Home | History | Annotate | Download | only in fortran
      1       SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
      2 *     .. Scalar Arguments ..
      3       INTEGER INCX,K,LDA,N
      4       CHARACTER DIAG,TRANS,UPLO
      5 *     ..
      6 *     .. Array Arguments ..
      7       DOUBLE COMPLEX A(LDA,*),X(*)
      8 *     ..
      9 *
     10 *  Purpose
     11 *  =======
     12 *
     13 *  ZTBMV  performs one of the matrix-vector operations
     14 *
     15 *     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
     16 *
     17 *  where x is an n element vector and  A is an n by n unit, or non-unit,
     18 *  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
     19 *
     20 *  Arguments
     21 *  ==========
     22 *
     23 *  UPLO   - CHARACTER*1.
     24 *           On entry, UPLO specifies whether the matrix is an upper or
     25 *           lower triangular matrix as follows:
     26 *
     27 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
     28 *
     29 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
     30 *
     31 *           Unchanged on exit.
     32 *
     33 *  TRANS  - CHARACTER*1.
     34 *           On entry, TRANS specifies the operation to be performed as
     35 *           follows:
     36 *
     37 *              TRANS = 'N' or 'n'   x := A*x.
     38 *
     39 *              TRANS = 'T' or 't'   x := A'*x.
     40 *
     41 *              TRANS = 'C' or 'c'   x := conjg( A' )*x.
     42 *
     43 *           Unchanged on exit.
     44 *
     45 *  DIAG   - CHARACTER*1.
     46 *           On entry, DIAG specifies whether or not A is unit
     47 *           triangular as follows:
     48 *
     49 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
     50 *
     51 *              DIAG = 'N' or 'n'   A is not assumed to be unit
     52 *                                  triangular.
     53 *
     54 *           Unchanged on exit.
     55 *
     56 *  N      - INTEGER.
     57 *           On entry, N specifies the order of the matrix A.
     58 *           N must be at least zero.
     59 *           Unchanged on exit.
     60 *
     61 *  K      - INTEGER.
     62 *           On entry with UPLO = 'U' or 'u', K specifies the number of
     63 *           super-diagonals of the matrix A.
     64 *           On entry with UPLO = 'L' or 'l', K specifies the number of
     65 *           sub-diagonals of the matrix A.
     66 *           K must satisfy  0 .le. K.
     67 *           Unchanged on exit.
     68 *
     69 *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
     70 *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
     71 *           by n part of the array A must contain the upper triangular
     72 *           band part of the matrix of coefficients, supplied column by
     73 *           column, with the leading diagonal of the matrix in row
     74 *           ( k + 1 ) of the array, the first super-diagonal starting at
     75 *           position 2 in row k, and so on. The top left k by k triangle
     76 *           of the array A is not referenced.
     77 *           The following program segment will transfer an upper
     78 *           triangular band matrix from conventional full matrix storage
     79 *           to band storage:
     80 *
     81 *                 DO 20, J = 1, N
     82 *                    M = K + 1 - J
     83 *                    DO 10, I = MAX( 1, J - K ), J
     84 *                       A( M + I, J ) = matrix( I, J )
     85 *              10    CONTINUE
     86 *              20 CONTINUE
     87 *
     88 *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
     89 *           by n part of the array A must contain the lower triangular
     90 *           band part of the matrix of coefficients, supplied column by
     91 *           column, with the leading diagonal of the matrix in row 1 of
     92 *           the array, the first sub-diagonal starting at position 1 in
     93 *           row 2, and so on. The bottom right k by k triangle of the
     94 *           array A is not referenced.
     95 *           The following program segment will transfer a lower
     96 *           triangular band matrix from conventional full matrix storage
     97 *           to band storage:
     98 *
     99 *                 DO 20, J = 1, N
    100 *                    M = 1 - J
    101 *                    DO 10, I = J, MIN( N, J + K )
    102 *                       A( M + I, J ) = matrix( I, J )
    103 *              10    CONTINUE
    104 *              20 CONTINUE
    105 *
    106 *           Note that when DIAG = 'U' or 'u' the elements of the array A
    107 *           corresponding to the diagonal elements of the matrix are not
    108 *           referenced, but are assumed to be unity.
    109 *           Unchanged on exit.
    110 *
    111 *  LDA    - INTEGER.
    112 *           On entry, LDA specifies the first dimension of A as declared
    113 *           in the calling (sub) program. LDA must be at least
    114 *           ( k + 1 ).
    115 *           Unchanged on exit.
    116 *
    117 *  X      - COMPLEX*16       array of dimension at least
    118 *           ( 1 + ( n - 1 )*abs( INCX ) ).
