Home | History | Annotate | Download | only in Analysis
      1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
     11 // conditions), based off of an annotation system.
     12 //
     13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
     14 // for more information.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "clang/AST/Attr.h"
     19 #include "clang/AST/DeclCXX.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/StmtCXX.h"
     22 #include "clang/AST/StmtVisitor.h"
     23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
     24 #include "clang/Analysis/Analyses/ThreadSafety.h"
     25 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
     26 #include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
     27 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
     28 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
     29 #include "clang/Analysis/AnalysisContext.h"
     30 #include "clang/Analysis/CFG.h"
     31 #include "clang/Analysis/CFGStmtMap.h"
     32 #include "clang/Basic/OperatorKinds.h"
     33 #include "clang/Basic/SourceLocation.h"
     34 #include "clang/Basic/SourceManager.h"
     35 #include "llvm/ADT/BitVector.h"
     36 #include "llvm/ADT/FoldingSet.h"
     37 #include "llvm/ADT/ImmutableMap.h"
     38 #include "llvm/ADT/PostOrderIterator.h"
     39 #include "llvm/ADT/SmallVector.h"
     40 #include "llvm/ADT/StringRef.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include <algorithm>
     43 #include <ostream>
     44 #include <sstream>
     45 #include <utility>
     46 #include <vector>
     47 using namespace clang;
     48 using namespace threadSafety;
     49 
     50 // Key method definition
     51 ThreadSafetyHandler::~ThreadSafetyHandler() {}
     52 
     53 namespace {
     54 class TILPrinter :
     55   public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
     56 
     57 
     58 /// Issue a warning about an invalid lock expression
     59 static void warnInvalidLock(ThreadSafetyHandler &Handler,
     60                             const Expr *MutexExp, const NamedDecl *D,
     61                             const Expr *DeclExp, StringRef Kind) {
     62   SourceLocation Loc;
     63   if (DeclExp)
     64     Loc = DeclExp->getExprLoc();
     65 
     66   // FIXME: add a note about the attribute location in MutexExp or D
     67   if (Loc.isValid())
     68     Handler.handleInvalidLockExp(Kind, Loc);
     69 }
     70 
     71 /// \brief A set of CapabilityInfo objects, which are compiled from the
     72 /// requires attributes on a function.
     73 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
     74 public:
     75   /// \brief Push M onto list, but discard duplicates.
     76   void push_back_nodup(const CapabilityExpr &CapE) {
     77     iterator It = std::find_if(begin(), end(),
     78                                [=](const CapabilityExpr &CapE2) {
     79       return CapE.equals(CapE2);
     80     });
     81     if (It == end())
     82       push_back(CapE);
     83   }
     84 };
     85 
     86 class FactManager;
     87 class FactSet;
     88 
     89 /// \brief This is a helper class that stores a fact that is known at a
     90 /// particular point in program execution.  Currently, a fact is a capability,
     91 /// along with additional information, such as where it was acquired, whether
     92 /// it is exclusive or shared, etc.
     93 ///
     94 /// FIXME: this analysis does not currently support either re-entrant
     95 /// locking or lock "upgrading" and "downgrading" between exclusive and
     96 /// shared.
     97 class FactEntry : public CapabilityExpr {
     98 private:
     99   LockKind          LKind;            ///<  exclusive or shared
    100   SourceLocation    AcquireLoc;       ///<  where it was acquired.
    101   bool              Asserted;         ///<  true if the lock was asserted
    102   bool              Declared;         ///<  true if the lock was declared
    103 
    104 public:
    105   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
    106             bool Asrt, bool Declrd = false)
    107       : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
    108         Declared(Declrd) {}
    109 
    110   virtual ~FactEntry() {}
    111 
    112   LockKind          kind()       const { return LKind;      }
    113   SourceLocation    loc()        const { return AcquireLoc; }
    114   bool              asserted()   const { return Asserted; }
    115   bool              declared()   const { return Declared; }
    116 
    117   void setDeclared(bool D) { Declared = D; }
    118 
    119   virtual void
    120   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
    121                                 SourceLocation JoinLoc, LockErrorKind LEK,
    122                                 ThreadSafetyHandler &Handler) const = 0;
    123   virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
    124                             const CapabilityExpr &Cp, SourceLocation UnlockLoc,
    125                             bool FullyRemove, ThreadSafetyHandler &Handler,
    126                             StringRef DiagKind) const = 0;
    127 
    128   // Return true if LKind >= LK, where exclusive > shared
    129   bool isAtLeast(LockKind LK) {
    130     return  (LKind == LK_Exclusive) || (LK == LK_Shared);
    131   }
    132 };
    133 
    134 
    135 typedef unsigned short FactID;
    136 
    137 /// \brief FactManager manages the memory for all facts that are created during
    138 /// the analysis of a single routine.
    139 class FactManager {
    140 private:
    141   std::vector<std::unique_ptr<FactEntry>> Facts;
    142 
    143 public:
    144   FactID newFact(std::unique_ptr<FactEntry> Entry) {
    145     Facts.push_back(std::move(Entry));
    146     return static_cast<unsigned short>(Facts.size() - 1);
    147   }
    148 
    149   const FactEntry &operator[](FactID F) const { return *Facts[F]; }
    150   FactEntry &operator[](FactID F) { return *Facts[F]; }
    151 };
    152 
    153 
    154 /// \brief A FactSet is the set of facts that are known to be true at a
    155 /// particular program point.  FactSets must be small, because they are
    156 /// frequently copied, and are thus implemented as a set of indices into a
    157 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
    158 /// locks, so we can get away with doing a linear search for lookup.  Note
    159 /// that a hashtable or map is inappropriate in this case, because lookups
    160 /// may involve partial pattern matches, rather than exact matches.
    161 class FactSet {
    162 private:
    163   typedef SmallVector<FactID, 4> FactVec;
    164 
    165   FactVec FactIDs;
    166 
    167 public:
    168   typedef FactVec::iterator       iterator;
    169   typedef FactVec::const_iterator const_iterator;
    170 
    171   iterator       begin()       { return FactIDs.begin(); }
    172   const_iterator begin() const { return FactIDs.begin(); }
    173 
    174   iterator       end()       { return FactIDs.end(); }
    175   const_iterator end() const { return FactIDs.end(); }
    176 
    177   bool isEmpty() const { return FactIDs.size() == 0; }
    178 
    179   // Return true if the set contains only negative facts
    180   bool isEmpty(FactManager &FactMan) const {
    181     for (FactID FID : *this) {
    182       if (!FactMan[FID].negative())
    183         return false;
    184     }
    185     return true;
    186   }
    187 
    188   void addLockByID(FactID ID) { FactIDs.push_back(ID); }
    189 
    190   FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
    191     FactID F = FM.newFact(std::move(Entry));
    192     FactIDs.push_back(F);
    193     return F;
    194   }
    195 
    196   bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
    197     unsigned n = FactIDs.size();
    198     if (n == 0)
    199       return false;
    200 
    201     for (unsigned i = 0; i < n-1; ++i) {
    202       if (FM[FactIDs[i]].matches(CapE)) {
    203         FactIDs[i] = FactIDs[n-1];
    204         FactIDs.pop_back();
    205         return true;
    206       }
    207     }
    208     if (FM[FactIDs[n-1]].matches(CapE)) {
    209       FactIDs.pop_back();
    210       return true;
    211     }
    212     return false;
    213   }
    214 
    215   iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
    216     return std::find_if(begin(), end(), [&](FactID ID) {
    217       return FM[ID].matches(CapE);
    218     });
    219   }
    220 
    221   FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
    222     auto I = std::find_if(begin(), end(), [&](FactID ID) {
    223       return FM[ID].matches(CapE);
    224     });
    225     return I != end() ? &FM[*I] : nullptr;
    226   }
    227 
    228   FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const {
    229     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
    230       return FM[ID].matchesUniv(CapE);
    231     });
    232     return I != end() ? &FM[*I] : nullptr;
    233   }
    234 
    235   FactEntry *findPartialMatch(FactManager &FM,
    236                               const CapabilityExpr &CapE) const {
    237     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
    238       return FM[ID].partiallyMatches(CapE);
    239     });
    240     return I != end() ? &FM[*I] : nullptr;
    241   }
    242 
    243   bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
    244     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
    245       return FM[ID].valueDecl() == Vd;
    246     });
    247     return I != end();
    248   }
    249 };
    250 
    251 class ThreadSafetyAnalyzer;
    252 } // namespace
    253 
    254 namespace clang {
    255 namespace threadSafety {
    256 class BeforeSet {
    257 private:
    258   typedef SmallVector<const ValueDecl*, 4>  BeforeVect;
    259 
    260   struct BeforeInfo {
    261     BeforeInfo() : Vect(nullptr), Visited(false) { }
    262     BeforeInfo(BeforeInfo &&O)
    263         : Vect(std::move(O.Vect)), Visited(O.Visited)
    264     {}
    265 
    266     std::unique_ptr<BeforeVect> Vect;
    267     int                         Visited;
    268   };
    269 
    270   typedef llvm::DenseMap<const ValueDecl*, BeforeInfo>  BeforeMap;
    271   typedef llvm::DenseMap<const ValueDecl*, bool>        CycleMap;
    272 
    273 public:
    274   BeforeSet() { }
    275 
    276   BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
    277                               ThreadSafetyAnalyzer& Analyzer);
    278 
    279   void checkBeforeAfter(const ValueDecl* Vd,
    280                         const FactSet& FSet,
    281                         ThreadSafetyAnalyzer& Analyzer,
    282                         SourceLocation Loc, StringRef CapKind);
    283 
    284 private:
    285   BeforeMap BMap;
    286   CycleMap  CycMap;
    287 };
    288 } // end namespace threadSafety
    289 } // end namespace clang
    290 
    291 namespace {
    292 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
    293 class LocalVariableMap;
    294 
    295 /// A side (entry or exit) of a CFG node.
    296 enum CFGBlockSide { CBS_Entry, CBS_Exit };
    297 
    298 /// CFGBlockInfo is a struct which contains all the information that is
    299 /// maintained for each block in the CFG.  See LocalVariableMap for more
    300 /// information about the contexts.
    301 struct CFGBlockInfo {
    302   FactSet EntrySet;             // Lockset held at entry to block
    303   FactSet ExitSet;              // Lockset held at exit from block
    304   LocalVarContext EntryContext; // Context held at entry to block
    305   LocalVarContext ExitContext;  // Context held at exit from block
    306   SourceLocation EntryLoc;      // Location of first statement in block
    307   SourceLocation ExitLoc;       // Location of last statement in block.
    308   unsigned EntryIndex;          // Used to replay contexts later
    309   bool Reachable;               // Is this block reachable?
