Home | History | Annotate | Download | only in SPQRSupport
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
     11 #define EIGEN_SUITESPARSEQRSUPPORT_H
     12 
     13 namespace Eigen {
     14 
     15   template<typename MatrixType> class SPQR;
     16   template<typename SPQRType> struct SPQRMatrixQReturnType;
     17   template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
     18   template <typename SPQRType, typename Derived> struct SPQR_QProduct;
     19   namespace internal {
     20     template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
     21     {
     22       typedef typename SPQRType::MatrixType ReturnType;
     23     };
     24     template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
     25     {
     26       typedef typename SPQRType::MatrixType ReturnType;
     27     };
     28     template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
     29     {
     30       typedef typename Derived::PlainObject ReturnType;
     31     };
     32   } // End namespace internal
     33 
     34 /**
     35  * \ingroup SPQRSupport_Module
     36  * \class SPQR
     37  * \brief Sparse QR factorization based on SuiteSparseQR library
     38  *
     39  * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
     40  * of sparse matrices. The result is then used to solve linear leasts_square systems.
     41  * Clearly, a QR factorization is returned such that A*P = Q*R where :
     42  *
     43  * P is the column permutation. Use colsPermutation() to get it.
     44  *
     45  * Q is the orthogonal matrix represented as Householder reflectors.
     46  * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
     47  * You can then apply it to a vector.
     48  *
     49  * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
     50  * NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index
     51  *
     52  * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
     53  * NOTE
     54  *
     55  */
     56 template<typename _MatrixType>
     57 class SPQR
     58 {
     59   public:
     60     typedef typename _MatrixType::Scalar Scalar;
     61     typedef typename _MatrixType::RealScalar RealScalar;
     62     typedef UF_long Index ;
     63     typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
     64     typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
     65   public:
     66     SPQR()
     67       : m_isInitialized(false),
     68       m_ordering(SPQR_ORDERING_DEFAULT),
     69       m_allow_tol(SPQR_DEFAULT_TOL),
     70       m_tolerance (NumTraits<Scalar>::epsilon())
     71     {
     72       cholmod_l_start(&m_cc);
     73     }
     74 
     75     SPQR(const _MatrixType& matrix)
     76     : m_isInitialized(false),
     77       m_ordering(SPQR_ORDERING_DEFAULT),
     78       m_allow_tol(SPQR_DEFAULT_TOL),
     79       m_tolerance (NumTraits<Scalar>::epsilon())
     80     {
     81       cholmod_l_start(&m_cc);
     82       compute(matrix);
     83     }
     84 
     85     ~SPQR()
     86     {
     87       SPQR_free();
     88       cholmod_l_finish(&m_cc);
     89     }
     90     void SPQR_free()
     91     {
     92       cholmod_l_free_sparse(&m_H, &m_cc);
     93       cholmod_l_free_sparse(&m_cR, &m_cc);
     94       cholmod_l_free_dense(&m_HTau, &m_cc);
     95       std::free(m_E);
     96       std::free(m_HPinv);
     97     }
     98 
     99     void compute(const _MatrixType& matrix)
    100     {
    101       if(m_isInitialized) SPQR_free();
    102 
    103       MatrixType mat(matrix);
    104       cholmod_sparse A;
    105       A = viewAsCholmod(mat);
    106       Index col = matrix.cols();
    107       m_rank = SuiteSparseQR<Scalar>(m_ordering, m_tolerance, col, &A,
    108                              &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
    109 
    110       if (!m_cR)
    111       {
    112         m_info = NumericalIssue;
    113         m_isInitialized = false;
    114         return;
    115       }
    116       m_info = Success;
    117       m_isInitialized = true;
    118       m_isRUpToDate = false;
    119     }
    120     /**
    121      * Get the number of rows of the input matrix and the Q matrix
    122      */
    123     inline Index rows() const {return m_H->nrow; }
    124 
    125     /**
    126      * Get the number of columns of the input matrix.
    127      */
    128     inline Index cols() const { return m_cR->ncol; }
    129 
    130       /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
    131       *
    132       * \sa compute()
    133       */
    134     template<typename Rhs>
    135     inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const
    136     {
    137       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
    138       eigen_assert(this->rows()==B.rows()
    139                     && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
    140           return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
    141     }
    142 
    143     template<typename Rhs, typename Dest>
    144     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
    145     {
    146       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
    147       eigen_assert(b.cols()==1 && "This method is for vectors only");
    148 
    149       //Compute Q^T * b
    150       typename Dest::PlainObject y;
    151       y = matrixQ().transpose() * b;
    152         // Solves with the triangular matrix R
    153       Index rk = this->rank();
    154       y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
    155       y.bottomRows(cols()-rk).setZero();
    156       // Apply the column permutation
    157       dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
    158 
    159       m_info = Success;
    160     }
    161 
    162     /** \returns the sparse triangular factor R. It is a sparse matrix
    163      */
    164     const MatrixType matrixR() const
    165     {
    166       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
    167       if(!m_isRUpToDate) {
    168         m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
    169         m_isRUpToDate = true;
    170       }
    171       return m_R;
    172     }
    173     /// Get an expression of the matrix Q
    174     SPQRMatrixQReturnType<SPQR> matrixQ() const
    175     {
    176       return SPQRMatrixQReturnType<SPQR>(*this);
    177     }
    178     /// Get the permutation that was applied to columns of A
    179     PermutationType colsPermutation() const
    180     {
    181       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    182       Index n = m_cR->ncol;
    183       PermutationType colsPerm(n);
    184       for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
    185       return colsPerm;
    186 
    187     }
    188     /**
    189      * Gets the rank of the matrix.