    119 *           Before entry, the incremented array X must contain the n
    120 *           element vector x. On exit, X is overwritten with the
    121 *           tranformed vector x.
    122 *
    123 *  INCX   - INTEGER.
    124 *           On entry, INCX specifies the increment for the elements of
    125 *           X. INCX must not be zero.
    126 *           Unchanged on exit.
    127 *
    128 *  Further Details
    129 *  ===============
    130 *
    131 *  Level 2 Blas routine.
    132 *
    133 *  -- Written on 22-October-1986.
    134 *     Jack Dongarra, Argonne National Lab.
    135 *     Jeremy Du Croz, Nag Central Office.
    136 *     Sven Hammarling, Nag Central Office.
    137 *     Richard Hanson, Sandia National Labs.
    138 *
    139 *  =====================================================================
    140 *
    141 *     .. Parameters ..
    142       DOUBLE COMPLEX ZERO
    143       PARAMETER (ZERO= (0.0D+0,0.0D+0))
    144 *     ..
    145 *     .. Local Scalars ..
    146       DOUBLE COMPLEX TEMP
    147       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
    148       LOGICAL NOCONJ,NOUNIT
    149 *     ..
    150 *     .. External Functions ..
    151       LOGICAL LSAME
    152       EXTERNAL LSAME
    153 *     ..
    154 *     .. External Subroutines ..
    155       EXTERNAL XERBLA
    156 *     ..
    157 *     .. Intrinsic Functions ..
    158       INTRINSIC DCONJG,MAX,MIN
    159 *     ..
    160 *
    161 *     Test the input parameters.
    162 *
    163       INFO = 0
    164       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    165           INFO = 1
    166       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
    167      +         .NOT.LSAME(TRANS,'C')) THEN
    168           INFO = 2
    169       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
    170           INFO = 3
    171       ELSE IF (N.LT.0) THEN
    172           INFO = 4
    173       ELSE IF (K.LT.0) THEN
    174           INFO = 5
    175       ELSE IF (LDA.LT. (K+1)) THEN
    176           INFO = 7
    177       ELSE IF (INCX.EQ.0) THEN
    178           INFO = 9
    179       END IF
    180       IF (INFO.NE.0) THEN
    181           CALL XERBLA('ZTBMV ',INFO)
    182           RETURN
    183       END IF
    184 *
    185 *     Quick return if possible.
    186 *
    187       IF (N.EQ.0) RETURN
    188 *
    189       NOCONJ = LSAME(TRANS,'T')
    190       NOUNIT = LSAME(DIAG,'N')
    191 *
    192 *     Set up the start point in X if the increment is not unity. This
    193 *     will be  ( N - 1 )*INCX   too small for descending loops.
    194 *
    195       IF (INCX.LE.0) THEN
    196           KX = 1 - (N-1)*INCX
    197       ELSE IF (INCX.NE.1) THEN
    198           KX = 1
    199       END IF
    200 *
    201 *     Start the operations. In this version the elements of A are
    202 *     accessed sequentially with one pass through A.
    203 *
    204       IF (LSAME(TRANS,'N')) THEN
    205 *
    206 *         Form  x := A*x.
    207 *
    208           IF (LSAME(UPLO,'U')) THEN
    209               KPLUS1 = K + 1
    210               IF (INCX.EQ.1) THEN
    211                   DO 20 J = 1,N
    212                       IF (X(J).NE.ZERO) THEN
    213                           TEMP = X(J)
    214                           L = KPLUS1 - J
    215                           DO 10 I = MAX(1,J-K),J - 1
    216                               X(I) = X(I) + TEMP*A(L+I,J)
    217    10                     CONTINUE
    218                           IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
    219                       END IF
    220    20             CONTINUE
    221               ELSE
    222                   JX = KX
    223                   DO 40 J = 1,N
    224                       IF (X(JX).NE.ZERO) THEN
    225                           TEMP = X(JX)
    226                           IX = KX
    227                           L = KPLUS1 - J
    228                           DO 30 I = MAX(1,J-K),J - 1
    229                               X(IX) = X(IX) + TEMP*A(L+I,J)
    230                               IX = IX + INCX
    231    30                     CONTINUE
    232                           IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
    233                       END IF
    234                       JX = JX + INCX
    235                       IF (J.GT.K) KX = KX + INCX
    236    40             CONTINUE
    237               END IF
    238           ELSE
    239               IF (INCX.EQ.1) THEN
    240                   DO 60 J = N,1,-1
    241                       IF (X(J).NE.ZERO) THEN
    242                           TEMP = X(J)
    243                           L = 1 - J
    244                           DO 50 I = MIN(N,J+K),J + 1,-1
    245                               X(I) = X(I) + TEMP*A(L+I,J)
    246    50                     CONTINUE
    247                           IF (NOUNIT) X(J) = X(J)*A(1,J)
    248                       END IF
    249    60             CONTINUE
    250               ELSE
    251                   KX = KX + (N-1)*INCX
    252                   JX = KX
    253                   DO 80 J = N,1,-1
    254                       IF (X(JX).NE.ZERO) THEN
    255                           TEMP = X(JX)
    256                           IX = KX
    257                           L = 1 - J
    258                           DO 70 I = MIN(N,J+K),J + 1,-1
    259                               X(IX) = X(IX) + TEMP*A(L+I,J)
    260                               IX = IX - INCX
    261    70                     CONTINUE
    262                           IF (NOUNIT) X(JX) = X(JX)*A(1,J)
    263                       END IF
    264                       JX = JX - INCX
    265                       IF ((N-J).GE.K) KX = KX - INCX
    266    80             CONTINUE
    267               END IF
    268           END IF
    269       ELSE
    270 *
    271 *        Form  x := A'*x  or  x := conjg( A' )*x.
