HasQualifierOrFoundDecl = true;
   1414 
   1415     MemberNameQualifier *NQ = E->getMemberQualifier();
   1416     NQ->QualifierLoc = QualifierLoc;
   1417     NQ->FoundDecl = founddecl;
   1418   }
   1419 
   1420   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
   1421 
   1422   if (targs) {
   1423     bool Dependent = false;
   1424     bool InstantiationDependent = false;
   1425     bool ContainsUnexpandedParameterPack = false;
   1426     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
   1427                                                   Dependent,
   1428                                                   InstantiationDependent,
   1429                                              ContainsUnexpandedParameterPack);
   1430     if (InstantiationDependent)
   1431       E->setInstantiationDependent(true);
   1432   } else if (TemplateKWLoc.isValid()) {
   1433     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
   1434   }
   1435 
   1436   return E;
   1437 }
   1438 
   1439 SourceLocation MemberExpr::getLocStart() const {
   1440   if (isImplicitAccess()) {
   1441     if (hasQualifier())
   1442       return getQualifierLoc().getBeginLoc();
   1443     return MemberLoc;
   1444   }
   1445 
   1446   // FIXME: We don't want this to happen. Rather, we should be able to
   1447   // detect all kinds of implicit accesses more cleanly.
   1448   SourceLocation BaseStartLoc = getBase()->getLocStart();
   1449   if (BaseStartLoc.isValid())
   1450     return BaseStartLoc;
   1451   return MemberLoc;
   1452 }
   1453 SourceLocation MemberExpr::getLocEnd() const {
   1454   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
   1455   if (hasExplicitTemplateArgs())
   1456     EndLoc = getRAngleLoc();
   1457   else if (EndLoc.isInvalid())
   1458     EndLoc = getBase()->getLocEnd();
   1459   return EndLoc;
   1460 }
   1461 
   1462 bool CastExpr::CastConsistency() const {
   1463   switch (getCastKind()) {
   1464   case CK_DerivedToBase:
   1465   case CK_UncheckedDerivedToBase:
   1466   case CK_DerivedToBaseMemberPointer:
   1467   case CK_BaseToDerived:
   1468   case CK_BaseToDerivedMemberPointer:
   1469     assert(!path_empty() && "Cast kind should have a base path!");
   1470     break;
   1471 
   1472   case CK_CPointerToObjCPointerCast:
   1473     assert(getType()->isObjCObjectPointerType());
   1474     assert(getSubExpr()->getType()->isPointerType());
   1475     goto CheckNoBasePath;
   1476 
   1477   case CK_BlockPointerToObjCPointerCast:
   1478     assert(getType()->isObjCObjectPointerType());
   1479     assert(getSubExpr()->getType()->isBlockPointerType());
   1480     goto CheckNoBasePath;
   1481 
   1482   case CK_ReinterpretMemberPointer:
   1483     assert(getType()->isMemberPointerType());
   1484     assert(getSubExpr()->getType()->isMemberPointerType());
   1485     goto CheckNoBasePath;
   1486 
   1487   case CK_BitCast:
   1488     // Arbitrary casts to C pointer types count as bitcasts.
   1489     // Otherwise, we should only have block and ObjC pointer casts
   1490     // here if they stay within the type kind.
   1491     if (!getType()->isPointerType()) {
   1492       assert(getType()->isObjCObjectPointerType() ==
   1493              getSubExpr()->getType()->isObjCObjectPointerType());
   1494       assert(getType()->isBlockPointerType() ==
   1495              getSubExpr()->getType()->isBlockPointerType());
   1496     }
   1497     goto CheckNoBasePath;
   1498 
   1499   case CK_AnyPointerToBlockPointerCast:
   1500     assert(getType()->isBlockPointerType());
   1501     assert(getSubExpr()->getType()->isAnyPointerType() &&
   1502            !getSubExpr()->getType()->isBlockPointerType());
   1503     goto CheckNoBasePath;
   1504 
   1505   case CK_CopyAndAutoreleaseBlockObject:
   1506     assert(getType()->isBlockPointerType());
   1507     assert(getSubExpr()->getType()->isBlockPointerType());
   1508     goto CheckNoBasePath;
   1509 
   1510   case CK_FunctionToPointerDecay:
   1511     assert(getType()->isPointerType());
   1512     assert(getSubExpr()->getType()->isFunctionType());
   1513     goto CheckNoBasePath;
   1514 
   1515   case CK_AddressSpaceConversion:
   1516     assert(getType()->isPointerType());
   1517     assert(getSubExpr()->getType()->isPointerType());
   1518     assert(getType()->getPointeeType().getAddressSpace() !=
   1519            getSubExpr()->getType()->getPointeeType().getAddressSpace());
   1520   // These should not have an inheritance path.
   1521   case CK_Dynamic:
   1522   case CK_ToUnion:
   1523   case CK_ArrayToPointerDecay:
   1524   case CK_NullToMemberPointer:
   1525   case CK_NullToPointer:
   1526   case CK_ConstructorConversion:
   1527   case CK_IntegralToPointer:
   1528   case CK_PointerToIntegral:
   1529   case CK_ToVoid:
   1530   case CK_VectorSplat:
   1531   case CK_IntegralCast:
   1532   case CK_IntegralToFloating:
   1533   case CK_FloatingToIntegral:
   1534   case CK_FloatingCast:
   1535   case CK_ObjCObjectLValueCast:
   1536   case CK_FloatingRealToComplex:
   1537   case CK_FloatingComplexToReal:
   1538   case CK_FloatingComplexCast:
   1539   case CK_FloatingComplexToIntegralComplex:
   1540   case CK_IntegralRealToComplex:
   1541   case CK_IntegralComplexToReal:
   1542   case CK_IntegralComplexCast:
   1543   case CK_IntegralComplexToFloatingComplex:
   1544   case CK_ARCProduceObject:
   1545   case CK_ARCConsumeObject:
   1546   case CK_ARCReclaimReturnedObject:
   1547   case CK_ARCExtendBlockObject:
   1548   case CK_ZeroToOCLEvent:
   1549     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
   1550     goto CheckNoBasePath;
   1551 
   1552   case CK_Dependent:
   1553   case CK_LValueToRValue:
   1554   case CK_NoOp:
   1555   case CK_AtomicToNonAtomic:
   1556   case CK_NonAtomicToAtomic:
   1557   case CK_PointerToBoolean:
   1558   case CK_IntegralToBoolean:
   1559   case CK_FloatingToBoolean:
   1560   case CK_MemberPointerToBoolean:
   1561   case CK_FloatingComplexToBoolean:
   1562   case CK_IntegralComplexToBoolean:
   1563   case CK_LValueBitCast:            // -> bool&
   1564   case CK_UserDefinedConversion:    // operator bool()
   1565   case CK_BuiltinFnToFnPtr:
   1566   CheckNoBasePath:
   1567     assert(path_empty() && "Cast kind should not have a base path!");
   1568     break;
   1569   }
   1570   return true;
   1571 }
   1572 
   1573 const char *CastExpr::getCastKindName() const {
   1574   switch (getCastKind()) {
   1575   case CK_Dependent:
   1576     return "Dependent";
   1577   case CK_BitCast:
   1578     return "BitCast";
   1579   case CK_LValueBitCast:
   1580     return "LValueBitCast";
   1581   case CK_LValueToRValue:
   1582     return "LValueToRValue";
   1583   case CK_NoOp:
   1584     return "NoOp";
   1585   case CK_BaseToDerived:
   1586     return "BaseToDerived";
   1587   case CK_DerivedToBase:
   1588     return "DerivedToBase";
   1589   case CK_UncheckedDerivedToBase:
   1590     return "UncheckedDerivedToBase";
   1591   case CK_Dynamic:
   1592     return "Dynamic";
   1593   case CK_ToUnion:
   1594     return "ToUnion";
   1595   case CK_ArrayToPointerDecay:
   1596     return "ArrayToPointerDecay";
   1597   case CK_FunctionToPointerDecay:
   1598     return "FunctionToPointerDecay";
   1599   case CK_NullToMemberPointer:
   1600     return "NullToMemberPointer";
   1601   case CK_NullToPointer:
   1602     return "NullToPointer";
   1603   case CK_BaseToDerivedMemberPointer:
   1604     return "BaseToDerivedMemberPointer";
   1605   case CK_DerivedToBaseMemberPointer:
   1606     return "DerivedToBaseMemberPointer";
   1607   case CK_ReinterpretMemberPointer:
   1608     return "ReinterpretMemberPointer";
   1609   case CK_UserDefinedConversion:
   1610     return "UserDefinedConversion";
   1611   case CK_ConstructorConversion:
   1612     return "ConstructorConversion";
   1613   case CK_IntegralToPointer:
   1614     return "IntegralToPointer";
   1615   case CK_PointerToIntegral:
   1616     return "PointerToIntegral";
   1617   case CK_PointerToBoolean:
   1618     return "PointerToBoolean";
   1619   case CK_ToVoid:
   1620     return "ToVoid";
   1621   case CK_VectorSplat:
   1622     return "VectorSplat";
   1623   case CK_IntegralCast:
   1624     return "IntegralCast";
   1625   case CK_IntegralToBoolean:
   1626     return "IntegralToBoolean";
   1627   case CK_IntegralToFloating:
   1628     return "IntegralToFloating";
   1629   case CK_FloatingToIntegral:
   1630     return "FloatingToIntegral";
   1631   case CK_FloatingCast:
   1632     return "FloatingCast";
   1633   case CK_FloatingToBoolean:
   1634     return "FloatingToBoolean";
   1635   case CK_MemberPointerToBoolean:
   1636     return "MemberPointerToBoolean";
   1637   case CK_CPointerToObjCPointerCast:
   1638     return "CPointerToObjCPointerCast";
   1639   case CK_BlockPointerToObjCPointerCast:
   1640     return "BlockPointerToObjCPointerCast";
   1641   case CK_AnyPointerToBlockPointerCast:
   1642     return "AnyPointerToBlockPointerCast";
   1643   case CK_ObjCObjectLValueCast:
   1644     return "ObjCObjectLValueCast";
   1645   case CK_FloatingRealToComplex:
   1646     return "FloatingRealToComplex";
   1647   case CK_FloatingComplexToReal:
   1648     return "FloatingComplexToReal";
   1649   case CK_FloatingComplexToBoolean:
   1650     return "FloatingComplexToBoolean";
   1651   case CK_FloatingComplexCast:
   1652     return "FloatingComplexCast";
   1653   case CK_FloatingComplexToIntegralComplex:
   1654     return "FloatingComplexToIntegralComplex";
   1655   case CK_IntegralRealToComplex:
   1656     return "IntegralRealToComplex";
   1657   case CK_IntegralComplexToReal:
   1658     return "IntegralComplexToReal";
   1659   case CK_IntegralComplexToBoolean:
   1660     return "IntegralComplexToBoolean";
   1661   case CK_IntegralComplexCast:
   1662     return "IntegralComplexCast";
   1663   case CK_IntegralComplexToFloatingComplex:
   1664     return "IntegralComplexToFloatingComplex";
   1665   case CK_ARCConsumeObject:
   1666     return "ARCConsumeObject";
   1667   case CK_ARCProduceObject:
   1668     return "ARCProduceObject";
   1669   case CK_ARCReclaimReturnedObject:
   1670     return "ARCReclaimReturnedObject";
   1671   case CK_ARCExtendBlockObject:
   1672     return "ARCExtendBlockObject";
   1673   case CK_AtomicToNonAtomic:
   1674     return "AtomicToNonAtomic";
   1675   case CK_NonAtomicToAtomic:
   1676     return "NonAtomicToAtomic";
   1677   case CK_CopyAndAutoreleaseBlockObject:
   1678     return "CopyAndAutoreleaseBlockObject";
   1679   case CK_BuiltinFnToFnPtr:
   1680     return "BuiltinFnToFnPtr";
   1681   case CK_ZeroToOCLEvent:
   1682     return "ZeroToOCLEvent";
   1683   case CK_AddressSpaceConversion:
   1684     return "AddressSpaceConversion";
   1685   }
   1686 
   1687   llvm_unreachable("Unhandled cast kind!");
   1688 }
   1689 
   1690 Expr *CastExpr::getSubExprAsWritten() {
   1691   Expr *SubExpr = nullptr;
   1692   CastExpr *E = this;
   1693   do {
   1694     SubExpr = E->getSubExpr();
   1695 
   1696     // Skip through reference binding to temporary.
   1697     if (MaterializeTemporaryExpr *Materialize
   1698                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
   1699       SubExpr = Materialize->GetTemporaryExpr();
   1700 
   1701     // Skip any temporary bindings; they're implicit.
   1702     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
   1703       SubExpr = Binder->getSubExpr();
   1704 
   1705     // Conversions by constructor and conversion functions have a
   1706     // subexpression describing the call; strip it off.
   1707     if (E->getCastKind() == CK_ConstructorConversion)
   1708       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
   1709     else if (E->getCastKind() == CK_UserDefinedConversion)
   1710       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
   1711 
   1712     // If the subexpression we're left with is an implicit cast, look
   1713     // through that, too.