    310 
    311   const FactSet &getSet(CFGBlockSide Side) const {
    312     return Side == CBS_Entry ? EntrySet : ExitSet;
    313   }
    314   SourceLocation getLocation(CFGBlockSide Side) const {
    315     return Side == CBS_Entry ? EntryLoc : ExitLoc;
    316   }
    317 
    318 private:
    319   CFGBlockInfo(LocalVarContext EmptyCtx)
    320     : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
    321   { }
    322 
    323 public:
    324   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
    325 };
    326 
    327 
    328 
    329 // A LocalVariableMap maintains a map from local variables to their currently
    330 // valid definitions.  It provides SSA-like functionality when traversing the
    331 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
    332 // unique name (an integer), which acts as the SSA name for that definition.
    333 // The total set of names is shared among all CFG basic blocks.
    334 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
    335 // with their SSA-names.  Instead, we compute a Context for each point in the
    336 // code, which maps local variables to the appropriate SSA-name.  This map
    337 // changes with each assignment.
    338 //
    339 // The map is computed in a single pass over the CFG.  Subsequent analyses can
    340 // then query the map to find the appropriate Context for a statement, and use
    341 // that Context to look up the definitions of variables.
    342 class LocalVariableMap {
    343 public:
    344   typedef LocalVarContext Context;
    345 
    346   /// A VarDefinition consists of an expression, representing the value of the
    347   /// variable, along with the context in which that expression should be
    348   /// interpreted.  A reference VarDefinition does not itself contain this
    349   /// information, but instead contains a pointer to a previous VarDefinition.
    350   struct VarDefinition {
    351   public:
    352     friend class LocalVariableMap;
    353 
    354     const NamedDecl *Dec;  // The original declaration for this variable.
    355     const Expr *Exp;       // The expression for this variable, OR
    356     unsigned Ref;          // Reference to another VarDefinition
    357     Context Ctx;           // The map with which Exp should be interpreted.
    358 
    359     bool isReference() { return !Exp; }
    360 
    361   private:
    362     // Create ordinary variable definition
    363     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
    364       : Dec(D), Exp(E), Ref(0), Ctx(C)
    365     { }
    366 
    367     // Create reference to previous definition
    368     VarDefinition(const NamedDecl *D, unsigned R, Context C)
    369       : Dec(D), Exp(nullptr), Ref(R), Ctx(C)
    370     { }
    371   };
    372 
    373 private:
    374   Context::Factory ContextFactory;
    375   std::vector<VarDefinition> VarDefinitions;
    376   std::vector<unsigned> CtxIndices;
    377   std::vector<std::pair<Stmt*, Context> > SavedContexts;
    378 
    379 public:
    380   LocalVariableMap() {
    381     // index 0 is a placeholder for undefined variables (aka phi-nodes).
    382     VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
    383   }
    384 
    385   /// Look up a definition, within the given context.
    386   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
    387     const unsigned *i = Ctx.lookup(D);
    388     if (!i)
    389       return nullptr;
    390     assert(*i < VarDefinitions.size());
    391     return &VarDefinitions[*i];
    392   }
    393 
    394   /// Look up the definition for D within the given context.  Returns
    395   /// NULL if the expression is not statically known.  If successful, also
    396   /// modifies Ctx to hold the context of the return Expr.
    397   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
    398     const unsigned *P = Ctx.lookup(D);
    399     if (!P)
    400       return nullptr;
    401 
    402     unsigned i = *P;
    403     while (i > 0) {
    404       if (VarDefinitions[i].Exp) {
    405         Ctx = VarDefinitions[i].Ctx;
    406         return VarDefinitions[i].Exp;
    407       }
    408       i = VarDefinitions[i].Ref;
    409     }
    410     return nullptr;
    411   }
    412 
    413   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
    414 
    415   /// Return the next context after processing S.  This function is used by
    416   /// clients of the class to get the appropriate context when traversing the
    417   /// CFG.  It must be called for every assignment or DeclStmt.
    418   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
    419     if (SavedContexts[CtxIndex+1].first == S) {
    420       CtxIndex++;
    421       Context Result = SavedContexts[CtxIndex].second;
    422       return Result;
    423     }
    424     return C;
    425   }
    426 
    427   void dumpVarDefinitionName(unsigned i) {
    428     if (i == 0) {
    429       llvm::errs() << "Undefined";
    430       return;
    431     }
    432     const NamedDecl *Dec = VarDefinitions[i].Dec;
    433     if (!Dec) {
    434       llvm::errs() << "<<NULL>>";
    435       return;
    436     }
    437     Dec->printName(llvm::errs());
    438     llvm::errs() << "." << i << " " << ((const void*) Dec);
    439   }
    440 
    441   /// Dumps an ASCII representation of the variable map to llvm::errs()
    442   void dump() {
    443     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
    444       const Expr *Exp = VarDefinitions[i].Exp;
    445       unsigned Ref = VarDefinitions[i].Ref;
    446 
    447       dumpVarDefinitionName(i);
    448       llvm::errs() << " = ";
    449       if (Exp) Exp->dump();
    450       else {
    451         dumpVarDefinitionName(Ref);
    452         llvm::errs() << "\n";
    453       }
    454     }
    455   }
    456 
    457   /// Dumps an ASCII representation of a Context to llvm::errs()
    458   void dumpContext(Context C) {
    459     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
    460       const NamedDecl *D = I.getKey();
    461       D->printName(llvm::errs());
    462       const unsigned *i = C.lookup(D);
    463       llvm::errs() << " -> ";
    464       dumpVarDefinitionName(*i);
    465       llvm::errs() << "\n";
    466     }
    467   }
    468 
    469   /// Builds the variable map.
    470   void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
    471                    std::vector<CFGBlockInfo> &BlockInfo);
    472 
    473 protected:
    474   // Get the current context index
    475   unsigned getContextIndex() { return SavedContexts.size()-1; }
    476 
    477   // Save the current context for later replay
    478   void saveContext(Stmt *S, Context C) {
    479     SavedContexts.push_back(std::make_pair(S,C));
    480   }
    481 
    482   // Adds a new definition to the given context, and returns a new context.
    483   // This method should be called when declaring a new variable.
    484   Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
    485     assert(!Ctx.contains(D));
    486     unsigned newID = VarDefinitions.size();
    487     Context NewCtx = ContextFactory.add(Ctx, D, newID);
    488     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
    489     return NewCtx;
    490   }
    491 
    492   // Add a new reference to an existing definition.
    493   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
    494     unsigned newID = VarDefinitions.size();
    495     Context NewCtx = ContextFactory.add(Ctx, D, newID);
    496     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
    497     return NewCtx;
    498   }
    499 
    500   // Updates a definition only if that definition is already in the map.
    501   // This method should be called when assigning to an existing variable.
    502   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
    503     if (Ctx.contains(D)) {
    504       unsigned newID = VarDefinitions.size();
    505       Context NewCtx = ContextFactory.remove(Ctx, D);
    506       NewCtx = ContextFactory.add(NewCtx, D, newID);
    507       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
    508       return NewCtx;
    509     }
    510     return Ctx;
    511   }
    512 
    513   // Removes a definition from the context, but keeps the variable name
    514   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
    515   Context clearDefinition(const NamedDecl *D, Context Ctx) {
    516     Context NewCtx = Ctx;
    517     if (NewCtx.contains(D)) {
    518       NewCtx = ContextFactory.remove(NewCtx, D);
    519       NewCtx = ContextFactory.add(NewCtx, D, 0);
    520     }
    521     return NewCtx;
    522   }
    523 
    524   // Remove a definition entirely frmo the context.
    525   Context removeDefinition(const NamedDecl *D, Context Ctx) {
    526     Context NewCtx = Ctx;
    527     if (NewCtx.contains(D)) {
    528       NewCtx = ContextFactory.remove(NewCtx, D);
    529     }
    530     return NewCtx;
    531   }
    532 
    533   Context intersectContexts(Context C1, Context C2);
    534   Context createReferenceContext(Context C);
    535   void intersectBackEdge(Context C1, Context C2);
    536 
    537   friend class VarMapBuilder;
    538 };
    539 
    540 
    541 // This has to be defined after LocalVariableMap.
    542 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
    543   return CFGBlockInfo(M.getEmptyContext());
    544 }
    545 
    546 
    547 /// Visitor which builds a LocalVariableMap
    548 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
    549 public:
    550   LocalVariableMap* VMap;
    551   LocalVariableMap::Context Ctx;
    552 
    553   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
    554     : VMap(VM), Ctx(C) {}
    555 
    556   void VisitDeclStmt(DeclStmt *S);
    557   void VisitBinaryOperator(BinaryOperator *BO);
    558 };
    559 
    560 
    561 // Add new local variables to the variable map
    562 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
    563   bool modifiedCtx = false;
    564   DeclGroupRef DGrp = S->getDeclGroup();
    565   for (const auto *D : DGrp) {
    566     if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
    567       const Expr *E = VD->getInit();
    568 
    569       // Add local variables with trivial type to the variable map
    570       QualType T = VD->getType();
    571       if (T.isTrivialType(VD->getASTContext())) {
    572         Ctx = VMap->addDefinition(VD, E, Ctx);
    573         modifiedCtx = true;
    574       }
    575     }
    576   }
    577   if (modifiedCtx)
    578     VMap->saveContext(S, Ctx);
    579 }
    580 
    581 // Update local variable definitions in variable map
    582 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
    583   if (!BO->isAssignmentOp())
    584     return;
    585 
    586   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
    587 
    588   // Update the variable map and current context.
    589   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
    590     ValueDecl *VDec = DRE->getDecl();
    591     if (Ctx.lookup(VDec)) {
    592       if (BO->getOpcode() == BO_Assign)
    593         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
    594       else
    595         // FIXME -- handle compound assignment operators
    596         Ctx = VMap->clearDefinition(VDec, Ctx);
    597       VMap->saveContext(BO, Ctx);
    598     }
    599   }
    600 }
    601 
    602 
    603 // Computes the intersection of two contexts.  The intersection is the
    604 // set of variables which have the same definition in both contexts;
    605 // variables with different definitions are discarded.
