Home | History | Annotate | Download | only in CodeGen
      1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes implement wrappers around llvm::Value in order to
     11 // fully represent the range of values for C L- and R- values.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
     16 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
     17 
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/CharUnits.h"
     20 #include "clang/AST/Type.h"
     21 #include "llvm/IR/Value.h"
     22 #include "llvm/IR/Type.h"
     23 
     24 namespace llvm {
     25   class Constant;
     26   class MDNode;
     27 }
     28 
     29 namespace clang {
     30 namespace CodeGen {
     31   class AggValueSlot;
     32   struct CGBitFieldInfo;
     33 
     34 /// RValue - This trivial value class is used to represent the result of an
     35 /// expression that is evaluated.  It can be one of three things: either a
     36 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
     37 /// address of an aggregate value in memory.
     38 class RValue {
     39   enum Flavor { Scalar, Complex, Aggregate };
     40 
     41   // Stores first value and flavor.
     42   llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
     43   // Stores second value and volatility.
     44   llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
     45 
     46 public:
     47   bool isScalar() const { return V1.getInt() == Scalar; }
     48   bool isComplex() const { return V1.getInt() == Complex; }
     49   bool isAggregate() const { return V1.getInt() == Aggregate; }
     50 
     51   bool isVolatileQualified() const { return V2.getInt(); }
     52 
     53   /// getScalarVal() - Return the Value* of this scalar value.
     54   llvm::Value *getScalarVal() const {
     55     assert(isScalar() && "Not a scalar!");
     56     return V1.getPointer();
     57   }
     58 
     59   /// getComplexVal - Return the real/imag components of this complex value.
     60   ///
     61   std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
     62     return std::make_pair(V1.getPointer(), V2.getPointer());
     63   }
     64 
     65   /// getAggregateAddr() - Return the Value* of the address of the aggregate.
     66   llvm::Value *getAggregateAddr() const {
     67     assert(isAggregate() && "Not an aggregate!");
     68     return V1.getPointer();
     69   }
     70 
     71   static RValue get(llvm::Value *V) {
     72     RValue ER;
     73     ER.V1.setPointer(V);
     74     ER.V1.setInt(Scalar);
     75     ER.V2.setInt(false);
     76     return ER;
     77   }
     78   static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
     79     RValue ER;
     80     ER.V1.setPointer(V1);
     81     ER.V2.setPointer(V2);
     82     ER.V1.setInt(Complex);
     83     ER.V2.setInt(false);
     84     return ER;
     85   }
     86   static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
     87     return getComplex(C.first, C.second);
     88   }
     89   // FIXME: Aggregate rvalues need to retain information about whether they are
     90   // volatile or not.  Remove default to find all places that probably get this
     91   // wrong.
     92   static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
     93     RValue ER;
     94     ER.V1.setPointer(V);
     95     ER.V1.setInt(Aggregate);
     96     ER.V2.setInt(Volatile);
     97     return ER;
     98   }
     99 };
    100 
    101 /// Does an ARC strong l-value have precise lifetime?
    102 enum ARCPreciseLifetime_t {
    103   ARCImpreciseLifetime, ARCPreciseLifetime
    104 };
    105 
    106 /// LValue - This represents an lvalue references.  Because C/C++ allow
    107 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
    108 /// bitrange.
    109 class LValue {
    110   enum {
    111     Simple,       // This is a normal l-value, use getAddress().
    112     VectorElt,    // This is a vector element l-value (V[i]), use getVector*
    113     BitField,     // This is a bitfield l-value, use getBitfield*.
    114     ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
    115     GlobalReg     // This is a register l-value, use getGlobalReg()
    116   } LVType;
    117 
    118   llvm::Value *V;
    119 
    120   union {
    121     // Index into a vector subscript: V[i]
    122     llvm::Value *VectorIdx;
    123 
    124     // ExtVector element subset: V.xyx
    125     llvm::Constant *VectorElts;
    126 
    127     // BitField start bit and size
    128     const CGBitFieldInfo *BitFieldInfo;
    129   };
    130 
    131   QualType Type;
    132 
    133   // 'const' is unused here
    134   Qualifiers Quals;
    135 
    136   // The alignment to use when accessing this lvalue.  (For vector elements,
    137   // this is the alignment of the whole vector.)
    138   int64_t Alignment;
    139 
    140   // objective-c's ivar
    141   bool Ivar:1;
    142 
    143   // objective-c's ivar is an array
    144   bool ObjIsArray:1;
    145 
    146   // LValue is non-gc'able for any reason, including being a parameter or local
    147   // variable.