   1714   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
   1715 
   1716   return SubExpr;
   1717 }
   1718 
   1719 CXXBaseSpecifier **CastExpr::path_buffer() {
   1720   switch (getStmtClass()) {
   1721 #define ABSTRACT_STMT(x)
   1722 #define CASTEXPR(Type, Base) \
   1723   case Stmt::Type##Class: \
   1724     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
   1725 #define STMT(Type, Base)
   1726 #include "clang/AST/StmtNodes.inc"
   1727   default:
   1728     llvm_unreachable("non-cast expressions not possible here");
   1729   }
   1730 }
   1731 
   1732 void CastExpr::setCastPath(const CXXCastPath &Path) {
   1733   assert(Path.size() == path_size());
   1734   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
   1735 }
   1736 
   1737 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
   1738                                            CastKind Kind, Expr *Operand,
   1739                                            const CXXCastPath *BasePath,
   1740                                            ExprValueKind VK) {
   1741   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1742   void *Buffer =
   1743     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1744   ImplicitCastExpr *E =
   1745     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
   1746   if (PathSize) E->setCastPath(*BasePath);
   1747   return E;
   1748 }
   1749 
   1750 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
   1751                                                 unsigned PathSize) {
   1752   void *Buffer =
   1753     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1754   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
   1755 }
   1756 
   1757 
   1758 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
   1759                                        ExprValueKind VK, CastKind K, Expr *Op,
   1760                                        const CXXCastPath *BasePath,
   1761                                        TypeSourceInfo *WrittenTy,
   1762                                        SourceLocation L, SourceLocation R) {
   1763   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1764   void *Buffer =
   1765     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1766   CStyleCastExpr *E =
   1767     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
   1768   if (PathSize) E->setCastPath(*BasePath);
   1769   return E;
   1770 }
   1771 
   1772 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
   1773                                             unsigned PathSize) {
   1774   void *Buffer =
   1775     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1776   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
   1777 }
   1778 
   1779 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1780 /// corresponds to, e.g. "<<=".
   1781 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
   1782   switch (Op) {
   1783   case BO_PtrMemD:   return ".*";
   1784   case BO_PtrMemI:   return "->*";
   1785   case BO_Mul:       return "*";
   1786   case BO_Div:       return "/";
   1787   case BO_Rem:       return "%";
   1788   case BO_Add:       return "+";
   1789   case BO_Sub:       return "-";
   1790   case BO_Shl:       return "<<";
   1791   case BO_Shr:       return ">>";
   1792   case BO_LT:        return "<";
   1793   case BO_GT:        return ">";
   1794   case BO_LE:        return "<=";
   1795   case BO_GE:        return ">=";
   1796   case BO_EQ:        return "==";
   1797   case BO_NE:        return "!=";
   1798   case BO_And:       return "&";
   1799   case BO_Xor:       return "^";
   1800   case BO_Or:        return "|";
   1801   case BO_LAnd:      return "&&";
   1802   case BO_LOr:       return "||";
   1803   case BO_Assign:    return "=";
   1804   case BO_MulAssign: return "*=";
   1805   case BO_DivAssign: return "/=";
   1806   case BO_RemAssign: return "%=";
   1807   case BO_AddAssign: return "+=";
   1808   case BO_SubAssign: return "-=";
   1809   case BO_ShlAssign: return "<<=";
   1810   case BO_ShrAssign: return ">>=";
   1811   case BO_AndAssign: return "&=";
   1812   case BO_XorAssign: return "^=";
   1813   case BO_OrAssign:  return "|=";
   1814   case BO_Comma:     return ",";
   1815   }
   1816 
   1817   llvm_unreachable("Invalid OpCode!");
   1818 }
   1819 
   1820 BinaryOperatorKind
   1821 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
   1822   switch (OO) {
   1823   default: llvm_unreachable("Not an overloadable binary operator");
   1824   case OO_Plus: return BO_Add;
   1825   case OO_Minus: return BO_Sub;
   1826   case OO_Star: return BO_Mul;
   1827   case OO_Slash: return BO_Div;
   1828   case OO_Percent: return BO_Rem;
   1829   case OO_Caret: return BO_Xor;
   1830   case OO_Amp: return BO_And;
   1831   case OO_Pipe: return BO_Or;
   1832   case OO_Equal: return BO_Assign;
   1833   case OO_Less: return BO_LT;
   1834   case OO_Greater: return BO_GT;
   1835   case OO_PlusEqual: return BO_AddAssign;
   1836   case OO_MinusEqual: return BO_SubAssign;
   1837   case OO_StarEqual: return BO_MulAssign;
   1838   case OO_SlashEqual: return BO_DivAssign;
   1839   case OO_PercentEqual: return BO_RemAssign;
   1840   case OO_CaretEqual: return BO_XorAssign;
   1841   case OO_AmpEqual: return BO_AndAssign;
   1842   case OO_PipeEqual: return BO_OrAssign;
   1843   case OO_LessLess: return BO_Shl;
   1844   case OO_GreaterGreater: return BO_Shr;
   1845   case OO_LessLessEqual: return BO_ShlAssign;
   1846   case OO_GreaterGreaterEqual: return BO_ShrAssign;
   1847   case OO_EqualEqual: return BO_EQ;
   1848   case OO_ExclaimEqual: return BO_NE;
   1849   case OO_LessEqual: return BO_LE;
   1850   case OO_GreaterEqual: return BO_GE;
   1851   case OO_AmpAmp: return BO_LAnd;
   1852   case OO_PipePipe: return BO_LOr;
   1853   case OO_Comma: return BO_Comma;
   1854   case OO_ArrowStar: return BO_PtrMemI;
   1855   }
   1856 }
   1857 
   1858 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
   1859   static const OverloadedOperatorKind OverOps[] = {
   1860     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
   1861     OO_Star, OO_Slash, OO_Percent,
   1862     OO_Plus, OO_Minus,
   1863     OO_LessLess, OO_GreaterGreater,
   1864     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
   1865     OO_EqualEqual, OO_ExclaimEqual,
   1866     OO_Amp,
   1867     OO_Caret,
   1868     OO_Pipe,
   1869     OO_AmpAmp,
   1870     OO_PipePipe,
   1871     OO_Equal, OO_StarEqual,
   1872     OO_SlashEqual, OO_PercentEqual,
   1873     OO_PlusEqual, OO_MinusEqual,
   1874     OO_LessLessEqual, OO_GreaterGreaterEqual,
   1875     OO_AmpEqual, OO_CaretEqual,
   1876     OO_PipeEqual,
   1877     OO_Comma
   1878   };
   1879   return OverOps[Opc];
   1880 }
   1881 
   1882 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
   1883                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
   1884   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
   1885          false, false),
   1886     InitExprs(C, initExprs.size()),
   1887     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
   1888 {
   1889   sawArrayRangeDesignator(false);
   1890   for (unsigned I = 0; I != initExprs.size(); ++I) {
   1891     if (initExprs[I]->isTypeDependent())
   1892       ExprBits.TypeDependent = true;
   1893     if (initExprs[I]->isValueDependent())
   1894       ExprBits.ValueDependent = true;
   1895     if (initExprs[I]->isInstantiationDependent())
   1896       ExprBits.InstantiationDependent = true;
   1897     if (initExprs[I]->containsUnexpandedParameterPack())
   1898       ExprBits.ContainsUnexpandedParameterPack = true;
   1899   }
   1900 
   1901   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
   1902 }
   1903 
   1904 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
   1905   if (NumInits > InitExprs.size())
   1906     InitExprs.reserve(C, NumInits);
   1907 }
   1908 
   1909 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
   1910   InitExprs.resize(C, NumInits, nullptr);
   1911 }
   1912 
   1913 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
   1914   if (Init >= InitExprs.size()) {
   1915     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
   1916     setInit(Init, expr);
   1917     return nullptr;
   1918   }
   1919 
   1920   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
   1921   setInit(Init, expr);
   1922   return Result;
   1923 }
   1924 
   1925 void InitListExpr::setArrayFiller(Expr *filler) {
   1926   assert(!hasArrayFiller() && "Filler already set!");
   1927   ArrayFillerOrUnionFieldInit = filler;
   1928   // Fill out any "holes" in the array due to designated initializers.
   1929   Expr **inits = getInits();
   1930   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
   1931     if (inits[i] == nullptr)
   1932       inits[i] = filler;
   1933 }
   1934 
   1935 bool InitListExpr::isStringLiteralInit() const {
   1936   if (getNumInits() != 1)
   1937     return false;
   1938   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
   1939   if (!AT || !AT->getElementType()->isIntegerType())
   1940     return false;
   1941   // It is possible for getInit() to return null.
   1942   const Expr *Init = getInit(0);
   1943   if (!Init)
   1944     return false;
   1945   Init = Init->IgnoreParens();
   1946   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
   1947 }
   1948 
   1949 SourceLocation InitListExpr::getLocStart() const {
   1950   if (InitListExpr *SyntacticForm = getSyntacticForm())
   1951     return SyntacticForm->getLocStart();
   1952   SourceLocation Beg = LBraceLoc;
   1953   if (Beg.isInvalid()) {
   1954     // Find the first non-null initializer.
   1955     for (InitExprsTy::const_iterator I = InitExprs.begin(),
   1956                                      E = InitExprs.end();
   1957       I != E; ++I) {
   1958       if (Stmt *S = *I) {
   1959         Beg = S->getLocStart();
   1960         break;
   1961       }
   1962     }
   1963   }
   1964   return Beg;
   1965 }
   1966 
   1967 SourceLocation InitListExpr::getLocEnd() const {
   1968   if (InitListExpr *SyntacticForm = getSyntacticForm())
   1969     return SyntacticForm->getLocEnd();
   1970   SourceLocation End = RBraceLoc;
   1971   if (End.isInvalid()) {
   1972     // Find the first non-null initializer from the end.
   1973     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
   1974          E = InitExprs.rend();
   1975          I != E; ++I) {
   1976       if (Stmt *S = *I) {
   1977         End = S->getLocEnd();
   1978         break;
   1979       }
   1980     }
   1981   }
   1982   return End;
   1983 }
   1984 
   1985 /// getFunctionType - Return the underlying function type for this block.
   1986 ///
   1987 const FunctionProtoType *BlockExpr::getFunctionType() const {
   1988   // The block pointer is never sugared, but the function type might be.
   1989   return cast<BlockPointerType>(getType())
   1990            ->getPointeeType()->castAs<FunctionProtoType>();
   1991 }
   1992 
   1993 SourceLocation BlockExpr::getCaretLocation() const {
   1994   return TheBlock->getCaretLocation();
   1995 }
   1996 const Stmt *BlockExpr::getBody() const {
   1997   return TheBlock->getBody();
   1998 }
   1999 Stmt *BlockExpr::getBody() {
   2000   return TheBlock->getBody();
   2001 }
   2002 
   2003 
   2004 //===----------------------------------------------------------------------===//
   2005 // Generic Expression Routines
   2006 //===----------------------------------------------------------------------===//
   2007 
   2008 /// isUnusedResultAWarning - Return true if this immediate expression should
   2009 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
   2010 /// with location to warn on and the source range[s] to report with the
   2011 /// warning.
   2012 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
   2013                                   SourceRange &R1, SourceRange &R2,
   2014                                   ASTContext &Ctx) const {
   2015   // Don't warn if the expr is type dependent. The type could end up
   2016   // instantiating to void.
   2017   if (isTypeDependent())
   2018     return false;
   2019 
   2020   switch (getStmtClass()) {
   2021   default:
   2022     if (getType()->isVoidType())
   2023       return false;
   2024     WarnE = this;
   2025     Loc = getExprLoc();
   2026     R1 = getSourceRange();
   2027     return true;
   2028   case ParenExprClass:
   2029     return cast<ParenExpr>(this)->getSubExpr()->
   2030       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2031   case GenericSelectionExprClass:
   2032     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   2033       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2034   case ChooseExprClass:
   2035     return cast<ChooseExpr>(this)->getChosenSubExpr()->
   2036       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2037   case UnaryOperatorClass: {
   2038     const UnaryOperator *UO = cast<UnaryOperator>(this);
   2039 
   2040     switch (UO->getOpcode()) {
   2041     case UO_Plus:
   2042     case UO_Minus:
   2043     case UO_AddrOf:
   2044     case UO_Not:
   2045     case UO_LNot:
   2046     case UO_Deref:
   2047       break;
   2048     case UO_PostInc:
   2049     case UO_PostDec:
   2050     case UO_PreInc:
   2051     case UO_PreDec:                 // ++/--
   2052       return false;  // Not a warning.
   2053     case UO_Real:
   2054     case UO_Imag:
   2055       // accessing a piece of a volatile complex is a side-effect.