    606 LocalVariableMap::Context
    607 LocalVariableMap::intersectContexts(Context C1, Context C2) {
    608   Context Result = C1;
    609   for (const auto &P : C1) {
    610     const NamedDecl *Dec = P.first;
    611     const unsigned *i2 = C2.lookup(Dec);
    612     if (!i2)             // variable doesn't exist on second path
    613       Result = removeDefinition(Dec, Result);
    614     else if (*i2 != P.second)  // variable exists, but has different definition
    615       Result = clearDefinition(Dec, Result);
    616   }
    617   return Result;
    618 }
    619 
    620 // For every variable in C, create a new variable that refers to the
    621 // definition in C.  Return a new context that contains these new variables.
    622 // (We use this for a naive implementation of SSA on loop back-edges.)
    623 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
    624   Context Result = getEmptyContext();
    625   for (const auto &P : C)
    626     Result = addReference(P.first, P.second, Result);
    627   return Result;
    628 }
    629 
    630 // This routine also takes the intersection of C1 and C2, but it does so by
    631 // altering the VarDefinitions.  C1 must be the result of an earlier call to
    632 // createReferenceContext.
    633 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
    634   for (const auto &P : C1) {
    635     unsigned i1 = P.second;
    636     VarDefinition *VDef = &VarDefinitions[i1];
    637     assert(VDef->isReference());
    638 
    639     const unsigned *i2 = C2.lookup(P.first);
    640     if (!i2 || (*i2 != i1))
    641       VDef->Ref = 0;    // Mark this variable as undefined
    642   }
    643 }
    644 
    645 
    646 // Traverse the CFG in topological order, so all predecessors of a block
    647 // (excluding back-edges) are visited before the block itself.  At
    648 // each point in the code, we calculate a Context, which holds the set of
    649 // variable definitions which are visible at that point in execution.
    650 // Visible variables are mapped to their definitions using an array that
    651 // contains all definitions.
    652 //
    653 // At join points in the CFG, the set is computed as the intersection of
    654 // the incoming sets along each edge, E.g.
    655 //
    656 //                       { Context                 | VarDefinitions }
    657 //   int x = 0;          { x -> x1                 | x1 = 0 }
    658 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
    659 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
    660 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
    661 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
    662 //
    663 // This is essentially a simpler and more naive version of the standard SSA
    664 // algorithm.  Those definitions that remain in the intersection are from blocks
    665 // that strictly dominate the current block.  We do not bother to insert proper
    666 // phi nodes, because they are not used in our analysis; instead, wherever
    667 // a phi node would be required, we simply remove that definition from the
    668 // context (E.g. x above).
    669 //
    670 // The initial traversal does not capture back-edges, so those need to be
    671 // handled on a separate pass.  Whenever the first pass encounters an
    672 // incoming back edge, it duplicates the context, creating new definitions
    673 // that refer back to the originals.  (These correspond to places where SSA
    674 // might have to insert a phi node.)  On the second pass, these definitions are
    675 // set to NULL if the variable has changed on the back-edge (i.e. a phi
    676 // node was actually required.)  E.g.
    677 //
    678 //                       { Context           | VarDefinitions }
    679 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
    680 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
    681 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
    682 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
    683 //
    684 void LocalVariableMap::traverseCFG(CFG *CFGraph,
    685                                    const PostOrderCFGView *SortedGraph,
    686                                    std::vector<CFGBlockInfo> &BlockInfo) {
    687   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
    688 
    689   CtxIndices.resize(CFGraph->getNumBlockIDs());
    690 
    691   for (const auto *CurrBlock : *SortedGraph) {
    692     int CurrBlockID = CurrBlock->getBlockID();
    693     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
    694 
    695     VisitedBlocks.insert(CurrBlock);
    696 
    697     // Calculate the entry context for the current block
    698     bool HasBackEdges = false;
    699     bool CtxInit = true;
    700     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
    701          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
    702       // if *PI -> CurrBlock is a back edge, so skip it
    703       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
    704         HasBackEdges = true;
    705         continue;
    706       }
    707 
    708       int PrevBlockID = (*PI)->getBlockID();
    709       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
    710 
    711       if (CtxInit) {
    712         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
    713         CtxInit = false;
    714       }
    715       else {
    716         CurrBlockInfo->EntryContext =
    717           intersectContexts(CurrBlockInfo->EntryContext,
    718                             PrevBlockInfo->ExitContext);
    719       }
    720     }
    721 
    722     // Duplicate the context if we have back-edges, so we can call
    723     // intersectBackEdges later.
    724     if (HasBackEdges)
    725       CurrBlockInfo->EntryContext =
    726         createReferenceContext(CurrBlockInfo->EntryContext);
    727 
    728     // Create a starting context index for the current block
    729     saveContext(nullptr, CurrBlockInfo->EntryContext);
    730     CurrBlockInfo->EntryIndex = getContextIndex();
    731 
    732     // Visit all the statements in the basic block.
    733     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
    734     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
    735          BE = CurrBlock->end(); BI != BE; ++BI) {
    736       switch (BI->getKind()) {
    737         case CFGElement::Statement: {
    738           CFGStmt CS = BI->castAs<CFGStmt>();
    739           VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
    740           break;
    741         }
    742         default:
    743           break;
    744       }
    745     }
    746     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
    747 
    748     // Mark variables on back edges as "unknown" if they've been changed.
    749     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
    750          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
    751       // if CurrBlock -> *SI is *not* a back edge
    752       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
    753         continue;
    754 
    755       CFGBlock *FirstLoopBlock = *SI;
    756       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
    757       Context LoopEnd   = CurrBlockInfo->ExitContext;
    758       intersectBackEdge(LoopBegin, LoopEnd);
    759     }
    760   }
    761 
    762   // Put an extra entry at the end of the indexed context array
    763   unsigned exitID = CFGraph->getExit().getBlockID();
    764   saveContext(nullptr, BlockInfo[exitID].ExitContext);
    765 }
    766 
    767 /// Find the appropriate source locations to use when producing diagnostics for
    768 /// each block in the CFG.
    769 static void findBlockLocations(CFG *CFGraph,
    770                                const PostOrderCFGView *SortedGraph,
    771                                std::vector<CFGBlockInfo> &BlockInfo) {
    772   for (const auto *CurrBlock : *SortedGraph) {
    773     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
    774 
    775     // Find the source location of the last statement in the block, if the
    776     // block is not empty.
    777     if (const Stmt *S = CurrBlock->getTerminator()) {
    778       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
    779     } else {
    780       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
    781            BE = CurrBlock->rend(); BI != BE; ++BI) {
    782         // FIXME: Handle other CFGElement kinds.
    783         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
    784           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
    785           break;
    786         }
    787       }
    788     }
    789 
    790     if (!CurrBlockInfo->ExitLoc.isInvalid()) {
    791       // This block contains at least one statement. Find the source location
    792       // of the first statement in the block.
    793       for (CFGBlock::const_iterator BI = CurrBlock->begin(),
    794            BE = CurrBlock->end(); BI != BE; ++BI) {
    795         // FIXME: Handle other CFGElement kinds.
    796         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
    797           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
    798           break;
    799         }
    800       }
    801     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
    802                CurrBlock != &CFGraph->getExit()) {
    803       // The block is empty, and has a single predecessor. Use its exit
    804       // location.
    805       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
    806           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
    807     }
    808   }
    809 }
    810 
    811 class LockableFactEntry : public FactEntry {
    812 private:
    813   bool Managed; ///<  managed by ScopedLockable object
    814 
    815 public:
    816   LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
    817                     bool Mng = false, bool Asrt = false)
    818       : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
    819 
    820   void
    821   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
    822                                 SourceLocation JoinLoc, LockErrorKind LEK,
    823                                 ThreadSafetyHandler &Handler) const override {
    824     if (!Managed && !asserted() && !negative() && !isUniversal()) {
    825       Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
    826                                         LEK);
    827     }
    828   }
    829 
    830   void handleUnlock(FactSet &FSet, FactManager &FactMan,
    831                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
    832                     bool FullyRemove, ThreadSafetyHandler &Handler,
    833                     StringRef DiagKind) const override {
    834     FSet.removeLock(FactMan, Cp);
    835     if (!Cp.negative()) {
    836       FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
    837                                 !Cp, LK_Exclusive, UnlockLoc));
    838     }
    839   }
    840 };
    841 
    842 class ScopedLockableFactEntry : public FactEntry {
    843 private:
    844   SmallVector<const til::SExpr *, 4> UnderlyingMutexes;
    845 
    846 public:
    847   ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc,
    848                           const CapExprSet &Excl, const CapExprSet &Shrd)
    849       : FactEntry(CE, LK_Exclusive, Loc, false) {
    850     for (const auto &M : Excl)
    851       UnderlyingMutexes.push_back(M.sexpr());
    852     for (const auto &M : Shrd)
    853       UnderlyingMutexes.push_back(M.sexpr());
    854   }
    855 
    856   void
    857   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
    858                                 SourceLocation JoinLoc, LockErrorKind LEK,
    859                                 ThreadSafetyHandler &Handler) const override {
    860     for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
    861       if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) {
    862         // If this scoped lock manages another mutex, and if the underlying
    863         // mutex is still held, then warn about the underlying mutex.
    864         Handler.handleMutexHeldEndOfScope(
    865             "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK);
    866       }
    867     }
    868   }
    869 
    870   void handleUnlock(FactSet &FSet, FactManager &FactMan,
    871                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
    872                     bool FullyRemove, ThreadSafetyHandler &Handler,
    873                     StringRef DiagKind) const override {
    874     assert(!Cp.negative() && "Managing object cannot be negative.");
    875     for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
    876       CapabilityExpr UnderCp(UnderlyingMutex, false);
    877       auto UnderEntry = llvm::make_unique<LockableFactEntry>(
    878           !UnderCp, LK_Exclusive, UnlockLoc);
    879 
    880       if (FullyRemove) {
    881         // We're destroying the managing object.
    882         // Remove the underlying mutex if it exists; but don't warn.
    883         if (FSet.findLock(FactMan, UnderCp)) {
    884           FSet.removeLock(FactMan, UnderCp);
    885           FSet.addLock(FactMan, std::move(UnderEntry));
    886         }
    887       } else {
    888         // We're releasing the underlying mutex, but not destroying the
    889         // managing object.  Warn on dual release.