    148   bool NonGC: 1;
    149 
    150   // Lvalue is a global reference of an objective-c object
    151   bool GlobalObjCRef : 1;
    152 
    153   // Lvalue is a thread local reference
    154   bool ThreadLocalRef : 1;
    155 
    156   // Lvalue has ARC imprecise lifetime.  We store this inverted to try
    157   // to make the default bitfield pattern all-zeroes.
    158   bool ImpreciseLifetime : 1;
    159 
    160   Expr *BaseIvarExp;
    161 
    162   /// Used by struct-path-aware TBAA.
    163   QualType TBAABaseType;
    164   /// Offset relative to the base type.
    165   uint64_t TBAAOffset;
    166 
    167   /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
    168   llvm::MDNode *TBAAInfo;
    169 
    170 private:
    171   void Initialize(QualType Type, Qualifiers Quals,
    172                   CharUnits Alignment,
    173                   llvm::MDNode *TBAAInfo = nullptr) {
    174     this->Type = Type;
    175     this->Quals = Quals;
    176     this->Alignment = Alignment.getQuantity();
    177     assert(this->Alignment == Alignment.getQuantity() &&
    178            "Alignment exceeds allowed max!");
    179 
    180     // Initialize Objective-C flags.
    181     this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
    182     this->ImpreciseLifetime = false;
    183     this->ThreadLocalRef = false;
    184     this->BaseIvarExp = nullptr;
    185 
    186     // Initialize fields for TBAA.
    187     this->TBAABaseType = Type;
    188     this->TBAAOffset = 0;
    189     this->TBAAInfo = TBAAInfo;
    190   }
    191 
    192 public:
    193   bool isSimple() const { return LVType == Simple; }
    194   bool isVectorElt() const { return LVType == VectorElt; }
    195   bool isBitField() const { return LVType == BitField; }
    196   bool isExtVectorElt() const { return LVType == ExtVectorElt; }
    197   bool isGlobalReg() const { return LVType == GlobalReg; }
    198 
    199   bool isVolatileQualified() const { return Quals.hasVolatile(); }
    200   bool isRestrictQualified() const { return Quals.hasRestrict(); }
    201   unsigned getVRQualifiers() const {
    202     return Quals.getCVRQualifiers() & ~Qualifiers::Const;
    203   }
    204 
    205   QualType getType() const { return Type; }
    206 
    207   Qualifiers::ObjCLifetime getObjCLifetime() const {
    208     return Quals.getObjCLifetime();
    209   }
    210 
    211   bool isObjCIvar() const { return Ivar; }
    212   void setObjCIvar(bool Value) { Ivar = Value; }
    213 
    214   bool isObjCArray() const { return ObjIsArray; }
    215   void setObjCArray(bool Value) { ObjIsArray = Value; }
    216 
    217   bool isNonGC () const { return NonGC; }
    218   void setNonGC(bool Value) { NonGC = Value; }
    219 
    220   bool isGlobalObjCRef() const { return GlobalObjCRef; }
    221   void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
    222 
    223   bool isThreadLocalRef() const { return ThreadLocalRef; }
    224   void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
    225 
    226   ARCPreciseLifetime_t isARCPreciseLifetime() const {
    227     return ARCPreciseLifetime_t(!ImpreciseLifetime);
    228   }
    229   void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
    230     ImpreciseLifetime = (value == ARCImpreciseLifetime);
    231   }
    232 
    233   bool isObjCWeak() const {
    234     return Quals.getObjCGCAttr() == Qualifiers::Weak;
    235   }
    236   bool isObjCStrong() const {
    237     return Quals.getObjCGCAttr() == Qualifiers::Strong;
    238   }
    239 
    240   bool isVolatile() const {
    241     return Quals.hasVolatile();
    242   }
    243 
    244   Expr *getBaseIvarExp() const { return BaseIvarExp; }
    245   void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
    246 
    247   QualType getTBAABaseType() const { return TBAABaseType; }
    248   void setTBAABaseType(QualType T) { TBAABaseType = T; }
    249 
    250   uint64_t getTBAAOffset() const { return TBAAOffset; }
    251   void setTBAAOffset(uint64_t O) { TBAAOffset = O; }
    252 
    253   llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
    254   void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }
    255 
    256   const Qualifiers &getQuals() const { return Quals; }
    257   Qualifiers &getQuals() { return Quals; }
    258 
    259   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
    260 
    261   CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
    262   void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
    263 
    264   // simple lvalue
    265   llvm::Value *getAddress() const { assert(isSimple()); return V; }
    266   void setAddress(llvm::Value *address) {
    267     assert(isSimple());
    268     V = address;
    269   }
    270 
    271   // vector elt lvalue
    272   llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
    273   llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
    274 
    275   // extended vector elements.