   2056       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
   2057           .isVolatileQualified())
   2058         return false;
   2059       break;
   2060     case UO_Extension:
   2061       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2062     }
   2063     WarnE = this;
   2064     Loc = UO->getOperatorLoc();
   2065     R1 = UO->getSubExpr()->getSourceRange();
   2066     return true;
   2067   }
   2068   case BinaryOperatorClass: {
   2069     const BinaryOperator *BO = cast<BinaryOperator>(this);
   2070     switch (BO->getOpcode()) {
   2071       default:
   2072         break;
   2073       // Consider the RHS of comma for side effects. LHS was checked by
   2074       // Sema::CheckCommaOperands.
   2075       case BO_Comma:
   2076         // ((foo = <blah>), 0) is an idiom for hiding the result (and
   2077         // lvalue-ness) of an assignment written in a macro.
   2078         if (IntegerLiteral *IE =
   2079               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
   2080           if (IE->getValue() == 0)
   2081             return false;
   2082         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2083       // Consider '||', '&&' to have side effects if the LHS or RHS does.
   2084       case BO_LAnd:
   2085       case BO_LOr:
   2086         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
   2087             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
   2088           return false;
   2089         break;
   2090     }
   2091     if (BO->isAssignmentOp())
   2092       return false;
   2093     WarnE = this;
   2094     Loc = BO->getOperatorLoc();
   2095     R1 = BO->getLHS()->getSourceRange();
   2096     R2 = BO->getRHS()->getSourceRange();
   2097     return true;
   2098   }
   2099   case CompoundAssignOperatorClass:
   2100   case VAArgExprClass:
   2101   case AtomicExprClass:
   2102     return false;
   2103 
   2104   case ConditionalOperatorClass: {
   2105     // If only one of the LHS or RHS is a warning, the operator might
   2106     // be being used for control flow. Only warn if both the LHS and
   2107     // RHS are warnings.
   2108     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
   2109     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
   2110       return false;
   2111     if (!Exp->getLHS())
   2112       return true;
   2113     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2114   }
   2115 
   2116   case MemberExprClass:
   2117     WarnE = this;
   2118     Loc = cast<MemberExpr>(this)->getMemberLoc();
   2119     R1 = SourceRange(Loc, Loc);
   2120     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
   2121     return true;
   2122 
   2123   case ArraySubscriptExprClass:
   2124     WarnE = this;
   2125     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
   2126     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
   2127     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
   2128     return true;
   2129 
   2130   case CXXOperatorCallExprClass: {
   2131     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
   2132     // overloads as there is no reasonable way to define these such that they
   2133     // have non-trivial, desirable side-effects. See the -Wunused-comparison
   2134     // warning: operators == and != are commonly typo'ed, and so warning on them
   2135     // provides additional value as well. If this list is updated,
   2136     // DiagnoseUnusedComparison should be as well.
   2137     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
   2138     switch (Op->getOperator()) {
   2139     default:
   2140       break;
   2141     case OO_EqualEqual:
   2142     case OO_ExclaimEqual:
   2143     case OO_Less:
   2144     case OO_Greater:
   2145     case OO_GreaterEqual:
   2146     case OO_LessEqual:
   2147       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
   2148           Op->getCallReturnType(Ctx)->isVoidType())
   2149         break;
   2150       WarnE = this;
   2151       Loc = Op->getOperatorLoc();
   2152       R1 = Op->getSourceRange();
   2153       return true;
   2154     }
   2155 
   2156     // Fallthrough for generic call handling.
   2157   }
   2158   case CallExprClass:
   2159   case CXXMemberCallExprClass:
   2160   case UserDefinedLiteralClass: {
   2161     // If this is a direct call, get the callee.
   2162     const CallExpr *CE = cast<CallExpr>(this);
   2163     if (const Decl *FD = CE->getCalleeDecl()) {
   2164       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
   2165       bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
   2166                                           : FD->hasAttr<WarnUnusedResultAttr>();
   2167 
   2168       // If the callee has attribute pure, const, or warn_unused_result, warn
   2169       // about it. void foo() { strlen("bar"); } should warn.
   2170       //
   2171       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
   2172       // updated to match for QoI.
   2173       if (HasWarnUnusedResultAttr ||
   2174           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
   2175         WarnE = this;
   2176         Loc = CE->getCallee()->getLocStart();
   2177         R1 = CE->getCallee()->getSourceRange();
   2178 
   2179         if (unsigned NumArgs = CE->getNumArgs())
   2180           R2 = SourceRange(CE->getArg(0)->getLocStart(),
   2181                            CE->getArg(NumArgs-1)->getLocEnd());
   2182         return true;
   2183       }
   2184     }
   2185     return false;
   2186   }
   2187 
   2188   // If we don't know precisely what we're looking at, let's not warn.
   2189   case UnresolvedLookupExprClass:
   2190   case CXXUnresolvedConstructExprClass:
   2191     return false;
   2192 
   2193   case CXXTemporaryObjectExprClass:
   2194   case CXXConstructExprClass: {
   2195     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
   2196       if (Type->hasAttr<WarnUnusedAttr>()) {
   2197         WarnE = this;
   2198         Loc = getLocStart();
   2199         R1 = getSourceRange();
   2200         return true;
   2201       }
   2202     }
   2203     return false;
   2204   }
   2205 
   2206   case ObjCMessageExprClass: {
   2207     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
   2208     if (Ctx.getLangOpts().ObjCAutoRefCount &&
   2209         ME->isInstanceMessage() &&
   2210         !ME->getType()->isVoidType() &&
   2211         ME->getMethodFamily() == OMF_init) {
   2212       WarnE = this;
   2213       Loc = getExprLoc();
   2214       R1 = ME->getSourceRange();
   2215       return true;
   2216     }
   2217 
   2218     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
   2219       if (MD->hasAttr<WarnUnusedResultAttr>()) {
   2220         WarnE = this;
   2221         Loc = getExprLoc();
   2222         return true;
   2223       }
   2224 
   2225     return false;
   2226   }
   2227 
   2228   case ObjCPropertyRefExprClass:
   2229     WarnE = this;
   2230     Loc = getExprLoc();
   2231     R1 = getSourceRange();
   2232     return true;
   2233 
   2234   case PseudoObjectExprClass: {
   2235     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
   2236 
   2237     // Only complain about things that have the form of a getter.
   2238     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
   2239         isa<BinaryOperator>(PO->getSyntacticForm()))
   2240       return false;
   2241 
   2242     WarnE = this;
   2243     Loc = getExprLoc();
   2244     R1 = getSourceRange();
   2245     return true;
   2246   }
   2247 
   2248   case StmtExprClass: {
   2249     // Statement exprs don't logically have side effects themselves, but are
   2250     // sometimes used in macros in ways that give them a type that is unused.
   2251     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
   2252     // however, if the result of the stmt expr is dead, we don't want to emit a
   2253     // warning.
   2254     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
   2255     if (!CS->body_empty()) {
   2256       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
   2257         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2258       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
   2259         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
   2260           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2261     }
   2262 
   2263     if (getType()->isVoidType())
   2264       return false;
   2265     WarnE = this;
   2266     Loc = cast<StmtExpr>(this)->getLParenLoc();
   2267     R1 = getSourceRange();
   2268     return true;
   2269   }
   2270   case CXXFunctionalCastExprClass:
   2271   case CStyleCastExprClass: {
   2272     // Ignore an explicit cast to void unless the operand is a non-trivial
   2273     // volatile lvalue.
   2274     const CastExpr *CE = cast<CastExpr>(this);
   2275     if (CE->getCastKind() == CK_ToVoid) {
   2276       if (CE->getSubExpr()->isGLValue() &&
   2277           CE->getSubExpr()->getType().isVolatileQualified()) {
   2278         const DeclRefExpr *DRE =
   2279             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
   2280         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
   2281               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
   2282           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
   2283                                                           R1, R2, Ctx);
   2284         }
   2285       }
   2286       return false;
   2287     }
   2288 
   2289     // If this is a cast to a constructor conversion, check the operand.
   2290     // Otherwise, the result of the cast is unused.
   2291     if (CE->getCastKind() == CK_ConstructorConversion)
   2292       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2293 
   2294     WarnE = this;
   2295     if (const CXXFunctionalCastExpr *CXXCE =
   2296             dyn_cast<CXXFunctionalCastExpr>(this)) {
   2297       Loc = CXXCE->getLocStart();
   2298       R1 = CXXCE->getSubExpr()->getSourceRange();
   2299     } else {
   2300       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
   2301       Loc = CStyleCE->getLParenLoc();
   2302       R1 = CStyleCE->getSubExpr()->getSourceRange();
   2303     }
   2304     return true;
   2305   }
   2306   case ImplicitCastExprClass: {
   2307     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
   2308 
   2309     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
   2310     if (ICE->getCastKind() == CK_LValueToRValue &&
   2311         ICE->getSubExpr()->getType().isVolatileQualified())
   2312       return false;
   2313 
   2314     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2315   }
   2316   case CXXDefaultArgExprClass:
   2317     return (cast<CXXDefaultArgExpr>(this)
   2318             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2319   case CXXDefaultInitExprClass:
   2320     return (cast<CXXDefaultInitExpr>(this)
   2321             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2322 
   2323   case CXXNewExprClass:
   2324     // FIXME: In theory, there might be new expressions that don't have side
   2325     // effects (e.g. a placement new with an uninitialized POD).
   2326   case CXXDeleteExprClass:
   2327     return false;
   2328   case CXXBindTemporaryExprClass:
   2329     return (cast<CXXBindTemporaryExpr>(this)
   2330             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2331   case ExprWithCleanupsClass:
   2332     return (cast<ExprWithCleanups>(this)
   2333             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2334   }
   2335 }
   2336 
   2337 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
   2338 /// returns true, if it is; false otherwise.
   2339 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
   2340   const Expr *E = IgnoreParens();
   2341   switch (E->getStmtClass()) {
   2342   default:
   2343     return false;
   2344   case ObjCIvarRefExprClass:
   2345     return true;
   2346   case Expr::UnaryOperatorClass:
   2347     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2348   case ImplicitCastExprClass:
   2349     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2350   case MaterializeTemporaryExprClass:
   2351     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
   2352                                                       ->isOBJCGCCandidate(Ctx);
   2353   case CStyleCastExprClass:
   2354     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2355   case DeclRefExprClass: {
   2356     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
   2357 
   2358     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2359       if (VD->hasGlobalStorage())
   2360         return true;
   2361       QualType T = VD->getType();
   2362       // dereferencing to a  pointer is always a gc'able candidate,
   2363       // unless it is __weak.
   2364       return T->isPointerType() &&
   2365              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
   2366     }
   2367     return false;
   2368   }
   2369   case MemberExprClass: {
   2370     const MemberExpr *M = cast<MemberExpr>(E);
   2371     return M->getBase()->isOBJCGCCandidate(Ctx);
   2372   }
   2373   case ArraySubscriptExprClass:
   2374     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
   2375   }
   2376 }
   2377 
   2378 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
   2379   if (isTypeDependent())
   2380     return false;
   2381   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
   2382 }
   2383 
   2384 QualType Expr::findBoundMemberType(const Expr *expr) {
   2385   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
   2386 
   2387   // Bound member expressions are always one of these possibilities:
   2388   //   x->m      x.m      x->*y      x.*y
   2389   // (possibly parenthesized)
   2390 
   2391   expr = expr->IgnoreParens();
   2392   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
   2393     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
   2394     return mem->getMemberDecl()->getType();
   2395   }
   2396 
   2397   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
   2398     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
   2399                       ->getPointeeType();
   2400     assert(type->isFunctionType());
   2401     return type;
   2402   }
   2403 
   2404   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
   2405   return QualType();
   2406 }
   2407 
   2408 Expr* Expr::IgnoreParens() {
   2409   Expr* E = this;
   2410   while (true) {
   2411     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   2412       E = P->getSubExpr();
   2413       continue;
   2414     }
   2415     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2416       if (P->getOpcode() == UO_Extension) {
   2417         E = P->getSubExpr();
   2418         continue;
   2419       }
   2420     }
   2421     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2422       if (!P->isResultDependent()) {
   2423         E = P->getResultExpr();
   2424         continue;
   2425       }
   2426     }
   2427     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
   2428       if (!P->isConditionDependent()) {
   2429         E = P->getChosenSubExpr();
   2430         continue;
   2431       }
   2432     }
   2433     return E;
   2434   }
   2435 }
   2436 
   2437 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
   2438 /// or CastExprs or ImplicitCastExprs, returning their operand.
   2439 Expr *Expr::IgnoreParenCasts() {
   2440   Expr *E = this;
   2441   while (true) {
   2442     E = E->IgnoreParens();
   2443     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2444       E = P->getSubExpr();
   2445       continue;
   2446     }
   2447     if (MaterializeTemporaryExpr *Materialize
   2448                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2449       E = Materialize->GetTemporaryExpr();
   2450       continue;
   2451     }
   2452     if (SubstNonTypeTemplateParmExpr *NTTP
   2453                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2454       E = NTTP->getReplacement();
   2455       continue;
   2456     }
   2457     return E;
   2458   }
   2459 }
   2460 
   2461 Expr *Expr::IgnoreCasts() {
   2462   Expr *E = this;
   2463   while (true) {
   2464     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2465       E = P->getSubExpr();
   2466       continue;
   2467     }
   2468     if (MaterializeTemporaryExpr *Materialize
   2469         = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2470       E = Materialize->GetTemporaryExpr();
   2471       continue;
   2472     }
   2473     if (SubstNonTypeTemplateParmExpr *NTTP
   2474         = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2475       E = NTTP->getReplacement();
   2476       continue;
   2477     }
   2478     return E;
   2479   }
   2480 }
   2481 
   2482 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
   2483 /// casts.  This is intended purely as a temporary workaround for code
   2484 /// that hasn't yet been rewritten to do the right thing about those
   2485 /// casts, and may disappear along with the last internal use.