    890         if (!FSet.findLock(FactMan, UnderCp)) {
    891           Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(),
    892                                         UnlockLoc);
    893         }
    894         FSet.removeLock(FactMan, UnderCp);
    895         FSet.addLock(FactMan, std::move(UnderEntry));
    896       }
    897     }
    898     if (FullyRemove)
    899       FSet.removeLock(FactMan, Cp);
    900   }
    901 };
    902 
    903 /// \brief Class which implements the core thread safety analysis routines.
    904 class ThreadSafetyAnalyzer {
    905   friend class BuildLockset;
    906   friend class threadSafety::BeforeSet;
    907 
    908   llvm::BumpPtrAllocator Bpa;
    909   threadSafety::til::MemRegionRef Arena;
    910   threadSafety::SExprBuilder SxBuilder;
    911 
    912   ThreadSafetyHandler       &Handler;
    913   const CXXMethodDecl       *CurrentMethod;
    914   LocalVariableMap          LocalVarMap;
    915   FactManager               FactMan;
    916   std::vector<CFGBlockInfo> BlockInfo;
    917 
    918   BeforeSet* GlobalBeforeSet;
    919 
    920 public:
    921   ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
    922      : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
    923 
    924   bool inCurrentScope(const CapabilityExpr &CapE);
    925 
    926   void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
    927                StringRef DiagKind, bool ReqAttr = false);
    928   void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
    929                   SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
    930                   StringRef DiagKind);
    931 
    932   template <typename AttrType>
    933   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
    934                    const NamedDecl *D, VarDecl *SelfDecl = nullptr);
    935 
    936   template <class AttrType>
    937   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
    938                    const NamedDecl *D,
    939                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
    940                    Expr *BrE, bool Neg);
    941 
    942   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
    943                                      bool &Negate);
    944 
    945   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
    946                       const CFGBlock* PredBlock,
    947                       const CFGBlock *CurrBlock);
    948 
    949   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
    950                         SourceLocation JoinLoc,
    951                         LockErrorKind LEK1, LockErrorKind LEK2,
    952                         bool Modify=true);
    953 
    954   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
    955                         SourceLocation JoinLoc, LockErrorKind LEK1,
    956                         bool Modify=true) {
    957     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
    958   }
    959 
    960   void runAnalysis(AnalysisDeclContext &AC);
    961 };
    962 } // namespace
    963 
    964 /// Process acquired_before and acquired_after attributes on Vd.
    965 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
    966     ThreadSafetyAnalyzer& Analyzer) {
    967   // Create a new entry for Vd.
    968   auto& Entry = BMap.FindAndConstruct(Vd);
    969   BeforeInfo* Info = &Entry.second;
    970   BeforeVect* Bv = nullptr;
    971 
    972   for (Attr* At : Vd->attrs()) {
    973     switch (At->getKind()) {
    974       case attr::AcquiredBefore: {
    975         auto *A = cast<AcquiredBeforeAttr>(At);
    976 
    977         // Create a new BeforeVect for Vd if necessary.
    978         if (!Bv) {
    979           Bv = new BeforeVect;
    980           Info->Vect.reset(Bv);
    981         }
    982         // Read exprs from the attribute, and add them to BeforeVect.
    983         for (const auto *Arg : A->args()) {
    984           CapabilityExpr Cp =
    985             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
    986           if (const ValueDecl *Cpvd = Cp.valueDecl()) {
    987             Bv->push_back(Cpvd);
    988             auto It = BMap.find(Cpvd);
    989             if (It == BMap.end())
    990               insertAttrExprs(Cpvd, Analyzer);
    991           }
    992         }
    993         break;
    994       }
    995       case attr::AcquiredAfter: {
    996         auto *A = cast<AcquiredAfterAttr>(At);
    997 
    998         // Read exprs from the attribute, and add them to BeforeVect.
    999         for (const auto *Arg : A->args()) {
   1000           CapabilityExpr Cp =
   1001             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
   1002           if (const ValueDecl *ArgVd = Cp.valueDecl()) {
   1003             // Get entry for mutex listed in attribute
   1004             BeforeInfo* ArgInfo;
   1005             auto It = BMap.find(ArgVd);
   1006             if (It == BMap.end())
   1007               ArgInfo = insertAttrExprs(ArgVd, Analyzer);
   1008             else
   1009               ArgInfo = &It->second;
   1010 
   1011             // Create a new BeforeVect if necessary.
   1012             BeforeVect* ArgBv = ArgInfo->Vect.get();
   1013             if (!ArgBv) {
   1014               ArgBv = new BeforeVect;
   1015               ArgInfo->Vect.reset(ArgBv);
   1016             }
   1017             ArgBv->push_back(Vd);
   1018           }
   1019         }
   1020         break;
   1021       }
   1022       default:
   1023         break;
   1024     }
   1025   }
   1026 
   1027   return Info;
   1028 }
   1029 
   1030 
   1031 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
   1032 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
   1033                                  const FactSet& FSet,
   1034                                  ThreadSafetyAnalyzer& Analyzer,
   1035                                  SourceLocation Loc, StringRef CapKind) {
   1036   SmallVector<BeforeInfo*, 8> InfoVect;
   1037 
   1038   // Do a depth-first traversal of Vd.
   1039   // Return true if there are cycles.
   1040   std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
   1041     if (!Vd)
   1042       return false;
   1043 
   1044     BeforeSet::BeforeInfo* Info;
   1045     auto It = BMap.find(Vd);
   1046     if (It == BMap.end())
   1047       Info = insertAttrExprs(Vd, Analyzer);
   1048     else
   1049       Info = &It->second;
   1050 
   1051     if (Info->Visited == 1)
   1052       return true;
   1053 
   1054     if (Info->Visited == 2)
   1055       return false;
   1056 
   1057     BeforeVect* Bv = Info->Vect.get();
   1058     if (!Bv)
   1059       return false;
   1060 
   1061     InfoVect.push_back(Info);
   1062     Info->Visited = 1;
   1063     for (auto *Vdb : *Bv) {
   1064       // Exclude mutexes in our immediate before set.
   1065       if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
   1066         StringRef L1 = StartVd->getName();
   1067         StringRef L2 = Vdb->getName();
   1068         Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
   1069       }
   1070       // Transitively search other before sets, and warn on cycles.
   1071       if (traverse(Vdb)) {
   1072         if (CycMap.find(Vd) == CycMap.end()) {
   1073           CycMap.insert(std::make_pair(Vd, true));
   1074           StringRef L1 = Vd->getName();
   1075           Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
   1076         }
   1077       }
   1078     }
   1079     Info->Visited = 2;
   1080     return false;
   1081   };
   1082 
   1083   traverse(StartVd);
   1084 
   1085   for (auto* Info : InfoVect)
   1086     Info->Visited = 0;
   1087 }
   1088 
   1089 
   1090 
   1091 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs.
   1092 static const ValueDecl *getValueDecl(const Expr *Exp) {
   1093   if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
   1094     return getValueDecl(CE->getSubExpr());
   1095 
   1096   if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
   1097     return DR->getDecl();
   1098 
   1099   if (const auto *ME = dyn_cast<MemberExpr>(Exp))
   1100     return ME->getMemberDecl();
   1101 
   1102   return nullptr;
   1103 }
   1104 
   1105 namespace {
   1106 template <typename Ty>
   1107 class has_arg_iterator_range {
   1108   typedef char yes[1];
   1109   typedef char no[2];
   1110 
   1111   template <typename Inner>
   1112   static yes& test(Inner *I, decltype(I->args()) * = nullptr);
   1113 
   1114   template <typename>
   1115   static no& test(...);
   1116 
   1117 public:
   1118   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
   1119 };
   1120 } // namespace
   1121 
   1122 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
   1123   return A->getName();
   1124 }
   1125 
   1126 static StringRef ClassifyDiagnostic(QualType VDT) {
   1127   // We need to look at the declaration of the type of the value to determine
   1128   // which it is. The type should either be a record or a typedef, or a pointer
   1129   // or reference thereof.
   1130   if (const auto *RT = VDT->getAs<RecordType>()) {
   1131     if (const auto *RD = RT->getDecl())
   1132       if (const auto *CA = RD->getAttr<CapabilityAttr>())
   1133         return ClassifyDiagnostic(CA);
   1134   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
   1135     if (const auto *TD = TT->getDecl())
   1136       if (const auto *CA = TD->getAttr<CapabilityAttr>())
   1137         return ClassifyDiagnostic(CA);
   1138   } else if (VDT->isPointerType() || VDT->isReferenceType())
   1139     return ClassifyDiagnostic(VDT->getPointeeType());
   1140 
   1141   return "mutex";
   1142 }
   1143 
   1144 static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
   1145   assert(VD && "No ValueDecl passed");
   1146 
   1147   // The ValueDecl is the declaration of a mutex or role (hopefully).
   1148   return ClassifyDiagnostic(VD->getType());
   1149 }
   1150 
   1151 template <typename AttrTy>
   1152 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
   1153                                StringRef>::type
   1154 ClassifyDiagnostic(const AttrTy *A) {
   1155   if (const ValueDecl *VD = getValueDecl(A->getArg()))
   1156     return ClassifyDiagnostic(VD);
   1157   return "mutex";
   1158 }
   1159 
   1160 template <typename AttrTy>
   1161 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
   1162                                StringRef>::type
   1163 ClassifyDiagnostic(const AttrTy *A) {
   1164   for (const auto *Arg : A->args()) {
   1165     if (const ValueDecl *VD = getValueDecl(Arg))
   1166       return ClassifyDiagnostic(VD);
   1167   }
   1168   return "mutex";
   1169 }
   1170 
   1171 
   1172 inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
   1173   if (!CurrentMethod)
   1174       return false;
   1175   if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
   1176     auto *VD = P->clangDecl();
   1177     if (VD)
   1178       return VD->getDeclContext() == CurrentMethod->getDeclContext();
   1179   }
   1180   return false;
   1181 }
   1182 
   1183 
   1184 /// \brief Add a new lock to the lockset, warning if the lock is already there.
   1185 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
   1186 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
   1187                                    std::unique_ptr<FactEntry> Entry,
   1188                                    StringRef DiagKind, bool ReqAttr) {
   1189   if (Entry->shouldIgnore())
   1190     return;
   1191 
   1192   if (!ReqAttr && !Entry->negative()) {
   1193     // look for the negative capability, and remove it from the fact set.