    276   llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
    277   llvm::Constant *getExtVectorElts() const {
    278     assert(isExtVectorElt());
    279     return VectorElts;
    280   }
    281 
    282   // bitfield lvalue
    283   llvm::Value *getBitFieldAddr() const {
    284     assert(isBitField());
    285     return V;
    286   }
    287   const CGBitFieldInfo &getBitFieldInfo() const {
    288     assert(isBitField());
    289     return *BitFieldInfo;
    290   }
    291 
    292   // global register lvalue
    293   llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
    294 
    295   static LValue MakeAddr(llvm::Value *address, QualType type,
    296                          CharUnits alignment, ASTContext &Context,
    297                          llvm::MDNode *TBAAInfo = nullptr) {
    298     Qualifiers qs = type.getQualifiers();
    299     qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
    300 
    301     LValue R;
    302     R.LVType = Simple;
    303     assert(address->getType()->isPointerTy());
    304     R.V = address;
    305     R.Initialize(type, qs, alignment, TBAAInfo);
    306     return R;
    307   }
    308 
    309   static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
    310                               QualType type, CharUnits Alignment) {
    311     LValue R;
    312     R.LVType = VectorElt;
    313     R.V = Vec;
    314     R.VectorIdx = Idx;
    315     R.Initialize(type, type.getQualifiers(), Alignment);
    316     return R;
    317   }
    318 
    319   static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
    320                                  QualType type, CharUnits Alignment) {
    321     LValue R;
    322     R.LVType = ExtVectorElt;
    323     R.V = Vec;
    324     R.VectorElts = Elts;
    325     R.Initialize(type, type.getQualifiers(), Alignment);
    326     return R;
    327   }
    328 
    329   /// \brief Create a new object to represent a bit-field access.
    330   ///
    331   /// \param Addr - The base address of the bit-field sequence this
    332   /// bit-field refers to.
    333   /// \param Info - The information describing how to perform the bit-field
    334   /// access.
    335   static LValue MakeBitfield(llvm::Value *Addr,
    336                              const CGBitFieldInfo &Info,
    337                              QualType type, CharUnits Alignment) {
    338     LValue R;
    339     R.LVType = BitField;
    340     R.V = Addr;
    341     R.BitFieldInfo = &Info;
    342     R.Initialize(type, type.getQualifiers(), Alignment);
    343     return R;
    344   }
    345 
    346   static LValue MakeGlobalReg(llvm::Value *Reg,
    347                               QualType type,
    348                               CharUnits Alignment) {
    349     LValue R;
    350     R.LVType = GlobalReg;
    351     R.V = Reg;
    352     R.Initialize(type, type.getQualifiers(), Alignment);
    353     return R;
    354   }
    355 
    356   RValue asAggregateRValue() const {
    357     // FIMXE: Alignment
    358     return RValue::getAggregate(getAddress(), isVolatileQualified());
    359   }
    360 };
    361 
    362 /// An aggregate value slot.
    363 class AggValueSlot {
    364   /// The address.
    365   llvm::Value *Addr;
    366 
    367   // Qualifiers
    368   Qualifiers Quals;
    369 
    370   unsigned short Alignment;
    371 
    372   /// DestructedFlag - This is set to true if some external code is
    373   /// responsible for setting up a destructor for the slot.  Otherwise
    374   /// the code which constructs it should push the appropriate cleanup.
    375   bool DestructedFlag : 1;
    376 
    377   /// ObjCGCFlag - This is set to true if writing to the memory in the
    378   /// slot might require calling an appropriate Objective-C GC
    379   /// barrier.  The exact interaction here is unnecessarily mysterious.
    380   bool ObjCGCFlag : 1;
    381 
    382   /// ZeroedFlag - This is set to true if the memory in the slot is
    383   /// known to be zero before the assignment into it.  This means that
    384   /// zero fields don't need to be set.
    385   bool ZeroedFlag : 1;
    386 
    387   /// AliasedFlag - This is set to true if the slot might be aliased
    388   /// and it's not undefined behavior to access it through such an
    389   /// alias.  Note that it's always undefined behavior to access a C++
    390   /// object that's under construction through an alias derived from
    391   /// outside the construction process.