   2486 Expr *Expr::IgnoreParenLValueCasts() {
   2487   Expr *E = this;
   2488   while (true) {
   2489     E = E->IgnoreParens();
   2490     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2491       if (P->getCastKind() == CK_LValueToRValue) {
   2492         E = P->getSubExpr();
   2493         continue;
   2494       }
   2495     } else if (MaterializeTemporaryExpr *Materialize
   2496                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2497       E = Materialize->GetTemporaryExpr();
   2498       continue;
   2499     } else if (SubstNonTypeTemplateParmExpr *NTTP
   2500                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2501       E = NTTP->getReplacement();
   2502       continue;
   2503     }
   2504     break;
   2505   }
   2506   return E;
   2507 }
   2508 
   2509 Expr *Expr::ignoreParenBaseCasts() {
   2510   Expr *E = this;
   2511   while (true) {
   2512     E = E->IgnoreParens();
   2513     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2514       if (CE->getCastKind() == CK_DerivedToBase ||
   2515           CE->getCastKind() == CK_UncheckedDerivedToBase ||
   2516           CE->getCastKind() == CK_NoOp) {
   2517         E = CE->getSubExpr();
   2518         continue;
   2519       }
   2520     }
   2521 
   2522     return E;
   2523   }
   2524 }
   2525 
   2526 Expr *Expr::IgnoreParenImpCasts() {
   2527   Expr *E = this;
   2528   while (true) {
   2529     E = E->IgnoreParens();
   2530     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
   2531       E = P->getSubExpr();
   2532       continue;
   2533     }
   2534     if (MaterializeTemporaryExpr *Materialize
   2535                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2536       E = Materialize->GetTemporaryExpr();
   2537       continue;
   2538     }
   2539     if (SubstNonTypeTemplateParmExpr *NTTP
   2540                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2541       E = NTTP->getReplacement();
   2542       continue;
   2543     }
   2544     return E;
   2545   }
   2546 }
   2547 
   2548 Expr *Expr::IgnoreConversionOperator() {
   2549   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
   2550     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
   2551       return MCE->getImplicitObjectArgument();
   2552   }
   2553   return this;
   2554 }
   2555 
   2556 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
   2557 /// value (including ptr->int casts of the same size).  Strip off any
   2558 /// ParenExpr or CastExprs, returning their operand.
   2559 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
   2560   Expr *E = this;
   2561   while (true) {
   2562     E = E->IgnoreParens();
   2563 
   2564     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2565       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
   2566       // ptr<->int casts of the same width.  We also ignore all identity casts.
   2567       Expr *SE = P->getSubExpr();
   2568 
   2569       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
   2570         E = SE;
   2571         continue;
   2572       }
   2573 
   2574       if ((E->getType()->isPointerType() ||
   2575            E->getType()->isIntegralType(Ctx)) &&
   2576           (SE->getType()->isPointerType() ||
   2577            SE->getType()->isIntegralType(Ctx)) &&
   2578           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
   2579         E = SE;
   2580         continue;
   2581       }
   2582     }
   2583 
   2584     if (SubstNonTypeTemplateParmExpr *NTTP
   2585                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2586       E = NTTP->getReplacement();
   2587       continue;
   2588     }
   2589 
   2590     return E;
   2591   }
   2592 }
   2593 
   2594 bool Expr::isDefaultArgument() const {
   2595   const Expr *E = this;
   2596   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2597     E = M->GetTemporaryExpr();
   2598 
   2599   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   2600     E = ICE->getSubExprAsWritten();
   2601 
   2602   return isa<CXXDefaultArgExpr>(E);
   2603 }
   2604 
   2605 /// \brief Skip over any no-op casts and any temporary-binding
   2606 /// expressions.
   2607 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
   2608   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2609     E = M->GetTemporaryExpr();
   2610 
   2611   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2612     if (ICE->getCastKind() == CK_NoOp)
   2613       E = ICE->getSubExpr();
   2614     else
   2615       break;
   2616   }
   2617 
   2618   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
   2619     E = BE->getSubExpr();
   2620 
   2621   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2622     if (ICE->getCastKind() == CK_NoOp)
   2623       E = ICE->getSubExpr();
   2624     else
   2625       break;
   2626   }
   2627 
   2628   return E->IgnoreParens();
   2629 }
   2630 
   2631 /// isTemporaryObject - Determines if this expression produces a
   2632 /// temporary of the given class type.
   2633 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
   2634   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
   2635     return false;
   2636 
   2637   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
   2638 
   2639   // Temporaries are by definition pr-values of class type.
   2640   if (!E->Classify(C).isPRValue()) {
   2641     // In this context, property reference is a message call and is pr-value.
   2642     if (!isa<ObjCPropertyRefExpr>(E))
   2643       return false;
   2644   }
   2645 
   2646   // Black-list a few cases which yield pr-values of class type that don't
   2647   // refer to temporaries of that type:
   2648 
   2649   // - implicit derived-to-base conversions
   2650   if (isa<ImplicitCastExpr>(E)) {
   2651     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
   2652     case CK_DerivedToBase:
   2653     case CK_UncheckedDerivedToBase:
   2654       return false;
   2655     default:
   2656       break;
   2657     }
   2658   }
   2659 
   2660   // - member expressions (all)
   2661   if (isa<MemberExpr>(E))
   2662     return false;
   2663 
   2664   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
   2665     if (BO->isPtrMemOp())
   2666       return false;
   2667 
   2668   // - opaque values (all)
   2669   if (isa<OpaqueValueExpr>(E))
   2670     return false;
   2671 
   2672   return true;
   2673 }
   2674 
   2675 bool Expr::isImplicitCXXThis() const {
   2676   const Expr *E = this;
   2677 
   2678   // Strip away parentheses and casts we don't care about.
   2679   while (true) {
   2680     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
   2681       E = Paren->getSubExpr();
   2682       continue;
   2683     }
   2684 
   2685     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2686       if (ICE->getCastKind() == CK_NoOp ||
   2687           ICE->getCastKind() == CK_LValueToRValue ||
   2688           ICE->getCastKind() == CK_DerivedToBase ||
   2689           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
   2690         E = ICE->getSubExpr();
   2691         continue;
   2692       }
   2693     }
   2694 
   2695     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
   2696       if (UnOp->getOpcode() == UO_Extension) {
   2697         E = UnOp->getSubExpr();
   2698         continue;
   2699       }
   2700     }
   2701 
   2702     if (const MaterializeTemporaryExpr *M
   2703                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2704       E = M->GetTemporaryExpr();
   2705       continue;
   2706     }
   2707 
   2708     break;
   2709   }
   2710 
   2711   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
   2712     return This->isImplicit();
   2713 
   2714   return false;
   2715 }
   2716 
   2717 /// hasAnyTypeDependentArguments - Determines if any of the expressions
   2718 /// in Exprs is type-dependent.
   2719 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
   2720   for (unsigned I = 0; I < Exprs.size(); ++I)
   2721     if (Exprs[I]->isTypeDependent())
   2722       return true;
   2723 
   2724   return false;
   2725 }
   2726 
   2727 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
   2728                                  const Expr **Culprit) const {
   2729   // This function is attempting whether an expression is an initializer
   2730   // which can be evaluated at compile-time. It very closely parallels
   2731   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
   2732   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
   2733   // to isEvaluatable most of the time.
   2734   //
   2735   // If we ever capture reference-binding directly in the AST, we can
   2736   // kill the second parameter.
   2737 
   2738   if (IsForRef) {
   2739     EvalResult Result;
   2740     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
   2741       return true;
   2742     if (Culprit)
   2743       *Culprit = this;
   2744     return false;
   2745   }
   2746 
   2747   switch (getStmtClass()) {
   2748   default: break;
   2749   case StringLiteralClass:
   2750   case ObjCEncodeExprClass:
   2751     return true;
   2752   case CXXTemporaryObjectExprClass:
   2753   case CXXConstructExprClass: {
   2754     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   2755 
   2756     if (CE->getConstructor()->isTrivial() &&
   2757         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
   2758       // Trivial default constructor
   2759       if (!CE->getNumArgs()) return true;
   2760 
   2761       // Trivial copy constructor
   2762       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
   2763       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
   2764     }
   2765 
   2766     break;
   2767   }
   2768   case CompoundLiteralExprClass: {
   2769     // This handles gcc's extension that allows global initializers like
   2770     // "struct x {int x;} x = (struct x) {};".
   2771     // FIXME: This accepts other cases it shouldn't!
   2772     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
   2773     return Exp->isConstantInitializer(Ctx, false, Culprit);
   2774   }
   2775   case InitListExprClass: {
   2776     const InitListExpr *ILE = cast<InitListExpr>(this);
   2777     if (ILE->getType()->isArrayType()) {
   2778       unsigned numInits = ILE->getNumInits();
   2779       for (unsigned i = 0; i < numInits; i++) {
   2780         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
   2781           return false;
   2782       }
   2783       return true;
   2784     }
   2785 
   2786     if (ILE->getType()->isRecordType()) {
   2787       unsigned ElementNo = 0;
   2788       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
   2789       for (const auto *Field : RD->fields()) {
   2790         // If this is a union, skip all the fields that aren't being initialized.
   2791         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
   2792           continue;
   2793 
   2794         // Don't emit anonymous bitfields, they just affect layout.
   2795         if (Field->isUnnamedBitfield())
   2796           continue;
   2797 
   2798         if (ElementNo < ILE->getNumInits()) {
   2799           const Expr *Elt = ILE->getInit(ElementNo++);
   2800           if (Field->isBitField()) {
   2801             // Bitfields have to evaluate to an integer.
   2802             llvm::APSInt ResultTmp;
   2803             if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
   2804               if (Culprit)
   2805                 *Culprit = Elt;
   2806               return false;
   2807             }
   2808           } else {
   2809             bool RefType = Field->getType()->isReferenceType();
   2810             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
   2811               return false;
   2812           }
   2813         }
   2814       }
   2815       return true;
   2816     }
   2817 
   2818     break;
   2819   }
   2820   case ImplicitValueInitExprClass:
   2821     return true;
   2822   case ParenExprClass:
   2823     return cast<ParenExpr>(this)->getSubExpr()
   2824       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2825   case GenericSelectionExprClass:
   2826     return cast<GenericSelectionExpr>(this)->getResultExpr()
   2827       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2828   case ChooseExprClass:
   2829     if (cast<ChooseExpr>(this)->isConditionDependent()) {
   2830       if (Culprit)
   2831         *Culprit = this;
   2832       return false;
   2833     }
   2834     return cast<ChooseExpr>(this)->getChosenSubExpr()
   2835       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2836   case UnaryOperatorClass: {
   2837     const UnaryOperator* Exp = cast<UnaryOperator>(this);
   2838     if (Exp->getOpcode() == UO_Extension)
   2839       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
   2840     break;
   2841   }
   2842   case CXXFunctionalCastExprClass:
   2843   case CXXStaticCastExprClass:
   2844   case ImplicitCastExprClass:
   2845   case CStyleCastExprClass:
   2846   case ObjCBridgedCastExprClass:
   2847   case CXXDynamicCastExprClass:
   2848   case CXXReinterpretCastExprClass:
   2849   case CXXConstCastExprClass: {
   2850     const CastExpr *CE = cast<CastExpr>(this);
   2851 
   2852     // Handle misc casts we want to ignore.
   2853     if (CE->getCastKind() == CK_NoOp ||
   2854         CE->getCastKind() == CK_LValueToRValue ||
   2855         CE->getCastKind() == CK_ToUnion ||
   2856         CE->getCastKind() == CK_ConstructorConversion ||
   2857         CE->getCastKind() == CK_NonAtomicToAtomic ||
   2858         CE->getCastKind() == CK_AtomicToNonAtomic)
   2859       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
   2860 
   2861     break;
   2862   }
   2863   case MaterializeTemporaryExprClass:
   2864     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
   2865       ->isConstantInitializer(Ctx, false, Culprit);
   2866 
   2867   case SubstNonTypeTemplateParmExprClass:
   2868     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
   2869       ->isConstantInitializer(Ctx, false, Culprit);
   2870   case CXXDefaultArgExprClass:
   2871     return cast<CXXDefaultArgExpr>(this)->getExpr()
   2872       ->isConstantInitializer(Ctx, false, Culprit);
   2873   case CXXDefaultInitExprClass:
   2874     return cast<CXXDefaultInitExpr>(this)->getExpr()
   2875       ->isConstantInitializer(Ctx, false, Culprit);
   2876   }
   2877   if (isEvaluatable(Ctx))
   2878     return true;
   2879   if (Culprit)
   2880     *Culprit = this;
   2881   return false;
   2882 }
   2883 
   2884 bool Expr::HasSideEffects(const ASTContext &Ctx,
   2885                           bool IncludePossibleEffects) const {
   2886   // In circumstances where we care about definite side effects instead of
   2887   // potential side effects, we want to ignore expressions that are part of a
   2888   // macro expansion as a potential side effect.