   1194     CapabilityExpr NegC = !*Entry;
   1195     FactEntry *Nen = FSet.findLock(FactMan, NegC);
   1196     if (Nen) {
   1197       FSet.removeLock(FactMan, NegC);
   1198     }
   1199     else {
   1200       if (inCurrentScope(*Entry) && !Entry->asserted())
   1201         Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
   1202                                       NegC.toString(), Entry->loc());
   1203     }
   1204   }
   1205 
   1206   // Check before/after constraints
   1207   if (Handler.issueBetaWarnings() &&
   1208       !Entry->asserted() && !Entry->declared()) {
   1209     GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
   1210                                       Entry->loc(), DiagKind);
   1211   }
   1212 
   1213   // FIXME: Don't always warn when we have support for reentrant locks.
   1214   if (FSet.findLock(FactMan, *Entry)) {
   1215     if (!Entry->asserted())
   1216       Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc());
   1217   } else {
   1218     FSet.addLock(FactMan, std::move(Entry));
   1219   }
   1220 }
   1221 
   1222 
   1223 /// \brief Remove a lock from the lockset, warning if the lock is not there.
   1224 /// \param UnlockLoc The source location of the unlock (only used in error msg)
   1225 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
   1226                                       SourceLocation UnlockLoc,
   1227                                       bool FullyRemove, LockKind ReceivedKind,
   1228                                       StringRef DiagKind) {
   1229   if (Cp.shouldIgnore())
   1230     return;
   1231 
   1232   const FactEntry *LDat = FSet.findLock(FactMan, Cp);
   1233   if (!LDat) {
   1234     Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
   1235     return;
   1236   }
   1237 
   1238   // Generic lock removal doesn't care about lock kind mismatches, but
   1239   // otherwise diagnose when the lock kinds are mismatched.
   1240   if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
   1241     Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(),
   1242                                       LDat->kind(), ReceivedKind, UnlockLoc);
   1243   }
   1244 
   1245   LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
   1246                      DiagKind);
   1247 }
   1248 
   1249 
   1250 /// \brief Extract the list of mutexIDs from the attribute on an expression,
   1251 /// and push them onto Mtxs, discarding any duplicates.
   1252 template <typename AttrType>
   1253 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
   1254                                        Expr *Exp, const NamedDecl *D,
   1255                                        VarDecl *SelfDecl) {
   1256   if (Attr->args_size() == 0) {
   1257     // The mutex held is the "this" object.
   1258     CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
   1259     if (Cp.isInvalid()) {
   1260        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
   1261        return;
   1262     }
   1263     //else
   1264     if (!Cp.shouldIgnore())
   1265       Mtxs.push_back_nodup(Cp);
   1266     return;
   1267   }
   1268 
   1269   for (const auto *Arg : Attr->args()) {
   1270     CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
   1271     if (Cp.isInvalid()) {
   1272        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
   1273        continue;
   1274     }
   1275     //else
   1276     if (!Cp.shouldIgnore())
   1277       Mtxs.push_back_nodup(Cp);
   1278   }
   1279 }
   1280 
   1281 
   1282 /// \brief Extract the list of mutexIDs from a trylock attribute.  If the
   1283 /// trylock applies to the given edge, then push them onto Mtxs, discarding
   1284 /// any duplicates.
   1285 template <class AttrType>
   1286 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
   1287                                        Expr *Exp, const NamedDecl *D,
   1288                                        const CFGBlock *PredBlock,
   1289                                        const CFGBlock *CurrBlock,
   1290                                        Expr *BrE, bool Neg) {
   1291   // Find out which branch has the lock
   1292   bool branch = false;
   1293   if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
   1294     branch = BLE->getValue();
   1295   else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
   1296     branch = ILE->getValue().getBoolValue();
   1297 
   1298   int branchnum = branch ? 0 : 1;
   1299   if (Neg)
   1300     branchnum = !branchnum;
   1301 
   1302   // If we've taken the trylock branch, then add the lock
   1303   int i = 0;
   1304   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
   1305        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
   1306     if (*SI == CurrBlock && i == branchnum)
   1307       getMutexIDs(Mtxs, Attr, Exp, D);
   1308   }
   1309 }
   1310 
   1311 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
   1312   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
   1313     TCond = false;
   1314     return true;
   1315   } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
   1316     TCond = BLE->getValue();
   1317     return true;
   1318   } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
   1319     TCond = ILE->getValue().getBoolValue();
   1320     return true;
   1321   } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
   1322     return getStaticBooleanValue(CE->getSubExpr(), TCond);
   1323   }
   1324   return false;
   1325 }
   1326 
   1327 
   1328 // If Cond can be traced back to a function call, return the call expression.
   1329 // The negate variable should be called with false, and will be set to true
   1330 // if the function call is negated, e.g. if (!mu.tryLock(...))
   1331 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
   1332                                                          LocalVarContext C,
   1333                                                          bool &Negate) {
   1334   if (!Cond)
   1335     return nullptr;
   1336 
   1337   if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
   1338     return CallExp;
   1339   }
   1340   else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
   1341     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
   1342   }
   1343   else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
   1344     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
   1345   }
   1346   else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
   1347     return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
   1348   }
   1349   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
   1350     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
   1351     return getTrylockCallExpr(E, C, Negate);
   1352   }
   1353   else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
   1354     if (UOP->getOpcode() == UO_LNot) {
   1355       Negate = !Negate;
   1356       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
   1357     }
   1358     return nullptr;
   1359   }
   1360   else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
   1361     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
   1362       if (BOP->getOpcode() == BO_NE)
   1363         Negate = !Negate;
   1364 
   1365       bool TCond = false;
   1366       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
   1367         if (!TCond) Negate = !Negate;
   1368         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
   1369       }
   1370       TCond = false;
   1371       if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
   1372         if (!TCond) Negate = !Negate;
   1373         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
   1374       }
   1375       return nullptr;
   1376     }
   1377     if (BOP->getOpcode() == BO_LAnd) {
   1378       // LHS must have been evaluated in a different block.
   1379       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
   1380     }
   1381     if (BOP->getOpcode() == BO_LOr) {
   1382       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
   1383     }
   1384     return nullptr;
   1385   }
   1386   return nullptr;
   1387 }
   1388 
   1389 
   1390 /// \brief Find the lockset that holds on the edge between PredBlock
   1391 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
   1392 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
   1393 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
   1394                                           const FactSet &ExitSet,
   1395                                           const CFGBlock *PredBlock,
   1396                                           const CFGBlock *CurrBlock) {
   1397   Result = ExitSet;
   1398 
   1399   const Stmt *Cond = PredBlock->getTerminatorCondition();
   1400   if (!Cond)
   1401     return;
   1402 
   1403   bool Negate = false;
   1404   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
   1405   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
   1406   StringRef CapDiagKind = "mutex";
   1407 
   1408   CallExpr *Exp =
   1409     const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
   1410   if (!Exp)
   1411     return;
   1412 
   1413   NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
   1414   if(!FunDecl || !FunDecl->hasAttrs())
   1415     return;
   1416 
   1417   CapExprSet ExclusiveLocksToAdd;
   1418   CapExprSet SharedLocksToAdd;
   1419 
   1420   // If the condition is a call to a Trylock function, then grab the attributes
   1421   for (auto *Attr : FunDecl->attrs()) {
   1422     switch (Attr->getKind()) {
   1423       case attr::ExclusiveTrylockFunction: {
   1424         ExclusiveTrylockFunctionAttr *A =
   1425           cast<ExclusiveTrylockFunctionAttr>(Attr);
   1426         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
   1427                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
   1428         CapDiagKind = ClassifyDiagnostic(A);
   1429         break;
   1430       }
   1431       case attr::SharedTrylockFunction: {
   1432         SharedTrylockFunctionAttr *A =
   1433           cast<SharedTrylockFunctionAttr>(Attr);
   1434         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
   1435                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
   1436         CapDiagKind = ClassifyDiagnostic(A);
   1437         break;
   1438       }
   1439       default:
   1440         break;
   1441     }
   1442   }
   1443 
   1444   // Add and remove locks.
   1445   SourceLocation Loc = Exp->getExprLoc();
   1446   for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
   1447     addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
   1448                                                          LK_Exclusive, Loc),
   1449             CapDiagKind);
   1450   for (const auto &SharedLockToAdd : SharedLocksToAdd)
   1451     addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd,
   1452                                                          LK_Shared, Loc),
   1453             CapDiagKind);
   1454 }
   1455 
   1456 namespace {
   1457 /// \brief We use this class to visit different types of expressions in
   1458 /// CFGBlocks, and build up the lockset.
   1459 /// An expression may cause us to add or remove locks from the lockset, or else
   1460 /// output error messages related to missing locks.
   1461 /// FIXME: In future, we may be able to not inherit from a visitor.
   1462 class BuildLockset : public StmtVisitor<BuildLockset> {
   1463   friend class ThreadSafetyAnalyzer;
   1464 
   1465   ThreadSafetyAnalyzer *Analyzer;
   1466   FactSet FSet;
   1467   LocalVariableMap::Context LVarCtx;
   1468   unsigned CtxIndex;
   1469 
   1470   // helper functions
   1471   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
   1472                           Expr *MutexExp, ProtectedOperationKind POK,
   1473                           StringRef DiagKind, SourceLocation Loc);
   1474   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
   1475                        StringRef DiagKind);
   1476 
   1477   void checkAccess(const Expr *Exp, AccessKind AK,
   1478                    ProtectedOperationKind POK = POK_VarAccess);
   1479   void checkPtAccess(const Expr *Exp, AccessKind AK,
   1480                      ProtectedOperationKind POK = POK_VarAccess);
   1481 
   1482   void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
   1483 
   1484 public:
   1485   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
   1486     : StmtVisitor<BuildLockset>(),
   1487       Analyzer(Anlzr),
   1488       FSet(Info.EntrySet),
   1489       LVarCtx(Info.EntryContext),
   1490       CtxIndex(Info.EntryIndex)
   1491   {}
   1492 
   1493   void VisitUnaryOperator(UnaryOperator *UO);
   1494   void VisitBinaryOperator(BinaryOperator *BO);
   1495   void VisitCastExpr(CastExpr *CE);
   1496   void VisitCallExpr(CallExpr *Exp);
   1497   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
   1498   void VisitDeclStmt(DeclStmt *S);
   1499 };
   1500 } // namespace
   1501 
   1502 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
   1503 /// of at least the passed in AccessKind.