    272 *
    273           IF (LSAME(UPLO,'U')) THEN
    274               KPLUS1 = K + 1
    275               IF (INCX.EQ.1) THEN
    276                   DO 110 J = N,1,-1
    277                       TEMP = X(J)
    278                       L = KPLUS1 - J
    279                       IF (NOCONJ) THEN
    280                           IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
    281                           DO 90 I = J - 1,MAX(1,J-K),-1
    282                               TEMP = TEMP + A(L+I,J)*X(I)
    283    90                     CONTINUE
    284                       ELSE
    285                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
    286                           DO 100 I = J - 1,MAX(1,J-K),-1
    287                               TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
    288   100                     CONTINUE
    289                       END IF
    290                       X(J) = TEMP
    291   110             CONTINUE
    292               ELSE
    293                   KX = KX + (N-1)*INCX
    294                   JX = KX
    295                   DO 140 J = N,1,-1
    296                       TEMP = X(JX)
    297                       KX = KX - INCX
    298                       IX = KX
    299                       L = KPLUS1 - J
    300                       IF (NOCONJ) THEN
    301                           IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
    302                           DO 120 I = J - 1,MAX(1,J-K),-1
    303                               TEMP = TEMP + A(L+I,J)*X(IX)
    304                               IX = IX - INCX
    305   120                     CONTINUE
    306                       ELSE
    307                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
    308                           DO 130 I = J - 1,MAX(1,J-K),-1
    309                               TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
    310                               IX = IX - INCX
    311   130                     CONTINUE
    312                       END IF
    313                       X(JX) = TEMP
    314                       JX = JX - INCX
    315   140             CONTINUE
    316               END IF
    317           ELSE
    318               IF (INCX.EQ.1) THEN
    319                   DO 170 J = 1,N
    320                       TEMP = X(J)
    321                       L = 1 - J
    322                       IF (NOCONJ) THEN
    323                           IF (NOUNIT) TEMP = TEMP*A(1,J)
    324                           DO 150 I = J + 1,MIN(N,J+K)
    325                               TEMP = TEMP + A(L+I,J)*X(I)
    326   150                     CONTINUE
    327                       ELSE
    328                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
    329                           DO 160 I = J + 1,MIN(N,J+K)
    330                               TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
    331   160                     CONTINUE
    332                       END IF
    333                       X(J) = TEMP
    334   170             CONTINUE
    335               ELSE
    336                   JX = KX
    337                   DO 200 J = 1,N
    338                       TEMP = X(JX)
    339                       KX = KX + INCX
    340                       IX = KX
    341                       L = 1 - J
    342                       IF (NOCONJ) THEN
    343                           IF (NOUNIT) TEMP = TEMP*A(1,J)
    344                           DO 180 I = J + 1,MIN(N,J+K)
    345                               TEMP = TEMP + A(L+I,J)*X(IX)
    346                               IX = IX + INCX
    347   180                     CONTINUE
    348                       ELSE
    349                           IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
    350                           DO 190 I = J + 1,MIN(N,J+K)
    351                               TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
    352                               IX = IX + INCX
    353   190                     CONTINUE
    354                       END IF
    355                       X(JX) = TEMP
    356                       JX = JX + INCX
    357   200             CONTINUE
    358               END IF
    359           END IF
    360       END IF
    361 *
    362       RETURN
    363 *
    364 *     End of ZTBMV .
    365 *
    366       END
    367