   2889   if (!IncludePossibleEffects && getExprLoc().isMacroID())
   2890     return false;
   2891 
   2892   if (isInstantiationDependent())
   2893     return IncludePossibleEffects;
   2894 
   2895   switch (getStmtClass()) {
   2896   case NoStmtClass:
   2897   #define ABSTRACT_STMT(Type)
   2898   #define STMT(Type, Base) case Type##Class:
   2899   #define EXPR(Type, Base)
   2900   #include "clang/AST/StmtNodes.inc"
   2901     llvm_unreachable("unexpected Expr kind");
   2902 
   2903   case DependentScopeDeclRefExprClass:
   2904   case CXXUnresolvedConstructExprClass:
   2905   case CXXDependentScopeMemberExprClass:
   2906   case UnresolvedLookupExprClass:
   2907   case UnresolvedMemberExprClass:
   2908   case PackExpansionExprClass:
   2909   case SubstNonTypeTemplateParmPackExprClass:
   2910   case FunctionParmPackExprClass:
   2911   case TypoExprClass:
   2912   case CXXFoldExprClass:
   2913     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
   2914 
   2915   case DeclRefExprClass:
   2916   case ObjCIvarRefExprClass:
   2917   case PredefinedExprClass:
   2918   case IntegerLiteralClass:
   2919   case FloatingLiteralClass:
   2920   case ImaginaryLiteralClass:
   2921   case StringLiteralClass:
   2922   case CharacterLiteralClass:
   2923   case OffsetOfExprClass:
   2924   case ImplicitValueInitExprClass:
   2925   case UnaryExprOrTypeTraitExprClass:
   2926   case AddrLabelExprClass:
   2927   case GNUNullExprClass:
   2928   case CXXBoolLiteralExprClass:
   2929   case CXXNullPtrLiteralExprClass:
   2930   case CXXThisExprClass:
   2931   case CXXScalarValueInitExprClass:
   2932   case TypeTraitExprClass:
   2933   case ArrayTypeTraitExprClass:
   2934   case ExpressionTraitExprClass:
   2935   case CXXNoexceptExprClass:
   2936   case SizeOfPackExprClass:
   2937   case ObjCStringLiteralClass:
   2938   case ObjCEncodeExprClass:
   2939   case ObjCBoolLiteralExprClass:
   2940   case CXXUuidofExprClass:
   2941   case OpaqueValueExprClass:
   2942     // These never have a side-effect.
   2943     return false;
   2944 
   2945   case CallExprClass:
   2946   case CXXOperatorCallExprClass:
   2947   case CXXMemberCallExprClass:
   2948   case CUDAKernelCallExprClass:
   2949   case UserDefinedLiteralClass: {
   2950     // We don't know a call definitely has side effects, except for calls
   2951     // to pure/const functions that definitely don't.
   2952     // If the call itself is considered side-effect free, check the operands.
   2953     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
   2954     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
   2955     if (IsPure || !IncludePossibleEffects)
   2956       break;
   2957     return true;
   2958   }
   2959 
   2960   case BlockExprClass:
   2961   case CXXBindTemporaryExprClass:
   2962     if (!IncludePossibleEffects)
   2963       break;
   2964     return true;
   2965 
   2966   case MSPropertyRefExprClass:
   2967   case CompoundAssignOperatorClass:
   2968   case VAArgExprClass:
   2969   case AtomicExprClass:
   2970   case StmtExprClass:
   2971   case CXXThrowExprClass:
   2972   case CXXNewExprClass:
   2973   case CXXDeleteExprClass:
   2974   case ExprWithCleanupsClass:
   2975     // These always have a side-effect.
   2976     return true;
   2977 
   2978   case ParenExprClass:
   2979   case ArraySubscriptExprClass:
   2980   case MemberExprClass:
   2981   case ConditionalOperatorClass:
   2982   case BinaryConditionalOperatorClass:
   2983   case CompoundLiteralExprClass:
   2984   case ExtVectorElementExprClass:
   2985   case DesignatedInitExprClass:
   2986   case ParenListExprClass:
   2987   case CXXPseudoDestructorExprClass:
   2988   case CXXStdInitializerListExprClass:
   2989   case SubstNonTypeTemplateParmExprClass:
   2990   case MaterializeTemporaryExprClass:
   2991   case ShuffleVectorExprClass:
   2992   case ConvertVectorExprClass:
   2993   case AsTypeExprClass:
   2994     // These have a side-effect if any subexpression does.
   2995     break;
   2996 
   2997   case UnaryOperatorClass:
   2998     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
   2999       return true;
   3000     break;
   3001 
   3002   case BinaryOperatorClass:
   3003     if (cast<BinaryOperator>(this)->isAssignmentOp())
   3004       return true;
   3005     break;
   3006 
   3007   case InitListExprClass:
   3008     // FIXME: The children for an InitListExpr doesn't include the array filler.
   3009     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
   3010       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
   3011         return true;
   3012     break;
   3013 
   3014   case GenericSelectionExprClass:
   3015     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   3016         HasSideEffects(Ctx, IncludePossibleEffects);
   3017 
   3018   case ChooseExprClass:
   3019     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
   3020         Ctx, IncludePossibleEffects);
   3021 
   3022   case CXXDefaultArgExprClass:
   3023     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
   3024         Ctx, IncludePossibleEffects);
   3025 
   3026   case CXXDefaultInitExprClass: {
   3027     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
   3028     if (const Expr *E = FD->getInClassInitializer())
   3029       return E->HasSideEffects(Ctx, IncludePossibleEffects);
   3030     // If we've not yet parsed the initializer, assume it has side-effects.
   3031     return true;
   3032   }
   3033 
   3034   case CXXDynamicCastExprClass: {
   3035     // A dynamic_cast expression has side-effects if it can throw.
   3036     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
   3037     if (DCE->getTypeAsWritten()->isReferenceType() &&
   3038         DCE->getCastKind() == CK_Dynamic)
   3039       return true;
   3040   } // Fall through.
   3041   case ImplicitCastExprClass:
   3042   case CStyleCastExprClass:
   3043   case CXXStaticCastExprClass:
   3044   case CXXReinterpretCastExprClass:
   3045   case CXXConstCastExprClass:
   3046   case CXXFunctionalCastExprClass: {
   3047     // While volatile reads are side-effecting in both C and C++, we treat them
   3048     // as having possible (not definite) side-effects. This allows idiomatic
   3049     // code to behave without warning, such as sizeof(*v) for a volatile-
   3050     // qualified pointer.
   3051     if (!IncludePossibleEffects)
   3052       break;
   3053 
   3054     const CastExpr *CE = cast<CastExpr>(this);
   3055     if (CE->getCastKind() == CK_LValueToRValue &&
   3056         CE->getSubExpr()->getType().isVolatileQualified())
   3057       return true;
   3058     break;
   3059   }
   3060 
   3061   case CXXTypeidExprClass:
   3062     // typeid might throw if its subexpression is potentially-evaluated, so has
   3063     // side-effects in that case whether or not its subexpression does.
   3064     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
   3065 
   3066   case CXXConstructExprClass:
   3067   case CXXTemporaryObjectExprClass: {
   3068     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   3069     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
   3070       return true;
   3071     // A trivial constructor does not add any side-effects of its own. Just look
   3072     // at its arguments.
   3073     break;
   3074   }
   3075 
   3076   case LambdaExprClass: {
   3077     const LambdaExpr *LE = cast<LambdaExpr>(this);
   3078     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
   3079                                       E = LE->capture_end(); I != E; ++I)
   3080       if (I->getCaptureKind() == LCK_ByCopy)
   3081         // FIXME: Only has a side-effect if the variable is volatile or if
   3082         // the copy would invoke a non-trivial copy constructor.
   3083         return true;
   3084     return false;
   3085   }
   3086 
   3087   case PseudoObjectExprClass: {
   3088     // Only look for side-effects in the semantic form, and look past
   3089     // OpaqueValueExpr bindings in that form.
   3090     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
   3091     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
   3092                                                     E = PO->semantics_end();
   3093          I != E; ++I) {
   3094       const Expr *Subexpr = *I;
   3095       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
   3096         Subexpr = OVE->getSourceExpr();
   3097       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
   3098         return true;
   3099     }
   3100     return false;
   3101   }
   3102 
   3103   case ObjCBoxedExprClass:
   3104   case ObjCArrayLiteralClass:
   3105   case ObjCDictionaryLiteralClass:
   3106   case ObjCSelectorExprClass:
   3107   case ObjCProtocolExprClass:
   3108   case ObjCIsaExprClass:
   3109   case ObjCIndirectCopyRestoreExprClass:
   3110   case ObjCSubscriptRefExprClass:
   3111   case ObjCBridgedCastExprClass:
   3112   case ObjCMessageExprClass:
   3113   case ObjCPropertyRefExprClass:
   3114   // FIXME: Classify these cases better.
   3115     if (IncludePossibleEffects)
   3116       return true;
   3117     break;
   3118   }
   3119 
   3120   // Recurse to children.
   3121   for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
   3122     if (const Stmt *S = *SubStmts)
   3123       if (cast<Expr>(S)->HasSideEffects(Ctx, IncludePossibleEffects))
   3124         return true;
   3125 
   3126   return false;
   3127 }
   3128 
   3129 namespace {
   3130   /// \brief Look for a call to a non-trivial function within an expression.
   3131   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
   3132   {
   3133     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
   3134 
   3135     bool NonTrivial;
   3136 
   3137   public:
   3138     explicit NonTrivialCallFinder(ASTContext &Context)
   3139       : Inherited(Context), NonTrivial(false) { }
   3140 
   3141     bool hasNonTrivialCall() const { return NonTrivial; }
   3142 
   3143     void VisitCallExpr(CallExpr *E) {
   3144       if (CXXMethodDecl *Method
   3145           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
   3146         if (Method->isTrivial()) {
   3147           // Recurse to children of the call.
   3148           Inherited::VisitStmt(E);
   3149           return;
   3150         }
   3151       }
   3152 
   3153       NonTrivial = true;
   3154     }
   3155 
   3156     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   3157       if (E->getConstructor()->isTrivial()) {
   3158         // Recurse to children of the call.
   3159         Inherited::VisitStmt(E);
   3160         return;
   3161       }
   3162 
   3163       NonTrivial = true;
   3164     }
   3165 
   3166     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
   3167       if (E->getTemporary()->getDestructor()->isTrivial()) {
   3168         Inherited::VisitStmt(E);
   3169         return;
   3170       }
   3171 
   3172       NonTrivial = true;
   3173     }
   3174   };
   3175 }
   3176 
   3177 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
   3178   NonTrivialCallFinder Finder(Ctx);
   3179   Finder.Visit(this);
   3180   return Finder.hasNonTrivialCall();
   3181 }
   3182 
   3183 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
   3184 /// pointer constant or not, as well as the specific kind of constant detected.
   3185 /// Null pointer constants can be integer constant expressions with the
   3186 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
   3187 /// (a GNU extension).
   3188 Expr::NullPointerConstantKind
   3189 Expr::isNullPointerConstant(ASTContext &Ctx,
   3190                             NullPointerConstantValueDependence NPC) const {
   3191   if (isValueDependent() &&
   3192       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
   3193     switch (NPC) {
   3194     case NPC_NeverValueDependent:
   3195       llvm_unreachable("Unexpected value dependent expression!");
   3196     case NPC_ValueDependentIsNull:
   3197       if (isTypeDependent() || getType()->isIntegralType(Ctx))
   3198         return NPCK_ZeroExpression;
   3199       else
   3200         return NPCK_NotNull;
   3201 
   3202     case NPC_ValueDependentIsNotNull:
   3203       return NPCK_NotNull;
   3204     }
   3205   }
   3206 
   3207   // Strip off a cast to void*, if it exists. Except in C++.
   3208   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
   3209     if (!Ctx.getLangOpts().CPlusPlus) {
   3210       // Check that it is a cast to void*.
   3211       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
   3212         QualType Pointee = PT->getPointeeType();
   3213         if (!Pointee.hasQualifiers() &&
   3214             Pointee->isVoidType() &&                              // to void*
   3215             CE->getSubExpr()->getType()->isIntegerType())         // from int.
   3216           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3217       }
   3218     }
   3219   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
   3220     // Ignore the ImplicitCastExpr type entirely.
   3221     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3222   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
   3223     // Accept ((void*)0) as a null pointer constant, as many other
   3224     // implementations do.