   1504 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
   1505                                       AccessKind AK, Expr *MutexExp,
   1506                                       ProtectedOperationKind POK,
   1507                                       StringRef DiagKind, SourceLocation Loc) {
   1508   LockKind LK = getLockKindFromAccessKind(AK);
   1509 
   1510   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
   1511   if (Cp.isInvalid()) {
   1512     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
   1513     return;
   1514   } else if (Cp.shouldIgnore()) {
   1515     return;
   1516   }
   1517 
   1518   if (Cp.negative()) {
   1519     // Negative capabilities act like locks excluded
   1520     FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
   1521     if (LDat) {
   1522       Analyzer->Handler.handleFunExcludesLock(
   1523           DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
   1524       return;
   1525     }
   1526 
   1527     // If this does not refer to a negative capability in the same class,
   1528     // then stop here.
   1529     if (!Analyzer->inCurrentScope(Cp))
   1530       return;
   1531 
   1532     // Otherwise the negative requirement must be propagated to the caller.
   1533     LDat = FSet.findLock(Analyzer->FactMan, Cp);
   1534     if (!LDat) {
   1535       Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
   1536                                            LK_Shared, Loc);
   1537     }
   1538     return;
   1539   }
   1540 
   1541   FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
   1542   bool NoError = true;
   1543   if (!LDat) {
   1544     // No exact match found.  Look for a partial match.
   1545     LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
   1546     if (LDat) {
   1547       // Warn that there's no precise match.
   1548       std::string PartMatchStr = LDat->toString();
   1549       StringRef   PartMatchName(PartMatchStr);
   1550       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
   1551                                            LK, Loc, &PartMatchName);
   1552     } else {
   1553       // Warn that there's no match at all.
   1554       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
   1555                                            LK, Loc);
   1556     }
   1557     NoError = false;
   1558   }
   1559   // Make sure the mutex we found is the right kind.
   1560   if (NoError && LDat && !LDat->isAtLeast(LK)) {
   1561     Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
   1562                                          LK, Loc);
   1563   }
   1564 }
   1565 
   1566 /// \brief Warn if the LSet contains the given lock.
   1567 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
   1568                                    Expr *MutexExp, StringRef DiagKind) {
   1569   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
   1570   if (Cp.isInvalid()) {
   1571     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
   1572     return;
   1573   } else if (Cp.shouldIgnore()) {
   1574     return;
   1575   }
   1576 
   1577   FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp);
   1578   if (LDat) {
   1579     Analyzer->Handler.handleFunExcludesLock(
   1580         DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
   1581   }
   1582 }
   1583 
   1584 /// \brief Checks guarded_by and pt_guarded_by attributes.
   1585 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
   1586 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
   1587 /// Similarly, we check if the access is to an expression that dereferences
   1588 /// a pointer marked with pt_guarded_by.
   1589 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
   1590                                ProtectedOperationKind POK) {
   1591   Exp = Exp->IgnoreParenCasts();
   1592 
   1593   SourceLocation Loc = Exp->getExprLoc();
   1594 
   1595   // Local variables of reference type cannot be re-assigned;
   1596   // map them to their initializer.
   1597   while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
   1598     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
   1599     if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
   1600       if (const auto *E = VD->getInit()) {
   1601         Exp = E;
   1602         continue;
   1603       }
   1604     }
   1605     break;
   1606   }
   1607 
   1608   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
   1609     // For dereferences
   1610     if (UO->getOpcode() == clang::UO_Deref)
   1611       checkPtAccess(UO->getSubExpr(), AK, POK);
   1612     return;
   1613   }
   1614 
   1615   if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
   1616     checkPtAccess(AE->getLHS(), AK, POK);
   1617     return;
   1618   }
   1619 
   1620   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
   1621     if (ME->isArrow())
   1622       checkPtAccess(ME->getBase(), AK, POK);
   1623     else
   1624       checkAccess(ME->getBase(), AK, POK);
   1625   }
   1626 
   1627   const ValueDecl *D = getValueDecl(Exp);
   1628   if (!D || !D->hasAttrs())
   1629     return;
   1630 
   1631   if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
   1632     Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
   1633   }
   1634 
   1635   for (const auto *I : D->specific_attrs<GuardedByAttr>())
   1636     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
   1637                        ClassifyDiagnostic(I), Loc);
   1638 }
   1639 
   1640 
   1641 /// \brief Checks pt_guarded_by and pt_guarded_var attributes.
   1642 /// POK is the same  operationKind that was passed to checkAccess.
   1643 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
   1644                                  ProtectedOperationKind POK) {
   1645   while (true) {
   1646     if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
   1647       Exp = PE->getSubExpr();
   1648       continue;
   1649     }
   1650     if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
   1651       if (CE->getCastKind() == CK_ArrayToPointerDecay) {
   1652         // If it's an actual array, and not a pointer, then it's elements
   1653         // are protected by GUARDED_BY, not PT_GUARDED_BY;
   1654         checkAccess(CE->getSubExpr(), AK, POK);
   1655         return;
   1656       }
   1657       Exp = CE->getSubExpr();
   1658       continue;
   1659     }
   1660     break;
   1661   }
   1662 
   1663   // Pass by reference warnings are under a different flag.
   1664   ProtectedOperationKind PtPOK = POK_VarDereference;
   1665   if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
   1666 
   1667   const ValueDecl *D = getValueDecl(Exp);
   1668   if (!D || !D->hasAttrs())
   1669     return;
   1670 
   1671   if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
   1672     Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
   1673                                         Exp->getExprLoc());
   1674 
   1675   for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
   1676     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
   1677                        ClassifyDiagnostic(I), Exp->getExprLoc());
   1678 }
   1679 
   1680 /// \brief Process a function call, method call, constructor call,
   1681 /// or destructor call.  This involves looking at the attributes on the
   1682 /// corresponding function/method/constructor/destructor, issuing warnings,
   1683 /// and updating the locksets accordingly.
   1684 ///
   1685 /// FIXME: For classes annotated with one of the guarded annotations, we need
   1686 /// to treat const method calls as reads and non-const method calls as writes,
   1687 /// and check that the appropriate locks are held. Non-const method calls with
   1688 /// the same signature as const method calls can be also treated as reads.
   1689 ///
   1690 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
   1691   SourceLocation Loc = Exp->getExprLoc();
   1692   CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
   1693   CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
   1694   CapExprSet ScopedExclusiveReqs, ScopedSharedReqs;
   1695   StringRef CapDiagKind = "mutex";
   1696 
   1697   // Figure out if we're calling the constructor of scoped lockable class
   1698   bool isScopedVar = false;
   1699   if (VD) {
   1700     if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
   1701       const CXXRecordDecl* PD = CD->getParent();
   1702       if (PD && PD->hasAttr<ScopedLockableAttr>())
   1703         isScopedVar = true;
   1704     }
   1705   }
   1706 
   1707   for(Attr *Atconst : D->attrs()) {
   1708     Attr* At = const_cast<Attr*>(Atconst);
   1709     switch (At->getKind()) {
   1710       // When we encounter a lock function, we need to add the lock to our
   1711       // lockset.
   1712       case attr::AcquireCapability: {
   1713         auto *A = cast<AcquireCapabilityAttr>(At);
   1714         Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
   1715                                             : ExclusiveLocksToAdd,
   1716                               A, Exp, D, VD);
   1717 
   1718         CapDiagKind = ClassifyDiagnostic(A);
   1719         break;
   1720       }
   1721 
   1722       // An assert will add a lock to the lockset, but will not generate
   1723       // a warning if it is already there, and will not generate a warning
   1724       // if it is not removed.
   1725       case attr::AssertExclusiveLock: {
   1726         AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
   1727 
   1728         CapExprSet AssertLocks;
   1729         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
   1730         for (const auto &AssertLock : AssertLocks)
   1731           Analyzer->addLock(FSet,
   1732                             llvm::make_unique<LockableFactEntry>(
   1733                                 AssertLock, LK_Exclusive, Loc, false, true),
   1734                             ClassifyDiagnostic(A));
   1735         break;
   1736       }
   1737       case attr::AssertSharedLock: {
   1738         AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
   1739 
   1740         CapExprSet AssertLocks;
   1741         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
   1742         for (const auto &AssertLock : AssertLocks)
   1743           Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
   1744                                       AssertLock, LK_Shared, Loc, false, true),
   1745                             ClassifyDiagnostic(A));
   1746         break;
   1747       }
   1748 
   1749       // When we encounter an unlock function, we need to remove unlocked
   1750       // mutexes from the lockset, and flag a warning if they are not there.
   1751       case attr::ReleaseCapability: {
   1752         auto *A = cast<ReleaseCapabilityAttr>(At);
   1753         if (A->isGeneric())
   1754           Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
   1755         else if (A->isShared())
   1756           Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
   1757         else
   1758           Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
   1759 
   1760         CapDiagKind = ClassifyDiagnostic(A);
   1761         break;
   1762       }
   1763 
   1764       case attr::RequiresCapability: {
   1765         RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At);
   1766         for (auto *Arg : A->args()) {
   1767           warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
   1768                              POK_FunctionCall, ClassifyDiagnostic(A),
   1769                              Exp->getExprLoc());
   1770           // use for adopting a lock
   1771           if (isScopedVar) {
   1772             Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs
   1773                                                 : ScopedExclusiveReqs,
   1774                                   A, Exp, D, VD);
   1775           }
   1776         }
   1777         break;
   1778       }
   1779 
   1780       case attr::LocksExcluded: {
   1781         LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
   1782         for (auto *Arg : A->args())
   1783           warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
   1784         break;
   1785       }
   1786 
   1787       // Ignore attributes unrelated to thread-safety
   1788       default:
   1789         break;
   1790     }
   1791   }
   1792 
   1793   // Add locks.
   1794   for (const auto &M : ExclusiveLocksToAdd)
   1795     Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
   1796                                 M, LK_Exclusive, Loc, isScopedVar),
   1797                       CapDiagKind);
   1798   for (const auto &M : SharedLocksToAdd)
   1799     Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
   1800                                 M, LK_Shared, Loc, isScopedVar),
   1801                       CapDiagKind);
   1802 
   1803   if (isScopedVar) {
   1804     // Add the managing object as a dummy mutex, mapped to the underlying mutex.
   1805     SourceLocation MLoc = VD->getLocation();
   1806     DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
   1807     // FIXME: does this store a pointer to DRE?
   1808     CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
   1809 
   1810     std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(),
   1811               std::back_inserter(ExclusiveLocksToAdd));
   1812     std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(),
   1813               std::back_inserter(SharedLocksToAdd));
   1814     Analyzer->addLock(FSet,
   1815                       llvm::make_unique<ScopedLockableFactEntry>(
   1816                           Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd),
   1817                       CapDiagKind);
   1818   }
   1819 
   1820   // Remove locks.