    392   ///
    393   /// This flag controls whether calls that produce the aggregate
    394   /// value may be evaluated directly into the slot, or whether they
    395   /// must be evaluated into an unaliased temporary and then memcpy'ed
    396   /// over.  Since it's invalid in general to memcpy a non-POD C++
    397   /// object, it's important that this flag never be set when
    398   /// evaluating an expression which constructs such an object.
    399   bool AliasedFlag : 1;
    400 
    401 public:
    402   enum IsAliased_t { IsNotAliased, IsAliased };
    403   enum IsDestructed_t { IsNotDestructed, IsDestructed };
    404   enum IsZeroed_t { IsNotZeroed, IsZeroed };
    405   enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
    406 
    407   /// ignored - Returns an aggregate value slot indicating that the
    408   /// aggregate value is being ignored.
    409   static AggValueSlot ignored() {
    410     return forAddr(nullptr, CharUnits(), Qualifiers(), IsNotDestructed,
    411                    DoesNotNeedGCBarriers, IsNotAliased);
    412   }
    413 
    414   /// forAddr - Make a slot for an aggregate value.
    415   ///
    416   /// \param quals - The qualifiers that dictate how the slot should
    417   /// be initialied. Only 'volatile' and the Objective-C lifetime
    418   /// qualifiers matter.
    419   ///
    420   /// \param isDestructed - true if something else is responsible
    421   ///   for calling destructors on this object
    422   /// \param needsGC - true if the slot is potentially located
    423   ///   somewhere that ObjC GC calls should be emitted for
    424   static AggValueSlot forAddr(llvm::Value *addr, CharUnits align,
    425                               Qualifiers quals,
    426                               IsDestructed_t isDestructed,
    427                               NeedsGCBarriers_t needsGC,
    428                               IsAliased_t isAliased,
    429                               IsZeroed_t isZeroed = IsNotZeroed) {
    430     AggValueSlot AV;
    431     AV.Addr = addr;
    432     AV.Alignment = align.getQuantity();
    433     AV.Quals = quals;
    434     AV.DestructedFlag = isDestructed;
    435     AV.ObjCGCFlag = needsGC;
    436     AV.ZeroedFlag = isZeroed;
    437     AV.AliasedFlag = isAliased;
    438     return AV;
    439   }
    440 
    441   static AggValueSlot forLValue(const LValue &LV,
    442                                 IsDestructed_t isDestructed,
    443                                 NeedsGCBarriers_t needsGC,
    444                                 IsAliased_t isAliased,
    445                                 IsZeroed_t isZeroed = IsNotZeroed) {
    446     return forAddr(LV.getAddress(), LV.getAlignment(),
    447                    LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed);
    448   }
    449 
    450   IsDestructed_t isExternallyDestructed() const {
    451     return IsDestructed_t(DestructedFlag);
    452   }
    453   void setExternallyDestructed(bool destructed = true) {
    454     DestructedFlag = destructed;
    455   }
    456 
    457   Qualifiers getQualifiers() const { return Quals; }
    458 
    459   bool isVolatile() const {
    460     return Quals.hasVolatile();
    461   }
    462 
    463   void setVolatile(bool flag) {
    464     Quals.setVolatile(flag);
    465   }
    466 
    467   Qualifiers::ObjCLifetime getObjCLifetime() const {
    468     return Quals.getObjCLifetime();
    469   }
    470 
    471   NeedsGCBarriers_t requiresGCollection() const {
    472     return NeedsGCBarriers_t(ObjCGCFlag);
    473   }
    474 
    475   llvm::Value *getAddr() const {
    476     return Addr;
    477   }
    478 
    479   bool isIgnored() const {
    480     return Addr == nullptr;
    481   }
    482 
    483   CharUnits getAlignment() const {
    484     return CharUnits::fromQuantity(Alignment);
    485   }
    486 
    487   IsAliased_t isPotentiallyAliased() const {
    488     return IsAliased_t(AliasedFlag);
    489   }
    490 
    491   // FIXME: Alignment?
    492   RValue asRValue() const {
    493     return RValue::getAggregate(getAddr(), isVolatile());
    494   }
    495 
    496   void setZeroed(bool V = true) { ZeroedFlag = V; }
    497   IsZeroed_t isZeroed() const {
    498     return IsZeroed_t(ZeroedFlag);
    499   }
    500 };
    501 
    502 }  // end namespace CodeGen
    503 }  // end namespace clang
    504 
    505 #endif
    506