   3225     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3226   } else if (const GenericSelectionExpr *GE =
   3227                dyn_cast<GenericSelectionExpr>(this)) {
   3228     if (GE->isResultDependent())
   3229       return NPCK_NotNull;
   3230     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
   3231   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
   3232     if (CE->isConditionDependent())
   3233       return NPCK_NotNull;
   3234     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
   3235   } else if (const CXXDefaultArgExpr *DefaultArg
   3236                = dyn_cast<CXXDefaultArgExpr>(this)) {
   3237     // See through default argument expressions.
   3238     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
   3239   } else if (const CXXDefaultInitExpr *DefaultInit
   3240                = dyn_cast<CXXDefaultInitExpr>(this)) {
   3241     // See through default initializer expressions.
   3242     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
   3243   } else if (isa<GNUNullExpr>(this)) {
   3244     // The GNU __null extension is always a null pointer constant.
   3245     return NPCK_GNUNull;
   3246   } else if (const MaterializeTemporaryExpr *M
   3247                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
   3248     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
   3249   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
   3250     if (const Expr *Source = OVE->getSourceExpr())
   3251       return Source->isNullPointerConstant(Ctx, NPC);
   3252   }
   3253 
   3254   // C++11 nullptr_t is always a null pointer constant.
   3255   if (getType()->isNullPtrType())
   3256     return NPCK_CXX11_nullptr;
   3257 
   3258   if (const RecordType *UT = getType()->getAsUnionType())
   3259     if (!Ctx.getLangOpts().CPlusPlus11 &&
   3260         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
   3261       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
   3262         const Expr *InitExpr = CLE->getInitializer();
   3263         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
   3264           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
   3265       }
   3266   // This expression must be an integer type.
   3267   if (!getType()->isIntegerType() ||
   3268       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
   3269     return NPCK_NotNull;
   3270 
   3271   if (Ctx.getLangOpts().CPlusPlus11) {
   3272     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
   3273     // value zero or a prvalue of type std::nullptr_t.
   3274     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
   3275     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
   3276     if (Lit && !Lit->getValue())
   3277       return NPCK_ZeroLiteral;
   3278     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
   3279       return NPCK_NotNull;
   3280   } else {
   3281     // If we have an integer constant expression, we need to *evaluate* it and
   3282     // test for the value 0.
   3283     if (!isIntegerConstantExpr(Ctx))
   3284       return NPCK_NotNull;
   3285   }
   3286 
   3287   if (EvaluateKnownConstInt(Ctx) != 0)
   3288     return NPCK_NotNull;
   3289 
   3290   if (isa<IntegerLiteral>(this))
   3291     return NPCK_ZeroLiteral;
   3292   return NPCK_ZeroExpression;
   3293 }
   3294 
   3295 /// \brief If this expression is an l-value for an Objective C
   3296 /// property, find the underlying property reference expression.
   3297 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
   3298   const Expr *E = this;
   3299   while (true) {
   3300     assert((E->getValueKind() == VK_LValue &&
   3301             E->getObjectKind() == OK_ObjCProperty) &&
   3302            "expression is not a property reference");
   3303     E = E->IgnoreParenCasts();
   3304     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   3305       if (BO->getOpcode() == BO_Comma) {
   3306         E = BO->getRHS();
   3307         continue;
   3308       }
   3309     }
   3310 
   3311     break;
   3312   }
   3313 
   3314   return cast<ObjCPropertyRefExpr>(E);
   3315 }
   3316 
   3317 bool Expr::isObjCSelfExpr() const {
   3318   const Expr *E = IgnoreParenImpCasts();
   3319 
   3320   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   3321   if (!DRE)
   3322     return false;
   3323 
   3324   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
   3325   if (!Param)
   3326     return false;
   3327 
   3328   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
   3329   if (!M)
   3330     return false;
   3331 
   3332   return M->getSelfDecl() == Param;
   3333 }
   3334 
   3335 FieldDecl *Expr::getSourceBitField() {
   3336   Expr *E = this->IgnoreParens();
   3337 
   3338   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   3339     if (ICE->getCastKind() == CK_LValueToRValue ||
   3340         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
   3341       E = ICE->getSubExpr()->IgnoreParens();
   3342     else
   3343       break;
   3344   }
   3345 
   3346   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
   3347     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
   3348       if (Field->isBitField())
   3349         return Field;
   3350 
   3351   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
   3352     if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
   3353       if (Ivar->isBitField())
   3354         return Ivar;
   3355 
   3356   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
   3357     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
   3358       if (Field->isBitField())
   3359         return Field;
   3360 
   3361   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
   3362     if (BinOp->isAssignmentOp() && BinOp->getLHS())
   3363       return BinOp->getLHS()->getSourceBitField();
   3364 
   3365     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
   3366       return BinOp->getRHS()->getSourceBitField();
   3367   }
   3368 
   3369   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
   3370     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
   3371       return UnOp->getSubExpr()->getSourceBitField();
   3372 
   3373   return nullptr;
   3374 }
   3375 
   3376 bool Expr::refersToVectorElement() const {
   3377   const Expr *E = this->IgnoreParens();
   3378 
   3379   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   3380     if (ICE->getValueKind() != VK_RValue &&
   3381         ICE->getCastKind() == CK_NoOp)
   3382       E = ICE->getSubExpr()->IgnoreParens();
   3383     else
   3384       break;
   3385   }
   3386 
   3387   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
   3388     return ASE->getBase()->getType()->isVectorType();
   3389 
   3390   if (isa<ExtVectorElementExpr>(E))
   3391     return true;
   3392 
   3393   return false;
   3394 }
   3395 
   3396 /// isArrow - Return true if the base expression is a pointer to vector,
   3397 /// return false if the base expression is a vector.
   3398 bool ExtVectorElementExpr::isArrow() const {
   3399   return getBase()->getType()->isPointerType();
   3400 }
   3401 
   3402 unsigned ExtVectorElementExpr::getNumElements() const {
   3403   if (const VectorType *VT = getType()->getAs<VectorType>())
   3404     return VT->getNumElements();
   3405   return 1;
   3406 }
   3407 
   3408 /// containsDuplicateElements - Return true if any element access is repeated.
   3409 bool ExtVectorElementExpr::containsDuplicateElements() const {
   3410   // FIXME: Refactor this code to an accessor on the AST node which returns the
   3411   // "type" of component access, and share with code below and in Sema.
   3412   StringRef Comp = Accessor->getName();
   3413 
   3414   // Halving swizzles do not contain duplicate elements.
   3415   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
   3416     return false;
   3417 
   3418   // Advance past s-char prefix on hex swizzles.
   3419   if (Comp[0] == 's' || Comp[0] == 'S')
   3420     Comp = Comp.substr(1);
   3421 
   3422   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
   3423     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
   3424         return true;
   3425 
   3426   return false;
   3427 }
   3428 
   3429 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
   3430 void ExtVectorElementExpr::getEncodedElementAccess(
   3431                                   SmallVectorImpl<unsigned> &Elts) const {
   3432   StringRef Comp = Accessor->getName();
   3433   if (Comp[0] == 's' || Comp[0] == 'S')
   3434     Comp = Comp.substr(1);
   3435 
   3436   bool isHi =   Comp == "hi";
   3437   bool isLo =   Comp == "lo";
   3438   bool isEven = Comp == "even";
   3439   bool isOdd  = Comp == "odd";
   3440 
   3441   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
   3442     uint64_t Index;
   3443 
   3444     if (isHi)
   3445       Index = e + i;
   3446     else if (isLo)
   3447       Index = i;
   3448     else if (isEven)
   3449       Index = 2 * i;
   3450     else if (isOdd)
   3451       Index = 2 * i + 1;
   3452     else
   3453       Index = ExtVectorType::getAccessorIdx(Comp[i]);
   3454 
   3455     Elts.push_back(Index);
   3456   }
   3457 }
   3458 
   3459 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   3460                                  ExprValueKind VK,
   3461                                  SourceLocation LBracLoc,
   3462                                  SourceLocation SuperLoc,
   3463                                  bool IsInstanceSuper,
   3464                                  QualType SuperType,
   3465                                  Selector Sel,
   3466                                  ArrayRef<SourceLocation> SelLocs,
   3467                                  SelectorLocationsKind SelLocsK,
   3468                                  ObjCMethodDecl *Method,
   3469                                  ArrayRef<Expr *> Args,
   3470                                  SourceLocation RBracLoc,
   3471                                  bool isImplicit)
   3472   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
   3473          /*TypeDependent=*/false, /*ValueDependent=*/false,
   3474          /*InstantiationDependent=*/false,
   3475          /*ContainsUnexpandedParameterPack=*/false),
   3476     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   3477                                                        : Sel.getAsOpaquePtr())),
   3478     Kind(IsInstanceSuper? SuperInstance : SuperClass),
   3479     HasMethod(Method != nullptr), IsDelegateInitCall(false),
   3480     IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
   3481     RBracLoc(RBracLoc)
   3482 {
   3483   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   3484   setReceiverPointer(SuperType.getAsOpaquePtr());
   3485 }
   3486 
   3487 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   3488                                  ExprValueKind VK,
   3489                                  SourceLocation LBracLoc,
   3490                                  TypeSourceInfo *Receiver,
   3491                                  Selector Sel,
   3492                                  ArrayRef<SourceLocation> SelLocs,
   3493                                  SelectorLocationsKind SelLocsK,
   3494                                  ObjCMethodDecl *Method,
   3495                                  ArrayRef<Expr *> Args,
   3496                                  SourceLocation RBracLoc,
   3497                                  bool isImplicit)
   3498   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
   3499          T->isDependentType(), T->isInstantiationDependentType(),
   3500          T->containsUnexpandedParameterPack()),
   3501     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   3502                                                        : Sel.getAsOpaquePtr())),
   3503     Kind(Class),
   3504     HasMethod(Method != nullptr), IsDelegateInitCall(false),
   3505     IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   3506 {
   3507   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   3508   setReceiverPointer(Receiver);
   3509 }
   3510 
   3511 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   3512                                  ExprValueKind VK,
   3513                                  SourceLocation LBracLoc,
   3514                                  Expr *Receiver,
   3515                                  Selector Sel,
   3516                                  ArrayRef<SourceLocation> SelLocs,
   3517                                  SelectorLocationsKind SelLocsK,
   3518                                  ObjCMethodDecl *Method,
   3519                                  ArrayRef<Expr *> Args,
   3520                                  SourceLocation RBracLoc,
   3521                                  bool isImplicit)
   3522   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
   3523          Receiver->isTypeDependent(),
   3524          Receiver->isInstantiationDependent(),
   3525          Receiver->containsUnexpandedParameterPack()),
   3526     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   3527                                                        : Sel.getAsOpaquePtr())),
   3528     Kind(Instance),
   3529     HasMethod(Method != nullptr), IsDelegateInitCall(false),
   3530     IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   3531 {
   3532   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   3533   setReceiverPointer(Receiver);
   3534 }
   3535 
   3536 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
   3537                                          ArrayRef<SourceLocation> SelLocs,
   3538                                          SelectorLocationsKind SelLocsK) {
   3539   setNumArgs(Args.size());
   3540   Expr **MyArgs = getArgs();
   3541   for (unsigned I = 0; I != Args.size(); ++I) {
   3542     if (Args[I]->isTypeDependent())
   3543       ExprBits.TypeDependent = true;
   3544     if (Args[I]->isValueDependent())
   3545       ExprBits.ValueDependent = true;
   3546     if (Args[I]->isInstantiationDependent())
   3547       ExprBits.InstantiationDependent = true;
   3548     if (Args[I]->containsUnexpandedParameterPack())
   3549       ExprBits.ContainsUnexpandedParameterPack = true;
   3550 
   3551     MyArgs[I] = Args[I];
   3552   }
   3553 
   3554   SelLocsKind = SelLocsK;
   3555   if (!isImplicit()) {
   3556     if (SelLocsK == SelLoc_NonStandard)
   3557       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
   3558   }
   3559 }
   3560 
   3561 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
   3562                                          ExprValueKind VK,
   3563                                          SourceLocation LBracLoc,
   3564                                          SourceLocation SuperLoc,
   3565                                          bool IsInstanceSuper,
   3566                                          QualType SuperType,
   3567                                          Selector Sel,
   3568                                          ArrayRef<SourceLocation> SelLocs,
   3569                                          ObjCMethodDecl *Method,
   3570                                          ArrayRef<Expr *> Args,
   3571                                          SourceLocation RBracLoc,
   3572                                          bool isImplicit) {
   3573   assert((!SelLocs.empty() || isImplicit) &&
   3574          "No selector locs for non-implicit message");
   3575   ObjCMessageExpr *Mem;
   3576   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
   3577   if (isImplicit)
   3578     Mem = alloc(Context, Args.size(), 0);
   3579   else
   3580     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   3581   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
   3582                                    SuperType, Sel, SelLocs, SelLocsK,
   3583                                    Method, Args, RBracLoc, isImplicit);
   3584 }
   3585 
   3586 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
   3587                                          ExprValueKind VK,
   3588                                          SourceLocation LBracLoc,
   3589                                          TypeSourceInfo *Receiver,
   3590                                          Selector Sel,
   3591                                          ArrayRef<SourceLocation> SelLocs,
   3592                                          ObjCMethodDecl *Method,
   3593                                          ArrayRef<Expr *> Args,
   3594                                          SourceLocation RBracLoc,
   3595                                          bool isImplicit) {
   3596   assert((!SelLocs.empty() || isImplicit) &&
   3597          "No selector locs for non-implicit message");
   3598   ObjCMessageExpr *Mem;
   3599   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
   3600   if (isImplicit)
   3601     Mem = alloc(Context, Args.size(), 0);
   3602   else