   1821   // FIXME -- should only fully remove if the attribute refers to 'this'.
   1822   bool Dtor = isa<CXXDestructorDecl>(D);
   1823   for (const auto &M : ExclusiveLocksToRemove)
   1824     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
   1825   for (const auto &M : SharedLocksToRemove)
   1826     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
   1827   for (const auto &M : GenericLocksToRemove)
   1828     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
   1829 }
   1830 
   1831 
   1832 /// \brief For unary operations which read and write a variable, we need to
   1833 /// check whether we hold any required mutexes. Reads are checked in
   1834 /// VisitCastExpr.
   1835 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
   1836   switch (UO->getOpcode()) {
   1837     case clang::UO_PostDec:
   1838     case clang::UO_PostInc:
   1839     case clang::UO_PreDec:
   1840     case clang::UO_PreInc: {
   1841       checkAccess(UO->getSubExpr(), AK_Written);
   1842       break;
   1843     }
   1844     default:
   1845       break;
   1846   }
   1847 }
   1848 
   1849 /// For binary operations which assign to a variable (writes), we need to check
   1850 /// whether we hold any required mutexes.
   1851 /// FIXME: Deal with non-primitive types.
   1852 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
   1853   if (!BO->isAssignmentOp())
   1854     return;
   1855 
   1856   // adjust the context
   1857   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
   1858 
   1859   checkAccess(BO->getLHS(), AK_Written);
   1860 }
   1861 
   1862 
   1863 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
   1864 /// need to ensure we hold any required mutexes.
   1865 /// FIXME: Deal with non-primitive types.
   1866 void BuildLockset::VisitCastExpr(CastExpr *CE) {
   1867   if (CE->getCastKind() != CK_LValueToRValue)
   1868     return;
   1869   checkAccess(CE->getSubExpr(), AK_Read);
   1870 }
   1871 
   1872 
   1873 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
   1874   bool ExamineArgs = true;
   1875   bool OperatorFun = false;
   1876 
   1877   if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
   1878     MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
   1879     // ME can be null when calling a method pointer
   1880     CXXMethodDecl *MD = CE->getMethodDecl();
   1881 
   1882     if (ME && MD) {
   1883       if (ME->isArrow()) {
   1884         if (MD->isConst()) {
   1885           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
   1886         } else {  // FIXME -- should be AK_Written
   1887           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
   1888         }
   1889       } else {
   1890         if (MD->isConst())
   1891           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
   1892         else     // FIXME -- should be AK_Written
   1893           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
   1894       }
   1895     }
   1896   } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
   1897     OperatorFun = true;
   1898 
   1899     auto OEop = OE->getOperator();
   1900     switch (OEop) {
   1901       case OO_Equal: {
   1902         ExamineArgs = false;
   1903         const Expr *Target = OE->getArg(0);
   1904         const Expr *Source = OE->getArg(1);
   1905         checkAccess(Target, AK_Written);
   1906         checkAccess(Source, AK_Read);
   1907         break;
   1908       }
   1909       case OO_Star:
   1910       case OO_Arrow:
   1911       case OO_Subscript: {
   1912         const Expr *Obj = OE->getArg(0);
   1913         checkAccess(Obj, AK_Read);
   1914         if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
   1915           // Grrr.  operator* can be multiplication...
   1916           checkPtAccess(Obj, AK_Read);
   1917         }
   1918         break;
   1919       }
   1920       default: {
   1921         // TODO: get rid of this, and rely on pass-by-ref instead.
   1922         const Expr *Obj = OE->getArg(0);
   1923         checkAccess(Obj, AK_Read);
   1924         break;
   1925       }
   1926     }
   1927   }
   1928 
   1929 
   1930   if (ExamineArgs) {
   1931     if (FunctionDecl *FD = Exp->getDirectCallee()) {
   1932       unsigned Fn = FD->getNumParams();
   1933       unsigned Cn = Exp->getNumArgs();
   1934       unsigned Skip = 0;
   1935 
   1936       unsigned i = 0;
   1937       if (OperatorFun) {
   1938         if (isa<CXXMethodDecl>(FD)) {
   1939           // First arg in operator call is implicit self argument,
   1940           // and doesn't appear in the FunctionDecl.
   1941           Skip = 1;
   1942           Cn--;
   1943         } else {
   1944           // Ignore the first argument of operators; it's been checked above.
   1945           i = 1;
   1946         }
   1947       }
   1948       // Ignore default arguments
   1949       unsigned n = (Fn < Cn) ? Fn : Cn;
   1950 
   1951       for (; i < n; ++i) {
   1952         ParmVarDecl* Pvd = FD->getParamDecl(i);
   1953         Expr* Arg = Exp->getArg(i+Skip);
   1954         QualType Qt = Pvd->getType();
   1955         if (Qt->isReferenceType())
   1956           checkAccess(Arg, AK_Read, POK_PassByRef);
   1957       }
   1958     }
   1959   }
   1960 
   1961   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
   1962   if(!D || !D->hasAttrs())
   1963     return;
   1964   handleCall(Exp, D);
   1965 }
   1966 
   1967 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
   1968   const CXXConstructorDecl *D = Exp->getConstructor();
   1969   if (D && D->isCopyConstructor()) {
   1970     const Expr* Source = Exp->getArg(0);
   1971     checkAccess(Source, AK_Read);
   1972   }
   1973   // FIXME -- only handles constructors in DeclStmt below.
   1974 }
   1975 
   1976 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
   1977   // adjust the context
   1978   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
   1979 
   1980   for (auto *D : S->getDeclGroup()) {
   1981     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
   1982       Expr *E = VD->getInit();
   1983       // handle constructors that involve temporaries
   1984       if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
   1985         E = EWC->getSubExpr();
   1986 
   1987       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
   1988         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
   1989         if (!CtorD || !CtorD->hasAttrs())
   1990           return;
   1991         handleCall(CE, CtorD, VD);
   1992       }
   1993     }
   1994   }
   1995 }
   1996 
   1997 
   1998 
   1999 /// \brief Compute the intersection of two locksets and issue warnings for any
   2000 /// locks in the symmetric difference.
   2001 ///
   2002 /// This function is used at a merge point in the CFG when comparing the lockset
   2003 /// of each branch being merged. For example, given the following sequence:
   2004 /// A; if () then B; else C; D; we need to check that the lockset after B and C
   2005 /// are the same. In the event of a difference, we use the intersection of these
   2006 /// two locksets at the start of D.
   2007 ///
   2008 /// \param FSet1 The first lockset.
   2009 /// \param FSet2 The second lockset.
   2010 /// \param JoinLoc The location of the join point for error reporting
   2011 /// \param LEK1 The error message to report if a mutex is missing from LSet1
   2012 /// \param LEK2 The error message to report if a mutex is missing from Lset2
   2013 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
   2014                                             const FactSet &FSet2,
   2015                                             SourceLocation JoinLoc,
   2016                                             LockErrorKind LEK1,
   2017                                             LockErrorKind LEK2,
   2018                                             bool Modify) {
   2019   FactSet FSet1Orig = FSet1;
   2020 
   2021   // Find locks in FSet2 that conflict or are not in FSet1, and warn.
   2022   for (const auto &Fact : FSet2) {
   2023     const FactEntry *LDat1 = nullptr;
   2024     const FactEntry *LDat2 = &FactMan[Fact];
   2025     FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2);
   2026     if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
   2027 
   2028     if (LDat1) {
   2029       if (LDat1->kind() != LDat2->kind()) {
   2030         Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
   2031                                          LDat2->loc(), LDat1->loc());
   2032         if (Modify && LDat1->kind() != LK_Exclusive) {
   2033           // Take the exclusive lock, which is the one in FSet2.
   2034           *Iter1 = Fact;
   2035         }
   2036       }
   2037       else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
   2038         // The non-asserted lock in FSet2 is the one we want to track.
   2039         *Iter1 = Fact;
   2040       }
   2041     } else {
   2042       LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
   2043                                            Handler);
   2044     }
   2045   }
   2046 
   2047   // Find locks in FSet1 that are not in FSet2, and remove them.
   2048   for (const auto &Fact : FSet1Orig) {
   2049     const FactEntry *LDat1 = &FactMan[Fact];
   2050     const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
   2051 
   2052     if (!LDat2) {
   2053       LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
   2054                                            Handler);
   2055       if (Modify)
   2056         FSet1.removeLock(FactMan, *LDat1);
   2057     }
   2058   }
   2059 }
   2060 
   2061 
   2062 // Return true if block B never continues to its successors.
   2063 static bool neverReturns(const CFGBlock *B) {
   2064   if (B->hasNoReturnElement())
   2065     return true;
   2066   if (B->empty())
   2067     return false;
   2068 
   2069   CFGElement Last = B->back();
   2070   if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
   2071     if (isa<CXXThrowExpr>(S->getStmt()))
   2072       return true;
   2073   }
   2074   return false;
   2075 }
   2076 
   2077 
   2078 /// \brief Check a function's CFG for thread-safety violations.
   2079 ///
   2080 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
   2081 /// at the end of each block, and issue warnings for thread safety violations.
   2082 /// Each block in the CFG is traversed exactly once.
   2083 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
   2084   // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
   2085   // For now, we just use the walker to set things up.
   2086   threadSafety::CFGWalker walker;
   2087   if (!walker.init(AC))
   2088     return;
   2089 
   2090   // AC.dumpCFG(true);
   2091   // threadSafety::printSCFG(walker);
   2092 
   2093   CFG *CFGraph = walker.getGraph();
   2094   const NamedDecl *D = walker.getDecl();
   2095   const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D);
   2096   CurrentMethod = dyn_cast<CXXMethodDecl>(D);
   2097 
   2098   if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
   2099     return;
   2100 
   2101   // FIXME: Do something a bit more intelligent inside constructor and
   2102   // destructor code.  Constructors and destructors must assume unique access
   2103   // to 'this', so checks on member variable access is disabled, but we should
   2104   // still enable checks on other objects.
   2105   if (isa<CXXConstructorDecl>(D))
   2106     return;  // Don't check inside constructors.
   2107   if (isa<CXXDestructorDecl>(D))
   2108     return;  // Don't check inside destructors.
   2109 
   2110   Handler.enterFunction(CurrentFunction);
   2111 
   2112   BlockInfo.resize(CFGraph->getNumBlockIDs(),
   2113     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
   2114 
   2115   // We need to explore the CFG via a "topological" ordering.