    190      * It should be equal to matrixQR().cols if the matrix is full-rank
    191      */
    192     Index rank() const
    193     {
    194       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    195       return m_cc.SPQR_istat[4];
    196     }
    197     /// Set the fill-reducing ordering method to be used
    198     void setSPQROrdering(int ord) { m_ordering = ord;}
    199     /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
    200     void setPivotThreshold(const RealScalar& tol) { m_tolerance = tol; }
    201 
    202     /** \returns a pointer to the SPQR workspace */
    203     cholmod_common *cholmodCommon() const { return &m_cc; }
    204 
    205 
    206     /** \brief Reports whether previous computation was successful.
    207       *
    208       * \returns \c Success if computation was succesful,
    209       *          \c NumericalIssue if the sparse QR can not be computed
    210       */
    211     ComputationInfo info() const
    212     {
    213       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    214       return m_info;
    215     }
    216   protected:
    217     bool m_isInitialized;
    218     bool m_analysisIsOk;
    219     bool m_factorizationIsOk;
    220     mutable bool m_isRUpToDate;
    221     mutable ComputationInfo m_info;
    222     int m_ordering; // Ordering method to use, see SPQR's manual
    223     int m_allow_tol; // Allow to use some tolerance during numerical factorization.
    224     RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
    225     mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
    226     mutable MatrixType m_R; // The sparse matrix R in Eigen format
    227     mutable Index *m_E; // The permutation applied to columns
    228     mutable cholmod_sparse *m_H;  //The householder vectors
    229     mutable Index *m_HPinv; // The row permutation of H
    230     mutable cholmod_dense *m_HTau; // The Householder coefficients
    231     mutable Index m_rank; // The rank of the matrix
    232     mutable cholmod_common m_cc; // Workspace and parameters
    233     template<typename ,typename > friend struct SPQR_QProduct;
    234 };
    235 
    236 template <typename SPQRType, typename Derived>
    237 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
    238 {
    239   typedef typename SPQRType::Scalar Scalar;
    240   typedef typename SPQRType::Index Index;
    241   //Define the constructor to get reference to argument types
    242   SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
    243 
    244   inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
    245   inline Index cols() const { return m_other.cols(); }
    246   // Assign to a vector
    247   template<typename ResType>
    248   void evalTo(ResType& res) const
    249   {
    250     cholmod_dense y_cd;
    251     cholmod_dense *x_cd;
    252     int method = m_transpose ? SPQR_QTX : SPQR_QX;
    253     cholmod_common *cc = m_spqr.cholmodCommon();
    254     y_cd = viewAsCholmod(m_other.const_cast_derived());
    255     x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
    256     res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
    257     cholmod_l_free_dense(&x_cd, cc);
    258   }
    259   const SPQRType& m_spqr;
    260   const Derived& m_other;
    261   bool m_transpose;
    262 
    263 };
    264 template<typename SPQRType>
    265 struct SPQRMatrixQReturnType{
    266 
    267   SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
    268   template<typename Derived>
    269   SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
    270   {
    271     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
    272   }
    273   SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
    274   {
    275     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
    276   }
    277   // To use for operations with the transpose of Q
    278   SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
    279   {
    280     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
    281   }
    282   const SPQRType& m_spqr;
    283 };
    284 
    285 template<typename SPQRType>
    286 struct SPQRMatrixQTransposeReturnType{
    287   SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
    288   template<typename Derived>
    289   SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
    290   {
    291     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
    292   }
    293   const SPQRType& m_spqr;
    294 };
    295 
    296 namespace internal {
    297 
    298 template<typename _MatrixType, typename Rhs>
    299 struct solve_retval<SPQR<_MatrixType>, Rhs>
    300   : solve_retval_base<SPQR<_MatrixType>, Rhs>
    301 {
    302   typedef SPQR<_MatrixType> Dec;
    303   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    304 
    305   template<typename Dest> void evalTo(Dest& dst) const
    306   {
    307     dec()._solve(rhs(),dst);
    308   }
    309 };
    310 
    311 } // end namespace internal
    312 
    313 }// End namespace Eigen
    314 #endif
    315