   3603     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   3604   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
   3605                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
   3606                                    isImplicit);
   3607 }
   3608 
   3609 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
   3610                                          ExprValueKind VK,
   3611                                          SourceLocation LBracLoc,
   3612                                          Expr *Receiver,
   3613                                          Selector Sel,
   3614                                          ArrayRef<SourceLocation> SelLocs,
   3615                                          ObjCMethodDecl *Method,
   3616                                          ArrayRef<Expr *> Args,
   3617                                          SourceLocation RBracLoc,
   3618                                          bool isImplicit) {
   3619   assert((!SelLocs.empty() || isImplicit) &&
   3620          "No selector locs for non-implicit message");
   3621   ObjCMessageExpr *Mem;
   3622   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
   3623   if (isImplicit)
   3624     Mem = alloc(Context, Args.size(), 0);
   3625   else
   3626     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   3627   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
   3628                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
   3629                                    isImplicit);
   3630 }
   3631 
   3632 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
   3633                                               unsigned NumArgs,
   3634                                               unsigned NumStoredSelLocs) {
   3635   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
   3636   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
   3637 }
   3638 
   3639 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
   3640                                         ArrayRef<Expr *> Args,
   3641                                         SourceLocation RBraceLoc,
   3642                                         ArrayRef<SourceLocation> SelLocs,
   3643                                         Selector Sel,
   3644                                         SelectorLocationsKind &SelLocsK) {
   3645   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
   3646   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
   3647                                                                : 0;
   3648   return alloc(C, Args.size(), NumStoredSelLocs);
   3649 }
   3650 
   3651 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
   3652                                         unsigned NumArgs,
   3653                                         unsigned NumStoredSelLocs) {
   3654   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
   3655     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
   3656   return (ObjCMessageExpr *)C.Allocate(Size,
   3657                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
   3658 }
   3659 
   3660 void ObjCMessageExpr::getSelectorLocs(
   3661                                SmallVectorImpl<SourceLocation> &SelLocs) const {
   3662   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
   3663     SelLocs.push_back(getSelectorLoc(i));
   3664 }
   3665 
   3666 SourceRange ObjCMessageExpr::getReceiverRange() const {
   3667   switch (getReceiverKind()) {
   3668   case Instance:
   3669     return getInstanceReceiver()->getSourceRange();
   3670 
   3671   case Class:
   3672     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
   3673 
   3674   case SuperInstance:
   3675   case SuperClass:
   3676     return getSuperLoc();
   3677   }
   3678 
   3679   llvm_unreachable("Invalid ReceiverKind!");
   3680 }
   3681 
   3682 Selector ObjCMessageExpr::getSelector() const {
   3683   if (HasMethod)
   3684     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
   3685                                                                ->getSelector();
   3686   return Selector(SelectorOrMethod);
   3687 }
   3688 
   3689 QualType ObjCMessageExpr::getReceiverType() const {
   3690   switch (getReceiverKind()) {
   3691   case Instance:
   3692     return getInstanceReceiver()->getType();
   3693   case Class:
   3694     return getClassReceiver();
   3695   case SuperInstance:
   3696   case SuperClass:
   3697     return getSuperType();
   3698   }
   3699 
   3700   llvm_unreachable("unexpected receiver kind");
   3701 }
   3702 
   3703 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
   3704   QualType T = getReceiverType();
   3705 
   3706   if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
   3707     return Ptr->getInterfaceDecl();
   3708 
   3709   if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
   3710     return Ty->getInterface();
   3711 
   3712   return nullptr;
   3713 }
   3714 
   3715 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
   3716   switch (getBridgeKind()) {
   3717   case OBC_Bridge:
   3718     return "__bridge";
   3719   case OBC_BridgeTransfer:
   3720     return "__bridge_transfer";
   3721   case OBC_BridgeRetained:
   3722     return "__bridge_retained";
   3723   }
   3724 
   3725   llvm_unreachable("Invalid BridgeKind!");
   3726 }
   3727 
   3728 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
   3729                                      QualType Type, SourceLocation BLoc,
   3730                                      SourceLocation RP)
   3731    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
   3732           Type->isDependentType(), Type->isDependentType(),
   3733           Type->isInstantiationDependentType(),
   3734           Type->containsUnexpandedParameterPack()),
   3735      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
   3736 {
   3737   SubExprs = new (C) Stmt*[args.size()];
   3738   for (unsigned i = 0; i != args.size(); i++) {
   3739     if (args[i]->isTypeDependent())
   3740       ExprBits.TypeDependent = true;
   3741     if (args[i]->isValueDependent())
   3742       ExprBits.ValueDependent = true;
   3743     if (args[i]->isInstantiationDependent())
   3744       ExprBits.InstantiationDependent = true;
   3745     if (args[i]->containsUnexpandedParameterPack())
   3746       ExprBits.ContainsUnexpandedParameterPack = true;
   3747 
   3748     SubExprs[i] = args[i];
   3749   }
   3750 }
   3751 
   3752 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
   3753   if (SubExprs) C.Deallocate(SubExprs);
   3754 
   3755   this->NumExprs = Exprs.size();
   3756   SubExprs = new (C) Stmt*[NumExprs];
   3757   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
   3758 }
   3759 
   3760 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
   3761                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3762                                ArrayRef<TypeSourceInfo*> AssocTypes,
   3763                                ArrayRef<Expr*> AssocExprs,
   3764                                SourceLocation DefaultLoc,
   3765                                SourceLocation RParenLoc,
   3766                                bool ContainsUnexpandedParameterPack,
   3767                                unsigned ResultIndex)
   3768   : Expr(GenericSelectionExprClass,
   3769          AssocExprs[ResultIndex]->getType(),
   3770          AssocExprs[ResultIndex]->getValueKind(),
   3771          AssocExprs[ResultIndex]->getObjectKind(),
   3772          AssocExprs[ResultIndex]->isTypeDependent(),
   3773          AssocExprs[ResultIndex]->isValueDependent(),
   3774          AssocExprs[ResultIndex]->isInstantiationDependent(),
   3775          ContainsUnexpandedParameterPack),
   3776     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
   3777     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
   3778     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
   3779     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
   3780   SubExprs[CONTROLLING] = ControllingExpr;
   3781   assert(AssocTypes.size() == AssocExprs.size());
   3782   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
   3783   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
   3784 }
   3785 
   3786 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
   3787                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3788                                ArrayRef<TypeSourceInfo*> AssocTypes,
   3789                                ArrayRef<Expr*> AssocExprs,
   3790                                SourceLocation DefaultLoc,
   3791                                SourceLocation RParenLoc,
   3792                                bool ContainsUnexpandedParameterPack)
   3793   : Expr(GenericSelectionExprClass,
   3794          Context.DependentTy,
   3795          VK_RValue,
   3796          OK_Ordinary,
   3797          /*isTypeDependent=*/true,
   3798          /*isValueDependent=*/true,
   3799          /*isInstantiationDependent=*/true,
   3800          ContainsUnexpandedParameterPack),
   3801     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
   3802     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
   3803     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
   3804     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
   3805   SubExprs[CONTROLLING] = ControllingExpr;
   3806   assert(AssocTypes.size() == AssocExprs.size());
   3807   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
   3808   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
   3809 }
   3810 
   3811 //===----------------------------------------------------------------------===//
   3812 //  DesignatedInitExpr
   3813 //===----------------------------------------------------------------------===//
   3814 
   3815 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
   3816   assert(Kind == FieldDesignator && "Only valid on a field designator");
   3817   if (Field.NameOrField & 0x01)
   3818     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
   3819   else
   3820     return getField()->getIdentifier();
   3821 }
   3822 
   3823 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
   3824                                        unsigned NumDesignators,
   3825                                        const Designator *Designators,
   3826                                        SourceLocation EqualOrColonLoc,
   3827                                        bool GNUSyntax,
   3828                                        ArrayRef<Expr*> IndexExprs,
   3829                                        Expr *Init)
   3830   : Expr(DesignatedInitExprClass, Ty,
   3831          Init->getValueKind(), Init->getObjectKind(),
   3832          Init->isTypeDependent(), Init->isValueDependent(),
   3833          Init->isInstantiationDependent(),
   3834          Init->containsUnexpandedParameterPack()),
   3835     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
   3836     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
   3837   this->Designators = new (C) Designator[NumDesignators];
   3838 
   3839   // Record the initializer itself.
   3840   child_range Child = children();
   3841   *Child++ = Init;
   3842 
   3843   // Copy the designators and their subexpressions, computing
   3844   // value-dependence along the way.
   3845   unsigned IndexIdx = 0;
   3846   for (unsigned I = 0; I != NumDesignators; ++I) {
   3847     this->Designators[I] = Designators[I];
   3848 
   3849     if (this->Designators[I].isArrayDesignator()) {
   3850       // Compute type- and value-dependence.
   3851       Expr *Index = IndexExprs[IndexIdx];
   3852       if (Index->isTypeDependent() || Index->isValueDependent())
   3853         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
   3854       if (Index->isInstantiationDependent())
   3855         ExprBits.InstantiationDependent = true;
   3856       // Propagate unexpanded parameter packs.
   3857       if (Index->containsUnexpandedParameterPack())
   3858         ExprBits.ContainsUnexpandedParameterPack = true;
   3859 
   3860       // Copy the index expressions into permanent storage.
   3861       *Child++ = IndexExprs[IndexIdx++];
   3862     } else if (this->Designators[I].isArrayRangeDesignator()) {
   3863       // Compute type- and value-dependence.
   3864       Expr *Start = IndexExprs[IndexIdx];
   3865       Expr *End = IndexExprs[IndexIdx + 1];
   3866       if (Start->isTypeDependent() || Start->isValueDependent() ||
   3867           End->isTypeDependent() || End->isValueDependent()) {
   3868         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
   3869         ExprBits.InstantiationDependent = true;
   3870       } else if (Start->isInstantiationDependent() ||
   3871                  End->isInstantiationDependent()) {
   3872         ExprBits.InstantiationDependent = true;
   3873       }
   3874 
   3875       // Propagate unexpanded parameter packs.
   3876       if (Start->containsUnexpandedParameterPack() ||
   3877           End->containsUnexpandedParameterPack())
   3878         ExprBits.ContainsUnexpandedParameterPack = true;
   3879 
   3880       // Copy the start/end expressions into permanent storage.
   3881       *Child++ = IndexExprs[IndexIdx++];
   3882       *Child++ = IndexExprs[IndexIdx++];
   3883     }
   3884   }
   3885 
   3886   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
   3887 }
   3888 
   3889 DesignatedInitExpr *
   3890 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
   3891                            unsigned NumDesignators,
   3892                            ArrayRef<Expr*> IndexExprs,
   3893                            SourceLocation ColonOrEqualLoc,
   3894                            bool UsesColonSyntax, Expr *Init) {
   3895   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3896                          sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
   3897   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
   3898                                       ColonOrEqualLoc, UsesColonSyntax,
   3899                                       IndexExprs, Init);
   3900 }
   3901 
   3902 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
   3903                                                     unsigned NumIndexExprs) {
   3904   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3905                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
   3906   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
   3907 }
   3908 
   3909 void DesignatedInitExpr::setDesignators(const ASTContext &C,
   3910                                         const Designator *Desigs,
   3911                                         unsigned NumDesigs) {
   3912   Designators = new (C) Designator[NumDesigs];
   3913   NumDesignators = NumDesigs;
   3914   for (unsigned I = 0; I != NumDesigs; ++I)
   3915     Designators[I] = Desigs[I];
   3916 }
   3917 
   3918 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
   3919   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
   3920   if (size() == 1)
   3921     return DIE->getDesignator(0)->getSourceRange();
   3922   return SourceRange(DIE->getDesignator(0)->getLocStart(),
   3923                      DIE->getDesignator(size()-1)->getLocEnd());
   3924 }
   3925 
   3926 SourceLocation DesignatedInitExpr::getLocStart() const {
   3927   SourceLocation StartLoc;
   3928   Designator &First =
   3929     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
   3930   if (First.isFieldDesignator()) {
   3931     if (GNUSyntax)
   3932       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
   3933     else
   3934       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
   3935   } else
   3936     StartLoc =
   3937       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
   3938   return StartLoc;
   3939 }
   3940 
   3941 SourceLocation DesignatedInitExpr::getLocEnd() const {
   3942   return getInit()->getLocEnd();
   3943 }
   3944 
   3945 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
   3946   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
   3947   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
   3948   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3949 }
   3950 
   3951 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
   3952   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3953          "Requires array range designator");
   3954   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
   3955   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3956 }
   3957 
   3958 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
   3959   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3960          "Requires array range designator");
   3961   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
   3962   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
   3963 }
   3964 
   3965 /// \brief Replaces the designator at index @p Idx with the series
   3966 /// of designators in [First, Last).