   2116   // That way, we will be guaranteed to have information about required
   2117   // predecessor locksets when exploring a new block.
   2118   const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
   2119   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
   2120 
   2121   // Mark entry block as reachable
   2122   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
   2123 
   2124   // Compute SSA names for local variables
   2125   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
   2126 
   2127   // Fill in source locations for all CFGBlocks.
   2128   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
   2129 
   2130   CapExprSet ExclusiveLocksAcquired;
   2131   CapExprSet SharedLocksAcquired;
   2132   CapExprSet LocksReleased;
   2133 
   2134   // Add locks from exclusive_locks_required and shared_locks_required
   2135   // to initial lockset. Also turn off checking for lock and unlock functions.
   2136   // FIXME: is there a more intelligent way to check lock/unlock functions?
   2137   if (!SortedGraph->empty() && D->hasAttrs()) {
   2138     const CFGBlock *FirstBlock = *SortedGraph->begin();
   2139     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
   2140 
   2141     CapExprSet ExclusiveLocksToAdd;
   2142     CapExprSet SharedLocksToAdd;
   2143     StringRef CapDiagKind = "mutex";
   2144 
   2145     SourceLocation Loc = D->getLocation();
   2146     for (const auto *Attr : D->attrs()) {
   2147       Loc = Attr->getLocation();
   2148       if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
   2149         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
   2150                     nullptr, D);
   2151         CapDiagKind = ClassifyDiagnostic(A);
   2152       } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
   2153         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
   2154         // We must ignore such methods.
   2155         if (A->args_size() == 0)
   2156           return;
   2157         // FIXME -- deal with exclusive vs. shared unlock functions?
   2158         getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D);
   2159         getMutexIDs(LocksReleased, A, nullptr, D);
   2160         CapDiagKind = ClassifyDiagnostic(A);
   2161       } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
   2162         if (A->args_size() == 0)
   2163           return;
   2164         getMutexIDs(A->isShared() ? SharedLocksAcquired
   2165                                   : ExclusiveLocksAcquired,
   2166                     A, nullptr, D);
   2167         CapDiagKind = ClassifyDiagnostic(A);
   2168       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
   2169         // Don't try to check trylock functions for now
   2170         return;
   2171       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
   2172         // Don't try to check trylock functions for now
   2173         return;
   2174       }
   2175     }
   2176 
   2177     // FIXME -- Loc can be wrong here.
   2178     for (const auto &Mu : ExclusiveLocksToAdd) {
   2179       auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
   2180       Entry->setDeclared(true);
   2181       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
   2182     }
   2183     for (const auto &Mu : SharedLocksToAdd) {
   2184       auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
   2185       Entry->setDeclared(true);
   2186       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
   2187     }
   2188   }
   2189 
   2190   for (const auto *CurrBlock : *SortedGraph) {
   2191     int CurrBlockID = CurrBlock->getBlockID();
   2192     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
   2193 
   2194     // Use the default initial lockset in case there are no predecessors.
   2195     VisitedBlocks.insert(CurrBlock);
   2196 
   2197     // Iterate through the predecessor blocks and warn if the lockset for all
   2198     // predecessors is not the same. We take the entry lockset of the current
   2199     // block to be the intersection of all previous locksets.
   2200     // FIXME: By keeping the intersection, we may output more errors in future
   2201     // for a lock which is not in the intersection, but was in the union. We
   2202     // may want to also keep the union in future. As an example, let's say
   2203     // the intersection contains Mutex L, and the union contains L and M.
   2204     // Later we unlock M. At this point, we would output an error because we
   2205     // never locked M; although the real error is probably that we forgot to
   2206     // lock M on all code paths. Conversely, let's say that later we lock M.
   2207     // In this case, we should compare against the intersection instead of the
   2208     // union because the real error is probably that we forgot to unlock M on
   2209     // all code paths.
   2210     bool LocksetInitialized = false;
   2211     SmallVector<CFGBlock *, 8> SpecialBlocks;
   2212     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
   2213          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
   2214 
   2215       // if *PI -> CurrBlock is a back edge
   2216       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
   2217         continue;
   2218 
   2219       int PrevBlockID = (*PI)->getBlockID();
   2220       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   2221 
   2222       // Ignore edges from blocks that can't return.
   2223       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
   2224         continue;
   2225 
   2226       // Okay, we can reach this block from the entry.
   2227       CurrBlockInfo->Reachable = true;
   2228 
   2229       // If the previous block ended in a 'continue' or 'break' statement, then
   2230       // a difference in locksets is probably due to a bug in that block, rather
   2231       // than in some other predecessor. In that case, keep the other
   2232       // predecessor's lockset.
   2233       if (const Stmt *Terminator = (*PI)->getTerminator()) {
   2234         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
   2235           SpecialBlocks.push_back(*PI);
   2236           continue;
   2237         }
   2238       }
   2239 
   2240       FactSet PrevLockset;
   2241       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
   2242 
   2243       if (!LocksetInitialized) {
   2244         CurrBlockInfo->EntrySet = PrevLockset;
   2245         LocksetInitialized = true;
   2246       } else {
   2247         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
   2248                          CurrBlockInfo->EntryLoc,
   2249                          LEK_LockedSomePredecessors);
   2250       }
   2251     }
   2252 
   2253     // Skip rest of block if it's not reachable.
   2254     if (!CurrBlockInfo->Reachable)
   2255       continue;
   2256 
   2257     // Process continue and break blocks. Assume that the lockset for the
   2258     // resulting block is unaffected by any discrepancies in them.
   2259     for (const auto *PrevBlock : SpecialBlocks) {
   2260       int PrevBlockID = PrevBlock->getBlockID();
   2261       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   2262 
   2263       if (!LocksetInitialized) {
   2264         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
   2265         LocksetInitialized = true;
   2266       } else {
   2267         // Determine whether this edge is a loop terminator for diagnostic
   2268         // purposes. FIXME: A 'break' statement might be a loop terminator, but
   2269         // it might also be part of a switch. Also, a subsequent destructor
   2270         // might add to the lockset, in which case the real issue might be a
   2271         // double lock on the other path.
   2272         const Stmt *Terminator = PrevBlock->getTerminator();
   2273         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
   2274 
   2275         FactSet PrevLockset;
   2276         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
   2277                        PrevBlock, CurrBlock);
   2278 
   2279         // Do not update EntrySet.
   2280         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
   2281                          PrevBlockInfo->ExitLoc,
   2282                          IsLoop ? LEK_LockedSomeLoopIterations
   2283                                 : LEK_LockedSomePredecessors,
   2284                          false);
   2285       }
   2286     }
   2287 
   2288     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
   2289 
   2290     // Visit all the statements in the basic block.
   2291     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
   2292          BE = CurrBlock->end(); BI != BE; ++BI) {
   2293       switch (BI->getKind()) {
   2294         case CFGElement::Statement: {
   2295           CFGStmt CS = BI->castAs<CFGStmt>();
   2296           LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
   2297           break;
   2298         }
   2299         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
   2300         case CFGElement::AutomaticObjectDtor: {
   2301           CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
   2302           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
   2303               AD.getDestructorDecl(AC.getASTContext()));
   2304           if (!DD->hasAttrs())
   2305             break;
   2306 
   2307           // Create a dummy expression,
   2308           VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
   2309           DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(),
   2310                           VK_LValue, AD.getTriggerStmt()->getLocEnd());
   2311           LocksetBuilder.handleCall(&DRE, DD);
   2312           break;
   2313         }
   2314         default:
   2315           break;
   2316       }
   2317     }
   2318     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
   2319 
   2320     // For every back edge from CurrBlock (the end of the loop) to another block
   2321     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
   2322     // the one held at the beginning of FirstLoopBlock. We can look up the
   2323     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
   2324     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
   2325          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
   2326 
   2327       // if CurrBlock -> *SI is *not* a back edge
   2328       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
   2329         continue;
   2330 
   2331       CFGBlock *FirstLoopBlock = *SI;
   2332       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
   2333       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
   2334       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
   2335                        PreLoop->EntryLoc,
   2336                        LEK_LockedSomeLoopIterations,
   2337                        false);
   2338     }
   2339   }
   2340 
   2341   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
   2342   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
   2343 
   2344   // Skip the final check if the exit block is unreachable.
   2345   if (!Final->Reachable)
   2346     return;
   2347 
   2348   // By default, we expect all locks held on entry to be held on exit.
   2349   FactSet ExpectedExitSet = Initial->EntrySet;
   2350 
   2351   // Adjust the expected exit set by adding or removing locks, as declared
   2352   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
   2353   // issue the appropriate warning.
   2354   // FIXME: the location here is not quite right.
   2355   for (const auto &Lock : ExclusiveLocksAcquired)
   2356     ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
   2357                                          Lock, LK_Exclusive, D->getLocation()));
   2358   for (const auto &Lock : SharedLocksAcquired)
   2359     ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
   2360                                          Lock, LK_Shared, D->getLocation()));
   2361   for (const auto &Lock : LocksReleased)
   2362     ExpectedExitSet.removeLock(FactMan, Lock);
   2363 
   2364   // FIXME: Should we call this function for all blocks which exit the function?
   2365   intersectAndWarn(ExpectedExitSet, Final->ExitSet,
   2366                    Final->ExitLoc,
   2367                    LEK_LockedAtEndOfFunction,
   2368                    LEK_NotLockedAtEndOfFunction,
   2369                    false);
   2370 
   2371   Handler.leaveFunction(CurrentFunction);
   2372 }
   2373 
   2374 
   2375 /// \brief Check a function's CFG for thread-safety violations.
   2376 ///
   2377 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
   2378 /// at the end of each block, and issue warnings for thread safety violations.
   2379 /// Each block in the CFG is traversed exactly once.
   2380 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
   2381                                            ThreadSafetyHandler &Handler,
   2382                                            BeforeSet **BSet) {
   2383   if (!*BSet)
   2384     *BSet = new BeforeSet;
   2385   ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
   2386   Analyzer.runAnalysis(AC);
   2387 }
   2388 
   2389 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
   2390 
   2391 /// \brief Helper function that returns a LockKind required for the given level
   2392 /// of access.
   2393 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
   2394   switch (AK) {
   2395     case AK_Read :
   2396       return LK_Shared;
   2397     case AK_Written :
   2398       return LK_Exclusive;
   2399   }
   2400   llvm_unreachable("Unknown AccessKind");
   2401 }
   2402