   3967 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
   3968                                           const Designator *First,
   3969                                           const Designator *Last) {
   3970   unsigned NumNewDesignators = Last - First;
   3971   if (NumNewDesignators == 0) {
   3972     std::copy_backward(Designators + Idx + 1,
   3973                        Designators + NumDesignators,
   3974                        Designators + Idx);
   3975     --NumNewDesignators;
   3976     return;
   3977   } else if (NumNewDesignators == 1) {
   3978     Designators[Idx] = *First;
   3979     return;
   3980   }
   3981 
   3982   Designator *NewDesignators
   3983     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
   3984   std::copy(Designators, Designators + Idx, NewDesignators);
   3985   std::copy(First, Last, NewDesignators + Idx);
   3986   std::copy(Designators + Idx + 1, Designators + NumDesignators,
   3987             NewDesignators + Idx + NumNewDesignators);
   3988   Designators = NewDesignators;
   3989   NumDesignators = NumDesignators - 1 + NumNewDesignators;
   3990 }
   3991 
   3992 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
   3993                              ArrayRef<Expr*> exprs,
   3994                              SourceLocation rparenloc)
   3995   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
   3996          false, false, false, false),
   3997     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
   3998   Exprs = new (C) Stmt*[exprs.size()];
   3999   for (unsigned i = 0; i != exprs.size(); ++i) {
   4000     if (exprs[i]->isTypeDependent())
   4001       ExprBits.TypeDependent = true;
   4002     if (exprs[i]->isValueDependent())
   4003       ExprBits.ValueDependent = true;
   4004     if (exprs[i]->isInstantiationDependent())
   4005       ExprBits.InstantiationDependent = true;
   4006     if (exprs[i]->containsUnexpandedParameterPack())
   4007       ExprBits.ContainsUnexpandedParameterPack = true;
   4008 
   4009     Exprs[i] = exprs[i];
   4010   }
   4011 }
   4012 
   4013 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
   4014   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
   4015     e = ewc->getSubExpr();
   4016   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
   4017     e = m->GetTemporaryExpr();
   4018   e = cast<CXXConstructExpr>(e)->getArg(0);
   4019   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
   4020     e = ice->getSubExpr();
   4021   return cast<OpaqueValueExpr>(e);
   4022 }
   4023 
   4024 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
   4025                                            EmptyShell sh,
   4026                                            unsigned numSemanticExprs) {
   4027   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
   4028                                     (1 + numSemanticExprs) * sizeof(Expr*),
   4029                                   llvm::alignOf<PseudoObjectExpr>());
   4030   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
   4031 }
   4032 
   4033 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
   4034   : Expr(PseudoObjectExprClass, shell) {
   4035   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
   4036 }
   4037 
   4038 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
   4039                                            ArrayRef<Expr*> semantics,
   4040                                            unsigned resultIndex) {
   4041   assert(syntax && "no syntactic expression!");
   4042   assert(semantics.size() && "no semantic expressions!");
   4043 
   4044   QualType type;
   4045   ExprValueKind VK;
   4046   if (resultIndex == NoResult) {
   4047     type = C.VoidTy;
   4048     VK = VK_RValue;
   4049   } else {
   4050     assert(resultIndex < semantics.size());
   4051     type = semantics[resultIndex]->getType();
   4052     VK = semantics[resultIndex]->getValueKind();
   4053     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
   4054   }
   4055 
   4056   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
   4057                               (1 + semantics.size()) * sizeof(Expr*),
   4058                             llvm::alignOf<PseudoObjectExpr>());
   4059   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
   4060                                       resultIndex);
   4061 }
   4062 
   4063 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
   4064                                    Expr *syntax, ArrayRef<Expr*> semantics,
   4065                                    unsigned resultIndex)
   4066   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
   4067          /*filled in at end of ctor*/ false, false, false, false) {
   4068   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
   4069   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
   4070 
   4071   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
   4072     Expr *E = (i == 0 ? syntax : semantics[i-1]);
   4073     getSubExprsBuffer()[i] = E;
   4074 
   4075     if (E->isTypeDependent())
   4076       ExprBits.TypeDependent = true;
   4077     if (E->isValueDependent())
   4078       ExprBits.ValueDependent = true;
   4079     if (E->isInstantiationDependent())
   4080       ExprBits.InstantiationDependent = true;
   4081     if (E->containsUnexpandedParameterPack())
   4082       ExprBits.ContainsUnexpandedParameterPack = true;
   4083 
   4084     if (isa<OpaqueValueExpr>(E))
   4085       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
   4086              "opaque-value semantic expressions for pseudo-object "
   4087              "operations must have sources");
   4088   }
   4089 }
   4090 
   4091 //===----------------------------------------------------------------------===//
   4092 //  ExprIterator.
   4093 //===----------------------------------------------------------------------===//
   4094 
   4095 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
   4096 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
   4097 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
   4098 const Expr* ConstExprIterator::operator[](size_t idx) const {
   4099   return cast<Expr>(I[idx]);
   4100 }
   4101 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
   4102 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
   4103 
   4104 //===----------------------------------------------------------------------===//
   4105 //  Child Iterators for iterating over subexpressions/substatements
   4106 //===----------------------------------------------------------------------===//
   4107 
   4108 // UnaryExprOrTypeTraitExpr
   4109 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
   4110   // If this is of a type and the type is a VLA type (and not a typedef), the
   4111   // size expression of the VLA needs to be treated as an executable expression.
   4112   // Why isn't this weirdness documented better in StmtIterator?
   4113   if (isArgumentType()) {
   4114     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
   4115                                    getArgumentType().getTypePtr()))
   4116       return child_range(child_iterator(T), child_iterator());
   4117     return child_range();
   4118   }
   4119   return child_range(&Argument.Ex, &Argument.Ex + 1);
   4120 }
   4121 
   4122 // ObjCMessageExpr
   4123 Stmt::child_range ObjCMessageExpr::children() {
   4124   Stmt **begin;
   4125   if (getReceiverKind() == Instance)
   4126     begin = reinterpret_cast<Stmt **>(this + 1);
   4127   else
   4128     begin = reinterpret_cast<Stmt **>(getArgs());
   4129   return child_range(begin,
   4130                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
   4131 }
   4132 
   4133 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
   4134                                    QualType T, ObjCMethodDecl *Method,
   4135                                    SourceRange SR)
   4136   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
   4137          false, false, false, false),
   4138     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
   4139 {
   4140   Expr **SaveElements = getElements();
   4141   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
   4142     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
   4143       ExprBits.ValueDependent = true;
   4144     if (Elements[I]->isInstantiationDependent())
   4145       ExprBits.InstantiationDependent = true;
   4146     if (Elements[I]->containsUnexpandedParameterPack())
   4147       ExprBits.ContainsUnexpandedParameterPack = true;
   4148 
   4149     SaveElements[I] = Elements[I];
   4150   }
   4151 }
   4152 
   4153 ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
   4154                                            ArrayRef<Expr *> Elements,
   4155                                            QualType T, ObjCMethodDecl * Method,
   4156                                            SourceRange SR) {
   4157   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
   4158                          + Elements.size() * sizeof(Expr *));
   4159   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
   4160 }
   4161 
   4162 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
   4163                                                 unsigned NumElements) {
   4164 
   4165   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
   4166                          + NumElements * sizeof(Expr *));
   4167   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
   4168 }
   4169 
   4170 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
   4171                                              ArrayRef<ObjCDictionaryElement> VK,
   4172                                              bool HasPackExpansions,
   4173                                              QualType T, ObjCMethodDecl *method,
   4174                                              SourceRange SR)
   4175   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
   4176          false, false),
   4177     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
   4178     DictWithObjectsMethod(method)
   4179 {
   4180   KeyValuePair *KeyValues = getKeyValues();
   4181   ExpansionData *Expansions = getExpansionData();
   4182   for (unsigned I = 0; I < NumElements; I++) {
   4183     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
   4184         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
   4185       ExprBits.ValueDependent = true;
   4186     if (VK[I].Key->isInstantiationDependent() ||
   4187         VK[I].Value->isInstantiationDependent())
   4188       ExprBits.InstantiationDependent = true;
   4189     if (VK[I].EllipsisLoc.isInvalid() &&
   4190         (VK[I].Key->containsUnexpandedParameterPack() ||
   4191          VK[I].Value->containsUnexpandedParameterPack()))
   4192       ExprBits.ContainsUnexpandedParameterPack = true;
   4193 
   4194     KeyValues[I].Key = VK[I].Key;
   4195     KeyValues[I].Value = VK[I].Value;
   4196     if (Expansions) {
   4197       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
   4198       if (VK[I].NumExpansions)
   4199         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
   4200       else
   4201         Expansions[I].NumExpansionsPlusOne = 0;
   4202     }
   4203   }
   4204 }
   4205 
   4206 ObjCDictionaryLiteral *
   4207 ObjCDictionaryLiteral::Create(const ASTContext &C,
   4208                               ArrayRef<ObjCDictionaryElement> VK,
   4209                               bool HasPackExpansions,
   4210                               QualType T, ObjCMethodDecl *method,
   4211                               SourceRange SR) {
   4212   unsigned ExpansionsSize = 0;
   4213   if (HasPackExpansions)
   4214     ExpansionsSize = sizeof(ExpansionData) * VK.size();
   4215 
   4216   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
   4217                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
   4218   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
   4219 }
   4220 
   4221 ObjCDictionaryLiteral *
   4222 ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
   4223                                    bool HasPackExpansions) {
   4224   unsigned ExpansionsSize = 0;
   4225   if (HasPackExpansions)
   4226     ExpansionsSize = sizeof(ExpansionData) * NumElements;
   4227   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
   4228                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
   4229   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
   4230                                          HasPackExpansions);
   4231 }
   4232 
   4233 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
   4234                                                    Expr *base,
   4235                                                    Expr *key, QualType T,
   4236                                                    ObjCMethodDecl *getMethod,
   4237                                                    ObjCMethodDecl *setMethod,
   4238                                                    SourceLocation RB) {
   4239   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
   4240   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
   4241                                         OK_ObjCSubscript,
   4242                                         getMethod, setMethod, RB);
   4243 }
   4244 
   4245 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
   4246                        QualType t, AtomicOp op, SourceLocation RP)
   4247   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
   4248          false, false, false, false),
   4249     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
   4250 {
   4251   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
   4252   for (unsigned i = 0; i != args.size(); i++) {
   4253     if (args[i]->isTypeDependent())
   4254       ExprBits.TypeDependent = true;
   4255     if (args[i]->isValueDependent())
   4256       ExprBits.ValueDependent = true;
   4257     if (args[i]->isInstantiationDependent())
   4258       ExprBits.InstantiationDependent = true;
   4259     if (args[i]->containsUnexpandedParameterPack())
   4260       ExprBits.ContainsUnexpandedParameterPack = true;
   4261 
   4262     SubExprs[i] = args[i];
   4263   }
   4264 }
   4265 
   4266 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
   4267   switch (Op) {
   4268   case AO__c11_atomic_init:
   4269   case AO__c11_atomic_load:
   4270   case AO__atomic_load_n:
   4271     return 2;
   4272 
   4273   case AO__c11_atomic_store:
   4274   case AO__c11_atomic_exchange:
   4275   case AO__atomic_load:
   4276   case AO__atomic_store:
   4277   case AO__atomic_store_n:
   4278   case AO__atomic_exchange_n:
   4279   case AO__c11_atomic_fetch_add:
   4280   case AO__c11_atomic_fetch_sub:
   4281   case AO__c11_atomic_fetch_and:
   4282   case AO__c11_atomic_fetch_or:
   4283   case AO__c11_atomic_fetch_xor:
   4284   case AO__atomic_fetch_add:
   4285   case AO__atomic_fetch_sub:
   4286   case AO__atomic_fetch_and:
   4287   case AO__atomic_fetch_or:
   4288   case AO__atomic_fetch_xor:
   4289   case AO__atomic_fetch_nand:
   4290   case AO__atomic_add_fetch:
   4291   case AO__atomic_sub_fetch:
   4292   case AO__atomic_and_fetch:
   4293   case AO__atomic_or_fetch:
   4294   case AO__atomic_xor_fetch:
   4295   case AO__atomic_nand_fetch:
   4296     return 3;
   4297 
   4298   case AO__atomic_exchange:
   4299     return 4;
   4300 
   4301   case AO__c11_atomic_compare_exchange_strong:
   4302   case AO__c11_atomic_compare_exchange_weak:
   4303     return 5;
   4304 
   4305   case AO__atomic_compare_exchange:
   4306   case AO__atomic_compare_exchange_n:
   4307     return 6;
   4308   }
   4309   llvm_unreachable("unknown atomic op");
   4310 }
   4311